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Abstract. Various problems on integers lead to the class of functions
defined on a ring of numbers (or a subset of such a rings) METTRE
RING AU SINGULIER and verifying a − b divides f(a) − f(b) for all
a, b. We say that such functions are “congruence preserving”. In previous
works, we characterized these classes of functions for the cases N → Z,
Z→ Z and Z/nZ→ Z/mZ in terms of sums series of rational polynomials
(taking only integral values) and the function giving the least common
multiple of 1, 2, . . . , k. In this paper we relate the finite and infinite cases
via a notion of “lifting”: if π : X → Y is a surjective morphism and f
is a function Y → Y a lifting of f is a function F : X → X such that
π ◦ F = f ◦ π. We prove that the finite case Z/nZ → Z/nZ can be so
lifted to the infinite cases N→ N and Z→ Z. We also use such liftings to
extend the characterization to the rings of p-adic and profinite integers,
using Mahler representation of continuous functions on these rings.
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1 Introduction

A function f (on N or Z) is said to be congruence preserving if a − b divides
f(a)−f(b). Polynomial functions are obvious examples of congruence preserving
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functions. In [3,4] we characterized such functions N → Z and Z → Z (which
we named “functions having the integral difference ratio property”). In [5] we
extended the characterization to functions Z/nZ → Z/mZ with n,m ≥ 1 (for
the suitable notion of congruence preservation).

In the present paper, we prove in §2 that every congruence preserving function
Z/nZ → Z/mZ (with m dividing n) can be lifted to congruence preserving
functions N→ N and Z→ Z (i.e. it is the modular projection of such a function).
As a corollary (i) we show that such a lift also works replacing N with Z/qnZ
and (ii) we give an alternative proof of a representation (obtained in [5]) of
congruence preserving functions Z/nZ → Z/mZ as linear sums of “rational”
polynomials.

In §3 we consider the rings of p-adic integers (resp. profinite integers) and
prove that congruence preserving functions on these rings are inverse limits of
congruence preserving functions on the Z/pkZ (resp. on the Z/nZ). Consider-
ing the Mahler representation of continuous functions by series, we prove that
congruence preserving functions correspond to those series for which the linear
coefficient with rank k is divisible by the least common multiple of 1, . . . , k.

2 Switching between finite and infinite

In order to characterize congruence preserving functions on Z/nZ, we first lift
each such function into a congruence preserving function N → N. In a second
step, we use our characterization of congruence preserving functions N → Z to
characterize the congruence preserving functions Z/nZ→ Z/nZ.

2.1 Lifting functions Z/nZ → Z/mZ to N → N and Z → Z

Definition 1. Let X be a subset of a commutative ring (R,+,×). A function
f : X → R is said to be congruence preserving if

∀x, y ∈ X ∃d ∈ R f(x)− f(y) = d(x− y) , i.e. x− y divides f(x)− f(y) .

Definition 2 (Lifting). Let σ : X → N and ρ : Y → M be surjective maps.
A function F : X → Y is said to be a (σ, ρ)-lifting of a function f : N → M
(or simply lifting if σ, ρ are clear from the context) if the following diagram
commutes:

X
F−−−−→ Y

σ
y yρ
N

f−−−−→ M

i.e. ρ ◦ F = f ◦ σ .

We will consider elements of Z/kZ as integers and vice versa via the following
modular projection maps.

Notation 3 1. Let πk : Z → Z/kZ be the canonical surjective homomorphism
associating to an integer its class in Z/kZ.



2. Let ιk : Z/kZ → N be the injective map associating to an element x ∈ Z/kZ
its representative in {0, . . . , k − 1}.
3. Let πn,m : Z/nZ→ Z/mZ be the map πn,m = πm ◦ ιn.
If m ≤ n let ιm,n : Z/mZ→ Z/nZ be the injective map ιm,n = πn ◦ ιm.

Lemma 4. If m divides n then πm = πn,m ◦ πn and πn,m is a surjective homo-
morphism.

The next theorem insures that congruence preserving functions Z/nZ → Z/nZ
can be lifted to congruence preserving functions N→ N and N→ Z.

Theorem 5 (Lifting functions Z/nZ → Z/nZ to N → N). Let f : Z/nZ →
Z/nZ with m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πn)-lifted to a congruence preserving function F : N→ N.
(3) f can be (πn, πn)-lifted to a congruence preserving function F : N→ Z.

In view of applications in the context of p-adic and profinite integers, we state
and prove a slightly more general version. As Z/nZ and Z/mZ are different
rings we use an extension of the notion of congruence preservation introduced
in Chen [6] and studied in Bhargava [1]) which we recall below.

Definition 6. A function f : Z/nZ→ Z/mZ is congruence preserving if

for all x, y ∈ Z/nZ, πn,m(x− y) divides f(x)− f(y) in Z/mZ . (1)

Theorem 7 (Lifting functions Z/nZ → Z/mZ to N → N). Let f : Z/nZ →
Z/mZ with m divides n and m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πm)-lifted to a congruence preserving function F : N→ N.
(3) f can be (πn, πm)-lifted to a congruence preserving function F : N→ Z.

