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The issue : Capture the following notion

Definition

f : N→ Z is congruence preserving if
∀a, b ∈ N a − b divides f (a)− f (b)

or equivalently (justifying the denomination),
∀n ≥ 1 ∀a, b ∈ N ( a ≡ b mod n =⇒ f (a) ≡ f (b) mod n )

- Obvious example : Polynomials in Z[x ]

- What about non polynomial functions ?

- Idem with functions
Z→ Z
on p-adic/profinite integers
on integers modulo n
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Congruence preserving (or compatible) functions

Definition (Grätzer, 1964 A notion from universal algebra)
Let A be an algebra and C a family of congruences.
f : An → A is C-congruence preserving if,
∀θ ∈ C ∀x1, . . . , xn, y1, . . . , yn ∈ A∧i=n

i=1 xi θ yi =⇒ f (x1, . . . , xn) θ f (x1, . . . , xn)

C = modular congruences on N ; our notion on N
C = modular congr. on Z = all congr. ; our notion on Z

Example : “Polynomial functions"
= expressible by terms with constants in A

Mostly studied :
- Lattices/Boolean algebras (Grätzer 1960’s, Haviar, Ploščica, Farley 2000’s . . . )
- Finite groups/expanded groups (Bhargava, 1997 ; Aichinger, 2006)

- Much studied question (Grätzer, Kaarli, Pixley) :
Are “polynomials" the sole congruence preserving functions ?

3 / 34



A topological motivation
V variety of finite monoids (à la Eilenberg)

Profinite pseudo-metric dV(x , y) = 2−rV(x ,y) on a monoid M
(pseudo-metric : d(x , x) = 0 but d(x , y) = 0 does not imply x = y)

rV(x , y) =

{
size of smallest F ∈ V separating x , y

+∞ if there no such F
F separates x , y ⇐⇒ ∃ morphism ϕ : M � F ϕ(x) 6= ϕ(y)

Theorem with M = (N,+) and M = (Z,+) (Pin & Silva, 2011)

∀V variety of finite monoids f : N→ N is dV-uniformly continuous
⇐⇒ f is constant or congruence preserving & f (x) ≥ x .

∀V variety of finite groups f : Z→ Z is dV-uniformly continuous
⇐⇒ f is constant or congruence preserving

Proof. Case Z→ Z Vu = variety generated by {Z/pnZ | n ≤ k} p prime
Vu separates integers x , y if x 6≡ y mod pn
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Another motivation
Question (asked to us by Jean-Éric Pin) :
Which functions f : N→ N are such that

∀L lattice of finite subsets of N
∀L ∈ L Succ−1(L) ∈ L =⇒ ∀L ∈ L f −1(L) ∈ L (*)

Succ = successor function on N

Theorem (CGG 2014)

f : N→ N satisfies (*) ⇐⇒
f is congruence preserving & non-decreasing & f (x) ≥ x .

Idem for lattices of regular subsets of N
Idem with Z in place of N
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Congruence preserving

functions N→ Z
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Tool 1 : Newton representation of functions N→ Z

We represent functions N→ Z by
series of polynomials in Q[x ] mapping N into Z

Binomial polynomial function N→ N in Q[x ](
x

0

)
= 1

(
x

n

)
=

x(x − 1) · · · (x − n + 1)

n!

Proposition (Pólya, 1915)

finite Z-linear combinations of the binomial polynomials
1-1≡ polynomials in R[x ] mapping N into Z

Proposition (Newton, 1687)

infinite Z-linear combinations of the binomial polynomials
1-1≡ functions N→ Z

NO CONVERGENCE PROBLEM : For every x ∈ N
the infinite sum

∑
n∈N an

(
x
n

)
reduces to the finite sum

∑
n≤x an

(
x
n

)
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Tool 2 : Unary least common multiple function
(Tchebychev, 1852)

lcm(k) = lcm(1, 2, . . . , k) lcm(0) = 1
ψ(x) = log(lcm(x)) Neperian logarithm

(Nair, 1982) (Hanson, 1972)

2k−1 ≤ lcm(k) < 3k for k ≥ 1

limx→+∞
ψ(x)

x
= 1 (consequence of the prime number theorem)

P. L. Tchebichef, Mémoire sur les nombres premiers
J. Math. Pures et Appliquées. 17 (1852), 366-390.

D. Hanson, On the product of primes. Canadian Math. Bull. 15(1) :33-37, 1972

M. Nair, On Chebyshev-type inequalities for primes,
Amer. Math. Monthly 89 (1982), 126-129

8 / 34



Newton representation of
congruence preserving functions N→ Z

f : N→ Z congruence preserving ⇐⇒ ∀x , y x − y divides f (x)− f (y)

lcm(k) = lcm(1, 2, . . . , k) lcm(0) = 1

Theorem (CGG, Int. J. Number Theory, 2015)

