## Arithmetical <br> Congruence Preserving Functions <br> on $\left\{\begin{array}{l}\text { integers } \\ \text { integers modulo } n \\ p \text {-adic } / \text { profinite integers }\end{array} \frac{\mathbb{N}, \mathbb{Z}}{\mathbb{Z} / n \mathbb{Z}}\right.$ <br> A journey in number theory

## Serge Grigorieff

LIAFA, CNRS \& Université Denis Diderot-Paris 7
Joint work with
Patrick Cégielski \& Irène Guessarian
(Université Paris 12) (Université Paris 6)
Yurifest, Berlin, 11/09/2015

## The issue : Capture the following notion

## Definition

$f: \mathbb{N} \rightarrow \mathbb{Z}$ is congruence preserving if

$$
\forall a, b \in \mathbb{N} \quad a-b \quad \text { divides } \quad f(a)-f(b)
$$

or equivalently (justifying the denomination),

$$
\forall n \geq 1 \quad \forall a, b \in \mathbb{N}(a \equiv b \bmod n \quad \Longrightarrow \quad f(a) \equiv f(b) \bmod n)
$$

- Obvious example: Polynomials in $\mathbb{Z}[x]$
- What about non polynomial functions?
- Idem with functions

$$
\mathbb{Z} \rightarrow \mathbb{Z}
$$

on $p$-adic/profinite integers
on integers modulo $n$

## Congruence preserving (or compatible) functions

## Definition (Grätzer, 1964 A notion from universal algebra)

Let $A$ be an algebra and $\mathcal{C}$ a family of congruences.
$f: A^{n} \rightarrow A$ is $\mathcal{C}$-congruence preserving if,

$$
\forall \theta \in \mathcal{C} \quad \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in A
$$

$$
\bigwedge_{i=1}^{i=n} x_{i} \theta y_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \theta f\left(x_{1}, \ldots, x_{n}\right)
$$

$\mathcal{C}=$ modular congruences on $\mathbb{N} \quad \sim$ our notion on $\mathbb{N}$
$\mathcal{C}=$ modular congr. on $\mathbb{Z}=$ all congr. $\leadsto$ our notion on $\mathbb{Z}$

- Example: "Polynomial functions"
$=$ expressible by terms with constants in $A$
- Mostly studied :
- Lattices/Boolean algebras (Grätzer 1960's, Haviar, Ploščica, Farley 2000's ... )
- Finite groups/expanded groups (Bhargava, 1997; Aichinger, 2006)
-     - Much studied question (Grätzer, Kaarli, Pixley) :

Are "polynomials" the sole congruence preserving functions?

## A topological motivation

## $\mathcal{V}$ variety of finite monoids (à la Eilenberg)

Profinite pseudo-metric $d_{\mathcal{V}}(x, y)=2^{-r_{\mathcal{V}}(x, y)}$ on a monoid $M$
(pseudo-metric: $d(x, x)=0$ but $d(x, y)=0$ does not imply $x=y$ )

$$
r_{\mathcal{V}}(x, y)=\left\{\begin{array}{l}
\text { size of smallest } F \in \mathcal{V} \text { separating } x, y \\
\text { if thoro }
\end{array}\right.
$$

$+\infty$ if there no such $F$
$F$ separates $x, y \Longleftrightarrow \exists$ morphism $\varphi: M \rightarrow F \quad \varphi(x) \neq \varphi(y)$

## Theorem with $M=(\mathbb{N},+)$ and $M=(\mathbb{Z},+) \quad$ (Pin \& Silva, 2011)

$\forall \mathcal{V}$ variety of finite monoids $f: \mathbb{N} \rightarrow \mathbb{N}$ is $d_{\mathcal{V}}$-uniformly continuous $\Longleftrightarrow f$ is constant or congruence preserving $\& f(x) \geq x$.
$\forall \mathcal{V}$ variety of finite groups $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is $d_{\mathcal{V}}$-uniformly continuous $\Longleftrightarrow f$ is constant or congruence preserving

$$
\text { Proof. Case } \mathbb{Z} \rightarrow \mathbb{Z}
$$

$\mathcal{V}_{u}=$ variety generated by $\left\{\mathbb{Z} / p^{n} \mathbb{Z} \mid n \leq k\right\} \quad p$ prime $\mathcal{V}_{u}$ separates integers $x, y$ if $x \not \equiv \equiv_{0} \bmod p^{n}$.

