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Alternations of quantifier
F (~z) ≡ ∃x0 ∀x1 ∃x2 ∀x3 ∃x4 P(x0, . . . , x4,~z)

The human mind seems limited in its ability to
understand and vizualize beyond four or five
alternations of quantifier. Indeed, it can be argued
that the inventions, subtheories and central lemmas
of various parts of mathematics are devices for
assisting the mind in dealing with one or two
additional alternations of quantifier.

Hartley Rogers
“Theory of recursive functions and effective computability”
(1967) (cf. page 322 §14.7)

Another (partial) explanation:

complexity ≥ Σ0
4(ωω) ; Higher set theory!!!
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Alternations of quantifier versus Games
F (~z) ≡ ∃x0 ∀x1 ∃x2 ∀x3 ∃x4 P(x0, . . . , x4,~z)

Roland Fräıssé’s idea (1954)

Relate F (~z) to a game

Two players
I

and
II

move 0 : I plays some x0

move 1 : II plays some x1

move 2 : I plays some x2

move 3 : II plays some x3

move 4 : I plays some x4

Who wins? I wins iff P(x0, . . . , x4,~z) holds

F (~z) ⇐⇒ player I has a winning strategy
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Strategies
move 0 : I plays some x0

move 1 : II plays some x1

move 2 : I plays some x2

move 3 : II plays some x3

move 4 : I plays some x4

The xi ’s in X

I wins
iff

P(x0, . . . , x4,~z)

Strategy for I = σI : {nil} ∪ X ∪ X 2 −→ X
Strategy for II = σI : X ∪ X 2 −→ X

I follows strategy σI if


x0 = σI(nil)
x2 = σI(x1)
x4 = σI(x1, x3)

II follows strategy σII if

{
x1 = σII(x0)
x3 = σII(x0, x1)

Winning strategy: ALWAYS wins
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Alternations of quantifier and games
F (~z) ≡ ∃x0 ∀x1 ∃x2 ∀x3 ∃x4 P(x0, . . . , x4,~z)

≡ player I has a winning strategy
for the game where I wins
if (x0, . . . , x4) ∈ P

¬F (~z) ≡ ∀x0 ∃x1 ∀x2 ∃x3 ∀x4 ¬P(x0, . . . , x4,~z)
≡ player II has a winning strategy

for the game where I wins
if (x0, . . . , x4) ∈ P

Law of Excluded Middle: either F (~z) or ¬F (~z)

Hence either I has a winning strategy
or II has a winning strategy
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Infinitely many alternations of quantifier

∃x0 ∀x1 ∃x2 ∀x3 . . . P((xi )i∈N,~z)

Moschovakis’ game quantifier

G

α P(α,~z)

∀x0 ∃x1 ∀x2 ∃x3 . . . ¬P((xi )i∈N,~z)

What does this mean? Infinite game

Two players Iand II

move 2i : I plays x2i

move 2i + 1 : II plays x2i+1

Rule

I wins iff
(xi )i∈N ∈ A

where A = {(xi )i∈N | P((xi )i∈N,~z)}
7 / 65



Two players I and II

move 2i : I plays x2i

move 2i + 1 : II plays x2i+1

Rule

I wins iff
P((xi )i∈N,~z)

Strategy for I = σI : X<ω −→ X
Strategy for II = σII : (X<ω \ {nil}) −→ X

I follows σI if ∀i ∈ N x2i = σI((x2j+1)j<i )

II follows σII if ∀i ∈ N x2i+1 = σII((x2j)j≤i )

Winning strategy: ALWAYS wins

∃x0 ∀x1 ∃x2 ∀x3 . . . P((xi )i∈N,~z)

≡ I has a winning strategy

∀x0 ∃x1 ∀x2 ∃x3 . . . ¬P((xi )i∈N,~z)

≡ II has a winning strategy
Need X well-ordered or Axiom of dependent choices 8 / 65



Excluded middle and determinacy
∃x0 ∀x1 ∃x2 ∀x3 . . . P((xi )i∈N,~z)

≡ I has a winning strategy

∀x0 ∃x1 ∀x2 ∃x3 . . . ¬P((xi )i∈N,~z)

≡ II has a winning strategy

Fact.
¬ (∃x0 ∀x1 ∃x2 ∀x3 . . .P((xi )i∈N,~z))

is equivalent to

∀x0 ∃x1 ∀x2 ∃x3 . . .¬P((xi )i∈N,~z)

if and only the game is determined

(one of the players has a winning strategy)
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Which sets are determined?