Let f : N→ Z, f =
∑

n∈N an
(
x
n

)
with an ∈ Z

f is congruence preserving ⇐⇒ ∀n ∈ N lcm(n) divides an

Snapshot of the proof : combinatorics of binomial coefficients

Lemma. 0 ≤ n − k < p ≤ k =⇒ p divides lcm(k)
(
n
k

)
Lemma. k ≤ b =⇒ n divides lcm(k)

((
b+n
k

)
−
(
b
k

))
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Examples of congruence preserving functions

2ℵ0 nonpolynomial congruence preserving functions
Examples of congruence preserving functions N→ Z (CGG)

∀x ∈ N
∑

n∈N n!

(
x

n

)
=

{
be x!c if x ≥ 1 e Euler number 2.718. . .

1 if x = 0∑
n∈N a

n n!

(
x

n

)
=

be1/a ax x!c for a ∈ N, a ≥ 2
be1/a ax x!c+ 1 for a ∈ Z, a ≤ −1∑

n∈2N 2
n n!

(
x

n

)
=

{
bcosh(1/2) 2x x!c if x ∈ 2N
bsinh(1/2) 2x x!c if x ∈ 2N + 1∑

n∈N lcm(n)

(
x

n

)
= ???

Similar with d· · · e in place of b· · · c
Thus, if x ∈ N \ {0} x divides be x!c − 1

if x , y ∈ N \ {0} x − y divides be x!c − be y !c
if a ∈ Z \ {0, 1}, x , y ∈ N x − y divides be1/a ax x!c − be1/a ay y !c

Not very intuitive properties. . .
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A bit of robustness in our examples
Trivial : If f is congruence preserving so is k f for k ∈ Z
In our examples, k can go inside the b· · · c

A bit of robustness (CGG)

For every k ∈ Z, for a ∈ Z \ {0},
x 7→ bk e x!c x 7→ bk e1/a ax x!c
duly modified for x ∈ {0, . . . , |se| − 1}

are congruence preserving.

The finite modification is no accident

Let α be a nonnull real.
The function bα x!c is NOT congruence preserving.

Idem with d· · · e
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Badly failing congruence preservation

f , g : N→ R
f uniformly close to g if sup{|f (n)− g(n)| | n ∈ N} is finite

Not surprisingly, the explicit examples are exceptions (CGG)

1. If ai ∈ R \ Z for some i ≥ 1 then x 7→ an x
n + · · ·+ a1 x + a0

is uniformly close to NO congruence preserving function

2. ∀k ∈ N \ {0} ∀α ∈ R \ {0} x 7→ α kx

is uniformly close to NO congruence preserving function

3. ∀a ∈ Z \ {0} ∀α ∈ Q \ {0} x 7→ α e! and x 7→ α ax x!
are uniformly close to NO congruence preserving function

4. ∀a ∈ R \ {0} for almost all α ∈ R x 7→ α e! and x 7→ α ax x!
are uniformly close to NO congruence preserving function

Proof of 4. Use Koksma’s theorem : If infm<n |λm − λn| > 0 then

for almost all α the sequence (αλn)n∈N is uniformly distributed modulo 1
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Congruence preserving

functions Z→ Z
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À la Newton representation of functions Z→ Z

Replace the binomial polynomials
(
x
n

)
’s by

P0 = 1 P2` =

∏k=`
k=−`+1 x − k

(2`)!
P2`+1 =

∏k=`
k=−` x − k

(2` + 1)!

Again, Pn is in Q[x ], coefficients are rational numbers. But,

Proposition (à la Pólya, 1915)

finite Z-linear combinations of the Pn’s
1-1≡ polynomials in R[x ] mapping Z into Z

Proposition (à la Newton, 1687)

infinite Z-linear combinations of the Pn’s
1-1≡ functions Z→ Z
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À la Newton representation of
congruence preserving functions Z→ Z

P0 = 1 P2` =

∏k=`
k=−`+1 x − k

(2`)!
P2`+1 =

∏k=`
k=−` x − k

(2`+ 1)!
f : Z→ Z congruence preserving ⇐⇒ ∀x , y x − y divides f (x)− f (y)

lcm(k) = lcm(1, 2, . . . , k) lcm(0) = 1 (Unary least common multiple)

Theorem (CGG)

