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Abstract. Various problems lead to the same class of functions from integers to integers: functions
having integral difference ratio, i.e. verifying f(a) — f(b) = 0 (mod (a — b)) for all @ > b. In this
paper we characterize this class of functions from Z to Z via their a la Newton series expansions on
a suitably chosen basis of polynomials (with rational coefficients). We also exhibit an example of
such a function which is not polynomial but Bessel like.
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1 Introduction

We deal with the following class of functions which appears in Pin & Silva, 2011 (see §4.2 and §5.3 in
[10]), as a characterization of a special strong notion of uniform continuity.

Definition 1. Let X C Z (where Z denotes the set of integers). A map f: X — 7Z has integral difference
f) = 1)

)

Observe the following simple properties about these maps.

ratio if € Z , for all distinct i,j € X.

Proposition 2. 1. The set of maps f: X — Z having integral difference ratio is closed under addition
and multiplication. In particular, it contains all polynomials with integral coefficients.
2. The set of maps f: X — Z having integral difference ratio is closed under composition.

Proof. For multiplication, use the identity f(i)g(i) — f(j)g(j) = f(i)(9(?) — g(4)) + 9(H)(f(i) — f(4)). O

Which non-polynomial maps have integral difference ratio? This is the question we deal with.

In [I] we related the integral difference ratio property to functions f: N — N (where N is the set of
nonnegative integers) such that any lattice of finite subsets of N closed under decrement is also closed
under inverse image by f (Theorem . In §2| we extend this result to functions Z — Z (Theorem @

In our paper [2] we characterized the functions f: N — Z having integral difference ratio in terms of
their Newton expansions over the “binomial polynomials”. In §3| we give a similar characterization for
functions f: Z — Z (Theorem . This is the main result of the paper, its proof runs through §4{ and
Though both characterizations rely on analogous ideas, the Z case is not reducible to the N case:
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we have to consider a la Newton expansions over a different family of polynomials. Even though these
polynomials have rational (non integer) coefficients, they map Z into Z.

The characterization we give (Theorem insures that there are uncountably many non-polynomial
functions having integral difference ratio. In [2] we explicited non polynomial maps f : N — Z having
integral difference ratio; the map ¢ : Z — Z such that g(x) = f(22) also has integral difference ratio and
is non polynomial. In §6] we exhibit a non-polynomial example related to Bessel functions which does not
so reduce to a map N — Z.

2 Integral difference ratio functions and lattices

In this section, we extend Theorem [4| of our paper [I] to functions Z — Z.

A lattice of subsets of a set X is a family of subsets of X such that LN M and LUM are in £ whenever
L, M€ L. Let f: X — X. A lattice £ of subsets of X is closed under f~1if f~!(L) € £ whenever L € L.
Closure under decrement means closure under Suc™ ', where Suc is the successor function.

We let P, (X) denote the class of finite subsets of X. For L C Z and t € Z welet L—t = {x—t | x € L}.

Proposition 3. Let X be N or Z or N, = {z € Z | © > a} with « € Z. For L a finite subset of X let
Lx (L) be the family of sets of the form ;¢ ; ﬂite X N(L—1) where J and the I;’s are finite non empty
subsets of N. Then Lx (L) is the smallest sublattice of P<,(X) containing L and closed under decrement.

The following characterization is proved in [I]:

Theorem 4. Let f: N — N be a non decreasing function. The following conditions are equivalent:

(1)y For every finite subset L of N, the lattice Ln(L) is closed under f=1.
(2)n The function f has integral difference ratio and f(a) > a for all a € N.

In order to extend Theorem 4| to functions Z — Z, we need the Z-version of Lemma 3.1 in [I].

Lemma 5. Let f : Z — 7Z be a nondecreasing function such that f(z)— f(y) =0 mod (z —y) for every
x >y € Z. Then, for any set L C Z, we have f~(L) = Uaer10) Mier—o(L—1)-

Proof. Let a€ f~*(L). Ast€ L—a<a€ L —t, wehavea € Nier_o L —t, proving inclusion C.

For the other inclusion, let b € (,c;_, L —t with a € f~'(L). To prove that f(b) € L, we argue by
way of contradiction. Suppose f(b) ¢ L. Since f(a) € L we have a # b. The condition on f insures the
existence of k € Z such that f(b) — f(a) = k(b — a). In fact, k € N since f is nondecreasing.

Suppose first that a < b. Since k € N and f(a) + k(b — a) = f(b) ¢ L there exists a least » € N such
that f(a)+r(b—a) ¢ L. Moreover, > 1 since f(a) € L. Let t = f(a)—a+ (r—1)(b—a). By minimality of
r,wegett+a= f(a)+(r—1)(a—b) € L. Now t+a € L implies t+b € L. But t+b= f(a)+r(b—a) ¢ L,
this contradicts the definition of r.

Suppose next that a > b. Since k € N and f(b) + k(a —b) = f(a) € L there exists a least r € N such
that f(b) +r(a—0b) € L. Moreover, r > 1 since f(b) ¢ L. Let t = f(b) — b+ (r —1)(a — b). By minimality
of ry,wegett+b=f(b)+ (r—1)(a—b) ¢ L. Now t + a € L implies t + b € L, contradiction. O

We can now extend Theorem [ to functions Z — Z.

Theorem 6. Let f:7Z — Z be a non decreasing function. The following conditions are equivalent:



(1)z For every finite subset L of Z, the lattice Lz(L) is closed under f=1.
(2)z The function f has integral difference ratio and f(a) > a for all a € Z.

Proof. e (1)z = (2)z. Assume (1)z holds. We first prove inequality f(z) > z for all x € Z. Observe that
(by Proposition [3) £z({z}) = {X € P<w(Z) | X =0 or max X < z}. In particular, letting z = f(z) and
applying (1)z with £({f(z)}), we get f-1({f(z}) € Lz({f(x)}) hence = < max(f~1({f(z})) < f(x).