## Another motivation

Question (asked to us by Jean-Éric Pin) :
Which functions $f: \mathbb{N} \rightarrow \mathbb{N}$ are such that
$\forall \mathcal{L}$ lattice of finite subsets of $\mathbb{N}$
$\forall L \in \mathcal{L} \operatorname{Succ}^{-1}(L) \in \mathcal{L} \Longrightarrow \forall L \in \mathcal{L} f^{-1}(L) \in \mathcal{L}$
Succ $=$ successor function on $\mathbb{N}$

Theorem (CGG 2014)
$f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies $\left(^{*}\right) \Longleftrightarrow$
$f$ is congruence preserving \& non-decreasing \& $f(x) \geq x$.
Idem for lattices of regular subsets of $\mathbb{N}$ Idem with $\mathbb{Z}$ in place of $\mathbb{N}$

## Congruence preserving

 functions $\quad \mathbb{N} \rightarrow \mathbb{Z}$
## Tool 1 : Newton representation of functions $\mathbb{N} \rightarrow \mathbb{Z}$

We represent functions $\mathbb{N} \rightarrow \mathbb{Z}$ by
series of polynomials in $\mathbb{Q}[x]$ mapping $\mathbb{N}$ into $\mathbb{Z}$ Binomial polynomial function $\mathbb{N} \rightarrow \mathbb{N}$ in $\mathbb{Q}[x]$

$$
\binom{x}{0}=1 \quad\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

## Proposition (Pólya, 1915)

finite $\mathbb{Z}$-linear combinations of the binomial polynomials

Proposition (Newton, 1687)
infinite $\mathbb{Z}$-linear combinations of the binomial polynomials

$$
\stackrel{1-1}{=} \text { functions } \mathbb{N} \rightarrow \mathbb{Z}
$$

NO CONVERGENCE PROBLEM : For every $x \in \mathbb{N}$ the infinite sum $\sum_{n \in \mathbb{N}} a_{n}\binom{x}{n}$ reduces to the finite sum $\sum_{n \leq x} \overrightarrow{\underline{\underline{a}}} \boldsymbol{n}\binom{x}{n}_{\bar{\equiv}}$

## Tool 2 : Unary least common multiple function (Tchebychev, 1852)

$$
\begin{aligned}
\operatorname{lcm}(k) & =\operatorname{lcm}(1,2, \ldots, k) \\
\psi(x) & =\log (\operatorname{lcm}(x))
\end{aligned}
$$

$$
\operatorname{lcm}(0)=1
$$

Neperian logarithm
(Nair, 1982)

$$
2^{k-1}
$$

$$
\leq \operatorname{lcm}(k)<
$$

(Hanson, 1972)
for $k \geq 1$
$\lim _{x \rightarrow+\infty} \frac{\psi(x)}{x}=1 \quad$ (consequence of the prime number theorem)
P. L. Tchebichef, Mémoire sur les nombres premiers
J. Math. Pures et Appliquées. 17 (1852), 366-390.
D. Hanson, On the product of primes. Canadian Math. Bull. 15(1) :33-37, 1972
M. Nair, On Chebyshev-type inequalities for primes,

Amer. Math. Monthly 89 (1982), 126-129

## Newton representation of congruence preserving functions $\mathbb{N} \rightarrow \mathbb{Z}$

$f: \mathbb{N} \rightarrow \mathbb{Z}$ congruence preserving $\Longleftrightarrow \forall x, y \quad x-y$ divides $f(x)-f(y)$ $\operatorname{lcm}(k)=\operatorname{lcm}(1,2, \ldots, k) \quad \operatorname{lcm}(0)=1$

Theorem (CGG, Int. J. Number Theory, 2015)
Let $f: \mathbb{N} \rightarrow \mathbb{Z}, \quad f=\sum_{n \in \mathbb{N}} a_{n}\binom{x}{n} \quad$ with $a_{n} \in \mathbb{Z}$
$f$ is congruence preserving $\Longleftrightarrow \forall n \in \mathbb{N} \operatorname{lcm}(n)$ divides $a_{n}$

Snapshot of the proof : combinatorics of binomial coefficients
Lemma. $\quad 0 \leq n-k<p \leq k \Longrightarrow p$ divides $\operatorname{lcm}(k)\binom{n}{k}$
Lemma.
$k \leq b \Longrightarrow n$ divides $\operatorname{lcm}(k)\left(\binom{b+n}{k}-\binom{b}{k}\right)$