Proof. (2)⇒ (3) is trivial.
(3)⇒ (1). Assume f lifts to the congruence preserving function F : N→ Z, i.e.
f ◦πn = πm ◦F . Since πn ◦ ιn is the identity we get f = im ◦F ◦ ιn. The following
diagrams are thus commutative:

N F //

πn
��

Z

πm
��

N F // Z

πm
��

Z/nZ
f // Z/mZ Z/nZ

f //

ιn

OO

Z/mZ

Let x, y ∈ Z/nZ. As F is congruence preserving, ιn(x)−ιn(y) divides F (ιn(x))−
F (ιn(y)), hence F (ιn(x))−F (ιn(y)) = (ιn(x)− ιn(y)) δ. Since πm is a morphism
and πm ◦ ιn = πn,m, we get πm(F (ιn(x)))− πm(F (ιn(x))) = πn,m(x− y)πm(δ).
As F lifts f we have πm(F (ιn(x)))− πm(F (ιn(y))) = f(x)− f(y) whence (1).



(1)⇒ (2). By induction on t ∈ N we define a sequence of functions ϕt : {0, . . . , t} →
N for t ∈ N such that ϕt+1 extends ϕt and (*) and (**) below hold.

(*) ϕt is congruence preserving,
(**) πm(ϕt(u)) = f(πn(u)), for all u ∈ {0, . . . , t},

{0, . . . , t}
ϕt //

i.e. the following diagram commutes: πn
��

Z

πm
��

Z/nZ
f // Z/mZ

Basis. We choose ϕ0(0) ∈ N such that πm(ϕ0(0)) = f(πn(0)). Properties (*) and
(**) clearly hold for ϕ0.
Induction: from ϕt to ϕt+1. Since the wanted ϕt+1 has to extend ϕt to the
domain {0, . . . , t, t+ 1}, we only have to find a convenient value for ϕt+1(t+ 1).
By the induction hypothesis, (*) and (**) hold for ϕt; in order for ϕt+1 to
satisfy (*) and (**), we have to find ϕt+1(t + 1) such that t + 1 − i divides
ϕt+1(t+1)−ϕt(i), for i = 0, . . . , t, and πm(ϕt+1(t+1)) = f(πn(t+1)). Rewritten
in terms of congruences, these conditions amount to say that ϕt+1(t + 1) is a
solution of the following system of congruence equations:

?(0) ϕt+1(t+ 1) ≡ ϕt(0) (mod t+ 1)
...

?(i) ϕt+1(t+ 1) ≡ ϕt(i) (mod t+ 1− i)
...

?(t-1) ϕt+1(t+ 1) ≡ ϕt(t− 1) (mod 2)
?? ϕt+1(t+ 1) ≡ ιm(f(πn(t+ 1))) (mod m)


(2)

Recall the Generalized Chinese Remainder Theorem (cf. §3.3, exercice 9 p. 114,
in Rosen’s textbook [13]): a system of congruence equations∧

i=0,...,t

x ≡ ai (mod ni)

has a solution if and only if ai ≡ aj mod gcd(ni, nj) for all 0 ≤ i < j ≤ t.
Let us show that the conditions of application of the Generalized Chinese

Remainder Theorem are satisfied for system (2).

– Lines ?(i) and ?(j) of system (2) (with 0 ≤ i < j ≤ t− 1).
Every common divisor to t+ 1− i and t+ 1− j divides their difference j − i
hence gcd(t+ 1− i, t+ 1− j) divides j− i. Since ϕt satisfies (*), j− i divides
ϕt(j)− ϕt(i) and a fortiori gcd(t+ 1− i, t+ 1− j) divides ϕt(j)− ϕt(i).

– Lines ?(i) and ?? of system (2) (with 0 ≤ i ≤ t− 1).
Let d = gcd(t + 1 − i,m). We have to show that d divides ιm(f(πn(t +
1)))−ϕt(i). Since f is congruence preserving, πn,m(πn(t+1)−πn(i)) divides
f(πn(t+1))−f(πn(i)). Asm divides n, by Lemma 4, πn,m(πn(t+1)−πn(i)) =



πm(t+1)−πm(i) = πm(t+1−i) and f(πn(t+1))−f(πn(i)) = kπm(t+1−i)
for some k ∈ Z/mZ. Applying ιm, there exists λ ∈ Z such that

ιm(f(πn(t+ 1)))− ιm(f(πn(i))) = ιm(k)ιm(πm(t+ 1− i)) + λm

as ιm(πm(u)) ≡ u (mod m) for every u ∈ Z, there exists µ ∈ Z such that

ιm(f(πn(t+ 1)))− ιm(f(πn(i))) = ιm(k)(t+ 1− i) + µm+ λm . (3)

Since ϕt satisfies (**), we have πm(ϕt(i))=f(πn(i)) hence
ϕt(i) ≡ ιm(f(πn(i))) (mod m). Thus equation (3) can be rewritten

ιm(f(πn(t+ 1)))− ϕt(i) = (t+ 1− i)ιm(k) + νm for some ν . (4)

As d = gcd(t + 1 − i,m) divides m and t + 1 − i, (4) shows that d divides
ιn(f(πn(t+ 1)))− ϕt(i) as wanted.

Thus, we can apply the Generalized Chinese Theorem and get the wanted value
of ϕt+1(t+ 1), concluding the induction step.