To show that f has integral difference ratio, we reduce to the N case.

For « € Z, let Suc, : N, — N, be the successor function on N, = {z € Z | 2 > a}. The structures
(N, Suc) and (N, Suc,) are isomorphic. Since f(x) > x for all z € Z, the restriction f [N, maps N, into
N,. In particular, using Theorem [4] conditions (1)y, and (2)y, (relative to f [N, ) are equivalent.

We show that condition (2)y, holds. Let L C N, be finite. Condition (1)z insures that £z (L) is closed
under f~!. In particular, f~(L) € Lz(L). Using Proposition we get fH(L) = Ujes Nier, (L —1) for
finite J, I,’s included in N hence (f [N,) (L) = fYL)NN, = Ujes ﬂielj (No N (L —1)) € Ly, (L).
This proves condition (1)y,. Since (1)y, = (2)n, we see that f [N, has integral difference ratio Now,
« is arbitrary in Z and the integral difference ratio property of f [N, for all a € Z yields the integral
difference ratio property for f. Thus, condition (2)z holds.

e (2)z = (1)z. Assume (2)z. Then f is not constant since f(x) > x for all z € Z. Also, f~!(«a) is finite
for all « : let b be such that f(b) = 8 # «, by the integral difference ratio property the nonzero integer
a — 3 is divided by a — b for all a € f~1(a) hence f~!(a) is finite.

To prove (1)z it suffices to prove that f~'(L) € Lz(L) whenever L C Z is finite. By Lemmawe have
L) = Uaes-1(7) Nner—a(L—n). Observe that f71(F) is finite since F is finite and so is each f~!(a).
Also, for each a € f~1(F), the set L — a is finite (as is L) . Thus, the above formula expresses f~!(L) as
a finite combination of unions and intersections of decrements of L. This yields f~(F) € Lz(L). 0

3 Newton series expansions of functions having integral difference ratio

Elementary algebra shows that all polynomials have integral difference ratio. To obtain non polynomial
function having integral difference ratio functions, we need a precise characterization via Newton series.

3.1 Newton basis for functions N — 7Z

Definition 7. Let X = N or X = Z. A sequence of one-variable polynomials (Py)ren with rational
coefficients is a Newton basis for maps X — Z if the following conditions are satisfied:

(1) For every x € X and k € N, Py(z) is in Z.
(2) For every x € X, the set {k € N | Py(z) # 0} is finite.
(3) The correspondence which associates to a sequence (ax)ren € ZN the map f: X — Z such that
flx) =" ay Py(x) (1)
keN
is a bijection between sequences in ZN and maps X — 7.
The right side of equation is called the Newton series expansion of f.

The following result (cf. [2]) dates back to Newton.

[T ()

x , ke N (with (g) = 1), constitute a

Proposition 8. The binomial polynomials (Z) =

Newton basis for maps N — Z.



3.2 Characterization of functions N — Z having integral difference ratio

Definition 9. Fork € N, k > 1, lem(k) is the least common multiple of all positive integers less than or
equal to k. By convention, lem(0) = 1.

We proved in [2] the following characterization of functions N — Z having integral difference ratio:

X

k) The following condi-

Theorem 10. Let f : N — Z be a function with Newton expansion ), . ax (
tions are equivalent:

(1) f has integral difference ratio.
(2) lem(k) divides ay, for all k € N.

3.3 A Newton basis for functions Z — Z

The polynomials i are not a Newton basis for maps Z — Z since condition (2) of Definition (7] fails
for all negative x and all k£ € N. We design another sequence of polynomials tailored for Z — Z maps.

Definition 11. The Z-Newtonian polynomials are defined as follows:

Po(z) =1 , Pola)= (2%)' ilfkfﬂ(x —i) . Pausi(x) = ﬁ iﬁk(a; — i)
Let us explicit the first polynomials in the above sequence:
Py(z)=1 Pi(z)=z Pyz)= w Py(z) = W)}M Paa) = &F 1)96(%4—! 1) (z—2)
P(a) = (z+2)(z+ 1);(96 — (=2 Poa) = (z 4 2)(z + 1)96(956!— 1)(z —2)(z — 3)

Proposition 12. The Z-Newtonian polynomials define maps on Z which take values in Z and satisfy the
following equations for k,n € N,

<k+n>if n>k (k+n_1)if n>k
0 if 0<n<k 0 if 0<n<k
(k+n) if sk
Popi1(=n) = —Pary1(n) Poy(—n) = 2k (3)
0 if 0<n<k
Proof. Observe that, for any a,b, x € Z such that a < 0 < b, we have
Tr—a
if b
) i (b—a+1> x>
@ arn He-0=90 e fases
1=a +
1 b—a+1 T if
(-1) (b—a+1> ifr<a

Thus, the P,’s map Z into Z and satisfy conditions and . ]



Proposition 13. The Z-Newtonian polynomials are a Newton basis for maps Z — Z.
Proof. Conditions , in Proposition [12| insure that equation of Definition m reduces to
flx) = Z an Pn(z) (4)
ne{0,...,2|z|+1}

which involves a finite sum. Moreover, all terms of this sum are in Z when the a,’s are in Z. Thus, for
any sequence (a,)nen of integers in Z, equation defines a map f: Z — Z.
To prove the converse, observe that the instances of equation can be written

f(O) = Qo f(].) = Qg + aq f(2) = Qo + 2&1 + ag + as ..
f(=1)=ap—a1+az f(-2)=ap—2a1+3az—az3+ay ...
In general, for k > 1, Proposition [12] yields

f(2k) = Log(ao, - . ., Gap—2) + Gar—1 f(—2k) = L_oi(ao, ... ,aax—1) + aap
f(2k? =+ 1) = L2k+1(a0, R a4k) + aqr+1 f(—2k — 1) = L_Qk_l(ao, R a4k+1) + a4k42

where L, (ag,...,a2,—2) and L_,(ag,...,as,—1) are linear combinations of the a;’s with coefficients in
Z. This shows that, given any f : Z — Z, there is a unique sequence of coefficients (a,)nen making
equation of Definition [7| true, and all these coefficients are in Z. a

3.4 Functions Z — Z having integral difference ratio

We can now state the main result of the paper which characterizes the functions f : Z — Z having
integral difference ratio,

Theorem 14. Let ), .\ arPy(x) be the Z-Newtonian expansion of a function f : Z — 7. Then the
following conditions are equivalent:

(1) f has integral difference ratio,
(2) lem(k) divides ay, for all k.