10 / 65



Countable sets are determined

Infinite game G(A)
Two players I and II

move 2i : I plays x2i

move 2i + 1 : II plays x2i+1

Rule

I wins iff
(xi )i∈N ∈ A

Fact. If A ⊂ X ω is countable
then II has a winning strategy in G(A)

Proof. Diagonal argument. If A = {fi | i ∈ N},
2i + 1 player II plays x2i+1 6= fi (2i + 1)

Are all sets determined?

NO (requires the axiom of choice)
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Borel subsets of X ω

Discrete topology on X Product topology on X ω

metrics d(f , g) = 2−max{n|∀i<n f (i)=g(i)}

Basis of clopen sets: the uX ω for u ∈ X<ω

Care. if X uncountable, open sets may be unions of
uncountably many clopen sets

But metrizability implies closed set are Gδ
:::

in X<ω

(Gδ
:::

= intersection of countably many open sets)

This allows for the usual definition of Borel sets

Σ
::

0
1(X ω) = open sets

Σ
::

0
α(X ω) = countable unions of sets in

⋃
β<α Π

::

0
β(X ω)

Π
::

0
α(X ω) = complements of sets in Σ

::

0
α(X ω)
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Borel determinacy
Theorem. (Donald Martin, 1975)
All Borel subsets of X ω are determined
(whatever big is X )

Find simple winning strategies in G(A) ?
Alas. . . best (general) complexity is ∆1,S

2

if A is Borel with code S
Upper bound proof. The set of ws for I is Π1,S

1 :
σI is ws ≡ ∀g σI ? g ∈ A

and every Π1,S
1 family contains some ∆1,S

2 set
(cf. Rogers §16.7 Coro. XLV(c), p. 430)
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Determinacy in classical mathematics

• 1953, Gale & Stewart Boolean combinations
of open subsets of X ω

• 1955, Philip Wolfe Σ
::

0
2(X ω) and Π

::

0
2(X ω) sets

• 1964, Morton Davis Σ
::

0
3(X ω) and Π

::

0
3(X ω) sets

Results proved in 2d-order arithmetic

≡ mathematics of N and P(N)

≡ classical set theory for mathematicians

(with N and P(N) one can encode
reals, continuous functions,. . . )
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Determinacy in higher set theory
• 1970, Donald Martin Σ

:

1
1(ωω) in ZF + large cardinal axiom

Σ
:

1
1(X ω) in ZF + stronger large cardinal axiom

• 1972, Jeff B. Paris Σ
:

0
4(X ω) and Π

:

0
4(X ω) sets in ZF

(set theory with cardinal (2ℵ0)+ is enough
hence 3rd-order arithmetic is enough)

• 1975, Donald Martin Borel subsets of X ω in ZF
• 1985, Donald Martin Much simpler proof (by far. . . ) in ZF

Higher set theory (in ZF) is required!!!
• 1971, Harvey Friedman
For Σ

:

0
5(ωω) and beyond, 2d-order arithmetic NOT ENOUGH

For Σ
:

0
5+α(ωω) need α iterations of set exponentiation

• ∼2010, Donald Martin
For Σ

:

0
4(ωω) 2d-order arithmetic NOT ENOUGH
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A few simple results about

determinacy and strategies
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Determinacy and complementation

If A ⊆ X ω then the shift of A is
XA = {(x , x0, x1, x2, . . .) | (x0, x1, x2, . . .) ∈ A)}

Let A ⊆ P(X ω) be closed under shift:
A ∈ A =⇒ xA ∈ A

∀A ∈ A A is determined

⇐⇒
∀A ∈ A X ω \ A is determined

I has a ws in G(XA) =⇒ II has a ws in G(X ω \ A)