Finally, taking the union of the ϕt’s, t ∈ N, we get a function F : N→ N which
is congruence preserving and lifts f . �

Example 8 (counterexample to Theorem 7). Lemma 4 and Theorem 7 do not
hold if m does not divide n. Consider f : Z/6Z → Z/8Z defined by f(0) = 0,
f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 4, f(5) = 7. Note first that, in Z/8Z, 1, 3
and 5 are invertible, hence f is congruence preserving iff for k ∈ {2, 4}, for all
x ∈ Z/6Z, k divides f(x+ k)− f(x) which is easily checked; nevertheless, f has
no congruence preserving lift F : Z→ Z. If such a lift F existed, we should have

(1) because F lifts f , π8(F (0))=f(π6(0))=0 and π8(F (8))=f(π6(8))=f(2)=4;
(2) as F is congruence preserving, 8 must divide F (8)−F (0); we already noted

that 8 divides F (0), hence 8 divides F (8) and π8(F (8)) = 0, contradicting
π8(F (8)) = 4.

Note that π6,8 is neither a homomorphism nor surjective and 0 = π8(8) 6=
π6,8 ◦ π6(8) = 2. ut

We can also lift congruence preserving functions from Z/nZ → Z/mZ to
Z→ Z instead of N→ N.

Theorem 9 (Lifting functions Z/nZ → Z/mZ to Z → Z). Let f : Z/nZ →
Z/mZ with m divides n and m ≥ 2. The following conditions are equivalent:

(1) f is congruence preserving.
(2) f can be (πn, πm)-lifted to a congruence preserving function F : Z→ Z.

Proof. (2)⇒ (1). The proof is the same as that of (3)⇒ (1) in Theorem 7.
(1)⇒ (2). The argument is a slight modification of that for the same implication
in Theorem 7. We define the lift F : Z → Z of f : Z/nZ → Z/mZ as the union
of a series of functions ϕt, t ∈ N such that
- ϕ2t has domain {−t, . . . , t} and ϕ2t+1 has domain {−t, . . . , t+ 1},
- ϕt+1 extends ϕt,
- ϕt is congruence preserving. The induction step is done exactly as in Theorem 7
via a system of congruence equations and an application of the Generalized
Chinese Remainder Theorem.



2.2 Representation of congruence preserving functions
Z/nZ → Z/mZ

As a first corollary of Theorem 7 we get a new proof of the representations of
congruence preserving functions Z/nZ → Z/mZ as finite linear sums of poly-
nomials with rational coefficients (cf. [5]). Let us recall the so-called binomial
polynomials.

Definition 10. For k ∈ N, let Pk(x) =

(
x

k

)
=

1

k!

∏`=k−1
`=0 (x− `).

Though Pk has rational coefficients, it maps N into Z. Also, observe that Pk(x)
takes value 0 for all k > x. This implies that for any sequence of integers (ak)k∈N,
the infinite sum

∑
k∈N ak Pk(x) reduces to a finite sum for any x ∈ N hence

defines a function N→ Z.

Definition 11. We denote by lcm(k) the least common multiple of integers
1, . . . , k (with the convention lcm(0) = 1).

Definition 12. To each binomial polynomial Pk, k ∈ N, we associate a function
Pn,mk : Z/nZ→ Z/mZ which sends an element x ∈ Z/nZ to (πm ◦ Pk ◦ ιn)(x) ∈
Z/mZ.

In other words, consider the representative t of x lying in {0, . . . , n−1}, evaluate
Pk(t) in N and then take the class of the result in Z/mZ. Hence, the following
diagram commutes:

N
Pk // Z

πm
��

Z/nZ
Pn,mk //

ιn

OO

Z/mZ

Lemma 13. If lcm(k) divides ak in Z, then the function πm(ak)Pn,mk : Z/nZ→
Z/mZ (represented by akPk) is congruence preserving.

Proof. In [3] we proved that if lcm(k) divides ak then akPk is a congruence pre-
serving function on N. Let us now show that πm(ak)Pn,mk : Z/nZ → Z/mZ is
also congruence preserving. Let x, y ∈ Z/nZ: as akPk is congruence preserving,
ιn(x)−ιn(y) divides akPk(ιn(x))−akPk(ιn(y)). Asm divides n, πm is a morphism
(cf. Lemma 4) hence πm(ιn(x)) − πm(ιn(y)) divides πm(ak)πm(Pk(ιn(x))) −
πm(ak)πm(Pk(ιn(y))) = πm(ak)Pn,mk (x) − πm(ak)Pn,mk (x). As πm ◦ ιn = πn,m
we have πm(ιn(x)) − πm(ιn(y)) = πn,m(x)) − πn,m(y) and we conclude that
πm(ak)Pn,mk is congruence preserving. �

Corollary 14 ([5]). Let 1 ≤ m = pα1
1 · · · p

α`
` , pi prime. Suppose m divides

n and let ν(m) = maxi=1,...,` pαii . A function f : Z/nZ → Z/mZ is congru-
ence preserving if and only if it is represented by a finite Z-linear sum f =∑ν(m)−1
k=0 πm(ak)Pn,mk such that lcm(k) divides ak (in Z) for all k < ν(m).

Moreover, such a representation is unique.



Proof. Assume f : Z/nZ → Z/mZ is congruence preserving. Applying Theo-
rem 7, lift f to F : N→ N which is congruence preserving.