## Examples of congruence preserving functions

## $2^{\aleph_{0}}$ nonpolynomial congruence preserving functions

## Examples of congruence preserving functions $\mathbb{N} \rightarrow \mathbb{Z}$ <br> (CGG)

$$
\forall x \in \mathbb{N} \sum_{n \in \mathbb{N}} n!\binom{x}{n}=\left\{\begin{array}{cl}
\lfloor e x!\rfloor & \text { if } x \geq 1 \\
1 & \text { if } x=0
\end{array}\right. \text { e Euler number 2.718. }
$$

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} a^{n} n!\binom{x}{n} & =\left\lfloor\begin{array}{ll}
\left\lfloor e^{1 / a} a^{x} x!\right\rfloor & \text { for } a \in \mathbb{N}, a \geq 2 \\
\left\lfloor e^{1 / a} a^{x} x!\right\rfloor+1 & \text { for } a \in \mathbb{Z}, a \leq-1
\end{array}\right. \\
\sum_{n \in 2 \mathbb{N}} 2^{n} n!\binom{x}{n} & = \begin{cases}\left\lfloor\cosh (1 / 2) 2^{x} x!\right\rfloor & \text { if } x \in 2 \mathbb{N} \\
\left\lfloor\sinh (1 / 2) 2^{x} x!\right\rfloor & \text { if } x \in 2 \mathbb{N}+1\end{cases} \\
\sum_{n \in \mathbb{N}} \operatorname{lcm}(n)\binom{x}{n} & =? ? ?
\end{aligned}
$$

Similar with $\lceil\cdots\rceil$ in place of $\lfloor\cdots\rfloor$
Thus, $\quad$ if $x \in \mathbb{N} \backslash\{0\} \quad x \quad$ divides $\lfloor e x!\rfloor-1$ if $x, y \in \mathbb{N} \backslash\{0\} \quad x-y \quad$ divides $\lfloor e x!\rfloor-\lfloor e y!\rfloor$ if $a \in \mathbb{Z} \backslash\{0,1\}, x, y \in \mathbb{N} \quad x-y$ divides $\left\lfloor e^{1 / a} a^{x} x!\right\rfloor-\left\lfloor e^{1 / a} a^{y} y!\right\rfloor$ Not very intuitive properties.

## A bit of robustness in our examples

Trivial : If $f$ is congruence preserving so is $k f$ for $k \in \mathbb{Z}$ In our examples, $k$ can go inside the $\lfloor\cdots\rfloor$

A bit of robustness (CGG)
For every $k \in \mathbb{Z}, \quad$ for $a \in \mathbb{Z} \backslash\{0\}$, $x \mapsto\lfloor k e x!\rfloor \quad x \mapsto\left\lfloor k e^{1 / a} a^{x} x!\right\rfloor$ duly modified for $x \in\{0, \ldots, \mid$ se $\mid-1\}$
are congruence preserving.

The finite modification is no accident
Let $\alpha$ be a nonnull real.
The function $\lfloor\alpha x!\rfloor$ is NOT congruence preserving.

Idem with $\lceil\cdots\rceil$

## Badly failing congruence preservation

$f, g: \mathbb{N} \rightarrow \mathbb{R}$
$f$ uniformly close to $g$ if $\sup \{|f(n)-g(n)| \mid n \in \mathbb{N}\} \quad$ is finite
Not surprisingly, the explicit examples are exceptions (CGG)

1. If $a_{i} \in \mathbb{R} \backslash \mathbb{Z}$ for some $i \geq 1$ then $x \mapsto a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is uniformly close to NO congruence preserving function
2. $\forall k \in \mathbb{N} \backslash\{0\} \forall \alpha \in \mathbb{R} \backslash\{0\} \quad x \mapsto \alpha k^{x}$
is uniformly close to NO congruence preserving function
3. $\forall a \in \mathbb{Z} \backslash\{0\} \forall \alpha \in \mathbb{Q} \backslash\{0\} \quad x \mapsto \alpha$ e! and $x \mapsto \alpha a^{x} x$ !
are uniformly close to NO congruence preserving function
4. $\forall a \in \mathbb{R} \backslash\{0\}$ for almost all $\alpha \in \mathbb{R} \quad x \mapsto \alpha$ e! and $x \mapsto \alpha a^{x} x$ ! are uniformly close to NO congruence preserving function

Proof of 4. Use Koksma's theorem: If $\inf _{m<n}\left|\lambda_{m}-\lambda_{n}\right|>0$ then for almost all $\alpha$ the sequence $\left(\alpha \lambda_{n}\right)_{n \in \mathbb{N}}$ is uniformly distributed modulo 1