II has a ws in G(XA) =⇒ I has a ws in G(X ω \ A)
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Winning strategies viewed as trees

Strategy σI for I ≡ tree SσI ⊆ X<ω of
all plays when I follows σI{

u ∈ SσI ∧ |u| even =⇒ ∃!x ux ∈ SσI
u ∈ SσI ∧ |u| odd =⇒ ∀x ux ∈ SσI

(Thus, I always has exactly one possible move and there is no constraint for II-moves)

Strategy σII for II ≡ tree SσII ⊆ X<ω of
all plays when II follows σII{

u ∈ SσII ∧ |u| odd =⇒ ∃!x ux ∈ SσII
u ∈ SσII ∧ |u| even =⇒ ∀x ux ∈ SσII

(Thus, II always has exactly one possible move and there is no constraint for I-moves)

σI winning for I ⇐⇒ [SσI] ⊆ A
σII winning for II ⇐⇒ [SσII] ⊆ X ω \ A

([S ] = set of infinite branches of S)
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Non deterministic winning strategies

ND strategy σI for I ≡ tree SσI ⊆ X<ω of
all plays when I follows σI{

SσI is pruned: ∀u ∈ SσI ∃x ux ∈ SσI
u ∈ SσI ∧ |u| odd =⇒ ∀x ux ∈ SσI

(Thus, I always has some move and there is no constraint for II-moves)

ND strategy σII for II ≡ tree SσII ⊆ X<ω of
all plays when II follows σII{

SσI is pruned: ∀u ∈ SσII ∃x ux ∈ SσI
u ∈ SσII ∧ |u| even =⇒ ∀x ux ∈ SσII

(Thus, II always has some move and there is no constraint for I-moves)

σI winning for I ⇐⇒ [SσI] ⊆ A
σII winning for II ⇐⇒ [SσII] ⊆ X ω \ A
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Winning strategies and positions
u ∈ X<ω A ⊆ X ω Au = A ∩ clopen set uX ω

Fact. If |u| is odd (next move for II) then

II has no winning strategy in G(Au)

iff

∀x ∈ X II has no winning strategy in G(Aux)

(No “miracle” move x for player II)
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Winning and Defensive strategies

u ∈ X<ω A ⊆ X ω Au = A ∩ clopen set uX ω

Fact. Let |u| even (next move for player I)

II has no winning strategy in G(Au)

iff

∃x ∈ X II has no winning strategy in G(Aux)

(Player I has a move x so that II still has no ws afterwards)

Always choosing such an x =

Defensive strategy for player I
CARE: defensive strategy 6⇒ winning strat.
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Gale & Stewart’s results about

Σ
:::

0
1(Xω)

they contain

many core ideas of the theory
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Determinacy of Σ
::

0
1(X ω) and Π

::

0
1(X ω)

Theorem. (Gale & Stewart, 1953)

Every closed or open A ⊆ X ω is determined
Proof. Let A closed be the set of infinite branches of a pruned
tree T ⊆ X<ω, i.e. A = [T ]
If player II has no ws in G(A)
then any DEFENSIVE strategy for player I is winning:

∃x0 (move of I) so that II has no ws in G(Ax0)
∀x1 (move of II) II has no ws in G(Ax0x1)
∃x2 (move of I) II has no ws in G(Ax0x1x2)
∀x3 (move of II) II has no ws in G(Ax0x1x2x3)
. . .

∀n x0 . . . xn ∈ T else the play enters the open set X ω \ A
so that any strategy for II in G(Ax0...xn) is winning. But II
has no ws in G(Ax0x1x2x3). Contradiction!