The next two sections are devoted to the proof of Theorem

4 Some properties involving the unary least common multiple function lem
and binomial coefficients

The unary function lem (cf. Definition E[) has many interesting properties and recently regained interest,
cf. [QU8J453]. In this section, we prove three lemmas used in the proof of Theorem They link the lem
function and binomial coefficients. Lemma [15| already appears in [2]: for the sake of selfcontainment we
repeat its short proof. Lemma [17]is a variation tailored for the Z case of results in [2]. Lemma [16]is a
crucial specific result with a very long proof.

Lemma 15. If0 <n—k < p <n then p divides lcm(k) <Z)



Proof. By induction on n > 1. The initial case n = 1 is trivial since condition 0 < n — k < p < n yields
p = k = 1. Induction step: assuming the result for n, we prove it for n+1. Suppose 0 < n+1—k < p < n+1.
Casep <n.Then0 <n—k <p<nand0<n—(k—1) < p < n, so that, by induction hypothesis, p divides

lem(k) (Z) and lem(k—1) ( L 1). A fortiori, p divides lem(k) (Z) +lem(k) (k " 1) — lem(k) (" Z 1).

1
Case p=mn+ 1. Then k > 1 and lem(k) (n;: ) =(n+1) lcn;(k) <k ﬁ 1) is a multiple of n + 1. o

2k -1
Lemma 16. Ifp > 0 then 2(p + k) divides lem/(2k) (p ;k 1 >

Proof. For x > 1, let Val(x) denote the 2-valuation of x, i.e. the largest i such that 2 divides .

The Lemma is proved through a series of claims. Throughout the proof, B will denote <p ;r]fﬁ; 1)
Claim 1. The number p + k divides B lem(2k — 1).
Proof. Let p' =p+k,n' =p+2k—1and k' = 2k — 1 and apply Lemma [15] O
Claim 2. If k is a power of 2 then 2(p + k) divides B lem(2k).
Proof. Observe that lem(2k) = 2lem(2k — 1) if k is a power of 2 and apply Claim 1. O

Claim 3. The number 2V4")+1 divides lem(2k).

Proof. Since 2V"F) divides k it also divides lcm(k). To conclude, observe that Val(2k) = Val(k)+1. O
Claim 4. The 2-valuation of B is the number of carries when adding 2k — 1 and p in base 2.

Proof. This is an instance of Kummer’s theorem (1852, cf. [6]) for base s = 2: if s is prime and b < a,
the largest i such that s* divides <Z) is the number of carries when adding b and a — b in base s. O

In the next claims we consider binary expansions with possibly non significant zeros ahead to get
some prescribed large enough length.

Claim 5. Let ¢ > 1 be the 2-valuation of (2k' + 1) + (2p’ + 1), i.e. (2K’ +1) + (2p' +1) =2t (2¢ + 1) for
some q. For n large enough (e.g., 2" > 2! (2q+1)), let k,, ... k11 and p,, ...p11 be the length n+ 1 binary
expansions of 2k’ +1 and 2p’ + 1. Then k; +p; =1 for 1 <i <t —1 and p; = k;.

Proof. Let qp ...qi+110...0 (with a tail of ¢ zeros) be the length n + 1 binary expansion of 2! (2q + 1).
The addition of 2k’ + 1 and 2p’ + 1 in base 2 is depicted below

digit rank : 7 ---t4+1¢t¢t—-1---3 2 10

(2]6/ + 1) Lo kt+1 kt kt,1 e kg kQ kl 1

+ @2 +1) Pi+1 Pt Pr—1 - p3p2p1l

=2"2¢+1) : ¢ @11 0 0000
Observe that adding the digits kg = 1 and py = 1 leads to gy = 0 and creates a carry. An easy induction
oni=1,...,t —1 shows that, in order to get the tail of ¢ zeros in the sum, the incoming carry has to

propagate from rank i to rank i 4+ 1 and equality k; + p; = 1 holds. Finally, since ¢; = 1 and there is an
incoming carry at rank ¢, we have p; = k;. O



Claim 6. Let p, k have the same 2-valuation ¢, i.e. p = 2¢(2p' + 1) and k = 2¢(2k’ + 1). Let t be the
2-valuation of (2k"+1)+(2p’+1). For n large enough (say 2™ > p+2k—1), let p,, - - - p11 be the length n+1
p+ 2k — 1)

binary expansion of 2p’ + 1. Let N be the number of 1’s in p; - - - p11. Then 2%V divides B = ( ok 1

Proof. Let ky, -+ k11 be the length n + 1 binary expansion of 2k’ 4+ 1. Applying Claim 5 to 2k’ + 1 and
2p' +1 we see that k; +p; =1for 1 <i<t—1and k; = p;.