## Congruence preserving

 functions $\quad \mathbb{Z} \rightarrow \mathbb{Z}$
## À la Newton representation of functions $\mathbb{Z} \rightarrow \mathbb{Z}$

Replace the binomial polynomials $\binom{x}{n}$ 's by

$$
P_{0}=1 \quad P_{2 \ell}=\frac{\prod_{k=-\ell+1}^{k=\ell} x-k}{(2 \ell)!} \quad P_{2 \ell+1}=\frac{\prod_{k=\ell}^{k=\ell} x-k}{(2 \ell+1)!}
$$

Again, $P_{n}$ is in $\mathbb{Q}[x]$, coefficients are rational numbers. But,

## Proposition (à la Pólya, 1915)

finite $\mathbb{Z}$-linear combinations of the $P_{n}$ 's
$\stackrel{1-1}{\equiv}$ polynomials in $\mathbb{R}[x]$ mapping $\mathbb{Z}$ into $\mathbb{Z}$
Proposition (à la Newton, 1687)
infinite $\mathbb{Z}$-linear combinations of the $P_{n}$ 's
$\stackrel{1-1}{=}$
functions $\mathbb{Z} \rightarrow \mathbb{Z}$

# À la Newton representation of congruence preserving functions $\mathbb{Z} \rightarrow \mathbb{Z}$ 

$$
\begin{aligned}
& P_{0}=1 \quad P_{2 \ell}=\frac{\prod_{k=-\ell+1}^{k=\ell} x-k}{(2 \ell)!} \quad P_{2 \ell+1}=\frac{\prod_{k=-\ell}^{k=\ell} x-k}{(2 \ell+1)!} \\
& f: \mathbb{Z} \rightarrow \mathbb{Z} \text { congruence preserving } \Longleftrightarrow \forall x, y\left(\frac{x-y \text { divides } f(x)-f(y)}{\Longleftrightarrow \operatorname{lcm}(k)=\operatorname{lcm}(1,2, \ldots, k) \quad \operatorname{lcm}(0)=1 \quad \text { (Unary least common multiple) }}\right.
\end{aligned}
$$

Theorem (CGG)
Let $f: \mathbb{Z} \rightarrow \mathbb{Z}, \quad f=\sum_{n \in \mathbb{N}} a_{n} P_{n}(x)$ with $a_{n} \in \mathbb{Z}$
$f$ is congruence preserving $\Longleftrightarrow \forall n \in \mathbb{N} \operatorname{lcm}(n)$ divides $a_{n}$

Proof analogous to that for the $\mathbb{N} \rightarrow \mathbb{Z}$ case
but needs more combinatorics of the binomial numbers

## The extension problem

## Lemma (Let $X \subseteq Y \subseteq \mathbb{Z}$ be finite)

Every $\varphi: X \rightarrow \mathbb{Z}$ such that $\quad \forall x, y \in X \quad x-y$ divides $\varphi(x)-\varphi(y)$ can be extended to $\psi: Y \rightarrow \mathbb{Z}$ such that $\forall x, y \in Y \quad x-y$ divides $\psi(x)-\psi(y)$

Proof. Reduce to $Y=X \cup\{a\}$. Use the Chinese Remainder Theorem : $\bigwedge_{x \in X} b-\varphi(x) \equiv 0 \bmod |a-x|$ has a solution since, for $x, y \in X$,

$$
\begin{aligned}
& (b-\varphi(x))-(b-\varphi(y))=\varphi(y)-\varphi(x) \equiv 0 \bmod |y-x| \\
& \quad \equiv 0 \bmod \operatorname{gcd}(|a-x|,|a-y|) \quad \text { since } \operatorname{gcd}(|a-x|,|a-y|) \text { divides } y-x
\end{aligned}
$$

But NOT every congruence preserving function $f: \mathbb{N} \rightarrow \mathbb{Z}$ extends to a congr. pres. function $\widehat{f}: \mathbb{N} \cup\{-1\} \rightarrow \mathbb{Z}$ The infinite version of the Chinese Remainder Theorem gives solutions in $p$-adic or profinite integers

## Example of congruence preserving functions

Example of congruence preserving function $\mathbb{Z} \rightarrow \mathbb{Z} \quad$ (CGG)

$$
\begin{aligned}
f(x) & =\sum_{k \in \mathbb{N}} \frac{(2 k)!}{k!} P_{2 k}(x) \quad \text { observe lcm }(k) \text { divides }(2 k)!/ k! \\
& = \begin{cases}\sqrt{\frac{e}{\pi}} \frac{\Gamma(1 / 2)}{2^{2 x+1} x!} \int_{1}^{\infty} e^{-t / 2}\left(t^{2}-1\right)^{x} d t & \text { if } x \geq 0 \\
f(|x|-1) & \text { if } x<0\end{cases}
\end{aligned}
$$

Proof. Known identity around modified Bessel function of the 2d kind Thus, $\quad x-y$ divides the difference of this expression on $x$ and on $y$ Not very intuitive property...

