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Abstract. Various problems lead to the same class of functions from integers to integers: functions
having integral difference ratio, i.e. verifying f(a) − f(b) ≡ 0 (mod (a − b)) for all a > b. In this
paper we characterize this class of functions from Z to Z via their à la Newton series expansions on
a suitably chosen basis of polynomials (with rational coefficients). We also exhibit an example of
such a function which is not polynomial but Bessel like.
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1 Introduction

We deal with the following class of functions which appears in Pin & Silva, 2011 (see §4.2 and §5.3 in
[10]), as a characterization of a special strong notion of uniform continuity.

Definition 1. Let X ⊆ Z (where Z denotes the set of integers). A map f : X → Z has integral difference

ratio if
f(i)− f(j)

i− j
∈ Z , for all distinct i, j ∈ X.

Observe the following simple properties about these maps.

Proposition 2. 1. The set of maps f : X → Z having integral difference ratio is closed under addition
and multiplication. In particular, it contains all polynomials with integral coefficients.
2. The set of maps f : X → Z having integral difference ratio is closed under composition.

Proof. For multiplication, use the identity f(i)g(i)− f(j)g(j) = f(i)(g(i)− g(j)) + g(j)(f(i)− f(j)). ut

Which non-polynomial maps have integral difference ratio? This is the question we deal with.
In [1] we related the integral difference ratio property to functions f : N → N (where N is the set of

nonnegative integers) such that any lattice of finite subsets of N closed under decrement is also closed
under inverse image by f (Theorem 4). In §2 we extend this result to functions Z→ Z (Theorem 6).

In our paper [2] we characterized the functions f : N→ Z having integral difference ratio in terms of
their Newton expansions over the “binomial polynomials”. In §3 we give a similar characterization for
functions f : Z → Z (Theorem 14). This is the main result of the paper, its proof runs through §4 and
§5. Though both characterizations rely on analogous ideas, the Z case is not reducible to the N case:
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we have to consider à la Newton expansions over a different family of polynomials. Even though these
polynomials have rational (non integer) coefficients, they map Z into Z.

The characterization we give (Theorem 14) insures that there are uncountably many non-polynomial
functions having integral difference ratio. In [2] we explicited non polynomial maps f : N → Z having
integral difference ratio; the map g : Z→ Z such that g(x) = f(x2) also has integral difference ratio and
is non polynomial. In §6 we exhibit a non-polynomial example related to Bessel functions which does not
so reduce to a map N→ Z.

2 Integral difference ratio functions and lattices

In this section, we extend Theorem 4 of our paper [1] to functions Z→ Z.
A lattice of subsets of a set X is a family of subsets of X such that L∩M and L∪M are in L whenever

L,M ∈ L. Let f : X → X. A lattice L of subsets of X is closed under f−1 if f−1(L) ∈ L whenever L ∈ L.
Closure under decrement means closure under Suc−1, where Suc is the successor function.

We let P<ω(X) denote the class of finite subsets ofX. For L ⊆ Z and t ∈ Z we let L−t = {x−t | x ∈ L}.

Proposition 3. Let X be N or Z or Nα = {x ∈ Z | x ≥ α} with α ∈ Z. For L a finite subset of X let
LX(L) be the family of sets of the form

⋃
j∈J

⋂
i∈Ij X ∩ (L− i) where J and the Ij’s are finite non empty

subsets of N. Then LX(L) is the smallest sublattice of P<ω(X) containing L and closed under decrement.

The following characterization is proved in [1]:

Theorem 4. Let f : N −→ N be a non decreasing function. The following conditions are equivalent:

(1)N For every finite subset L of N, the lattice LN(L) is closed under f−1.
(2)N The function f has integral difference ratio and f(a) ≥ a for all a ∈ N.

In order to extend Theorem 4 to functions Z→ Z, we need the Z-version of Lemma 3.1 in [1].

Lemma 5. Let f : Z→ Z be a nondecreasing function such that f(x)− f(y) ≡ 0 mod (x− y) for every
x > y ∈ Z. Then, for any set L ⊆ Z, we have f−1(L) =

⋃
a∈f−1(L)

⋂
t∈L−a(L− t) .

Proof. Let a ∈ f−1(L). As t ∈ L− a⇔ a ∈ L− t, we have a ∈
⋂
t∈L−a L− t, proving inclusion ⊆.

For the other inclusion, let b ∈
⋂
t∈L−a L − t with a ∈ f−1(L). To prove that f(b) ∈ L, we argue by

way of contradiction. Suppose f(b) /∈ L. Since f(a) ∈ L we have a 6= b. The condition on f insures the
existence of k ∈ Z such that f(b)− f(a) = k(b− a). In fact, k ∈ N since f is nondecreasing.

Suppose first that a < b. Since k ∈ N and f(a) + k(b− a) = f(b) /∈ L there exists a least r ∈ N such
that f(a)+r(b−a) /∈ L. Moreover, r ≥ 1 since f(a) ∈ L. Let t = f(a)−a+(r−1)(b−a). By minimality of
r, we get t+a = f(a)+(r−1)(a−b) ∈ L. Now t+a ∈ L implies t+b ∈ L. But t+b = f(a)+r(b−a) /∈ L,
this contradicts the definition of r.

Suppose next that a > b. Since k ∈ N and f(b) + k(a− b) = f(a) ∈ L there exists a least r ∈ N such
that f(b) + r(a− b) ∈ L. Moreover, r ≥ 1 since f(b) /∈ L. Let t = f(b)− b+ (r− 1)(a− b). By minimality
of r, we get t+ b = f(b) + (r − 1)(a− b) /∈ L. Now t+ a ∈ L implies t+ b ∈ L, contradiction. �

We can now extend Theorem 4 to functions Z→ Z.

Theorem 6. Let f : Z −→ Z be a non decreasing function. The following conditions are equivalent:



(1)Z For every finite subset L of Z, the lattice LZ(L) is closed under f−1.
(2)Z The function f has integral difference ratio and f(a) ≥ a for all a ∈ Z.

Proof. • (1)Z ⇒ (2)Z. Assume (1)Z holds. We first prove inequality f(x) ≥ x for all x ∈ Z. Observe that
(by Proposition 3) LZ({z}) = {X ∈ P<ω(Z) | X = ∅ or maxX ≤ z}. In particular, letting z = f(x) and
applying (1)Z with L({f(x)}), we get f−1({f(x}) ∈ LZ({f(x)}) hence x ≤ max(f−1({f(x})) ≤ f(x).

To show that f has integral difference ratio, we reduce to the N case.
For α ∈ Z, let Sucα : Nα → Nα be the successor function on Nα = {z ∈ Z | z ≥ α}. The structures

〈N,Suc〉 and 〈Nα,Sucα〉 are isomorphic. Since f(x) ≥ x for all x ∈ Z, the restriction f �Nα maps Nα into
Nα. In particular, using Theorem 4, conditions (1)Nα and (2)Nα (relative to f �Nα) are equivalent.