By Claim 4, to show that 2%V divides B we reduce to prove that the number of carries when adding p
and 2k — 1 is at least N. The binary expansions of k, 2k — 1 and p are as follows:

rank: - t4+44+1 t+4 t4+4-—-1 - L+2 (41 4 (-1 0
]{?:26(2]{/—}—1) R k/’t+1 ky ki1 ko k1 1 0 0
2k—1 : k?t kt—l k‘t_g kl 0 1 1 1
p=22p +1) : - p D pi1 - p2 opi 10 .00

In the addition of 2k — 1 and p the first carry occurs at rank ¢. Hence, the number of carries in this
addition is equal to the number of carries in the addition of the integers obtained by deleting the ¢ last
digits, i.e. the numbers A = 27¢((2k — 1) — (2 — 1)) and 2p’ + 1. We thus reduce to show that there are
at least N carries in the addition of A and 2p’ + 1. The binary expansions of X and 2p’ + 1 are

rank: n+1 n e t4+2 t+1 t t—1 -+ 3 2 1 0
A kn kpo1 - kt+1 Ky ki—1 ki—a e ke b 0 1
2" +1 2 .- “te st P42 P4l Pt Pe-1 o p3 p2 pr 1

with k; =1 —p; fori=1,...,t —1 and k; = p;. We prove by induction on the rank ¢ =0, ..., ¢ that, in
the addition of A and 2p’ + 1, for all 0 < i < ¢, if p; = 1 then there is a carry at rank i.
Case i = 0. Since the added digits at rank 0 are both equal to 1, there is a carry.
Case 1 <i <t and p; = 0. There is nothing to prove.
Case i =1 and p; = 1. The added digits at rank 1 are 0 and 1 (since p; = 1). Since there is an incoming
carry (that from rank 0) a carry is created at rank 1.
Casel<i<tandp; =1 and p;,_1 = 0. Since i — 1 < t we have k;_1 + p;—1 = 1 hence k;_; = 1. Thus,
the added digits at rank ¢ (namely k;—; and p;) are both equal to 1 hence there is a carry.
Case 1 <i <t andp; =1 and p;_1 = 1. By the induction hypothesis, a carry occurs at rank ¢ — 1. Thus,
at rank ¢ there is an incoming carry (the one from rank ¢ — 1) and the digit p; is 1, hence (whatever be
the digit of A at rank ¢) there is a carry at rank 7.

This shows that there are at least IV carries in the addition of A and 2p + 1. ]

Claim 7. Let p, k,/,t, N be as in Claim 6. Then 21~ divides lem(2k).

Proof. There are N ones in p;ps_1 - - - p11, hence there are at most N — 1 ones and at least t +1 — N zeros
in p;_q---p1. By Claim 5, k;_1 - - - ky contains at least ¢ + 1 — N ones. Thus, the number of significant
digits of k;_1 - -+ k101 is at least t+3 — N. The binary expansion of 2k — 1 is ky, - - - ktky—1 - - - k101 followed
by ¢ ones hence 2k — 1 has at least £+t + 3 — N significant digits. Consequently, 2k — 1 > 2¢+t+2=N apd
20+1+2=N divides lcm(2k — 1) and, a fortiori, lem(2k). 0

Recall that integers a, b are coprime if 1 is their unique positive common divisor, i.e. gcd(a,b) = 1. The
last claim is elementary number theory.
Claim 8. Let a, b, ¢ be integers. If a,b are coprime and divide ¢, then ab also divides c.

We can now proceed with the proof of Lemma We argue by cases.



e Case Val(p) # Val(k).
Let m = inf(Val(p), Val(k)). Exactly one of the two integers p2~™ and k2~ ™ is odd so that p+k =
2m(27Mp 4 27™k) = 2™(2¢ + 1) for some q. Now,
- Since m < Val(k), Claim 3 insures that 2™ divides lem(2k).
- Claim 1 insures that p + k = 2™(2¢q + 1) divides B lem(2k — 1). A fortiori (2¢ 4 1) divides B lem(2k).
As 2™+ and (2g + 1) are coprime, Claim 8 implies that 2(p + k) = 2™+ (2¢ + 1) divides B lem(2k).
o Case Val(p) = Val(k) = ¢.
Then p+ k = 242k + 1) + 2¢(2p’ + 1) = 2¢7%(2¢ + 1) with ¢ > 1. There are three subcases.
- Subcase k > 2+t Then 2/T*+1 < 2k, hence 2/7*+! divides lcm(2k). Claim 1 insures that p + k =
20+ (2g + 1) divides B lem(2k — 1), A fortiori 2¢ + 1 divides B lcm(2k). Finally, by Claim 8 we conclude
that 2(p + k) = 2¢41+1(2¢ + 1) divides B lcm(2k).
- Subcase k is a power of 2 . Apply Claim 2.

- Subcase k = 2°(2k' +1) < 2*t for some k' # 0. Claim 6 insures that 2"V divides B. Claim 7 insures that
2H+H1=N divides lem(2k). As a consequence 2+ divides B lem(2k). By Claim 1, p+ k = 2/7¢(2¢ + 1)
divides B lem(2k —1). A fortiori (2¢+ 1) divides B lem(2k). Finally by Claim 8, 2(p+k) = 271 (2¢+1)
divides B lem(2k). O

b b
Lemma 17. Ifn,k,b € N and b > k then n divides A}, = lem(k) (( J];n> — <k‘)>

Proof. We argue by double induction on k and b with the conditions
(Pep) Vn €N, ndivides A}, ) (Px) Vb>k, ¥neN, ndivides Ay, .

Conditions (Pg) and (P;) are trivial since Af, =0 and A7, = n.
Suppose k > 1 and (Pg) is true. To prove (Pg+1), we prove by induction on b > k+ 1 that (Pjy1,) holds.
In the base case b =k + 1, applying Pascal’s rule, we have

(317 () e (59679
(7)) e 13- 5 i)

Since (Pg,x) holds (induction hypothesis on k), n divides A ; hence n divides the first term. If n < k+1
then n divides lem(k + 1) hence n also divides the second term. If n > k + 1, applying Lemma [15| with
n =k+mn,p =nand k¥ =k + 1, we see that n = p’ divides the second term. Thus, in both cases n
divides Ay, ;. and (Pr+1,k+1) holds.