## Congruence preserving

$$
\text { functions } \quad \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}
$$

In this finite framework,
the notion was already considered $\sim 1995$

## Chen \& Bhargava notion of

 congruence preserving function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
## Definition (Zhibo Chen, 1995)

Let $m, n \geq 1 . \quad f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ congruence preserving if $\forall d$ dividing $m \quad \forall a, b \in\{0, \ldots, n-1\}$

$$
(a \equiv b \bmod d \Longrightarrow f(a) \equiv f(b) \bmod d)
$$

Denomination "congruence preserving" a bit abusive in some cases :

$$
\{(x, y) \in\{0, \ldots, k-1\} \times\{0, \ldots, k-1\} \mid x \equiv y \bmod d\}
$$

is NOT a congruence on $\mathbb{Z} / k \mathbb{Z}$ when $d<k$ and $d$ does not divide $k$
Saying "congruence preserving" is fully justified when $m$ divides $n$
The reason for this definition is that it is true for polynomials in $\mathbb{Z}[x]$ $x \in\{0, \ldots, n-1\} \mapsto P(x) \bmod m$ is congruence preserving $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$

## Alternative definitions in case $m$ divides $n$

$f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is congruence preserving à la Chen if
$\forall d$ dividing $m \quad \forall a, b \in\{0, \ldots, n-1\}(a \equiv b \bmod d \Longrightarrow f(a) \equiv f(b) \bmod d)$
$f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is congruence preserving à la Grätzer if
$\forall \theta$ congruence on $\mathbb{Z} / n \mathbb{Z} \quad \forall a, b \in \mathbb{Z} / n \mathbb{Z}(a \theta b \Longrightarrow f(a) \theta f(b))$

## Proposition $\quad$ Case $m=n \quad f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$

The following conditions are equivalent

1. $\forall a, b \in \mathbb{Z} / n \mathbb{Z} \quad a-b$ divides $f(a)-f(b) \quad$ (in the ring $\mathbb{Z} / n \mathbb{Z}$ )
2. $f$ is congruence preserving à la Chen
3. $f$ is congruence preserving à la Grätzer

Proof. 2 $\Rightarrow 3 .$| let $d=\operatorname{gcd}(m, a-b)=\alpha m+\beta(a-b) \quad$ (by Bézout) |
| :--- |
| $d$ divides $m$ and $a \equiv b \bmod d \quad$ hence $f(a) \equiv f(b) \bmod d$ |
| $f(a)-f(b)=d \delta=(\alpha m+\beta(a-b)) \delta=\beta \delta(a-b)$ in $\mathbb{Z} / m \mathbb{Z}$ |

Proposition $\quad$ Case $m$ divides $n \quad f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$

The following conditions are equivalent

1. $\forall a, b \in \mathbb{Z} / n \mathbb{Z} \quad \pi_{n, m}(a-b)$ divides $f(a)-f(b)$ (in the ring $\mathbb{Z} / m \mathbb{Z}$ )
2. $f$ is congruence preserving à la Chen

Chen \& Bhargava motivation (in the vein of Grätzer) : the scope of polynomial functions

## When are all functions polynomial?

- [Kempner, 1921] Every function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is polynomial $\Longleftrightarrow n$ is prime
- [Chen \& Mullen, 2006]

The $(0,1)$ transposition function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is polynomial $\Longleftrightarrow n$ is prime

- [Chen, 1995] Every function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is polynomial
$\Leftrightarrow \quad n \leq$ least prime factor of $m$


## When does congruence preserving = polynomial? (Bhargava, 1997)

Every congruence preserving function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is polynomial

$$
\Longleftrightarrow \quad n<\gamma(m) \quad \text { with } \left\lvert\, \begin{aligned}
\gamma\left(p^{k}\right) & = \begin{cases}\infty & \text { if } k=1 \\
\infty & \text { if } p^{k}=4 \\
2 p+1 & \text { otherwise }\end{cases} \\
\gamma\left(\prod_{i} p_{i}^{k_{i}}\right) & =\min \left\{\gamma\left(p_{i}^{k_{i}}\right) \mid\right. \text { i\} }
\end{aligned}\right.
$$