Let f : Z→ Z, f =
∑

n∈N an Pn(x) with an ∈ Z
f is congruence preserving ⇐⇒ ∀n ∈ N lcm(n) divides an

Proof analogous to that for the N→ Z case
but needs more combinatorics of the binomial numbers
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The extension problem

Lemma (Let X ⊆ Y ⊆ Z be finite)
Every ϕ : X → Z such that ∀x , y ∈ X x − y divides ϕ(x)− ϕ(y)
can be extended to ψ : Y → Z such that ∀x , y ∈ Y x − y divides ψ(x)− ψ(y)

Proof. Reduce to Y = X ∪ {a}. Use the Chinese Remainder Theorem :∧
x∈X b − ϕ(x) ≡ 0 mod |a− x | has a solution since, for x , y ∈ X ,

(b − ϕ(x))− (b − ϕ(y)) = ϕ(y)− ϕ(x) ≡ 0 mod |y − x |
≡ 0 mod gcd(|a− x |, |a− y |) since gcd(|a− x |, |a− y |) divides y − x

But NOT every congruence preserving function f : N→ Z
extends to a congr. pres. function f̂ : N ∪ {−1} → Z

The infinite version of the Chinese Remainder Theorem gives
solutions in p-adic or profinite integers
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Example of congruence preserving functions

Example of congruence preserving function Z→ Z (CGG)

f (x) =
∑

k∈N
(2k)!

k!
P2k(x) observe lcm(k) divides (2k)!/k!

=


√

e

π

Γ(1/2)

22x+1 x!

∫ ∞
1

e−t/2(t2 − 1)xdt if x ≥ 0

f (|x | − 1) if x < 0

Proof. Known identity around modified Bessel function of the 2d kind
Thus, x − y divides the difference of this expression on x and on y

Not very intuitive property. . .
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Congruence preserving

functions Z/nZ→ Z/mZ

In this finite framework,
the notion was already considered ∼ 1995
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Chen & Bhargava notion of
congruence preserving function Z/nZ→ Z/mZ

Definition (Zhibo Chen, 1995)

Let m, n ≥ 1. f : Z/nZ→ Z/mZ congruence preserving if
∀d dividing m ∀a, b ∈ {0, . . . , n − 1}

(a ≡ b mod d =⇒ f (a) ≡ f (b) mod d)

Denomination “congruence preserving” a bit abusive in some cases :
{(x , y) ∈ {0, . . . , k − 1} × {0, . . . , k − 1} | x ≡ y mod d}

is NOT a congruence on Z/kZ when d < k and d does not divide k

Saying “congruence preserving” is fully justified when m divides n

The reason for this definition is that it is true for polynomials in Z[x ]
x ∈ {0, . . . , n − 1} 7→ P(x) mod m

is congruence preserving Z/nZ→ Z/mZ
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Alternative definitions in case m divides n

f : Z/nZ→ Z/mZ is congruence preserving à la Chen if
∀d dividing m ∀a, b ∈ {0, . . . , n − 1} (a ≡ b mod d =⇒ f (a) ≡ f (b) mod d)

f : Z/nZ→ Z/nZ is congruence preserving à la Grätzer if
∀θ congruence on Z/nZ ∀a, b ∈ Z/nZ ( a θ b =⇒ f (a) θ f (b) )

Proposition Case m = n f : Z/nZ→ Z/nZ
The following conditions are equivalent

1. ∀a, b ∈ Z/nZ a − b divides f (a)− f (b) (in the ring Z/nZ)
2. f is congruence preserving à la Chen
3. f is congruence preserving à la Grätzer

Proof. 2⇒ 3.
let d = gcd(m, a− b) = αm + β(a− b) (by Bézout)
d divides m and a ≡ b mod d hence f (a) ≡ f (b) mod d
f (a)− f (b) = dδ = (αm + β(a− b))δ = βδ(a− b) in Z/mZ

Proposition Case m divides n f : Z/nZ→ Z/mZ
The following conditions are equivalent

1. ∀a, b ∈ Z/nZ πn,m(a− b) divides f (a)− f (b) (in the ring Z/mZ)
2. f is congruence preserving à la Chen
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Chen & Bhargava motivation (in the vein of Grätzer) :
the scope of polynomial functions

When are all functions polynomial?
• [Kempner, 1921] Every function Z/nZ→ Z/nZ is polynomial ⇐⇒ n is prime
• [Chen & Mullen, 2006]
The (0, 1) transposition function Z/nZ→ Z/nZ is polynomial ⇐⇒ n is prime
• [Chen, 1995] Every function Z/nZ→ Z/mZ is polynomial