N
F =

∑ν(m)−1
k=0 ak Pk //

πn
��

Z

πm f ◦ πn = πm ◦ F
��

Z/nZ
f // Z/mZ

We proved in [5] that every congruence preserving function F : N→ N is of the
form F =

∑∞
k=0 akPk where lcm(k) divides ak for all k. As πm is a morphism

(because m divides n) and F lifts f , we have, for u ∈ Z

f(πn(u)) = πm(F (u)) = πm(

∞∑
k=0

ak Pk(u))

=

∞∑
k=0

πm(ak)πm(Pk(u)) =

k=ν(m)−1∑
k=0

πm(ak)πm(Pk(u)) (5)

The last equality is obtained by noting that for k ≥ ν(m), m divides lcm(k)
hence as ak is a multiple of lcm(k), πm(ak) = 0. From (5) we get f(πn(u)) =∑k=ν(m)−1
k=0 πm(ak)πm(Pk(u)) = πm(

∑k=ν(m)−1
k=0 ak Pk(u)). This proves that f is

lifted to the rational polynomial function
∑k=ν(m)−1
k=0 ak Pk. Since Pk(k) = 1 for

all k ∈ N, and Pk(i) = 0 for k > i, we obtain the unicity of the representation.

The converse follows from Lemma 13 and the fact that any finite sum of
congruence preserving functions is congruence preserving. �

2.3 Lifting functions Z/nZ → Z/mZ to Z/rZ → Z/sZ

As a second corollary of Theorem 7 we can lift congruence preserving functions
Z/nZ→ Z/nZ to congruence preserving functions Z/qnZ→ Z/qnZ.

We state a slightly more general result.

Corollary 15. Assume m,n, s, r ≥ 1, m divides both n and s, and n, s both di-
vide r. If f : Z/nZ→ Z/mZ is congruence preserving then it can be (πr,n, πs,m)-

n DIVIDES r IS A
CONSEQUENCE
NON je ne pense pas

lifted to g : Z/rZ→ Z/sZ which is also congruence preserving.

Proof. As m divides n, using Theorem 7, we lift f to a congruence preserving
F : N→ N and set g = πs ◦ F ◦ ιr.

We first show that the rectangular subdiagram around f, g commutes:



N F //
πr

''

πn

��

N
πs

ww

πm

��

Z/rZ g
//

ιr

gg

πr,n
��

Z/sZ

πs,m
��

Z/nZ
f

// Z/mZ

πs,m ◦ g = πs,m ◦ (πs ◦ F ◦ ιr)
= (πm ◦ F ) ◦ ιr m divides s yields πm = πs,m ◦ πs (Lemma 4)
= (f ◦ πn) ◦ ιr since F lifts f
= f ◦ πr,n since πn ◦ ιr = πr,n

Thus, πs,m ◦ g = f ◦ πr,n, i.e. g lifts f .
Finally, if x, y ∈ Z/rZ then ιr(x)− ιr(y) divides F (ιr(x))−F (ιr(y)) (by congru-
ence preservation of F ). As πs is a morphism, and πs = πr,s◦πr (because s divides
r), and πr ◦ ιr is the identity on Z/rZ, we deduce that πs(ιr(x)) − πs(ιr(y)) =
(πr,s ◦ πr ◦ ιr)(x) − (πr,s ◦ πr ◦ ιr)(y) = πr,s(x − y) divides πs(F (ιr(x))) −
πs(F (ιr(y)) = g(x) − g(y) (by definition of g). We thus conclude that g is con-
gruence preserving. �

Remark 16. Let us check that the previous diagram is completely commutative.
The large trapezoid around F, f commutes because F lifts f . The upper trape-
zoid F, g, ιr, πs commutes by definition of g. The upper trapezoid F, g, πr, πs
commutes since g ◦ πr = (πs ◦ F ◦ ιr) ◦ πr = πs ◦ F (as ιr ◦ πr is the identity).
The left and right triangles πn, πr, πr,n and πm, πs, πs,m commute by Lemma 4
as n divides r and m divides s. Finally, the triangle πn, ιr, πr,n commutes by
definition of πr,n (cf. Notation 3).

3 Congruence preservation on p-adic/profinite integers

All along this section, p is a prime number; we study congruence preserving
functions on the rings Zp of p-adic integers and Ẑ of profinite integers. Zp is

the projective limit lim←−Z/pnZ relative to the projections πpn,pm . Usually, Ẑ is

defined as the projective limit lim←−Z/nZ of the finite rings Z/nZ relative to
the projections πn,m, for m dividing n. We here use the following equivalent

definition which allows to get completely similar proofs for Zp and Ẑ.

Ẑ = lim←− Z/n!Z = {x̂ = (xn)∞n=1 ∈
∏∞
n=1 Z/n!Z | ∀m < n, xm ≡ xn (mod m!)}

Recall that Zp (resp. Ẑ) contains the ring Z and is a compact topological
ring for the topology given by the ultrametric d such that d(x, y) = 2−n where
n is largest such that pn (resp. n!) divides x − y, i.e. x and y have the same



first n digits in their base p (resp. base factorial) representation. We refer to the
Appendix for some basic definitions, representations and facts that we use about
the compact topological rings Zp and Ẑ.

We first prove that on Zp and Ẑ every congruence preserving function is contin-
uous (Proposition 18).