We show that condition (2)Nα holds. Let L ⊆ Nα be finite. Condition (1)Z insures that LZ(L) is closed
under f−1. In particular, f−1(L) ∈ LZ(L). Using Proposition 3, we get f−1(L) =

⋃
j∈J

⋂
i∈Ij (L− i) for

finite J , Ij ’s included in N hence (f �Nα)−1(L) = f−1(L)∩Nα =
⋃
j∈J

⋂
i∈Ij (Nα ∩ (L− i)) ∈ LNα(L).

This proves condition (1)Nα . Since (1)Nα ⇒ (2)Nα we see that f �Nα has integral difference ratio Now,
α is arbitrary in Z and the integral difference ratio property of f �Nα for all α ∈ Z yields the integral
difference ratio property for f . Thus, condition (2)Z holds.

• (2)Z ⇒ (1)Z. Assume (2)Z. Then f is not constant since f(x) ≥ x for all x ∈ Z. Also, f−1(α) is finite
for all α : let b be such that f(b) = β 6= α, by the integral difference ratio property the nonzero integer
α− β is divided by a− b for all a ∈ f−1(α) hence f−1(α) is finite.

To prove (1)Z it suffices to prove that f−1(L) ∈ LZ(L) whenever L ⊆ Z is finite. By Lemma 5 we have
f−1(L) =

⋃
a∈f−1(F )

⋂
n∈L−a(L−n). Observe that f−1(F ) is finite since F is finite and so is each f−1(a).

Also, for each a ∈ f−1(F ), the set L− a is finite (as is L) . Thus, the above formula expresses f−1(L) as
a finite combination of unions and intersections of decrements of L. This yields f−1(F ) ∈ LZ(L). ut

3 Newton series expansions of functions having integral difference ratio

Elementary algebra shows that all polynomials have integral difference ratio. To obtain non polynomial
function having integral difference ratio functions, we need a precise characterization via Newton series.

3.1 Newton basis for functions N → Z

Definition 7. Let X = N or X = Z. A sequence of one-variable polynomials (Pk)k∈N with rational
coefficients is a Newton basis for maps X → Z if the following conditions are satisfied:

(1) For every x ∈ X and k ∈ N, Pk(x) is in Z.
(2) For every x ∈ X, the set {k ∈ N | Pk(x) 6= 0} is finite.
(3) The correspondence which associates to a sequence (ak)k∈N ∈ ZN the map f : X → Z such that

f(x) =
∑
k∈N

ak Pk(x) (1)

is a bijection between sequences in ZN and maps X → Z.
The right side of equation (1) is called the Newton series expansion of f .

The following result (cf. [2]) dates back to Newton.

Proposition 8. The binomial polynomials

(
x

k

)
=

∏k−1
i=0 (x− i)

k!
, k ∈ N (with

(
x

0

)
= 1), constitute a

Newton basis for maps N→ Z.



3.2 Characterization of functions N → Z having integral difference ratio

Definition 9. For k ∈ N, k ≥ 1, lcm(k) is the least common multiple of all positive integers less than or
equal to k. By convention, lcm(0) = 1.

We proved in [2] the following characterization of functions N→ Z having integral difference ratio:

Theorem 10. Let f : N→ Z be a function with Newton expansion
∑
k∈N ak

(
x

k

)
. The following condi-

tions are equivalent:

(1) f has integral difference ratio.
(2) lcm(k) divides ak for all k ∈ N.

3.3 A Newton basis for functions Z → Z

The polynomials

(
x

k

)
are not a Newton basis for maps Z → Z since condition (2) of Definition 7 fails

for all negative x and all k ∈ N. We design another sequence of polynomials tailored for Z→ Z maps.

Definition 11. The Z-Newtonian polynomials are defined as follows:

P0(x) = 1 , P2k(x) =
1

(2k)!

i=k∏
i=−k+1

(x− i) , P2k+1(x) =
1

(2k + 1)!

i=k∏
i=−k

(x− i)

Let us explicit the first polynomials in the above sequence:

P0(x) = 1 P1(x) = x P2(x) =
x (x− 1)

2!
P3(x) =

(x+ 1)x(x− 1)

3!
P4(x) =

(x+ 1)x(x− 1) (x− 2)

4!

P5(x) =
(x+ 2)(x+ 1)x(x− 1)(x− 2)

5!
P6(x) =

(x+ 2)(x+ 1)x(x− 1)(x− 2)(x− 3)

6!
. . .

Proposition 12. The Z-Newtonian polynomials define maps on Z which take values in Z and satisfy the
following equations for k, n ∈ N,

P2k+1(n) =


(
k + n

2k + 1

)
if n > k

0 if 0 ≤ n ≤ k
P2k(n) =


(
k + n− 1

2k

)
if n > k

0 if 0 ≤ n ≤ k
(2)

P2k+1(−n) = −P2k+1(n) P2k(−n) =


(
k + n

2k

)
if n ≥ k

0 if 0 ≤ n < k

(3)

Proof. Observe that, for any a, b, x ∈ Z such that a < 0 ≤ b, we have

1

(b− a+ 1)!

i=b∏
i=a

(x− i) =



(
x− a

b− a+ 1

)
if x > b

0 if a ≤ x ≤ b

(−1)b−a+1

(
|x|+ b

b− a+ 1

)
if x < a

Thus, the Pn’s map Z into Z and satisfy conditions (2) and (3). ut



Proposition 13. The Z-Newtonian polynomials are a Newton basis for maps Z→ Z.

Proof. Conditions (2), (3) in Proposition 12 insure that equation (1) of Definition 7 reduces to

f(x) =
∑

n∈{0,...,2|x|+1}

an Pn(x) (4)

which involves a finite sum. Moreover, all terms of this sum are in Z when the an’s are in Z. Thus, for
any sequence (an)n∈N of integers in Z, equation (4) defines a map f : Z→ Z.

To prove the converse, observe that the instances of equation (4) can be written

f(0) = a0 f(1) = a0 + a1 f(2) = a0 + 2a1 + a2 + a3 . . .
f(−1) = a0 − a1 + a2 f(−2) = a0 − 2a1 + 3a2 − a3 + a4 . . .

In general, for k ≥ 1, Proposition 12 yields

f(2k) = L2k(a0, . . . , a4k−2) + a4k−1 f(−2k) = L−2k(a0, . . . , a4k−1) + a4k
f(2k + 1) = L2k+1(a0, . . . , a4k) + a4k+1 f(−2k − 1) = L−2k−1(a0, . . . , a4k+1) + a4k+2

where Ln(a0, . . . , a2n−2) and L−n(a0, . . . , a2n−1) are linear combinations of the ai’s with coefficients in
Z. This shows that, given any f : Z → Z, there is a unique sequence of coefficients (an)n∈N making
equation (1) of Definition 7 true, and all these coefficients are in Z. ut

3.4 Functions Z → Z having integral difference ratio

We can now state the main result of the paper which characterizes the functions f : Z → Z having
integral difference ratio,

Theorem 14. Let
∑
k∈N akPk(x) be the Z-Newtonian expansion of a function f : Z → Z. Then the

following conditions are equivalent:

(1) f has integral difference ratio,

(2) lcm(k) divides ak for all k.