Suppose now that (Pgy1,c) holds for k£ + 1 < ¢ < b. We prove (Pj41,+1). Using Pascal’s rule, we get

ams ot ((210)- ()t () 079)-) (1)
o (7)) () () - (5857 )

Since (Pk,p) and (Pg+1,) hold, n divides both terms of the above sum, hence n divides A}, ., and
(Pk+1,b+1) holds. O



. n+k—1 i+ k . n+k 1+ k
Lemma 18. Let B(n,k,i) = ( ok ) - ( ok > and C(n, k,i) = <2kz+1> + (21@4—1)'
Foralln>2, and 1 <i<n—1, the following hold

n+ i divides lem(2k) B(n, k, ) for1 <k <i (5)
n+ i divides lem(2k + 1) C(n, k, 1) for0 <k <i (6)

Proof. By induction on n > 2. Base case : n = 2 clear as n — 1 = 1 = 4. Induction : assuming that
and @ hold for n, we first prove that holds for n + 1, and we then prove that @ holds for n + 1.

e Proof that holds for n 4 1.
Let 1 <i<mnand 1<k <1. Then, applying Pascal’s rule,

o= () (3) = [ (a4 (24
A () ()

B(n+1,k,i)=B(n,k,i+1)+C(n,k—1,i+1) (7)

By the induction hypothesis, applied for n and ¢ + 1, provided that i + 1 <n —1,ie. 1 <n—2:
— (5)) holds for n hence n + i+ 1 divides lem(2k) B(n, k, )
holds for n hence n + i+ 1 divides lem(2k — 1) C(n,k —1,i 4+ 1)
Since lem(2k — 1) divides lem(2k), we see that n + i+ 1 divides lem(2k) C(n,k —1,i4+ 1) for i <n — 2.
Summing and using (7)), we obtain that n + i+ 1 divides lem(2k) B(n + 1,k, i) for i <n — 2.
It remains to prove the same result for i =n — 1 and i = n.

n+12—i]-€k—1) o (z;—kk') =0.

) , . _ (n+k n—1+k\ (n-—-1+k
For i = n — 1, Pascal’s rule yields B(n + 1,k,n — 1) = ( ok > < ok ) = ( ok — 1 )
As k < n,n—k > 0 and we can apply Lemma with p = n — k, hence: 2n = 2(p + k) divides

2k —1 -1
lem(2k) <p —;k' ﬁ ) ) = lem(2k) <n2k _+1 k) = lem(2k) B(n + 1,k,n — 1). To conclude, observe that

n+l+i=n+1+n—-—1=2n.
e Proof that (6) holds for n + 1.
Assume that (b)) and @ hold for n. Let 1 <7 < n, by Pascal’s rule

v (351 () - [(8) ()] [65)-(5)
(52) (53

Cn+1,k,i) = C(n, kyi + 1) + B(n + 1, k,) (8)

We know that holds for n+1. Thus, for 1 <i<mnand 1 <k <4, n+1+i divides lem(2k)B(n+1,k, 1)
hence also lem(2k+1)B(n+1, k,4) . This also trivially holds for k = 0 as B(n+1,0,¢) = 0. By the induction
hypothesis (6) holds for n. Thus, n + (i 4+ 1) divides lem(2k + 1)C(n,k,i +1) for 1 < i+1<n-—1,
ie. 0 <i<n—-—2and 0 < k < 7+ 1. Summing and using , we obtain that n + 7 + 1 divides
lem(2k +1)C(n+1,k,i) for 1 <i<n—2and 0 <k <.

It remains to prove the same result for i =n — 1 and i = n.

For ¢ = n, this is clear since B(n+ 1,k,n) = ((



k
Fori =n—1, wehave n+1+44¢ = 2n and C(n+ 1,k,n — 1) = 2(27;—:_ 1>. Lemma applied

with p’ = n, n’ = n+ k and k' = 2k + 1, shows that n divides lem(2k + 1)(2”&’“1), hence 2n divides
lem(2k+1)C(n+ 1,k,n —1).
For i =n we have n+14+4¢=2n+1 and

_(n+Ek+1 n+k\  (n+k+1) (n+ k)!
C(”“’k’”)_( 2k+1> <2k+1>_(2k+1)! (n—k)!  @k+1)! (n—k—1)

B (n+k)! n+k+1 1) (n+k)! 2n+1

C2k+D! (n—k—1)! ( n—k 2K (n—k)! 2k +1

lem(2k + 1)C(n + 1, k,n) = % x (”;kk> x (2n + 1)

The first two factors are integers, hence 2n + 1 divides lem(2k + 1) C(n + 1, k,n). O

5 Proof of Theorem [14]

5.1 Proof of implication (1) = (2) in Theorem

In this subsection we assume that f : Z — 7Z has integral difference ratio and that f(z) = >, o arPr(x)
is its Z-Newtonian expansion. To prove that lem(n) divides a,, we have to prove that ¢ divides a, for all
i < n. To give the flavor of the proof, we look at the first values of n. We have:

f(0) =ao, f(1) =ao+ar, f(=1) =ao—ai+az, f(2) =ao+2a1+ az+as, f(—2) = ap—2a1+ 3az— az+au,
f(3) = Qg + 30,1 + 30,2 + 40,3 “+ a4 + as, f(73) = ap — 3(11 + 6(12 - 4&3 + 5a4 — as + ae ,
Applying the integral difference ratio property, we see that

2 divides  f(1) — f(—1) = 2a; —aq hence 2 divides as
2 divides f(2)— f(0) =2a1 +az +as hence 2 divides a3
3 divides  f(2) — f(—=1) =3a1 + a3 hence 3 divides ag
2 divides  f(—2) — f(0) = —2a; + 3a2 — a3 + a4  hence 2 divides a4
3 divides f(—2) — f(1) = —3a1 + 3a2 — az + a4  hence 3 divides a4
4 divides  f(2) — f(—1) = 4a; — 2as + 2a3 — a4  hence 4 divides ay4

By induction on n > 1, we prove property Z(n):  lem(2n—1) divides as,—1 and lem(2n) divides az,. The
cases n = 1,2 have just been done. The inductive step is split in four cases corresponding to Lemmas
to Assuming Z(j) for all j < n we prove

Lemma (19| (Middle number n) n divides as,,_; and n divides asa,
Lemma [20[ (Below the middle number n) If 2 < i < n then i divides as,_1 and as,.