3.1 Congruence preserving functions are continuous

Definition 17. 1. Let µ : N → N be increasing. A function Ψ : Zp → Zp
admits µ as modulus of uniform continuity if and only if d(x, y) ≤ 2−µ(n) implies
d(Ψ(x), Ψ(y)) ≤ 2−n.
2. Φ is 1-Lipschitz if it admits the identity as modulus of uniform continuity.

Since the rings Zp and Ẑ are compact, every continuous function admits a mod-
ulus of uniform continuity. For congruence preserving function, we get a tight
bound on the modulus.

Proposition 18. Every congruence preserving function Ψ : Zp → Zp is 1-

Lipschitz (hence continuous). Idem with Ẑ in place of Zp.

Proof. If d(x, y) ≤ 2−n then pn divides x−y hence (by congruence preservation)
pn also divides Ψ(x)− Ψ(y) which yields d(Ψ(x), Ψ(y)) ≤ 2−n. �

The converse of Proposition 18 is false: a 1-Lipschitz function is not necessarily
congruence preserving as will be seen in Example 31.

Note the following quite expectable result.

Corollary 19. There are functions Zp → Zp (resp. Ẑ → Ẑ) which are not
continuous hence not congruence preserving.

Proof. As Zp has cardinality 2ℵ0 there are 22
ℵ0

functions Zp → Zp. Since N is
dense in Zp, Zp is a separable space, hence there are at most 2ℵ0 continuous
functions. �

3.2 Congruence preserving functions and inverse limits

In general an arbitrary continuous function on Zp is not the inverse limit of a
sequence of functions Z/pnZ → Z/pnZ’s. However, this is true for congruence
preserving functions. We first recall how any continuous function Ψ : Zp → Zp is
the inverse limit of an inverse system of continuous functions ψn : Z/pµ(n)Z →
Z/pnZ, n ∈ N, i.e. the diagram of Figure 1 commutes for any m ≤ n. For
legibility, we use notations adapted to Zp.

Notation 20 We write π̂n for πpn : Zp → Z/pnZ and ι̂n for ιpn : Z/pnZ→ Zp.

Lemma 4 has an avatar in the profinite framework.

Lemma 21. π̂n ◦ ι̂n is the identity on Z/pnZ. If m ≤ n then π̂m = πpn,pm ◦ π̂n.



Proposition 22. Consider Ψ : Zp → Zp and a strictly increasing µ : N → N.
Define ψn : Z/pµ(n)Z→ Z/pnZ as ψn = π̂n ◦Ψ ◦ ι̂µ(n) for all n ∈ N. Then the
following conditions are equivalent :

(1) Ψ is uniformly continuous and admits µ as a modulus of uniform continuity.
(2) The sequence (ψn)n∈N is an inverse system with Ψ as inverse limit (in other

words, for all 1 ≤ m ≤ n, the diagrams of Figure 1 commute)
(3) For all n ≥ 1, the upper half (dealing with Ψ and ψn) of the diagram of

Figure 1 commutes.

Idem with Ẑ in place of Zp.

Zp
Ψ //

π̂µ(n)
��

Zp

π̂n
��

Z/pµ(n)Z
ψn //

πpµ(n),pµ(m)

��

ι̂µ(n)

OO

Z/pnZ

πpn,pm

��

with n ≥ m

Z/pµ(m)Z
ψm

// Z/pmZ

Fig. 1. The inverse system (ψn)n∈N and its inverse limit Ψ .

Proof. (1)⇒ (2). We first show π̂n◦Ψ = ψn◦π̂µ(n). Let u ∈ Zp. Since π̂µ(n)◦ ι̂µ(n)
is the identity on Z/pµ(n)Z, we have π̂µ(n)(u) = π̂µ(n)(ι̂µ(n)(π̂µ(n)(u))) hence

pµ(n) (considered as an element of Zp) divides the difference u− ι̂µ(n)(π̂µ(n)(u)),

i.e. the distance between these two elements is at most 2−µ(n). As µ is a modulus
of uniform continuity for Ψ , the distance between their images under Ψ is at most
2−n, i.e. pn divides their difference, hence π̂n(Ψ(u)) = π̂n(Ψ(ι̂µ(n)(π̂µ(n)(u)))).
By definition, ψn = π̂n ◦Ψ ◦ ι̂µ(n). Thus, π̂n(Ψ(u)) = ψn(π̂µ(n)(u)), which proves
that Ψ lifts ψn.
We now show πpn,pm ◦ ψn = ψm ◦ πpµ(n),pµ(m) . Observe that, since n ≥ m and

µ is increasing, pm divides pn and pµ(m) divides pµ(n). We just proved above
equality π̂m ◦ Ψ = ψm ◦ π̂µ(m). Applying three times Lemma 21, we get

π̂m ◦ Ψ ◦ ι̂µ(n) = ψm ◦ π̂µ(m) ◦ ι̂µ(n)
(πpn,pm ◦ π̂n) ◦ Ψ ◦ ι̂µ(n) = ψm ◦ (πpµ(n),pµ(m) ◦ π̂µ(n)) ◦ ι̂µ(n)

πpn,pm ◦ ψn = ψm ◦ πpµ(n),pµ(m) as π̂µ(n) ◦ ι̂µ(n) is the identity.