∀n x0 . . . xn ∈ T ⇒ the infinite play ∈ closed set A = [T ]
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Subgames

Pruned subtree S of X<ω

[S ] = infinite branches of S

GS(A) or GF (A) : New rule for the two players:
The play stays in the subtree S

≡ replace A by A ∩ [S ], X ω \ A by (X ω \ A) ∩ [S ]

Trivial example: Game G(As) at position s
reduces to the subgame GsXω(A)
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Determinacy of BOOL(Σ
::

0
1(X ω)

Theorem. (Gale & Stewart, 1953)

If every subgame of G(A) is determined then
G(A ∪ U) is determined for all U open
Proof. We show that there is a particular subgame F st

if GF (A) is determined then so is G(A)
S = {s | I has a ws in G((A ∪ U)s)} (S may not be a tree)
F = X ω \ SX ω = [T ] for some pruned tree T disjoint from S
U ∩ F = ∅ : if sX ⊆ U then s ∈ S trivially
I has a ws in GF (A) =⇒ I has a ws in G(A ∪ U)
Playing in G(A ∪ U), I follows his ws for GF (A) while II stays
in T . If II leaves T then the play gets into S and I uses a ws
for G((A ∪ U)s)
II has a ws in GF (A) ⇒ II has a ws in G(A ∪ U)
Playing in G(A ∪ U), II follows his ws for GF (A) while I stays
in T . I cannot leave T : else, if I leaves T at s then s ∈ S
and I gets a ws for G((A ∪ U)s , contradicting Fact page 20 25 / 65



Determinacy of BOOL(Σ
::

0
1(X ω)

Theorem. (Gale & Stewart, 1953)

If every subgame of G(A) is determined then
G(A ∩ U) is determined for all U open

Proof. S = {s | sX ω ⊆ U and I has a ws in G(As}
T = {s | sX ω ⊆ U and II has a ws in G(As}
I has a ws in G(SX ω) =⇒ I has a ws in G(A ∩ U)
I follows a ws for G(SX ω) until the play enters S
Then he uses a ws for G(As)

II has a ws in G(SX ω) ⇒ II has a ws in G(A ∩ U)
II follows ws for G(SX ω). If output /∈ U II wins
Else the play enters S ot T . Cannot enter S else I could win.
If it enters T then II uses ws for G(As)
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Determinacy of BOOL(Σ
::

0
1(X ω)

Corollary. (Gale & Stewart, 1953)
Every Boolean combination of open subsets
of X ω is determined

Proof.
Extend closed determinacy to subgames
Apply closure by complementation,
union and intersection with open sets
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Closed sets and largest non deterministic ws
Fact. If I has a winning strategy for a closed game

then it has a largest non deterministic one

Proof. S a tree, Θ(S) ⊆ S , Λ(S) ⊆ S{
Θ(S) = {u ∈ S | ∀v ≤pref u (|v | odd⇒ ∀x vx ∈ S)}
Λ(S) = {u ∈ S | ∃x ∈ X ux ∈ S)}

To prune a tree one has to transfinitely iterate Λ (cf. page 31)

Suppose I has a ws for G(F ) F = [T ] T tree ⊆ X<ω

T (0) = T Tα+1 = Λ(Θ(T (α))) T (λ) =
⋂
α<λ T (α)

Fact: ∃ξ < ℵ1 st T (ξ) = T (ξ+1) = Λ(T (ξ)) = Θ(T (ξ))
Fact: 1) Every ND ws for I (viewed as a tree) is ⊆ T (α)

2) If I has a ws for G([T ]) then T (ξ) 6= ∅
3) T (ξ) is a non deterministic ws for I and is the largest one

1) Proof by induction over α. 2) Obvious from 1)
3) Closure under pruning and Θ insures T (ξ) is a strategy for I
(if non empty). It is winning since T (ξ) ⊆ T and F = [T ]
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Winning strategies may be quite complex
even for closed games!

Fact. There exists a computable tree T ⊆ ω<ω st
• I has a ws in the closed game G([T ])
• I has no ∆1

1 ws in G([T ])

Proof. Recall Kleene’s result (cf. Rogers §16.7 Coro. XLI(b), p. 419):
Fact. There exists a computable tree S ⊆ ω<ω

which has an infinite branch but no ∆1
1 one

Let θ : ω<ω → ω<ω suppress all odd rank letters of a finite
sequence: for instance, θ(abcde) = θ(abcdef ) = ace

Let T = θ−1(S) T is a computable tree

Player I has a ws in G([T ]):
do not care about II moves
play a fixed infinite branch of S

If σ is a ws for I in G([T ]) and II plays 0ω

then σ ? 0ω ∈ [T ] hence f = θ(σ ? 0ω) ∈ [S ]
If σ were ∆1

1 then f would be ∆1
1 branch of S . Contradiction!
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Why so complex ws for closed games?
Because pruning a tree may require
iterations beyond recursive ordinals!

