Quasi-Polish Spaces and

Choquet Games

Serge Grigorieff

LIAFA, CNRS \& Université Denis Diderot-Paris 7
Topology and Informatics
Paris, March 21-22, 2013

Two classes to be unified
Life in a non Hausdorff world
Scott domains
Quasi-Polish spaces
Choquet games
Approximation spaces

Two almost disjoint classes of

topological spaces to be unified

Topology in mathematical Analysis

(Countable dense subset Metrizable (\Rightarrow Hausdorff) by complete metric

$$
\mathbb{R} \quad L_{2}(\mathbb{R}) \quad 2^{\mathbb{N}} \quad \mathbb{N}^{\mathbb{N}} \quad[0,1]^{\mathbb{N}}
$$

Hilbert Cantor Baire Hilbert cube

- Universality: Polish $\approx G_{\delta}$ in $[0,1]^{\mathbb{N}}$
- Universality: Polish totally discontinuous
\approx closed in $\mathbb{N}^{\mathbb{N}} \approx G_{\delta}$ in $2^{\mathbb{N}}$
Rich Descriptive Set Theory

Other topological spaces

- Lusin spaces
(weaken Polish topology)
- Suslin spaces (continuous images of Polish)

Topology in Algebra, Algebraic Geometry and Computer Science

often NON Hausdorff

- Zariski on $\mathbb{C}^{n} \quad T_{1}$
- Spectral spaces $\quad T_{0} \quad \begin{aligned} & \text { Stone duality } \\ & \text { Ring spectrum (Hochster) }\end{aligned}$
- Scott domains T_{0}
(D. Scott ~ 1970)
ω-algebraic domains
ω-continuous domains

Differences and Analogies

Polish spaces	\neq ω-continuous domains	
Hausdorff	$\neq T_{0}$	
complete metric	\approx	directed complete partial order
Countable dense subset	\approx	Countable approximation basis

Intersection of these two classes
$=$ discrete countable spaces
These theories can be unified
keeping rich Descriptive Set Theory
Breakthrough done by Matthew de Brecht, 2011

Life in a non Hausdorff world

Some separation axioms

$\left(T_{2}\right)$ Haussdorf Open sets separate points

$\left(T_{1}\right)$ Fréchet
Singleton sets are closed

$$
x_{0}
$$

-y
AND ${ }^{\mathrm{X}}$ •
$\left(T_{0}\right)$ Kolmogorov Open sets distinguish points

$$
x_{0}
$$

- y

OR
x. - 5
$T_{0} \leadsto$ Specialization order
$x \leq y$ ff \forall open $U(x \in U \Rightarrow y \in U)$ iff $x \in \overline{\{y\}}$
Open sets \Longrightarrow up-sets

Bore hierarchy in a T_{0} space E
DISTORSION at LEVEL 2
$\boldsymbol{\Sigma}_{1}^{0}(E)=$ open subsets of E
$\boldsymbol{\Sigma}_{2}^{0}(E)=$ countable unions of DIFFERENCES of open sets
$\boldsymbol{\Sigma}_{\alpha}^{0}(E)=$ countable unions of sets in $\bigcup_{\beta<\alpha} \boldsymbol{\Sigma}_{\beta}^{0}(E) \quad$ in case $\alpha \geq 3$
$\boldsymbol{\Pi}_{\alpha}^{0}(E)=\left\{E \backslash X \mid X \in \boldsymbol{\Sigma}_{\alpha}^{0}(E)\right\}$
$\boldsymbol{\Delta}_{\alpha}^{0}(E)=\boldsymbol{\Sigma}_{\alpha}^{0}(E) \cap \boldsymbol{\Pi}_{\alpha}^{0}(E)$
$\operatorname{CARE}\left\{\begin{array}{l}\mathbf{F}_{\sigma}(E) \subseteq \boldsymbol{\Sigma}_{2}^{0}(E) \\ \mathbf{G}_{\delta}(E) \subseteq \boldsymbol{\Pi}_{2}^{0}(E)\end{array}\right.$ may be strict \mp

Scott domains

ω-algebraic domains: paradigmatic example
Boolean algebra $(\mathcal{P}(\mathbb{N}), \subsetneq)$
Countable Basis $=\mathcal{P}_{<\omega}(\mathbb{N})$
Algebraic: $\left\{\begin{array}{l}\text { Every } X=\text { union of directed set } \mathcal{P}_{<\omega}(X) \\ X)\end{array}\right.$
X finite $\subseteq \cup_{i} Z_{i} \Longrightarrow \exists i X \subseteq Z_{i}$
Scott Topology of positive information
Basis: $\mathcal{O}_{A}=\{X \subseteq \mathbb{N} \mid A \subseteq X\}$, A finite
\mathcal{O}_{A} open trivially quasi-compact NOT closed $\subseteq=$ specialization order