Lemma 21| (Above the middle number n, case agy,—1) If 1 <i<n-—1then n+1 divides as,_1
Lemma [22[ (Above the middle number n, case asy,) If 1 <47 <n then n + ¢ divides ag,
We state equations @D which follows from Proposition [12| (equation ),and will be used for proving the
lemmas.

k+n-1

f(n) = 2:2__; a;Pj(n) with P;(n) = 1;2::)(; E (l?li n>> forfo; j:z:_]j_ 1 - (n : L(jj 1)/%) ®

2k +1



Lemma 19. If condition Z(s) holds for all s <n then n divides as,—1 and agy,.

Proof. 1. We first show that n divides 2n — 1. The case n < 2 has been done above. Suppose n > 2.
By the integral difference ratio property, n divides f(n) — f(0). As P;(0) = 0 for all j > 1 we have
f(0) = ag. Also, Py,—1(n) = 1. Thus, f(n)— f(0) = (Z?Zﬁ a; P (n)) +agn—1 where the Pj(n) are given

in Equation (9). As 0 < n+[(j—1)/2] —j < n < n+|(j —1)/2], Lemma [I5 insures that n divides
lem(j)P;(n). Now, by the induction hypothesis Z(s) holds for all s < n and thus lem(j) divides a; for
j=1,...,2n — 2. Therefore n divides all the terms in the sum Z?ZIQ a; Pj(n). Hence n divides ag,—1.
2. Similarly, using equation in Proposition we have f(—n) = Z?ZO a; Pj(—n). An analogous
use of Lemma [L5 and the fact that n divides f(—n) — f(0) allows to conclude that n divides aay,. O
Lemma 20. If condition Z(s) holds for all s <n then i divides as,—1 and asz, for all 2 <i < n.

Proof. 1. Fix i such that 2 < i < n. We first prove that ¢ divides as,_1. By the integral difference ratio
property, @ divides f(n) — f(n — ). Equation yields

2n—1 2n—2i—1
f) = fn—i) = Y a;Pi(n)— Y a;F;(n—1)
j=0 J=0
2n—2i—1 i—1 2n—2
= | X w(Bm-re-0) |+ X aRm) |+ X aPn) | +an (0
J=1 j=2n—2i Jj=i

o Third sum. The induction hypothesis Z(s), for s < n, imply that lem(j) divides a; j < 25 < 2n —2:
a fortiori, for ¢ < j < 2n — 2, 7 divides a;: hence, i divides a;, a;y1,...,a2,—2 and also all terms in the
third sum.

e Second sum.Let n' =n+|(j—1)/2], k' =j,and p=1i.For j <i—1wehave 0 <n'—k < p <n’ hence
Lemma |15 applies and insures that ¢ divides lem(k’) (n’> = lem(j) (n L= 1)/2J/> = lem(j)P;(n)

1% .7 J

(by equation (). Again Z(s), s < n, insure that lcm(j) divides a; for j < 2n, hence i a fortiori divides
all the terms a;P;(n) in the second sum.

o First The terms ar k+n-—1 _ k+n—1—1 . k+n _ k+n—1
rst sum. e terms are agy o o Or a2k+1 ok 4 1 ok + 1

with £ < n — 4. Thus the hypothesis of Lemma namely 2k <k+mn—i—1 (resp. 2k +1 < k+n —1i)
hold for each term (Pj(n) — Pj(n — 1)), j < 2n — 2i of the first sum, implying that ¢ divides each term
lem(j) (P;(n) — Pj(n—1)). Since conditions Z(s), s < n, insure that lem(j) divides a; for j < 2s < 2n—2,
we see that ¢ divides all terms a;(P;j(n) — Pj(n — 1)) in the first sum.

Since i divides the left member and all terms of the three sums in equation it must divide ag,—1.

2. The proof for as, is similar using f(—n) — f(—n + ) and equation of Proposition a
Lemma 21. If condition Z(s) holds for all s < n then n + i divides agn—1 for all 1 <i<n—1.

Proof. By the integral difference ratio property, n + i divides D = f(n) — f(—i) = S22 " a;Pj(n) —

, §=0
232'1:0 a;Pj(—1i). D can be split into four sums
1—1 7 2n—2
D = ( > azk1 (Port1(n) — P2k+1(—i))> + ( > agi (Pax(n) — sz(—i))> +< > aij(n)) +agn—1
k=0 k=1 j=2i+1

Using equations , and @, we rewrite D as



k=1 j=2i+1

e First/second sum. Induction conditions Z(s), for all s < n, insure that lem(2k) divides agr and
lem(2k + 1) divides agy 1 for k < i < n; Moreover, as 1 <i <n —1, Lemma shows that n + i divides
lem(2k + 1) ((5755) + (57F)) and lem(2k) (") = (%)) Hence, n + i divides all terms in the first
and the second sum.

o Third sum. Let n' =n+[(j—1)/2], ¥ =j,and p=n+i. Since i <n—1,for 2i+1 > j < 2n—2 we
have 0 < n/ — k" < p < n’ hence we can apply Lemma |15 which insures that n + ¢ divides lem(j) Pj(n);
moreover, the induction conditions Z(j) hold for all j < n, hence lem(j) divides a; for all j < 2n—2.Thus,
n + i divides all terms in the third sum.