T (0) = T Tα+1 = Λ(Θ(T (2α))) T (λ) =
⋂
α<λ T (α)

T (ξ) = T (ξ+1) largest ND ws for I in G([T ])
R order on N of type η > ξ ι : N→ η isomorphism

Fact. T (ξ) is ∆1,T ,R
1 hence so is its leftmost infinite branch

Proof. ΦT (Z (k),Z (`)) ≡
(
θ(k) = 0⇒ Z (k) = T

)
∧
(
θ(`) = θ(k) + 1⇒ Z (`) = Λ(Θ(Z (k)))

)
∧
(
θ(k) limit⇒ Z (k) =

⋂
{Z (p) | θ(p) < θ(k)}

)
u ∈ T (ξ) ≡ ∃(Z (n))n∈N ∀k , ` (u ∈ Z (k) ∧ ΦT (Z (k),Z (`)))

≡ ∀(Z (n))n∈N (∀k , ` ΦT (Z (k),Z (`)))⇒ (∀n u ∈ Z (n)))

Fact. Let T = θ−1(S) with S a computable tree with an
infinite branch but no ∆1

1 one. Then the ordinal ξ is not ∆1
1

Proof. S ∆1
1 ⇒ T ∆1

1 and T ,R ∆1
1 ⇒ ∆1,T ,R

1 = ∆1
1

(cf. Rogers §16.6 Thm XXXIV p. 412) 30 / 65



How many iterations to prune a tree? S (0) = S Λ(S) = {u ∈ S |
Sα+1 = Λ(S (α)) ∃x ∈ X ux ∈ S)}
S (λ) =

⋂
α<λ S (α) S (ξ) = S (ξ+1) is pruned

When S is well-founded, ξ = ordinal rank of S ,
ξ < ωCK

1 hence ξ is computable
(Spector, 1955: computable ordinals=∆1

1 ordinals, cf. Rogers §16.6 Coro XXXVI p. 415)

In general, when S not well-founded, ξ ≥ ωCK
1

(nevertheless, ξ is ∆1
2) Example: cf. page 30

Other example: S = {(e, u, t) | e, t ∈ N, u ∈ ω<ω and
the current output of ϕe at time t is u}

Order on S :
(e, u, t) ≤ (e ′, u′, t ′)⇔ e = e ′∧ (u <pref u′∨ (u = u′∧ t ≤ t ′))

S is a computable tree which contains every well-founded

computable tree Hence the ξ associated to S is ≥ ωCK
1
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Wolfe’s results about

Σ
:::

0
2(Xω) and Π

:::

0
2(Xω)

≡ Fσ
:::::

(Xω) and Gδ
:::::

(Xω)

(countable unions of closed sets
and

countable intersections of open sets)
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Determinacy of Σ
::

0
2(X ω) and Π

::

0
2(X ω)

Theorem. (Philip Wolfe, 1955)
Every Fσ

:::
or Gδ

:::
set A ⊆ X ω is determined

Proof.(cf. Moschovakis) A =
⋃

i∈N[Ti ] an Fσ
::

set Ti pruned tree

Set W of sure winning positions for I in G(A)
u ∈ W0 ⇐⇒ ∃i I wins G([Ti ]u)

u ∈ Hα,i ⇐⇒ ∀v ≤ u (|v |even⇒ v ∈ Ti ∪
⋃
β<α Wβ)

u ∈ Wα ⇐⇒ ∃i I wins G([Hα,i ]u)
W =

⋃
α Wα =

⋃
α≤ξ Wα ξ countable ordinal, Wξ = Wξ+1

Induction on ordinal α :

{
u ∈ Wα ⇒ I wins G(Au)
u /∈ Wα ⇒ II wins G(Au)
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• Induction on ordinal α : u ∈ Wα ⇒ I wins G(Au)
I follows a ws for G([Hα,i ]u)