Every congruence preserving function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is polynomial $\Longleftrightarrow 8$ does not divide $n$ and $\forall p$ prime $>2 \quad p^{2}$ does not divide $n$ Density of such $n$ 's $=7 / \pi^{2}$

## Newton representation of functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$

We want to represent functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
Polynomial in $\mathbb{Z}[x]$ may not suffice
But it is OK with polynomials in $\mathbb{Q}[x]$ mapping $\mathbb{N}$ into $\mathbb{Z}$
Binomial polynomial function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$

$$
\binom{x}{k}_{n, m}: x \in\{0, \ldots, n-1\} \mapsto\binom{x}{k} \bmod m
$$

## Proposition

Every function $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is a unique

$$
\mathbb{Z} / m \mathbb{Z} \text {-linear combination of the }\binom{x}{k}_{n, m} \text { 's, } k=0, \ldots, n-1
$$

In other words, the $\binom{x}{k}_{n, m}$ 's, $k=0, \ldots, n-1$, are
a basis of the $\mathbb{Z} / m \mathbb{Z}$-module of functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
Same proof as in the infinite case $\mathbb{N} \rightarrow \mathbb{Z}$

## Newton representation of congruence preserving functions

Unary least common multiple function

$$
\operatorname{lcm}(k)=\operatorname{lcm}(1,2, \ldots, k) \quad \operatorname{lcm}(0)=1
$$

## Theorem (CGG)

Let $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}, f=\sum_{k=0}^{k=n-1} a_{k}\binom{x}{k}_{n, m}$ with $a_{k} \in\{0, \ldots, m-1\}$ $f$ is congruence preserving
$\forall k=0, \ldots, n-1 \quad \operatorname{lcm}(k) \bmod m$ divides $a_{k} \quad$ in $\mathbb{Z} / m \mathbb{Z}$

## Proposition

$\operatorname{lcm}(k) \equiv 0 \bmod m \quad$ for $k \geq \mu(m)=$ largest power of prime dividing $m$

## Corollary (CGG)

$\left.\left.\mathcal{S}=\{l c m(k) \bmod m)\left[\binom{x}{k}\right]_{n, m} \right\rvert\, 0 \leq k<\min (n, \mu(m))\right\}$
$\mathcal{M}=\mathbb{Z} / m \mathbb{Z}$-module of congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
$\mathcal{S}$ generates $\mathcal{M} \quad \mathcal{S}$ is a basis of $\mathcal{M} \Longleftrightarrow m$ is prime

## Alternative proof:

## Lifting congruence preserving functions $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$

In case $m$ divides $n$, the $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ case
to represent congruence preserving functions reduces to the $\mathbb{N} \rightarrow \mathbb{Z}$ case

## Theorem (CGG)

Assume $m$ divides $n$
Every congruence preserving $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ can be lifted to a congruence preserving $F: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{array}{ccc}
\mathbb{N} & \xrightarrow{F} & \mathbb{N} \\
\pi_{n} \mid & & \\
\mathbb{Z} / n \mathbb{Z} & \xrightarrow{f} & \\
\mathbb{Z} / m \mathbb{Z}
\end{array}
$$

Proof : Chinese Remainder Theorem (with infinitely many congruence equations)

## Congruence preserving functions

on $p$-adic and profinite integers
Back to the topological motivation of congruence preservation with profinite distances on $\mathbb{N}$ and $\mathbb{Z}$

Back to the extension problem $\mathbb{N} \rightarrow \mathbb{Z} \quad \sim \quad \mathbb{Z} \rightarrow \mathbb{Z}$

## $p$-adic integers ( $p$ prime

p prime
$\mathbb{Z}_{p}=$ family of formal series $\sum_{n \in \mathbb{N}} a_{n} p^{n}$,
$a_{n} \in\{0, \ldots, p-1\}$
Addition and multiplication are done as with usual base $p$ (finite) expansions of natural numbers
$\mathbb{Z}_{p}$ is a ring : $-1=\sum_{n}(p-1) p^{n}$
Inversible elements : the $\sum_{n \in \mathbb{N}} a_{n} p^{n \prime}$ s such that $a_{0} \neq 0$
The ring $\mathbb{Z}_{p}$ is the projective limit of the rings $\mathbb{Z} / p^{n} \mathbb{Z}$ for the projective system $\left(\pi_{p^{n}, p^{m}}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{m} \mathbb{Z}\right)_{n \geq m}$