b= (kZ: azks1((3i4h) + (ﬂﬂ)) + (Z ag (" ") — (’j,f))) + ( 5, (n+L(jj1)/2J)> gy

Since it divides the left member and all terms in the above three sums, n + ¢ must divide as,_1. O
Lemma 22. If condition Z(s) holds for all s <n then n + i divides asy, for all 1 < i < n.
Proof. By the integral difference ratio property, n + ¢ divides f(—n) — f(i). Equations yield
F(=n) = £(i) = Y230 a; Py(—n) — Yooy a; Py (i)
= (Zil azk+1 (Pars1(—n) — P2k+1(i))> + (27: azk (Pae(—n) — sz(i))) + ( 2%31 aij(—n)> + azn

k=0 k=1 j=2i+1

e First sum. Since Py 1 is odd, by equation of Proposition [12] the first sum is the opposite of the
first sum in the proof of Lemma hence it is divided by n + .
e Second sum. Equations (2)), insure that Pap(—n) — P (i) = (k;?c") - (kgi,;l). In case 2 < i <n
welet n’ =n+1and ¢/ =i—1. Wehave 1 < <n' —1, Pop(—n) — Po(i) = Pap(n — 1) — Py (i) =
Py (n') — Py (i’ + 1) and we can apply Lemma |18 Exactly as in the proof of Lemma |21} we deduce that
n+¢=n'+ 1 divides each term of the second sum.

Consider now the case i = 1. The second sum reduces to one term: as(Pa(—n)—P2(1)) = azn(n+1)/2.
As 2 divides ao, we see that n + 1 divides this term.
e Third sum. Let j =2k or j =2k + 1, and 2i + 1 < j < 2n — 1, equation shows that Pogi1(—n) =
—(2’“,;:‘1) and Pop(—n) = (k;k") Let o/ =k+n, k¥ =2k, and p=n+1, as i < n and 2k < 2n — 1 we have
0<n —k <p<n', hence we can apply Lemma [L5( which insures that n + ¢ divides lem(2k) Por(—n).
Then, as Z(j) hold for all j < n, lem(2k) divides agy, for 2k < 2n and n + ¢ divides agy Par(—n). The case
k" = 2k + 1 is similar. Thus, n + ¢ divides all terms in the third sum.

Since n + ¢ divides the left member and all terms in the above three sums, it must divide ao,,. ]

Lemmas together with the base cases complete the proof of Theorem

5.2 Proof of implication (2) = (1) in Theorem

We assume that the Z-Newton expansion ) _yax Py(z) of f : Z — 7Z is such that lcm(n) divides a,
for all n. We want to prove that f has integral difference ratio. As for given i,j € Z, f(i) — f(j) is a
sum of finitely many a,, P, (i) — a, P, (j), it suffices to prove that each function x — lem(n)P,(z) has
integral difference ratio. Let j < i, 4, j € Z. To prove that i — j divides lem(n) (P, (i) — P,.(j)), we argue by
disjunction of cases on the parity of n and the signs of i, j, i.e. relative to the positions of ¢, j with respect
to the intervals | — oo, —k|, [k, k], [k, +o0[ for k = [n/2]. We rely on conditions in Proposition

k4|3 k j
1. Casen = 2k and i,j €] — 0o, —k]. Then Po(i) — Por(j) = ( -2i-k|l|> - ( ;km) and Lemma



applied with b = k + |i| > 2k, n = |j| — |i| insures that |j| — |i| =i — j divides lem(2k)(Par(j) — Por(7)).
2. Casen =2k and j €] — o0, k] and i €] — k, k]. Then Py(i) — Por(j) = —( ;km
kK =2k a/nd p'=i—j=1i+]j|. Then 0 <n' — k' < p’ </, and Lemma [I5] insures that i — j divides
lem(K') (7)) = lem(2k)(Pax(j) — Par(i)).

3. Casen =2k and j €] — 0o, —k] and i €]k, +o00[. Then Poy (i) — Pay(j) =

).Let n' =k+|jl,

k+i—1\  (k+]j|

2k 2k )’
— subcase |j| < i—1Let n’ =i and i’ = [j|. As i’ < n’ — 1 Lemma [1§ (f) applies and insures that
n' +i =i+ |j| =i—j divides lcm(Qk‘) (n kyi") = lem(2k)(Pak (i) — Por(j)).
~ subcase |j| > i Let n' = [j| + 1 and i’ = i — 1. Again by Lemma[I8| (5)), n’ + i’ =i + [j| =i — j divides
lem(2k)B(n/, k,i") = lem(2k)(Par(j) — Par(7)).
4. Casen =2k andi,j €] — k, —k]. Clear as Pa(i) = Por(j) = 0.

i

5. Casen =2k and j €]—k,—k| and i €]k, +00[. Then Py (i) — Poy(j) = ( 2—; l). Let n' = k+i, k' = 2k
and p’ =i —j. We have 0 < n’ — k' < p’ <n’, hence by Lemma p' =i — j divides lcm(2k)(k2';i).

k+i—1 k+j7-1
6. Casen =2k andi,j €]k, +ool. Thenng(i)—ng(j):( +2Zk )—( +2]k >witthcgk—&—j—l7

we can thus conclude using Lemma
7. Casen=2k+1 andi,j €] — oo, —k[. Then Poy11(i) — Pagt1(j) = — k1 + k£ 1d] : applying
. ) ) . 2k+1 2k+1 2k‘+1 2]€+1 .
Lemmawith b =i|, n = |j| — |i| we conclude that n =i — j divides lem(2k + 1) (Par+1(i) — Par+1(j))-
A
8. Casen =2k +1 and j €] — oo, —k[ and i € [—k,k]. Then Poyy1(i) — Pory1(j) = <2k++]1>' We
conclude as in case 2. above, with Lemma

k ] k j
9. Casen =2k+1 and j €]— oo, —k| and i €]k, +oo[. Then Pop41(i) — Pog+1(j 2]:_'_11) + (2k+—|—|]1|)'
— subcase |j| <i—1:let n’ =i, i =|j| and apply Lemma [18] (6]
— subcase i < |j| —1:let n' = \j\ i’ =4 and apply Lemma [1§| (6).
k
— subcase i = |j| : then Pogy1(i) — Pogy1(j) = 2(2];:_11 ; Lemma 15 apphed withn' =k+1i, k' =2k+1

and p' =i (0 <n' —k < p <n hold), implies that ¢ divides lem(2k + 1) k“) hence 2i = i — |j]