The next two sections are devoted to the proof of Theorem 14.

4 Some properties involving the unary least common multiple function lcm
and binomial coefficients

The unary function lcm (cf. Definition 9) has many interesting properties and recently regained interest,
cf. [9,8,4,5,3]. In this section, we prove three lemmas used in the proof of Theorem 14. They link the lcm
function and binomial coefficients. Lemma 15 already appears in [2]: for the sake of selfcontainment we
repeat its short proof. Lemma 17 is a variation tailored for the Z case of results in [2]. Lemma 16 is a
crucial specific result with a very long proof.

Lemma 15. If 0 ≤ n− k < p ≤ n then p divides lcm(k)

(
n

k

)
.



Proof. By induction on n ≥ 1. The initial case n = 1 is trivial since condition 0 ≤ n− k < p ≤ n yields
p = k = 1. Induction step: assuming the result for n, we prove it for n+1. Suppose 0 ≤ n+1−k < p ≤ n+1.
Case p ≤ n. Then 0 ≤ n−k < p ≤ n and 0 ≤ n−(k−1) < p ≤ n, so that, by induction hypothesis, p divides

lcm(k)

(
n

k

)
and lcm(k−1)

(
n

k − 1

)
. A fortiori, p divides lcm(k)

(
n

k

)
+lcm(k)

(
n

k − 1

)
= lcm(k)

(
n+ 1

k

)
.

Case p = n+ 1. Then k ≥ 1 and lcm(k)

(
n+ 1

k

)
= (n+ 1)

lcm(k)

k

(
n

k − 1

)
is a multiple of n+ 1. ut

Lemma 16. If p ≥ 0 then 2(p+ k) divides lcm(2k)

(
p+ 2k − 1

2k − 1

)
.

Proof. For x ≥ 1, let V al(x) denote the 2-valuation of x, i.e. the largest i such that 2i divides x.

The Lemma is proved through a series of claims. Throughout the proof, B will denote

(
p+ 2k − 1

2k − 1

)
.

Claim 1. The number p+ k divides B lcm(2k − 1).

Proof. Let p′ = p+ k, n′ = p+ 2k − 1 and k′ = 2k − 1 and apply Lemma 15. ut

Claim 2. If k is a power of 2 then 2(p+ k) divides B lcm(2k).

Proof. Observe that lcm(2k) = 2 lcm(2k − 1) if k is a power of 2 and apply Claim 1. ut

Claim 3. The number 2Val(k)+1 divides lcm(2k).

Proof. Since 2Val(k) divides k it also divides lcm(k). To conclude, observe that V al(2k) = V al(k) + 1. ut

Claim 4. The 2-valuation of B is the number of carries when adding 2k − 1 and p in base 2.

Proof. This is an instance of Kummer’s theorem (1852, cf. [6]) for base s = 2: if s is prime and b ≤ a,

the largest i such that si divides

(
a

b

)
is the number of carries when adding b and a− b in base s. ut

In the next claims we consider binary expansions with possibly non significant zeros ahead to get
some prescribed large enough length.

Claim 5. Let t ≥ 1 be the 2-valuation of (2k′ + 1) + (2p′ + 1), i.e. (2k′ + 1) + (2p′ + 1) = 2t (2q + 1) for
some q. For n large enough (e.g., 2n ≥ 2t (2q+ 1)), let kn . . . k11 and pn . . . p11 be the length n+ 1 binary
expansions of 2k′ + 1 and 2p′ + 1. Then ki + pi = 1 for 1 ≤ i ≤ t− 1 and pt = kt.

Proof. Let qn . . . qt+110 . . . 0 (with a tail of t zeros) be the length n + 1 binary expansion of 2t (2q + 1).
The addition of 2k′ + 1 and 2p′ + 1 in base 2 is depicted below

digit rank : r · · · t+ 1 t t− 1 · · · 3 2 1 0

(2k′ + 1) : · · · · · · kt+1 kt kt−1 · · · k3 k2 k1 1
+ (2p′ + 1) : · · · · · · pt+1 pt pt−1 · · · p3 p2 p1 1

= 2t (2q + 1) : qr · · · qt+1 1 0 · · · 0 0 0 0

Observe that adding the digits k0 = 1 and p0 = 1 leads to q0 = 0 and creates a carry. An easy induction
on i = 1, . . . , t − 1 shows that, in order to get the tail of t zeros in the sum, the incoming carry has to
propagate from rank i to rank i+ 1 and equality ki + pi = 1 holds. Finally, since qt = 1 and there is an
incoming carry at rank t, we have pt = kt. ut



Claim 6. Let p, k have the same 2-valuation `, i.e. p = 2`(2p′ + 1) and k = 2`(2k′ + 1). Let t be the
2-valuation of (2k′+1)+(2p′+1). For n large enough (say 2n ≥ p+2k−1), let pn · · · p11 be the length n+1

binary expansion of 2p′+1. Let N be the number of 1’s in pt · · · p11. Then 2N divides B =

(
p+ 2k − 1

2k − 1

)
.

Proof. Let kn · · · k11 be the length n + 1 binary expansion of 2k′ + 1. Applying Claim 5 to 2k′ + 1 and
2p′ + 1 we see that ki + pi = 1 for 1 ≤ i ≤ t− 1 and kt = pt.

By Claim 4, to show that 2N divides B we reduce to prove that the number of carries when adding p
and 2k − 1 is at least N . The binary expansions of k, 2k − 1 and p are as follows:

rank : · · · t+ `+ 1 t+ ` t+ `− 1 · · · `+ 2 `+ 1 ` `− 1 · · · 0

k = 2`(2k′ + 1) : · · · kt+1 kt kt−1 · · · k2 k1 1 0 . . . 0
2k−1 : · · · kt kt−1 kt−2 · · · k1 0 1 1 . . . 1

p = 2`(2p′ + 1) : · · · pt+1 pt pt−1 · · · p2 p1 1 0 . . . 0

In the addition of 2k − 1 and p the first carry occurs at rank `. Hence, the number of carries in this
addition is equal to the number of carries in the addition of the integers obtained by deleting the ` last
digits, i.e. the numbers λ = 2−`

(
(2k − 1)− (2` − 1)