Factorial expansions of natural integers
$n=a_{1} 1!+a_{2} 2!+a_{3} 3!+\cdots+a_{n} n!$ with $a_{k} \in\{0, \ldots, k\}$
Care : $a_{k}$ can take the value $k$
Addition and multiplication are done with carry propagation
(as in the usual fixed base case)
Going to infinite such expansions, $\widehat{\mathbb{Z}}=$ family of formal series $\sum_{k \geq 1} a_{k} k!, a_{k} \in\{0, \ldots, k\}$
Addition and multiplication are as expected
$\widehat{\mathbb{Z}}$ is a ring : $\begin{aligned} & -1=\sum_{k \geq 1} k k! \\ & \sum_{k \geq 1} a_{k} k!\text { is inversible } \Longleftrightarrow a_{1} \neq 0\end{aligned}$

- The ring $\widehat{\mathbb{Z}}$ is the projective limit of the rings $\mathbb{Z} / n!\mathbb{Z}$ for the projective system $\left(\pi_{n!, m!}: \mathbb{Z} / n!\mathbb{Z} \rightarrow \mathbb{Z} / m!\mathbb{Z}\right)_{n \geq m}$
- $\widehat{\mathbb{Z}}$ also the projective limit of the $\mathbb{Z} / k \mathbb{Z}$ 's wrt $\left(\pi_{k, \ell}: \mathbb{Z} / k \mathbb{Z} \rightarrow \mathbb{Z} / \ell \mathbb{Z}\right)_{\ell}$ divides $k$
- $\widehat{\mathbb{Z}}=\prod_{\rho \text { prime }} \mathbb{Z}_{p}$


## Topology on p-adic / profinite integers

$p$-adic distance on $\mathbb{N} \quad d_{p}(x, y)=2^{-\operatorname{Val}_{p}(x-y)}$ with

$$
\operatorname{Val}_{p}(u)=\max \left\{k \mid p^{k} \text { divides } u\right\} \quad \text { (the } p \text {-valuation of } u \text { ) }
$$

$=$ length of the prefix of 0 's in the $p$-expansion of $u$
$p$-adic distance on $\mathbb{Z}_{p} \quad d_{p}(x, y)=2^{-\operatorname{Val}_{p}(x-y)}$ with $V a I_{p}(u)=$ length of the prefix of 0 's in the infinite word $u$
$\left(\mathbb{Z}_{p}, d_{p}\right)$ is the Cauchy completion of $\left(\mathbb{N}, d_{p}\right)$
$\mathbb{N}$ is dense in $\mathbb{Z}_{p}$
$\mathbb{Z}_{p}$ is compact and totally discontinuous
profinite distance $d_{!}(x, y)$ on $\widehat{\mathbb{Z}}$
Similar with $\widehat{\mathbb{Z}}$ and $V a l$ !

## Congruence preserving functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$

## Definition

$f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is congruence preserving if, for all $x, y \in \mathbb{Z}_{p}$ $x-y$ divides $f(x)-f(y)$

## Proposition

For $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ the following conditions are equivalent

1. $f$ is congruence preserving
2. $f$ is congruence preserving à la Grätzer $\forall$ congruence $\theta$ on $\mathbb{Z}_{p} \forall a, b \in \widehat{\mathbb{Z}}(a \theta b \Longrightarrow f(a) \theta f(b))$

## Proof

Congruences on a ring correspond to ideals (congruence $\theta \leftrightarrow \theta$-class of 0 ) In the ring $\mathbb{Z}_{p}$ every ideal is principal

This equivalence holds for any principal ring

## Congruence preserving functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ are 1-Lipschitz

## Definition

$f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is 1-Lipschitz if
$d_{p}(f(x), f(y)) \leq d_{p}(x, y)$ i.e. $\quad \operatorname{Val}_{p}(f(x)-f(y)) \geq \operatorname{Val}_{p}(x-y)$
i.e. the identity map $2^{-n} \mapsto 2^{-n}$ is a modulus of uniform continuity

## Proposition

Congruence preserving functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ are 1 -Lipschitz
Proof. $\quad x-y$ divides $f(x)-f(y) \Longrightarrow f$ is 1-Lipschitz