⇐⇒ n ≤ least prime factor of m

When does congruence preserving = polynomial? (Bhargava, 1997)

Every congruence preserving function Z/nZ→ Z/mZ is polynomial

⇐⇒ n < γ(m) with γ(pk) =

 ∞ if k = 1
∞ if pk = 4
2p + 1 otherwise

γ(
∏

i p
ki
i ) = min{γ(pkii ) | i}

Every congruence preserving function Z/nZ→ Z/nZ is polynomial
⇐⇒ 8 does not divide n and ∀p prime > 2 p2 does not divide n

Density of such n’s = 7/π2
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Newton representation of functions Z/nZ→ Z/mZ
We want to represent functions Z/nZ→ Z/mZ

Polynomial in Z[x ] may not suffice
But it is OK with polynomials in Q[x ] mapping N into Z

Binomial polynomial function Z/nZ→ Z/mZ(
x

k

)
n,m

: x ∈ {0, . . . , n − 1} 7→
(
x

k

)
mod m

Proposition
Every function Z/nZ→ Z/mZ is a unique

Z/mZ-linear combination of the
(
x

k

)
n,m

’s, k = 0, . . . , n − 1

In other words, the
(
x

k

)
n,m

’s, k = 0, . . . , n − 1, are

a basis of the Z/mZ-module of functions Z/nZ→ Z/mZ

Same proof as in the infinite case N→ Z
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Newton representation of congruence preserving functions

Unary least common multiple function lcm(k) = lcm(1, 2, . . . , k) lcm(0) = 1

Theorem (CGG)

Let f : Z/nZ→ Z/mZ, f =
∑k=n−1

k=0 ak
(
x
k

)
n,m

with ak ∈ {0, . . . ,m− 1}

f is congruence preserving ⇐⇒
∀k = 0, . . . , n − 1 lcm(k) mod m divides ak in Z/mZ

Proposition
lcm(k) ≡ 0 mod m for k ≥ µ(m) = largest power of prime dividing m

Corollary (CGG)

S = {lcm(k) mod m) [
(
x
k

)
]n,m | 0 ≤ k < min(n, µ(m))}

M = Z/mZ-module of congruence preserving functions Z/nZ→ Z/mZ

S generatesM S is a basis ofM ⇐⇒ m is prime
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Alternative proof :
Lifting congruence preserving functions Z/nZ→ Z/mZ

In case m divides n, to represent congruence preserving functions
the Z/nZ→ Z/mZ case reduces to the N→ Z case

Theorem (CGG)

Assume m divides n
Every congruence preserving f : Z/nZ→ Z/mZ
can be lifted to a congruence preserving F : N→ N

N F−−−→ N

πn

y yπm
Z/nZ f−−−→ Z/mZ

Proof : Chinese Remainder Theorem (with infinitely many congruence equations)
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Congruence preserving functions

on p-adic and profinite integers

Back to the topological motivation
of congruence preservation

with profinite distances on N and Z

Back to the extension problem
N→ Z ; Z→ Z
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p-adic integers (p prime)

p prime
Zp = family of formal series

∑
n∈N anp

n ,
an ∈ {0, . . . , p − 1}

Addition and multiplication are done as with
usual base p (finite) expansions of natural numbers

Zp is a ring : −1 =
∑

n (p − 1) pn

Inversible elements : the
∑

n∈N anp
n’s such that a0 6= 0

The ring Zp is the projective limit of the rings Z/pnZ
for the projective system (πpn,pm : Z/pnZ→ Z/pmZ)n≥m
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Profinite integers
Factorial expansions of natural integers :
n = a1 1! + a2 2! + a3 3! + · · ·+ an n! with ak ∈ {0, . . . , k}

Care : ak can take the value k
Addition and multiplication are done with carry propagation

(as in the usual fixed base case)
Going to infinite such expansions,

Ẑ = family of formal series
∑

k≥1 ak k! , ak ∈ {0, . . . , k}

Addition and multiplication are as expected

Ẑ is a ring :
−1 =

∑
k≥1 k k!∑

k≥1 ak k! is inversible ⇐⇒ a1 6= 0

• The ring Ẑ is the projective limit of the rings Z/n!Z
for the projective system (πn!,m! : Z/n!Z→ Z/m!Z)n≥m

• Ẑ also the projective limit of the Z/kZ’s wrt (πk,` : Z/kZ→ Z/`Z)` divides k

• Ẑ =
∏

p prime Zp
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Topology on p-adic / profinite integers

p-adic distance on N dp(x , y) = 2−Valp(x−y) with
Valp(u) = max{k | pk divides u} (the p-valuation of u)