)
and 2p′ + 1. We thus reduce to show that there are

at least N carries in the addition of λ and 2p′ + 1. The binary expansions of λ and 2p′ + 1 are

rank : n+ 1 n · · · t+ 2 t+ 1 t t− 1 · · · 3 2 1 0

λ : kn kn−1 · · · kt+1 kt kt−1 kt−2 · · · k2 k1 0 1
2p′ + 1 : · · · · · · · · · pt+2 pt+1 pt pt−1 · · · p3 p2 p1 1

with ki = 1− pi for i = 1, . . . , t− 1 and kt = pt. We prove by induction on the rank i = 0, . . . , t that, in
the addition of λ and 2p′ + 1, for all 0 ≤ i ≤ t, if pi = 1 then there is a carry at rank i.
Case i = 0. Since the added digits at rank 0 are both equal to 1, there is a carry.
Case 1 ≤ i ≤ t and pi = 0. There is nothing to prove.
Case i = 1 and p1 = 1. The added digits at rank 1 are 0 and 1 (since p1 = 1). Since there is an incoming
carry (that from rank 0) a carry is created at rank 1.
Case 1 ≤ i ≤ t and pi = 1 and pi−1 = 0. Since i− 1 < t we have ki−1 + pi−1 = 1 hence ki−1 = 1. Thus,
the added digits at rank i (namely ki−1 and pi) are both equal to 1 hence there is a carry.
Case 1 ≤ i ≤ t and pi = 1 and pi−1 = 1. By the induction hypothesis, a carry occurs at rank i− 1. Thus,
at rank i there is an incoming carry (the one from rank i− 1) and the digit pi is 1, hence (whatever be
the digit of λ at rank i) there is a carry at rank i.

This shows that there are at least N carries in the addition of λ and 2p+ 1. ut

Claim 7. Let p, k, `, t,N be as in Claim 6. Then 2`+t+1−N divides lcm(2k).

Proof. There are N ones in ptpt−1 · · · p11, hence there are at most N −1 ones and at least t+ 1−N zeros
in pt−1 · · · p1. By Claim 5, kt−1 · · · k1 contains at least t + 1 − N ones. Thus, the number of significant
digits of kt−1 · · · k101 is at least t+3−N . The binary expansion of 2k−1 is kn · · · ktkt−1 · · · k101 followed
by ` ones hence 2k− 1 has at least `+ t+ 3−N significant digits. Consequently, 2k− 1 ≥ 2`+t+2−N and
2`+t+2−N divides lcm(2k − 1) and, a fortiori, lcm(2k). ut

Recall that integers a, b are coprime if 1 is their unique positive common divisor, i.e. gcd(a, b) = 1. The
last claim is elementary number theory.

Claim 8. Let a, b, c be integers. If a, b are coprime and divide c, then ab also divides c.

We can now proceed with the proof of Lemma 16. We argue by cases.



• Case V al(p) 6= V al(k).
Let m = inf(V al(p), V al(k)). Exactly one of the two integers p 2−m and k 2−m is odd so that p+ k =

2m(2−mp+ 2−mk) = 2m(2q + 1) for some q. Now,
- Since m ≤ V al(k), Claim 3 insures that 2m+1 divides lcm(2k).
- Claim 1 insures that p+ k = 2m(2q + 1) divides B lcm(2k − 1). A fortiori (2q + 1) divides B lcm(2k).

As 2m+1 and (2q + 1) are coprime, Claim 8 implies that 2(p+ k) = 2m+1(2q + 1) divides B lcm(2k).

• Case V al(p) = V al(k) = `.
Then p+ k = 2`(2k′ + 1) + 2`(2p′ + 1) = 2`+t(2q + 1) with t ≥ 1. There are three subcases.

- Subcase k ≥ 2`+t. Then 2`+t+1 ≤ 2k, hence 2`+t+1 divides lcm(2k). Claim 1 insures that p + k =
2`+t(2q + 1) divides B lcm(2k − 1), A fortiori 2q + 1 divides B lcm(2k). Finally, by Claim 8 we conclude
that 2(p+ k) = 2`+t+1(2q + 1) divides B lcm(2k).

- Subcase k is a power of 2 . Apply Claim 2.

- Subcase k = 2`(2k′+1) < 2`+t for some k′ 6= 0. Claim 6 insures that 2N divides B. Claim 7 insures that
2`+t+1−N divides lcm(2k). As a consequence 2`+t+1 divides B lcm(2k). By Claim 1, p+ k = 2`+t(2q + 1)
divides B lcm(2k−1). A fortiori (2q+ 1) divides B lcm(2k). Finally by Claim 8, 2(p+k) = 2`+t+1(2q+ 1)
divides B lcm(2k). ut

Lemma 17. If n, k, b ∈ N and b ≥ k then n divides Ank,b = lcm(k)

((
b+ n

k

)
−
(
b

k

))
.

Proof. We argue by double induction on k and b with the conditions

(Pk,b) ∀n ∈ N, n divides Ank,b , (Pk) ∀b ≥ k, ∀n ∈ N, n divides Ank,b .

Conditions (P0) and (P1) are trivial since An0,b = 0 and An1,b = n.
Suppose k ≥ 1 and (Pk) is true. To prove (Pk+1), we prove by induction on b ≥ k+1 that (Pk+1,b) holds.

In the base case b = k + 1, applying Pascal’s rule, we have

An
k+1,k+1 = lcm(k + 1)

((
k + 1 + n

k + 1

)
−

(
k + 1

k + 1

))
= lcm(k + 1)

((
k + n

k

)
+

(
k + n

k + 1

)
− 1

)

= lcm(k + 1)

((
k + n

k

)
−

(
k

k

))
+ lcm(k + 1)

(
k + n

k + 1

)
=

lcm(k + 1)

lcm(k)
An

k,k + lcm(k + 1)

(
k + n

k + 1

)

Since (Pk,k) holds (induction hypothesis on k), n divides Ank,k hence n divides the first term. If n ≤ k+1
then n divides lcm(k + 1) hence n also divides the second term. If n > k + 1, applying Lemma 15 with
n′ = k + n, p′ = n and k′ = k + 1, we see that n = p′ divides the second term. Thus, in both cases n
divides Ank+1,k+1 and (Pk+1,k+1) holds.

Suppose now that (Pk+1,c) holds for k + 1 ≤ c ≤ b. We prove (Pk+1,b+1). Using Pascal’s rule, we get

Ank+1,b+1 = lcm(k + 1)

((
b+ 1 + n

k + 1

)
−
(
b+ 1

k + 1

))
= lcm(k + 1)

((
b+ n

k

)
+

(
b+ n

k + 1

)
−
(
b

k

)
−
(

b

k + 1

))
= lcm(k + 1)

(((
b+ n

k

)
−
(
b

k

))
+

((
b+ n

k + 1

)
−
(

b

k + 1

)))
=

(
lcm(k + 1)

lcm(k)
Ank,b

)
+Ank+1,b

Since (Pk,b) and (Pk+1,b) hold, n divides both terms of the above sum, hence n divides Ank+1,b+1 and
(Pk+1,b+1) holds. ut



Lemma 18. Let B(n, k, i) =

(
n+ k − 1

2k

)
−
(
i+ k

2k

)
and C(n, k, i) =

(
n+ k

2k + 1

)
+

(
i+ k

2k + 1

)
.