2k+1
divides lem/(2k + 1)(P2k+1(i) — P2k+1(j))-
10. Case n=2k+1 andi,j € [—k,—k]. Trivial since then Pay11(i) = Por11(j) = 0.
bt
11. Casen = 2k+1 and j € [—k, k] and i €]k, 4+00[. Then Pogy1(i)— Por11(j) = < t

.Letn/ = k+i
2k+1> et n +1,
EF=2k+1l,andp =i—j:as0<n' —k'=i—k—1,as|j|<kandi>k,i—k—1<p =i—j<n/,

the hypothesis of Lemma |15 hold and Lemma yields i — j divides lem(2k + 1)(P2k+1(i) — P2k+1(j)).
12. Casen =2k +1 and i,j €]k, +oo[. Similar to Case 7. O

6 Non polynomial functions having integral difference ratio

Let us mention a straightforward consequence of Theorem

Corollary 23. There are non polynomial functions Z — 7 having integral difference ratio.

Proof. In fact there are uncountably many such functions: let a,, be any element of lcm(n)N. O



We now explicit some non polynomial functions having integral difference ratio. We first briefly recall
such examples N — Z (Theorem obtained in [2] and then explicit functions Z — Z (Theorem [28)).

(2k)!
K

Lemma 24. For all k, we have lem(k) divides

Proof. We have lem(2k) = Hp prime pN®) with N(p) = sup{i | p’ < 2k}. For p prime, let M(p) be the

largest integer divided by p™¥(®) and < 2k. Then 2M (p) > 2k hence M (p) > k. In particular, M (p) hence
N(®) divides (2k)!/k!. As a product of pairwise coprime integers, lem(2k) = [, prime pN®) also divides
(2k)!/K\. 0

Theorem 25. Let e be the Neper constant. The following functions N — Z have integral difference ratio:

) 1 ifr=20 ) [sinh(1) 2!] if = odd
Jrawe { le z!] if z € N\ {0} Jni @ { |cosh(1) «!] if x even

Remark 26. Function |e x!] does not have integral difference ratio (cf. [2]).

Proof. Recall Taylor-Lagrange formula applied to the real function ¢ — e!: for all ¢ € R,
1t f2 th—1 +k el
t_ ot
— 11
¢ (0'+ NETREN +(k—1)!+1f!>+e (k+ 1)1 (11)
for some 0 < # < 1 depending on k and ¢.
Let f : N — Z be the function associated with the Newton series f(x) = > _yn! (I) . Theorem
n

insures that f has integral difference ratio. By above, there exists 6, with 0 < 8 < 1 such that

fz)y=>"nl <i):i0(xx'n)':$' <;+(xll)!+ t +O,):x! (e—e"(xil)J

neN n=

0
Thus, ex! = f,(z) + il) For z € N, z > 2, we have 0 < €/ /(z + 1) < ¢/3 < 1 and the last equality

yields f(z) = e z!]. Also, f(0) =1<2=1e0l], f1i(1)=2=[e1!].

Similarly, Lemma [24) and Theorem [10|insure that fn(z) = >, n(2n)! (; > has integral difference
n

ratio and a similar computation yields

le/2) ! L if 2 odd
fulz) = Y (2k)! <2k) = Y (', - Dorer (2k+1)

keN = (z—2h) x! ZE:O W if z even
. . . sinh(6,)\ .
Applying Taylor-Lagrange formula, we get 6,, 6. in |0, 1] such that fj,(x) = ! | sinh(1) — m if x
x !

is odd and fp(x) = ! (cosh(l) - Sézli(f)e!)) if x is even. Whence the result as in the previous case. O

It is easy to lift the integral difference ratio property from functions N — Z to functions Z — Z.

Proposition 27. Suppose f : N — Z has integral difference ratio and let g : Z — 7 be such that
g(z) = f(2?). Then g has integral difference ratio. In particular, there is a function g : Z — 7 having
integral difference ratio and such that g(x) € {|e (?)!], e («®)!] —1}.



Proof. Since a? — b? = divides f(a?) — f(b?) = g(a) — g(b) so does a — b. O

Here is an example of a non polynomial function Z — Z having integral difference ratio and which is
not relevant to Proposition [27]
€ I'(1/2) e—t/2(42 n
;me (t2 — 1)"dt for n > 0 and by
fn)=—=f(In] = 1) for n <0 maps Z into Z and has integral difference ratio.

Theorem 28. The function defined by n +—

Proof. Let f : Z — Z be the function with Z-Newton expansion f(z) = ZkeN ng( ), i.e. agp =

(2k)!/k! and agr4+1 = 0. It is clearly nonpolynomial and, by Theorem [14] E it has mtegral difference ratio.
For n > 0 we have, by [7], page 2, formula 0.126, and page 917 formulas 8.432 1 & 3,

=2 (n+ k)t k-1 (n—k+2)(n—k+1) < (n+k)
f(n)—z I (2Kk)! _Z k! (n—k)!
k=0 k=0
_ _ e F(%) * —t 2 n
_\f Kooy <>_\/;X2><4”><n!/1 e (82— 1)ndt
"2k (—n+E)(-—n+k—1)--(—n—k+2)(-n—k+1)
k=0 '
= +k—1)--- " (n+k—-1)
_ 1 2k (n _ -1
kzzo( ) k! Zk'nf ETAREAUEY)
where K, (z) = fooo e~ veosht cogh(vt)dt is associated with the Bessel function of the third kind. ad
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