If the play enters
⋃
β<α Wβ at uu’ then I switches to aws for

G(Auu′). By induction hypothesis, the infinite play is in A

Else the play stays in Ti hence the infinite play is in A

• If nil ∈ W then I has a ws for G(A)

• Else here is a ws for II in G(A) :
nil /∈ Wξ+1 hence for all i , I has no ws for G([Hξ+1,i ])
hence II has a ws for G([Hξ+1,i ]) (closed games being determined)

II follows his ws for G([Hξ+1,0]) until the play leaves Wξ ∪ T0

at some u0 u0 /∈ Wξ and u0 /∈ T0

u0 /∈ Wξ = Wξ+1 hence ∀i I has no ws for G([Hξ+1,i ]u0) hence
II has a ws for G([Hξ+1,i ]u0) (since closed games are determined)

II follows his ws until the play leaves Wξ ∪ T0 at u0u1. . .

The final play /∈ [T0], /∈ [T1]. . . hence /∈ A

Thus, II has a ws in G(A) A is determined
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Morton Davis’ results about

Σ
:::

0
3(Xω) and Π

:::

0
3(Xω)

≡ Fσδ
:::::::

(Xω) and Gδσ
::::::::

(Xω)

(countable intersections of countable unions of closed sets
and

countable unions of countable intersections of open sets)
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Determinacy of Σ
::

0
3(X ω) and Π

::

0
3(X ω)

Theorem. (Morton Davis, 1964)
Every Fσδ

::::
or Gδσ

:::::
set A ⊆ X ω is determined

Strategies (non necessarily winning) are trees: II-strategy S{
∀u ∈ S (|u| odd ⇒ ∃x ux ∈ S) (II can stay in S)

∀u ∈ S (|u| even ⇒ ∀x ux ∈ S) (I cannot leave S)

II-strategy S relative to a subgame T ∀u ∈ S (|u| odd ⇒ ∃x ux ∈ S) (II can stay in S)

∀u ∈ S (|u| even ⇒ ∀x (ux ∈ T ⇒ ux ∈ S) (I cannot leave S

except if it leaves T )
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Determinacy of Σ
::

0
3(X ω) and Π

::

0
3(X ω)

Strategies (non necessarily winning) are trees: II-strategy S{
∀u ∈ S (|u| odd ⇒ ∃x ux ∈ S) (II can stay in S)

∀u ∈ S (|u| even ⇒ ∀x ux ∈ S) (I cannot leave S)

Lemma 1. Suppose

{
I has no ws for G(A)
U ⊆ A is open

Then there is a II-strategy S such that
(1) I has no ws for GS(A) and (2) U ∩ [S ] = ∅

(II has a non-catastrophic strategy to avoid any fixed open set U
catastrophic = I has a ws in the associated subgame)

Lemma 1’. Suppose

{
I has no ws for GT (A) T subgame
U ⊆ A is open

Then there is a II-strategy S relative to the subgame T st
(1) I has no ws for GS(A) and (2) U ∩ [S ] = ∅
(3) If U contains no clopen sX ω with |s| ≤ n
then one can require S ∩ X≤n = T ∩ X≤n

(variant of Lemma 1: subgame relativized + slightly improved) 37 / 65



Determinacy of Σ
::

0
3(X ω) and Π

::

0
3(X ω)

Lemma 1. Suppose

{
I has no ws for G(A)
U ⊆ A is open

Then there is a II-strategy S such that
(1) I has no ws for GS(A) and (2) U ∩ [S ] = ∅

(II has a non-catastrophic strategy to avoid any fixed open set U)

Proof of Lemma 1.
S = defensive II-strategy
S = {s ∈ X<ω | I has no ws in G(As)}
(1): cf. slide 20

(2): Else there is some s ∈ T such that sX ω ⊆ U
and any strategy for I is trivially winning in G(As)

Remark. Lemma 1 reproves open determinacy. If A open let
U = A, the non catastrophic strategy for II is a winning one

38 / 65



Determinacy of Σ
::