= length of the prefix of 0’s in the p-expansion of u

p-adic distance on Zp dp(x , y) = 2−Valp(x−y) with
Valp(u) = length of the prefix of 0’s in the infinite word u

(Zp, dp) is the Cauchy completion of (N, dp) N is dense in Zp

Zp is compact and totally discontinuous

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

profinite distance d!(x , y) on Ẑ
Similar with Ẑ and Val!
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Congruence preserving functions Zp → Zp

Definition

f : Zp → Zp is congruence preserving if, for all x , y ∈ Zp

x − y divides f (x)− f (y)

Proposition
For f : Zp → Zp the following conditions are equivalent
1. f is congruence preserving
2. f is congruence preserving à la Grätzer

∀ congruence θ on Zp ∀a, b ∈ Ẑ ( a θ b =⇒ f (a) θ f (b) )

Proof
Congruences on a ring correspond to ideals (congruence θ ↔ θ-class of 0)
In the ring Zp every ideal is principal

This equivalence holds for any principal ring 29 / 34



Congruence preserving functions Zp → Zp are 1-Lipschitz

Definition
f : Zp → Zp is 1-Lipschitz if dp(f (x), f (y)) ≤ dp(x , y)

i.e. Valp(f (x)− f (y)) ≥ Valp(x − y)

i.e. the identity map 2−n 7→ 2−n is a modulus of uniform continuity

Proposition

Congruence preserving functions Zp → Zp are 1-Lipschitz

Proof. x − y divides f (x)− f (y) =⇒ f is 1-Lipschitz
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Projective limits of functions Z/pnZ→ Z/pnZ

Definition
(ϕn : Z/pnZ→ Z/pnZ )n∈N is a projective system if these diagrams

are commutative for all n ≥ m

Z/pnZ
ϕpn−−−−→ Z/pnZ

πpn, pm
y yπpn,pm

Z/pmZ
ϕpm−−−−→ Z/pmZ

Proposition (CGG)

f : Zp → Zp is 1-Lipschitz ⇐⇒ f is the projective limit of a
projective system (ϕpn : Z/pnZ→ Z/pnZ)n∈N

Proof. ϕpn witnesses that f (x)− f (y) ≤ 2−n whenever x − y ≤ 2−n

Theorem (CGG)
f : Zp → Zp is congruence preserving ⇐⇒

f is the projective limit of a projective system
of congruence preserving functions (ϕn : Z/pnZ→ Z/pnZ)n∈N
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Mahler representation of continuous functions
Zp → Zp on p-adic integers

Binomial function
(
x

n

)
is dp-uniformly continuous N→ N

hence extends to Zp → Zp

Theorem (Mahler, 1956)

Let ak ∈ Zp (p-adic integers)

A Newton series
∑

k∈N ak

(
x

n

)
is convergent in Zp

⇐⇒ limk→∞ ak = 0 in Zp relative to dp
⇐⇒ limk→∞ Valp(ak) = +∞

Theorem (Mahler, 1956)

Continuous functions Zp → Zp
1-1≡ Newton series

∑
k∈N ak

(
x

n

)
with limk→∞ ak = 0 (wrt dp)

Idem with the ring Ẑ of profinite integers
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Representation of congruence preserving functions
f : Zp → Zp congruence preserving if ∀x , y ∈ Zp x − y divides f (x)− f (y)

Theorem (CGG)

Let f : Zp → Zp, f =
∑

n∈N an

(
x

n

)
with an ∈ Zp

f is congruence preserving ⇐⇒ ∀n ∈ N lcm(n) divides an (in Zp)

Corollary

Thus, every congruence preserving f : N→ Z extends to
unique congruence preserving functions f̂Z : Z→ Zp, f̂ : Zp → Zp

Care : The extension f̂Z : Z→ Zp from N to Z
does not map Z into Z but into Zp

Idem with the ring Ẑ of profinite integers
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THANK YOU FOR YOUR ATTENTION

BIBLIOGRAPHY
M. Bhargava, Congruence preservation and polynomial functions from Zn to
Zm, Discrete Mathematics 173 (1997), p. 15 – 21.

Z. Chen, On polynomial functions from Zn to Zm,
Discrete Math. 137 (1995), p. 137–145.

K. Mahler, An Interpolation Series for Continuous Functions of a p-adic
Variable.
Journal für die reine und angewandte Mathematik, 199 :23–34, 1956.

J.-É. Pin and P.V. Silva, On profinite uniform structures defined by varieties
of finite monoids,
International Journal of Algebra and Computation, 21 :295-314, 2011.

34 / 34