For all n ≥ 2, and 1 ≤ i ≤ n− 1, the following hold

n+ i divides lcm(2k)B(n, k, i) for 1 ≤ k ≤ i (5)

n+ i divides lcm(2k + 1)C(n, k, i) for 0 ≤ k ≤ i (6)

Proof. By induction on n ≥ 2. Base case : n = 2 clear as n − 1 = 1 = i. Induction : assuming that (5)
and (6) hold for n, we first prove that (5) holds for n+ 1, and we then prove that (6) holds for n+ 1.

• Proof that (5) holds for n+ 1.
Let 1 ≤ i ≤ n and 1 ≤ k ≤ i. Then, applying Pascal’s rule,

B(n+ 1, k, i) =

(
n+ k

2k

)
−
(
i+ k

2k

)
=

[(
n+ k − 1

2k

)
+

(
n+ k − 1

2k − 1

)]
−
[(
i+ k + 1

2k

)
−
(
i+ k

2k − 1

)]
=

[(
n+ k − 1

2k

)
−
(
i+ 1 + k

2k

)]
+

[(
n+ k − 1

2k − 1

)
+

(
(i+ 1) + (k − 1)

2k − 1

)]
B(n+ 1, k, i) = B(n, k, i+ 1) + C(n, k − 1, i+ 1) (7)

By the induction hypothesis, applied for n and i+ 1, provided that i+ 1 ≤ n− 1, i.e. i ≤ n− 2:
– (5) holds for n hence n+ i+ 1 divides lcm(2k)B(n, k, i)
– (6) holds for n hence n+ i+ 1 divides lcm(2k − 1)C(n, k − 1, i+ 1)
Since lcm(2k − 1) divides lcm(2k), we see that n+ i+ 1 divides lcm(2k)C(n, k − 1, i+ 1) for i ≤ n− 2.
Summing and using (7), we obtain that n+ i+ 1 divides lcm(2k)B(n+ 1, k, i) for i ≤ n− 2.
It remains to prove the same result for i = n− 1 and i = n.

For i = n, this is clear since B(n+ 1, k, n) =
((
n+1+k−1

2k

)
−
(
i+k
2k

))
= 0.

For i = n − 1, Pascal’s rule yields B(n + 1, k, n − 1) =

(
n+ k

2k

)
−
(
n− 1 + k

2k

)
=

(
n− 1 + k

2k − 1

)
.

As k ≤ n, n − k ≥ 0 and we can apply Lemma 16 with p = n − k, hence: 2n = 2(p + k) divides

lcm(2k)

(
p+ 2k − 1

2k − 1

)
= lcm(2k)

(
n− 1 + k

2k − 1

)
= lcm(2k)B(n + 1, k, n − 1). To conclude, observe that

n+ 1 + i = n+ 1 + n− 1 = 2n.

• Proof that (6) holds for n+ 1.
Assume that (5) and (6) hold for n. Let 1 ≤ i ≤ n, by Pascal’s rule

C(n+ 1, k, i) =

(
n+ k + 1

2k + 1

)
+

(
i+ k

2k + 1

)
=

[(
n+ k

2k + 1

)
+

(
n+ k

2k

)]
+

[(
i+ 1 + k

2k + 1

)
−
(
i+ k

2k

)]
=

[(
n+ k

2k + 1

)
+

(
i+ 1 + k

2k + 1

)]
+

[(
n+ k

2k

)
−
(
i+ k

2k

)]
C(n+ 1, k, i) = C(n, k, i+ 1) +B(n+ 1, k, i) (8)

We know that (5) holds for n+1. Thus, for 1 ≤ i ≤ n and 1 ≤ k ≤ i, n+1+ i divides lcm(2k)B(n+1, k, i)
hence also lcm(2k+1)B(n+1, k, i) . This also trivially holds for k = 0 as B(n+1, 0, i) = 0. By the induction
hypothesis (6) holds for n. Thus, n + (i + 1) divides lcm(2k + 1)C(n, k, i + 1) for 1 ≤ i + 1 ≤ n − 1,
i.e. 0 ≤ i ≤ n − 2, and 0 ≤ k ≤ i + 1. Summing and using (8), we obtain that n + i + 1 divides
lcm(2k + 1)C(n+ 1, k, i) for 1 ≤ i ≤ n− 2 and 0 ≤ k ≤ i.
It remains to prove the same result for i = n− 1 and i = n.



For i = n − 1, we have n + 1 + i = 2n and C(n + 1, k, n − 1) = 2

(
n+ k

2k + 1

)
. Lemma 15, applied

with p′ = n, n′ = n + k and k′ = 2k + 1, shows that n divides lcm(2k + 1)
(
n+k
2k+1

)
, hence 2n divides

lcm(2k + 1)C(n+ 1, k, n− 1).
For i = n we have n+ 1 + i = 2n+ 1 and

C(n+ 1, k, n) =

(
n+ k + 1

2k + 1

)
+

(
n+ k

2k + 1

)
=

(n+ k + 1)!

(2k + 1)! (n− k)!
+

(n+ k)!

(2k + 1)! (n− k − 1)!

=
(n+ k)!

(2k + 1)! (n− k − 1)!

(
n+ k + 1

n− k
+ 1

)
=

(n+ k)!

(2k)! (n− k)!

2n+ 1

2k + 1

lcm(2k + 1)C(n+ 1, k, n) =
lcm(2k + 1)

2k + 1
×
(
n+ k

2k

)
× (2n+ 1)

The first two factors are integers, hence 2n+ 1 divides lcm(2k + 1)C(n+ 1, k, n). ut

5 Proof of Theorem 14

5.1 Proof of implication (1) ⇒ (2) in Theorem 14

In this subsection we assume that f : Z→ Z has integral difference ratio and that f(x) =
∑
k∈N akPk(x)

is its Z-Newtonian expansion. To prove that lcm(n) divides an we have to prove that i divides an for all
i ≤ n. To give the flavor of the proof, we look at the first values of n. We have:

f(0) = a0, f(1) = a0+a1, f(−1) = a0−a1+a2, f(2) = a0+2a1+ a2+a3, f(−2) = a0−2a1+ 3a2− a3+a4,

f(3) = a0 + 3a1 + 3a2 + 4a3 + a4 + a5, f(−3) = a0 − 3a1 + 6a2 − 4a3 + 5a4 − a5 + a6 ,

Applying the integral difference ratio property, we see that

2 divides f(1)− f(−1) = 2a1 − a2 hence 2 divides a2
2 divides f(2)− f(0) = 2a1 + a2 + a3 hence 2 divides a3
3 divides f(2)− f(−1) = 3a1 + a3 hence 3 divides a3
2 divides f(−2)− f(0) = −2a1 + 3a2 − a3 + a4 hence 2 divides a4
3 divides f(−2)− f(1) = −3a1 + 3a2 − a3 + a4 hence 3 divides a4
4 divides f(2)− f(−1) = 4a1 − 2a2 + 2a3 − a4 hence 4 divides a4