The last equality means that ψn lifts ψm.
(2)⇒ (3). Trivial
(3)⇒ (1). The fact that Ψ lifts ψn shows that two elements of Zp with the same
first µ(n) digits (in the p-adic representation) have images with the same first n
digits. This proves that µ is a modulus of uniform continuity for Ψ . ut

For congruence preserving functions Φ : Zp → Zp, the representation of Propo-
sition 22 as an inverse limit gets smoother since then µ(n) = n.



Theorem 23. For a function Φ : Zp → Zp, letting ϕn : Z/pnZ → Z/pnZ be
defined as ϕn = π̂n ◦ Φ ◦ ι̂n, the following conditions are equivalent.

(1) Φ is congruence preserving.
(2) All ϕn’s are congruence preserving function and the sequence (ϕn)n≥1 is an

inverse system with Φ as inverse limit (in other words, for all 1 ≤ m ≤ n,
the diagrams of Figure 2 commute).

A similar equivalence also holds for functions Φ : Ẑ→ Ẑ.

Zp
Φ //

π̂n
��

Zp

π̂n
��

Z/pnZ
ϕn //

πpn,pm
��

ι̂n

OO

Z/pnZ

πpn,pm
��

with n ≥ m

Z/pmZ
ϕm

// Z/pmZ

Fig. 2. Φ as the inverse limit of the ϕn’s, n ∈ N.

Proof. (1) ⇒ (2). Proposition 18 insures that Φ is 1-Lipschitz. The implication
(1) ⇒ (2) in Proposition 22, applied with the identity as µ, insures that the
sequence (ϕn)n≥1 is an inverse system with Φ as inverse limit. It remains to
show that ϕn is congruence preserving. Since Φ is congruence preserving, if
x, y ∈ Z/pnZ then ι̂n(x)− ι̂n(y) divides Φ(ι̂n(x))−Φ(ι̂n(y)). Now, the canonical
projection π̂n is a morphism hence π̂n(ι̂n(x))− π̂n(ι̂n(y)) divides π̂n(Φ(ι̂n(x)))−
π̂n(Φ(ι̂n(y))). As π̂n ◦ ι̂n is the identity on Z/pnZ, x− y divides π̂n(Φ(ι̂n(x)))−
π̂n(Φ(ι̂n(y))) = ϕn(x)− ϕn(y) as wanted.

(2)⇒ (1). Let x, y ∈ Zp. Since ϕn is congruence preserving π̂n(x)−π̂n(y) divides
ϕn(π̂n(x))− ϕn(π̂n(y)). Let

Ux,yn = {u ∈ Z/pnZ | ϕn(π̂n(x))− ϕn(π̂n(y)) = (π̂n(x)− π̂n(y))u} .

If m ≤ n and u ∈ Ux,yn then, applying πpn,pm to the equality defining Ux,yn , using
the commutative diagrams of Figure 2 and letting v = πpn,pm(u), we get

ϕn(π̂n(x))− ϕn(π̂n(y)) =
(
π̂n(x)− π̂n(y)

)
u

πpn,pm(ϕn(π̂n(x))− πpn,pm(ϕn(π̂n(y)) =
(
πpn,pm(π̂n(x))− πpn,pm(π̂n(y)

)
v

ϕm(πpn,pm(π̂n(x)))− ϕm(πpn,pm(π̂n(y))) =
(
π̂m(x)− π̂m(y)

)
v

ϕm(π̂m(x))− ϕm(π̂m(y)) =
(
π̂m(x)− π̂m(y)

)
v

Thus, if u ∈ Ux,yn then v = πpn,pm(u) ∈ Ux,ym .
Consider the tree T of finite sequences (u0, . . . , un) such that ui ∈ Ux,yi and

ui = πpn,pi(un) for all i = 0, . . . , n. Since each Ux,yn is nonempty, the tree T
is infinite. Since it is at most p-branching, using König’s Lemma, we can pick



an infinite branch (un)n∈N in T . This branch defines an element z ∈ Zp. The
commutative diagrams of Figure 2 show that the sequences (π̂n(x)− π̂n(y))n∈N
and ϕn(π̂n(x)) − ϕn(π̂n(y)) represent x − y and Φ(x) − Φ(y) in Zp. Equality
ϕm(π̂m(x))−ϕm(π̂m(y)) = (π̂m(x)− π̂m(y)) πpn,pm(u) shows that (going to the
projective limits) Φ(x) − Φ(y) = (x − y) z. This proves that Φ is congruence
preserving. �

3.3 Extension of congruence preserving functions N → N

Congruence preserving functions Zp → Zp (resp. Ẑ → Ẑ) are determined by

their restrictions to N since N is dense in Zp (resp. Ẑ). Let us state a (partial)
converse result.

Theorem 24. Every congruence preserving function F : N → Z has a unique
extension to a congruence preserving function Φ : Zp → Zp (resp. Ẑ→ Ẑ).