Comparing with Cantor
($=$ topology of positive and negative information)

$$
\begin{gathered}
\boldsymbol{\Sigma}_{n}^{0}(\mathcal{P}(\mathbb{N})) \mp \boldsymbol{\Sigma}_{n}^{0}\left(2^{\mathbb{N}}\right) \mp \boldsymbol{\Sigma}_{n+1}^{0}(\mathcal{P}(\mathbb{N})) \\
\boldsymbol{\Sigma}_{\omega+\alpha}^{0}(\mathcal{P}(\mathbb{N}))=\boldsymbol{\Sigma}_{\omega+\alpha}^{0}\left(2^{\mathbb{N}}\right)
\end{gathered}
$$

Another example of ω-algebraic domain

$\overline{[0,1]}=[0,1] \cup\left(D_{2} \times\{+\}\right) \quad q \leadsto$ pair $q<(q,+)$ Duplicate $D_{2}=$ dyadic rationals $q<r<x \Longrightarrow(q,+)<(r,+)<x$

Countable Basis $=D_{2} \times\{+\}$
Algebraic: $\{$ Every $x=\sup \{(q,+) \mid(q,+) \leq x\}$

$$
(q,+) \leq \sup _{i} x_{i} \Longrightarrow \exists i(q,+) \leq x_{i}
$$

Poset $\overline{[0,1]} \approx\left(2^{\mathbb{N}}\right.$, lexico $) \quad$ Gives sense to

$$
0 . \varepsilon_{1} \ldots \varepsilon_{k} 0111 \ldots<0 . \varepsilon_{1} \ldots \varepsilon_{k} 1000 \ldots
$$

Example of algebraic domain

$\left(\omega_{1}+1, \leq\right)$ successor of first uncountable ordinal
Uncountable Basis = all successor ordinals
Algebraic. $\left\{\begin{array}{l}\text { Every ordinal is sup of successors }\end{array}\right.$

$$
\alpha+1 \leq \sup _{i} \alpha_{i} \Longrightarrow \exists i \alpha+1 \leq \alpha_{i}
$$

Order topology: intervals] α, ω_{1}]
The Borel hierarchy collapses:
Borel $=\boldsymbol{\Sigma}_{2}^{0} \cup \boldsymbol{\Pi}_{2}^{0}$
$=$ countable or co-countable subsets

Example of ω-continuous domain

$([0,1], \leq)$
Continuous basis $=\{0\} \cup$ any dense set D
NOT algebraic:
Every $x \neq 0$ is non trivial sup of elements of D
$[0,1]$ is retract of $\overline{[0,1]}=[0,1] \cup D_{2} \times\{+\}$

$$
\begin{array}{rc}
{[0,1] \stackrel{\iota}{\hookrightarrow} \overline{[0,1]}} & \overline{[0,1]} \xrightarrow{p}[0,1] \quad p \circ \iota=I d_{[0,1]} \\
\text { identity } & (q,+) \mapsto q
\end{array}
$$

Towards formal definitions of

continuous/algebraic domains

INTUITION FROM COMPUTATIONS

- Put together possibly "infinitary" objects
\& "finitary" approximations (= informations)
- Informations go increasing \& are compatible \Longrightarrow directed set and its sup
- Approximations may miss "negative" info.

This is why $(\mathcal{P}(\mathbb{N})$, Scott $) \neq$ Cantor

- may never know if a computation is infinite
- recursively enumerable set $=$ only positive info

Dcpo's and the way-below relation

- DCPO (directed complete poset)

Every directed set has a supremum

- Relation "way-below" (or approximation): $x \ll y \Longleftrightarrow \forall Z$ directed

$$
(y \leq \sup Z \Rightarrow \exists z \in Z x \leq z)
$$

- x unavoidable piece of information for y
- x appears in any system of approximations of an element $\geq y$
$\ln \mathcal{P}(\mathbb{N}) \quad X \ll Y \Longleftrightarrow(X$ finite $\wedge X \subseteq Y)$

Continuous/algebraic domains

 $x \ll y \Longleftrightarrow \forall Z$ directed$$
(y \leq \sup Z \Rightarrow \exists z \in Z x \leq z)
$$