By induction on n ≥ 1, we prove property I(n): lcm(2n−1) divides a2n−1 and lcm(2n) divides a2n. The
cases n = 1, 2 have just been done. The inductive step is split in four cases corresponding to Lemmas 19
to 22. Assuming I(j) for all j < n we prove

Lemma 19 (Middle number n) n divides a2n−1 and n divides a2n
Lemma 20 (Below the middle number n) If 2 ≤ i < n then i divides a2n−1 and a2n.
Lemma 21 (Above the middle number n, case a2n−1) If 1 ≤ i ≤ n− 1 then n+ i divides a2n−1
Lemma 22 (Above the middle number n, case a2n) If 1 ≤ i ≤ n then n+ i divides a2n

We state equations (9) which follows from Proposition 12 (equation (2)),and will be used for proving the
lemmas.

f(n) =

2n−1∑
j=0

ajPj(n) with Pj(n) =


P2k(n) =

(
k + n− 1

2k

)
for j = 2k

P2k+1(n) =

(
k + n

2k + 1

)
for j = 2k + 1

 =

(
n+ b(j − 1)/2c

j

)
(9)



Lemma 19. If condition I(s) holds for all s < n then n divides a2n−1 and a2n.

Proof. 1. We first show that n divides 2n− 1. The case n ≤ 2 has been done above. Suppose n ≥ 2.
By the integral difference ratio property, n divides f(n) − f(0). As Pj(0) = 0 for all j ≥ 1 we have

f(0) = a0. Also, P2n−1(n) = 1. Thus, f(n)−f(0) =
(∑2n−2

j=1 aj Pj(n)
)

+a2n−1 where the Pj(n) are given

in Equation (9). As 0 ≤ n+ b(j − 1)/2c − j < n ≤ n+ b(j − 1)/2c, Lemma 15 insures that n divides
lcm(j)Pj(n). Now, by the induction hypothesis I(s) holds for all s < n and thus lcm(j) divides aj for

j = 1, . . . , 2n− 2. Therefore n divides all the terms in the sum
∑2n−2
j=1 aj Pj(n). Hence n divides a2n−1.

2. Similarly, using equation (3) in Proposition 12, we have f(−n) =
∑2n
j=0 aj Pj(−n). An analogous

use of Lemma 15 and the fact that n divides f(−n)− f(0) allows to conclude that n divides a2n. ut

Lemma 20. If condition I(s) holds for all s < n then i divides a2n−1 and a2n for all 2 ≤ i < n.

Proof. 1. Fix i such that 2 ≤ i < n. We first prove that i divides a2n−1. By the integral difference ratio
property, i divides f(n)− f(n− i). Equation (2) yields

f(n)− f(n− i) =

2n−1∑
j=0

ajPj(n)−
2n−2i−1∑
j=0

ajPj(n− i)

=

2n−2i−1∑
j=1

aj

(
Pj(n)− Pj(n− i)

)+

 i−1∑
j=2n−2i

ajPj(n)

+

2n−2∑
j=i

ajPj(n)

+ a2n−1 (10)

• Third sum. The induction hypothesis I(s), for s < n, imply that lcm(j) divides aj j ≤ 2s ≤ 2n − 2:
a fortiori, for i ≤ j ≤ 2n − 2, i divides aj : hence, i divides ai, ai+1, . . . , a2n−2 and also all terms in the
third sum.
• Second sum. Let n′ = n+b(j−1)/2c, k′ = j, and p = i. For j ≤ i−1 we have 0 ≤ n′−k′ < p ≤ n′ hence

Lemma 15 applies and insures that i divides lcm(k′)

(
n′

k′

)
= lcm(j)

(
n+ b(j − 1)/2c′

j

)
= lcm(j)Pj(n)

(by equation (9)). Again I(s), s < n, insure that lcm(j) divides aj for j < 2n, hence i a fortiori divides
all the terms ajPj(n) in the second sum.

• First sum. The terms are a2k

[(
k + n− 1

2k

)
−
(
k + n− i− 1

2k

)]
or a2k+1

[(
k + n

2k + 1

)
−
(
k + n− i

2k + 1

)]
with k < n− i. Thus the hypothesis of Lemma 17, namely 2k ≤ k + n− i− 1 (resp. 2k + 1 ≤ k + n− i)
hold for each term

(
Pj(n) − Pj(n − i)

)
, j < 2n − 2i of the first sum, implying that i divides each term

lcm(j)
(
Pj(n)−Pj(n− i)

)
. Since conditions I(s), s < n, insure that lcm(j) divides aj for j ≤ 2s < 2n−2,

we see that i divides all terms aj
(
Pj(n)− Pj(n− i)

)
in the first sum.

Since i divides the left member and all terms of the three sums in equation (10) it must divide a2n−1.

2. The proof for a2n is similar using f(−n)− f(−n+ i) and equation (3) of Proposition 12. ut

Lemma 21. If condition I(s) holds for all s < n then n+ i divides a2n−1 for all 1 ≤ i ≤ n− 1.

Proof. By the integral difference ratio property, n + i divides D = f(n) − f(−i) =
∑2n−1
j=0 ajPj(n) −∑2i

j=0 ajPj(−i). D can be split into four sums

D =

(
i−1∑
k=0

a2k+1 (P2k+1(n)− P2k+1(−i))
)

+

(
i∑

k=1

a2k (P2k(n)− P2k(−i))
)

+

(
2n−2∑
j=2i+1

ajPj(n)

)
+a2n−1

Using equations (2), (3) and (9), we rewrite D as



D =

(
i−1∑
k=0

a2k+1(
(
n+k
2k+1

)
+
(
i+k
2k+1

)
)

)
+

(
i∑

k=1

a2k(
(
n+k−1

2k

)
−
(
i+k
2k

)
)

)
+

(
2n−2∑
j=2i+1

aj
(
n+b(j−1)/2c

j

))
+a2n−1

• First/second sum. Induction conditions I(s), for all s < n, insure that lcm(2k) divides a2k and
lcm(2k + 1) divides a2k+1 for k ≤ i < n; Moreover, as 1 ≤ i ≤ n− 1, Lemma 18 shows that n+ i divides
lcm(2k + 1) (

(
n+k
2k+1

)
+
(
i+k
2k+1

)
) and lcm(2k) (

(
n+k−1

2k

)
−
(
i+k
2k

)
). Hence, n + i divides all terms in the first

and the second sum.
• Third sum. Let n′ = n+ b(j − 1)/2c, k′ = j, and p = n+ i. Since i ≤ n− 1, for 2i+ 1 ≥ j ≤ 2n− 2 we
have 0 ≤ n′ − k′ < p ≤ n′ hence we can apply Lemma 15 which insures that n + i divides lcm(j)Pj(n);
moreover, the induction conditions I(j) hold for all j < n, hence lcm(j) divides aj for all j ≤ 2n−2.Thus,
n+ i divides all terms in the third sum.