Proof. Let us denote by Ñ and Z̃ the canonical copies of N and Z in Zp and by F̃ :

Ñ→ Z̃ the copy of F as a partial function on Zp. As F is congruence preserving so

is F̃ , which is thus also uniformly continuous (as a partial function on Zp). Since

Ñ is dense in Zp, F̃ has a unique uniformly continuous extension Φ : Zp → Zp.
To show that this extension Φ is congruence preserving, observe that Φ, being
uniformly continuous, is the inverse limit of the ϕn = π̂n ◦ Φ ◦ ι̂n. Now, since ι̂n
has range exactly Ñ we see that ϕn = π̂n ◦ F̃ ◦ ι̂n; as F̃ is congruence preserving
so is ϕn. Finally, Theorem 23 insures that Φ is also congruence preserving. �

Polynomials in Zp[X] obviously define congruence preserving functions Zp → Zp.
But non polynomial functions can also be congruence preserving.

Consequence 25 The extensions to Zp and Ẑ of the N→ Z functions [3,4]

x 7→ be1/a ax x!c (for a ∈ Z \ {0, 1}) , x 7→ if x = 0 then 1 else be x!c

and the Bessel like function f(n) =

√
e

π
× Γ (1/2)

2× 4n × n!

∫ ∞
1

e−t/2(t2 − 1)ndt are

congruence preserving.

3.4 Representation of congruence preserving functions Zp → Zp

We now characterize congruence preserving functions via their representation as
infinite linear sums of the Pk’s (suitably extended to Zp). This representation is
a refinement of Mahler’s characterization of continuous functions (Theorem 28).
First recall the notion of valuation.

Definition 26. The p-valuation (resp. the factorial valuation) Val(x) of x ∈ Zp,

or x ∈ Z/pnZ (resp. x ∈ Ẑ) is the largest s such that ps (resp. s!) divides x or is
+∞ in case x = 0. It is also the length of the initial block of zeros in the p-adic
(resp. factorial) representation of x.



Note that for any polynomial Pk (or more generally any polynomial), the

below diagram commutes for any m ≤ n (recall that P p
n,pn

k = πpn ◦Pk ◦ ιpn , cf.
Definition 12):

Z/pnZ
P p

n,pn

k−−−−−→ Z/pnZ

πpn,pm
y yπpn,pm

Z/pmZ
P p

m,pm

k−−−−−−→ Z/pmZ

i.e. πpn,pm ◦ P p
n,pn

k = P p
m,pm

k ◦ πpn,pm .

This allows to define the interpretation P̂k of Pk in Zp (resp. Ẑ) as an inverse
limit.

Definition 27. P̂k : Zp → Zp is the inverse limit of the inverse system (P p
n,pn

k )n≥1.
Otherwise stated, for x ∈ Zp such that x = lim←−n∈Nxn, we have

P̂k(x) = lim←−n∈NP
pn,pn

k (xn) = lim←−n∈Nπpn(Pk(ιpn(xn)))

Thus, the following diagram commutes for all n :

Zp
P̂k−−−−→ Zp

π̂n

y yπ̂n
Z/pnZ

P p
n,pn

k−−−−−→ Z/pnZ

ιpn
y yιpn
N Pk−−−−→ N

Recall Mahler’s characterization of continuous functions on Zp (resp. Ẑ).

Theorem 28 (Mahler, 1956 [10]). 1. A series
∑
k∈N akP̂k(x), ak ∈ Zp, is

convergent in Zp if and only if limk→∞ ak = 0, i.e. the corresponding sequence
of valuations (Val(ak))k∈N tends to +∞.
2. A function Zp → Zp is represented by a convergent series if and only if it is
continuous. Moreover, such a representation is unique.
Idem with Ẑ.

Theorem 29 refines Mahler’s characterization to congruence preserving functions.

Theorem 29. A function Φ : Zp → Zp represented by a series Φ =
∑
k∈N akP̂k

is congruence preserving if and only if lcm(k) divides ak for all k.

Note. The condition“lcm(k) divides ak for all k” is stronger than limk→∞ ak = 0.



Proof. Suppose Φ is congruence preserving and let ϕn = π̂n ◦Φ◦ ι̂n. Theorem 23
insures that Φ = lim←−n∈Nϕn and the ϕn’s are congruence preserving on Z/pnZ.

Using Corollary 14, we get ϕn =
∑ν(n)−1
k=0 bnk P

pn,pn

k with lcm(k) dividing bnk for
all k ≤ ν(n)−1. By Proposition 18, Φ is uniformly continuous hence by Mahler’s

Theorem 28, Φ =
∑
k∈N akP̂k with ak ∈ Zp such that limk→∞ ak = 0. Equation

ϕn = π̂n ◦ Φ ◦ ι̂n then yields

ϕn = π̂n ◦ (
∑
k∈N

akP̂k) ◦ ι̂n =
∑
k∈N

π̂n(ak) π̂n ◦ P̂k ◦ ι̂n =
∑
k∈N

π̂n(ak)P p
n,pn

k .

The unicity of the representation of ϕn (cf. Corollary 14) insures that bnk =
π̂n(ak). Similarly, bmk = π̂m(ak); as for m ≤ n, π̂m = πpn,pm ◦ π̂n (Lemma
21), we obtain bmk = πpn,pm(bnk ). Thus, (bnk )n∈N is an inverse system such that
ak = lim←−n∈Nb

n
k . Since ϕn is congruence preserving Corollary 14 insures that

lcm(k) divides bnk ; applying Lemma 30, we see that for all n, νp(k) ≤ Val(bnk ).
Noting that Val(ak) = Val(bnk ), we deduce that νp(k) ≤ Val(ak), hence pνp(k)

and thus also lcm(k) divide ak. In particular, this implies that d(ak, 0) ≤ 2−νp(k)

and limk→∞ ak = 0.
Conversely, if Φ =

∑
k∈N akP̂k and lcm(k) divides ak for all k then lcm(k)

divides π̂n(ak) for all n, k. Thus, the associated ϕn are congruence preserving
which implies that so is Φ by Theorem 23. ut

Lemma 30. Let νp(k) be the largest i such that pi ≤ k < pi+1. In Z/pnZ,
lcm(k) divides a number x iff νp(k) ≤ Val(x).