Continuous domain $=$ dcpo + basis B s.t. $\forall x \quad B \cap \downarrow x$ is directed $\wedge x=\sup (B \cap \downarrow x)$ every element is the directed sup of its unavoidable minorants x compact if $x \ll x$ (any inequality $\sup Z \geq x$ is trivial: $\exists z \in Z z \geq x$)
Algebraic domain $=$ dcpo +
compact elements form a basis ω-continuous $/ \omega$-algebraic $=$ countable basis

Scott topology on a dcpo (D, \leq)

X Scott closed $\equiv X$ down-set closed under directed sup
X Scott open $\equiv X$ up-set only trivially accessible by directed sup
$\{x \mid x \nless a\}$ is Scott open
T_{0} topology specialization order $=\leq$

Some properties of continuous domains

Continuous base B :
$B \cap \downarrow x$ directed and $x=\sup (B \cap \downarrow x)$
Interpolation in continuous domains.
"Density" $m \ll x \Rightarrow \exists y m \ll y \ll x$ Care! $u \ll v$ does not exclude $u=v$ Interpolation if M finite
$(\forall m \in M m \ll x) \Rightarrow \exists y \forall m \in M \quad m \ll y \ll x$ Open sets in continuous domains. $\{\uparrow x \mid x \in B\}$ topological basis
U open iff $U=\bigcup_{x \in U} \hat{} \mid$ iff $U=\bigcup_{x \in U \cap B} \uparrow x$

Quasi-Polish spaces

Quasi-metric

Give up the symmetry axiom of metrics
Quasi-metric on E map $d: E \times E \rightarrow[0,+\infty[$ such that

$$
\begin{aligned}
x=y & \Longleftrightarrow d(x, y)=d(y, x)=0 \\
d(x, z) & \leq d(x, y)+d(y, z)
\end{aligned}
$$

Topology generated by open balls

$$
B_{d}(a, r)=\{x \in E \mid d(a, x)<r\}
$$

Fundamental example: $\mathcal{P}(\mathbb{N})$ is quasi-metric

$$
d(X, Y)=\sup \left\{2^{-n} \mid n \in X \backslash Y\right\}
$$

$$
d(A, Y)<2^{-n} \Longleftrightarrow A \cap\{p \mid p \leq n\} \subseteq Y
$$

$$
\{Y \mid A \subseteq Y\}=\bigcap_{a \in A} B_{d}\left(\{a\}, 2^{-a}\right)
$$

Quasi-metric versus metric

$d^{-1}(x, y)=d(y, x)$
$\widehat{d}(x, y)=\max (d(x, y), d(y, x))$
(E, d) quasi-metric $\Rightarrow \begin{cases}\left(E, d^{-1}\right) & \text { quasi-metric } \\ (E, \widehat{d}) & \text { metric }\end{cases}$
(Kunzi) (E, d) has countable base
iff (E, \widehat{d}) has countable dense set

Quasi-Polish spaces

Cauchy sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ if
$\lim _{n \rightarrow+\infty} \sup _{p \geq n} d\left(x_{n}, x_{p}\right)=0$
Complete quasi-metric Every Cauchy sequence converges wrt the metric $\widehat{d}(x, y)=\max (d(x, y), d(y, x))$

Quasi-Polish space (Hans Peter Kunzi) Topology associated to a complete quasi-metric with countable topological basis

De Brecht results on quasi-Polish spaces $B_{d^{-1}}(a, r), \quad B_{\hat{d}}(a, r)$ are $\boldsymbol{\Sigma}_{2}^{0}(E, d)$
(X, d) quasi-Polish $\Longrightarrow(X, \widehat{d})$ Polish

$$
\operatorname{Borel}(E, d)=\operatorname{Borel}(E, \widehat{d})
$$

uncountable quasi-Polish \Longrightarrow cardinal $2^{\aleph_{0}}$ Borel hierarchy does not collapse

Metrizable + quasi-Polish \Rightarrow Polish

De Brecht results on quasi-Polish spaces

- Baire property for open hence for \mathbf{G}_{δ} sets.

Also true for $\boldsymbol{\Pi}_{2}^{0}$ sets (Becher \& SG)

- Hausdorff-Kuratowski property: for $\beta \geq 1$

$$
\mathbf{D}_{\beta+1}^{0}=\bigcup_{\alpha<\omega_{1}} \mathbf{D}\left(\boldsymbol{\Sigma}_{\alpha}^{0}\right)
$$

De Brecht results on quasi-Polish spaces

quasi-Polish $\equiv \boldsymbol{\Pi}_{2}^{0}$ in $\mathcal{P}(\mathbb{N})$ (Scott topo.)