Since it divides the left member and all terms in the above three sums, n+ i must divide a2n−1. ut

Lemma 22. If condition I(s) holds for all s < n then n+ i divides a2n for all 1 ≤ i ≤ n.

Proof. By the integral difference ratio property, n+ i divides f(−n)− f(i). Equations (2) (3) yield

f(−n)− f(i) =
∑2n
j=0 ajPj(−n)−

∑2i
j=0 ajPj(i)

=

(
i−1∑
k=0

a2k+1 (P2k+1(−n)− P2k+1(i))

)
+

(
i∑

k=1

a2k (P2k(−n)− P2k(i))

)
+

(
2n−1∑
j=2i+1

ajPj(−n)

)
+ a2n

• First sum. Since P2k+1 is odd, by equation (3) of Proposition 12 the first sum is the opposite of the
first sum in the proof of Lemma 21, hence it is divided by n+ i.
• Second sum. Equations (2), (3) insure that P2k(−n) − P2k(i) =

(
k+n
2k

)
−
(
k+i−1

2k

)
. In case 2 ≤ i ≤ n

we let n′ = n + 1 and i′ = i − 1. We have 1 ≤ i′ ≤ n′ − 1, P2k(−n) − P2k(i) = P2k(n − 1) − P2k(i) =
P2k(n′)−P2k(i′ + 1) and we can apply Lemma 18. Exactly as in the proof of Lemma 21, we deduce that
n+ i = n′ + i′ divides each term of the second sum.

Consider now the case i = 1. The second sum reduces to one term: a2(P2(−n)−P2(1)) = a2n(n+1)/2.
As 2 divides a2, we see that n+ 1 divides this term.
• Third sum. Let j = 2k or j = 2k + 1, and 2i+ 1 ≤ j ≤ 2n− 1, equation (3) shows that P2k+1(−n) =
−
(
k+n
2k+1

)
and P2k(−n) =

(
k+n
2k

)
. Let n′ = k+n, k′ = 2k, and p = n+ i, as i ≤ n and 2k ≤ 2n− 1 we have

0 ≤ n′ − k′ < p ≤ n′, hence we can apply Lemma 15 which insures that n + i divides lcm(2k)P2k(−n).
Then, as I(j) hold for all j < n, lcm(2k) divides a2k for 2k < 2n and n+ i divides a2kP2k(−n). The case
k′′ = 2k + 1 is similar. Thus, n+ i divides all terms in the third sum.

Since n+ i divides the left member and all terms in the above three sums, it must divide a2n. ut

Lemmas 19, 20, 21, 22 together with the base cases complete the proof of Theorem 14.

5.2 Proof of implication (2) ⇒ (1) in Theorem 14

We assume that the Z-Newton expansion
∑
n∈N ak Pk(x) of f : Z → Z is such that lcm(n) divides an

for all n. We want to prove that f has integral difference ratio. As for given i, j ∈ Z, f(i) − f(j) is a
sum of finitely many anPn(i) − anPn(j), it suffices to prove that each function x 7→ lcm(n)Pn(x) has
integral difference ratio. Let j < i, i, j ∈ Z. To prove that i−j divides lcm(n)(Pn(i)−Pn(j)), we argue by
disjunction of cases on the parity of n and the signs of i, j, i.e. relative to the positions of i, j with respect
to the intervals ]−∞,−k], [−k, k], [k,+∞[ for k = bn/2c. We rely on conditions 2, 3 in Proposition 12.

1. Case n = 2k and i, j ∈] − ∞,−k]. Then P2k(i) − P2k(j) =

(
k + |i|

2k

)
−
(
k + |j|

2k

)
and Lemma 17



applied with b = k + |i| ≥ 2k, n = |j| − |i| insures that |j| − |i| = i− j divides lcm(2k)(P2k(j)− P2k(i)).

2. Case n = 2k and j ∈]−∞,−k] and i ∈]− k, k]. Then P2k(i)−P2k(j) = −
(
k + |j|

2k

)
. Let n′ = k+ |j|,

k′ = 2k and p′ = i − j = i + |j|. Then 0 ≤ n′ − k′ < p′ ≤ n′, and Lemma 15 insures that i − j divides

lcm(k′)
(
n′

k′

)
= lcm(2k)(P2k(j)− P2k(i)).

3. Case n = 2k and j ∈]−∞,−k] and i ∈]k,+∞[. Then P2k(i)− P2k(j) =

(
k + i− 1

2k

)
−
(
k + |j|

2k

)
.

– subcase |j| ≤ i − 1 Let n′ = i and i′ = |j|. As i′ ≤ n′ − 1 Lemma 18 (5) applies and insures that
n′ + i′ = i+ |j| = i− j divides lcm(2k)B(n′, k, i′) = lcm(2k)(P2k(i)− P2k(j)).
– subcase |j| ≥ i Let n′ = |j|+ 1 and i′ = i− 1. Again by Lemma 18 (5), n′ + i′ = i+ |j| = i− j divides
lcm(2k)B(n′, k, i′) = lcm(2k)(P2k(j)− P2k(i)).
4. Case n = 2k and i, j ∈]− k,−k]. Clear as P2k(i) = P2k(j) = 0.

5. Case n = 2k and j ∈]−k,−k] and i ∈]k,+∞[. Then P2k(i)−P2k(j) =

(
k + i

2k

)
. Let n′ = k+i, k′ = 2k

and p′ = i− j. We have 0 ≤ n′ − k′ < p′ ≤ n′, hence by Lemma 15, p′ = i− j divides lcm(2k)
(
k+i
2k

)
.

6. Case n = 2k and i, j ∈]k,+∞[. Then P2k(i)−P2k(j) =

(
k + i− 1

2k

)
−
(
k + j − 1

2k

)
with 2k ≤ k+j−1,

we can thus conclude using Lemma 17.

7. Case n = 2k+ 1 and i, j ∈]−∞,−k[. Then P2k+1(i)− P2k+1(j) = −
(
k + |i|
2k + 1

)
+

(
k + |j|
2k + 1

)
: applying

Lemma 17 with b = |i|, n = |j| − |i| we conclude that n = i− j divides lcm(2k+ 1)
(
P2k+1(i)−P2k+1(j)

)
.

8. Case n = 2k + 1 and j ∈] − ∞,−k[ and i ∈ [−k, k]. Then P2k+1(i) − P2k+1(j) =

(
k + |j|
2k + 1

)
. We

conclude as in case 2. above, with Lemma 15.

9. Case n = 2k+1 and j ∈]−∞,−k[ and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =

(
k + i

2k + 1

)
+

(
k + |j|
2k + 1

)
.