Proof. In Z/pnZ all numbers are invertible except multiples of p. Hence lcm(k)
divides x iff pνp(k) divides x. ut

Example 31. Let Φ =
∑
k∈N ak Pk with ak = pνp(k)−1, with νp(k) as in Lemma

30. Φ is uniformly continuous by Theorem 28. By Lemma 30, lcm(k) does not
divide ak; hence by Theorem 29, Φ is not congruence preserving.

4 Conclusion

We here studied functions having congruence preserving properties. These func-
tions appeared as uniformly continuous functions in a variety of finite groups
(see [11]).

The contribution of the present paper is to characterize congruence preserving
functions on various sets derived from Z such as Z/nZ, (resp. Zp, Ẑ) via polyno-
mials (resp. series) with rational coefficients which share the following common
property: lcm(k) divides the k-th coefficient. Examples of non polynomial (Bessel
like) congruence preserving functions can be found in [4].
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Appendix

Appendix 1: Basics on p-adic and profinite integers

Recall some classical equivalent approaches to the topological rings of p-adic
integers and profinite integers, cf. Lenstra [8,9], Lang [7] and Robert [12].

Proposition 32. Let p be prime. The three following approaches lead to iso-
morphic structures, called the topological ring Zp of p-adic integers.

– The ring Zp is the inverse limit of the following inverse system:
• the family of rings Z/pnZ for n ∈ N, endowed with the discrete topology,
• the family of surjective morphisms πpn,pm : Z/pnZ → Z/pmZ for 0 ≤
n ≥ m.

– The ring Zp is the set of infinite sequences {0, . . . , p− 1}N endowed with the
Cantor topology and addition and multiplication which extend the usual way
to perform addition and multiplication on base p representations of natural
integers.

– The ring Zp is the Cauchy completion of the metric topological ring (N,+,×)
relative to the following ultrametric: d(x, x) = 0 and for x 6= y, d(x, y) = 2−n

where n is the p-valuation of |x−y|, i.e. the maximum k such that pk divides
x− y.



Recall the factorial representation of integers.

Lemma 33. Every positive integer n has a unique representation as

n = ckk! + ck−1(k − 1)! + ...+ c22! + c11!

where ck 6= 0 and 0 ≤ ci ≤ i for all i = 1, ..., k.

Proposition 34. The four following approaches lead to isomorphic structures,
called the topological ring Ẑ of profinite integers.

– The ring Ẑ is the inverse limit of the following inverse system:
• the family of rings Z/kZ for k ≥ 1, endowed with the discrete topology,
• the family of surjective morphisms πn,m : Z/nZ→ Z/mZ for m | n.

– The ring Ẑ is the inverse limit of the following inverse system:
• the family of rings Z/k!Z for k ≥ 1, endowed with the discrete topology,
• the family of surjective morphisms π(n+1)!,n! : Z/n!Z → Z/m!Z for n ≥
m.

– The ring Ẑ is the set of infinite sequences
∏
n≥1{0, . . . , n} endowed with the

product topology and addition and multiplication which extend the obvious
way to perform addition and multiplication on factorial representations of
natural integers.

– The ring Ẑ is the Cauchy completion of the metric topological ring (N,+,×)
relative to the following ultrametric: for x 6= y ∈ N, d(x, x) = 0 and d(x, y) =
2−n where n is the maximum k such that k! divides x− y.

– The ring Ẑ is the product ring
∏
p prime Zp endowed with the product topology.

Proposition 35. The topological rings Zp and Ẑ are compact and zero dimen-
sional (i.e. they have a basis of closed open sets).

Appendix 2: N and Z in Zp and Ẑ

Proposition 36. Let λ : N→ Zp (resp. λ : N→ Ẑ) be the function which maps

n ∈ N to the element of Zp (resp. Ẑ) with base p (resp. factorial) representation
obtained by suffixing an infinite tail of zeros to the base p (resp. factorial) rep-
resentation of n.
The function λ is an embedding of the semiring N onto a topologically dense
semiring in the ring Zp (resp. Ẑ).

Remark 37. In the base p representation, the opposite of an element f ∈ Zp is
the element −f such that, for all m ∈ N,

(−f)(i) =

0 if ∀s ≤ i f(s) = 0 ,
p− f(i) if i is least such that f(i) 6= 0 ,
p− 1− f(i) if ∃s < i f(s) 6= 0 .

In particular,
– Integers in N correspond in Zp to infinite base p representations with a tail of
0’s.
– Integers in Z \N correspond in Zp to infinite base p representations with a tail
of digits p− 1.
Similar results hold for the infinite factorial representation of profinite integers.


	Arithmetical Congruence Preservation: from Finite to Infinite