## Projective limits of functions $\mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$

## Definition

$\left(\varphi_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} Z\right)_{n \in \mathbb{N}}$ is a projective system if these diagrams

$$
\mathbb{Z} / p^{n} \mathbb{Z} \xrightarrow{\varphi_{\rho^{n}}} \mathbb{Z} / p^{n} \mathbb{Z}
$$

are commutative for all $n \geq m \quad \pi p^{n}, p^{m} \downarrow \quad \mid \pi_{p^{n}, p^{m}}$

$$
\mathbb{Z} / p^{m} \mathbb{Z} \xrightarrow{\varphi_{p^{m}}} \mathbb{Z} / p^{m} \mathbb{Z}
$$

## Proposition (CGG)

$f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is 1-Lipschitz $\Longleftrightarrow f$ is the projective limit of a projective system $\left(\varphi_{p^{n}}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}\right)_{n \in \mathbb{N}}$

Proof. $\quad \varphi_{p^{n}}$ witnesses that $f(x)-f(y) \leq 2^{-n}$ whenever $x-y \leq 2^{-n}$

## Theorem (CGG)

$f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is congruence preserving $\Longleftrightarrow$
$f$ is the projective limit of a projective system of congruence preserving functions $\left(\varphi_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}\right)_{n \in \mathcal{1}}$

## Mahler representation of continuous functions

## $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \quad$ on $p$-adic integers

Binomial function $\binom{x}{n}$ is $d_{p}$-uniformly continuous $\quad \mathbb{N} \rightarrow \mathbb{N}$ hence extends to $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$
Theorem (Mahler, 1956)
Let $a_{k} \in \mathbb{Z}_{p} \quad(p$-adic integers)
A Newton series $\sum_{k \in \mathbb{N}} a_{k}\binom{x}{n}$ is convergent in $\mathbb{Z}_{p}$
$\Longleftrightarrow \lim _{k \rightarrow \infty} a_{k}=0 \quad$ in $\mathbb{Z}_{p}$ relative to $d_{p}$
$\Longleftrightarrow \quad \lim _{k \rightarrow \infty} \operatorname{VaI}_{p}\left(a_{k}\right)=+\infty$
Theorem (Mahler, 1956)
Continuous functions $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$

$$
\stackrel{1-1}{=} \text { Newton series } \sum_{k \in \mathbb{N}} a_{k}\binom{x}{n} \text { with } \lim _{k \rightarrow \infty} a_{k}=0 \quad\left(\text { wrt } d_{p}\right)
$$

Idem with the ring $\widehat{\mathbb{Z}}$ of profinite integers

## Representation of congruence preserving functions

$f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ congruence preserving if $\forall x, y \in \mathbb{Z}_{p} \quad x-y$ divides $f(x)-f(y)$

## Theorem (CGG)

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \quad f=\sum_{n \in \mathbb{N}} a_{n}\binom{x}{n} \quad$ with $a_{n} \in \mathbb{Z}_{p}$
$f$ is congruence preserving $\Longleftrightarrow \forall n \in \mathbb{N} \operatorname{lcm}(n)$ divides $a_{n}$ (in $\mathbb{Z}_{p}$ )

## Corollary

Thus, every congruence preserving $f: \mathbb{N} \rightarrow \mathbb{Z}$ extends to unique congruence preserving functions $\widehat{f}_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}_{p}, \widehat{f}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$

Care : The extension $\widehat{f}_{Z}: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ from $\mathbb{N}$ to $\mathbb{Z}$ does not map $\mathbb{Z}$ into $\mathbb{Z}$ but into $\mathbb{Z}_{p}$

Idem with the ring $\widehat{\mathbb{Z}}$ of profinite integers

## THANK YOU FOR YOUR ATTENTION

## BIBLIOGRAPHY

固 M．Bhargava，Congruence preservation and polynomial functions from $\mathbb{Z}_{n}$ to $\mathbb{Z}_{m}$ ，Discrete Mathematics 173 （1997），p．15－21．

目 Z．Chen，On polynomial functions from $\mathbb{Z}_{n}$ to $\mathbb{Z}_{m}$ ， Discrete Math． 137 （1995），p．137－145．

居 K．Mahler，An Interpolation Series for Continuous Functions of a p－adic Variable．
Journal für die reine und angewandte Mathematik， 199 ：23－34， 1956.
比 J．－É．Pin and P．V．Silva，On profinite uniform structures defined by varieties of finite monoids，
International Journal of Algebra and Computation， 21 ：295－314， 2011.