– subcase |j| ≤ i− 1 : let n′ = i , i′ = |j| and apply Lemma 18 (6).
– subcase i ≤ |j| − 1 : let n′ = |j| , i′ = i and apply Lemma 18 (6).

– subcase i = |j| : then P2k+1(i)−P2k+1(j) = 2

(
k + i

2k + 1

)
; Lemma 15, applied with n′ = k+ i, k′ = 2k+ 1

and p′ = i ( 0 ≤ n′ − k′ < p′ ≤ n′ hold), implies that i divides lcm(2k + 1)
(
k+i
2k+1

)
, hence 2i = i − |j|

divides lcm(2k + 1)
(
P2k+1(i)− P2k+1(j)

)
.

10. Case n = 2k + 1 and i, j ∈ [−k,−k]. Trivial since then P2k+1(i) = P2k+1(j) = 0.

11. Case n = 2k+1 and j ∈ [−k, k] and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =

(
k + i

2k + 1

)
. Let n′ = k+i,

k′ = 2k + 1, and p′ = i− j: as 0 ≤ n′ − k′ = i− k − 1, as |j| ≤ k and i > k, i− k − 1 < p′ = i− j ≤ n′,
the hypothesis of Lemma 15 hold and Lemma 15 yields i− j divides lcm(2k + 1)

(
P2k+1(i)− P2k+1(j)

)
.

12. Case n = 2k + 1 and i, j ∈]k,+∞[. Similar to Case 7. ut

6 Non polynomial functions having integral difference ratio

Let us mention a straightforward consequence of Theorem 14.

Corollary 23. There are non polynomial functions Z→ Z having integral difference ratio.

Proof. In fact there are uncountably many such functions: let an be any element of lcm(n)N. ut



We now explicit some non polynomial functions having integral difference ratio. We first briefly recall
such examples N→ Z (Theorem 25) obtained in [2] and then explicit functions Z→ Z (Theorem 28).

Lemma 24. For all k, we have lcm(k) divides
(2k)!

k!
.

Proof. We have lcm(2k) =
∏
p prime p

N(p) with N(p) = sup{i | pi ≤ 2k}. For p prime, let M(p) be the

largest integer divided by pN(p) and ≤ 2k. Then 2M(p) > 2k hence M(p) > k. In particular, M(p) hence
pN(p) divides (2k)!/k!. As a product of pairwise coprime integers, lcm(2k) =

∏
p prime p

N(p) also divides
(2k)!/k!. ut

Theorem 25. Let e be the Neper constant. The following functions N→ Z have integral difference ratio:

f : x 7→
{

1 if x = 0
be x!c if x ∈ N \ {0} fh : x 7→

{
bsinh(1) x!c if x odd
bcosh(1) x!c if x even

Remark 26. Function be x!c does not have integral difference ratio (cf. [2]).

Proof. Recall Taylor-Lagrange formula applied to the real function t 7→ et: for all t ∈ R,

et =

(
1

0!
+

t

1!
+
t2

2!
+ · · ·+ tk−1

(k − 1)!
+
tk

k!

)
+ eθ t

tk+1

(k + 1)!
(11)

for some 0 < θ < 1 depending on k and t.

Let f : N→ Z be the function associated with the Newton series f(x) =
∑
n∈N n!

(
x

n

)
. Theorem 10

insures that f has integral difference ratio. By (11) above, there exists θ, with 0 < θ < 1 such that

f(x) =
∑
n∈N

n!

(
x

n

)
=

x∑
n=0

x!

(x− n)!
= x!

(
1

x!
+

1

(x− 1)!
+ · · ·+ 1

1!
+

1

0!

)
= x!

(
e− eθ 1

(x+ 1)!

)

Thus, ex! = fa(x) +
eθ

(x+ 1)
For x ∈ N, x ≥ 2, we have 0 < eθ/(x + 1) < e/3 < 1 and the last equality

yields f(x) = be x!c. Also, f(0) = 1 < 2 = be 0!c, f1(1) = 2 = be 1!c.

Similarly, Lemma 24 and Theorem 10 insure that fh(x) =
∑
n∈N(2n)!

(
x

2n

)
has integral difference

ratio and a similar computation yields

fh(x) =
∑
k∈N

(2k)!

(
x

2k

)
=

bx/2c∑
k=0

x!

(x− 2k)!
=

x!
∑ x−1

2

k=0

1

(2k + 1)!
if x odd

x!
∑ x

2

k=0
1

(2k)! if x even

Applying Taylor–Lagrange formula, we get θo, θe in ]0, 1[ such that fh(x) = x!

(
sinh(1)− sinh(θo)

(x+ 1)!

)
if x

is odd and fh(x) = x!
(

cosh(1)− sinh(θe)
(x+1)!

)
if x is even. Whence the result as in the previous case. ut

It is easy to lift the integral difference ratio property from functions N→ Z to functions Z→ Z.

Proposition 27. Suppose f : N → Z has integral difference ratio and let g : Z → Z be such that
g(x) = f(x2). Then g has integral difference ratio. In particular, there is a function g : Z → Z having
integral difference ratio and such that g(x) ∈ {be (x2)!c, be (x2)!c − 1}.



Proof. Since a2 − b2 = divides f(a2)− f(b2) = g(a)− g(b) so does a− b. ut

Here is an example of a non polynomial function Z→ Z having integral difference ratio and which is
not relevant to Proposition 27.

Theorem 28. The function defined by n 7→
√
e

π
× Γ (1/2)

2× 4n × n!

∫∞
1
e−t/2(t2 − 1)ndt for n ≥ 0 and by

f(n) = −f(|n| − 1) for n < 0 maps Z into Z and has integral difference ratio.

Proof. Let f : Z → Z be the function with Z-Newton expansion f(x) =
∑
k∈N

2k!

k!
P2k(x), i.e. a2k =

(2k)!/k! and a2k+1 = 0. It is clearly nonpolynomial and, by Theorem 14, it has integral difference ratio.
For n ≥ 0 we have, by [7], page 2, formula 0.126, and page 917 formulas 8.432 1 & 3,

f(n) =
n∑
k=0

2k!

k!

(n+ k)(n+ k − 1) · · · (n− k + 2)(n− k + 1)

(2k)!
=

n∑
k=0

(n+ k)!

k! (n− k)!

=

√
e

π
×Kn+ 1

2

(
1

2

)
=

√
e

π
×

Γ ( 1
2 )

2× 4n × n!

∫ ∞
1

e−
t
2 (t2 − 1)ndt

f(−n) =

n∑
k=0

2k!

k!

(−n+ k)(−n+ k − 1) · · · (−n− k + 2)(−n− k + 1)

(2k)!

=

n∑
k=0

(−1)2k
(n+ k − 1) · · · (n− k)

k!
=

n∑
k=0

(n+ k − 1)!

k! (n− k − 1)!
= f(n− 1)

where Kν(x) =
∫∞
0
e−x cosh t cosh(νt)dt is associated with the Bessel function of the third kind. ut
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