$\{X \mid \forall i(2 i \in X \Leftrightarrow 2 i+1 \notin X)\} \approx$ Cantor $2^{\mathbb{N}}$
Π_{2}^{0} in Scott $\mathcal{P}(\mathbb{N})$
In general,
if $\quad\left(U_{n}\right)_{n \in \mathbb{N}}$ countable open base in X then $x \mapsto\left\{n \mid x \in U_{n}\right\}$ is an embedding $X \rightarrow \mathcal{P}(\mathbb{N})$

Choquet games

Banach-Mazur and Choquet games

X topological space

Banach-Mazur game $B M(X)$
ω rounds, Two players Empty, NonEmpty alternatively choose non empty open sets
Empty chooses the U_{i} 's, NonEmpty the V_{i} 's so that $U_{0} \supseteq V_{0} \supseteq U_{1} \supseteq V_{1} \supseteq \ldots$
Empty wins iff $\bigcap_{i \in \mathbb{N}} U_{i}=\varnothing$
Choquet game $\operatorname{Ch}(X) \quad$ Variant of $B M(X)$ At round i Empty also chooses $x_{i} \in U_{i}$ and then NonEmpty picks $V_{i} \subseteq U_{i}$ s.t. $x_{i} \in V_{i}$.

Special winning strategies

Convergent ws for NonEmpty: The V_{i} 's are a basis of neighborhoods of some $x \in \bigcap_{i \in \mathbb{N}} U_{i}$

Markov winning strategy: depends only on - the last move of the opponent - and the ordinal rank of the move

Stationary winning strategy: depends only on the last move of the opponent

Special ws in the Banach-Mazur game

 (Galvin \& Telgarsky, 1986)(1) If NonEmpty has a ws in $B M(X)$
(resp. \& convergent) then it has one which depends only on the last two moves (his and that of Empty)
(2) If NonEmpty has a Markov ws in $B M(X)$ (resp. \& convergent) then it has one which is stationary
(Debs, 1984)
(1) cannot be improved to stationary

Games and topology

(Oxtoby, 1957) X has the Baire property iff Empty has no ws in $B M(X)$
(Choquet, 1969) X is Polish iff it is T_{1}, regular, and NonEmpty has a ws in $\operatorname{Ch}(X)$
(de Brecht, 2011) X is quasi-Polish iff
it is T_{0}, has a countable basis and
NonEmpty has a convergent ws in $\mathrm{Ch}(X)$
(which can also be taken Markov)
(Becher \& SG, 2012) Idem as above with stationary in place of Markov

Approximation spaces

A domain approach to quasi-Polish spaces

(V.Becher \& SG, 2012)

Approximation relation << on E topological space
$=$ binary relation on a topological base \mathcal{B} s.t.
(1) $U \ll V \Rightarrow V \subseteq U \quad$ more information in V than U
(2) $U \subseteq T$ and $U \ll V \Rightarrow T \ll V$
(3) $\forall x \in U \exists W \in \mathcal{B}(x \in W \wedge U \ll W)$
(4) $U_{i} \ll U_{i+1}$ for all $i \in \mathbb{N} \Rightarrow \bigcap_{i \in \mathbb{N}} U_{i} \neq \varnothing$

- << convergent approx. relation if
$(4 \mathrm{bis})=(4)+$ the V_{i} 's are a neighborhood basis for some $x \in \bigcap_{i \in \mathbb{N}} U_{i}$.
Flavor of "way-below" relation on continuous dcpo's $\{(\uparrow x, \uparrow y) \mid x, y \in B, x \ll y\}$ is an approx. relation wrt Scott topology if B base of continuous dcpo

Approximation spaces and quasi-Polish

 spaces- If there is approximation relation on one base then there is some in each base
- (V.Becher \& SG, 2012) A space is quasi-Polish iff - it is T_{0}, has a countable base
- and has a convergent approximation relation
- (V.Becher \& SG, 2012) X has an approximation (resp. convergent) relation iff NonEmpty has stationary
(resp. \& convergent) ws in $\mathrm{Ch}(X)$

Bibliography

Matthew de Brecht
Quasi-Polish spaces
Annals of Pure and Applied Logic, 164(3): 356-381 (2013)
Verónica Becher \& Serge Grigorieff
Borel and Hausdorff hierarchies in topological spaces of
Choquet games and their effectivization
Mathematical Structures in Computer Science, to appear
Fred Galvin \& Ratislav Telgársky
Stationary strategies in topological games
Topology and its Applications, 22: 51-69 (1986)
Gabriel Debs
Stratégies gagnantes dans certains jeux topologiques
Fundamenta Mathematicae, 209: 59-79 (1985)

Thank you for your attention