0
3(X ω) and Π

::

0
3(X ω)

Lemma 2. Suppose

{
I has no ws for G(A)
H ⊆ A is Gδ

::

Then there is a II-strategy S such that
(1) I has no ws for GS(A) and (2) H ∩ [S ] = ∅

(II has a non-catastrophic strategy to avoid any fixed Gδ
::

set U)

Remark. Lemma 2 reproves Gδ
::

determinacy. If A is Gδ
::

let

H = A, the non catastrophic strategy for II is a winning one

Lemma 2’. Suppose

{
I has no ws for GT (A) T subgame
H ⊆ A is Gδ

::

Then there is a II-strategy S relative to the subgame T st
(1) I has no ws for GS(A) and (2) H ∩ [S ] = ∅
(3) If H contains no clopen sX ω with |s| ≤ n
then one can require S ∩ X≤n = T ∩ X≤n

(variant of Lemma 2: subgame relativized + slightly improved)
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Determinacy of Σ
::

0
3(X ω) and Π

::

0
3(X ω)

Lemma 2. If I has no ws for G(A), H ⊆ A is Gδ
::

Then there is a II-strategy S such that
(1) I has no ws for GS(A) and (2) H ∩ [S ] = ∅

(II has a non-catastrophic strategy to avoid any fixed Gδ
::

set U)

Proof of Lemma 2. H =
⋂

i∈N CiX
ω

the Ci ’s antichains of X<ω, Ci+1 ⊆ CiX
<ω, C0 = {nil}

Z = {u ∈ X<ω | ∃ II-strategy T (u) relative to subgame uX<ω

st H ∩ [T (u)] = ∅ and I has no ws for GT (u)(A)}

We prove
(∗)i u ∈ Ci \ Z ⇒ I has ws in G((A ∪ (Ci+1 \ Z )X ω)u)
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(∗)i u ∈ Ci \ Z ⇒ I has ws in G((A ∪ (Ci+1 \ Z )X ω)u)

Suppose (∗)i false. Let u ∈ Ci \ Z be st I has ws in
G((A ∪ (Ci+1 \ Z )X ω)u).

L.1’ yields a II-strategy S relative to the subgame uX<ω such
that [S ] ∩ (Ci+1 \ Z )X ω = ∅ and I has no ws in
GS((A ∪ (Ci+1 \ Z )X ω)u).

To get a contradiction, we describe a ws strategy for II
relative to the subgame uX<ω.

First, II follows S . Since [S ] is disjoint from the open set
(Ci+1 \ Z )X ω, while II follows S it does not meet Ci+1 \ Z .

If some v ∈ Ci+1 is reached then v ∈ Z ∩ Ci+1 and II

switches to its strategy T (v) (cf. definition of Z ) st I has no
ws in GT (v)(A) and [T (v)] ∩ H = ∅.
The resulting infinite play either avoids Ci+1 hence /∈ H or
meets Z ∩ Ci+1 hence is given by some T (v) and /∈ H .

Thus, II has a ws relative to the subgame uX<ω. In
particular, u ∈ Z , contradicting the hypothesis u ∈ Ci \ Z .
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To conclude the proof of Lemma 2, we show that nil ∈ Z .

Else, nil ∈ X<ω \ Z = C0 \ Z . We define a strategy for I.
Using (∗)0 with u = nil , I follows a ws in G(A ∪ (C1 \ Z )X ω).
If and when the play enters C1 \ Z at u1 then, applying (∗)1

with u = u1, I switches to a ws in G((A ∪ (C2 \ Z )X ω)u1).
And so on. . .
The resulting infinite play
• either does not meet some (Ci+1 \Z )X ω and is given by a ws
for I in G((A ∪ (Ci+1 \ Z )X ω)ui ). Then it is in A and I wins.
• or it does meet all Ci+1 \ Z hence all Cj ’s and is in H hence
in A.

Thus, we have obtained a ws for I in G(A). Contradicting the
hypothesis of Lemma 2.
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Proof of Σ
::

0
3(X ω) determinacy

A =
⋃

i∈N Hi Hi =
⋂

j∈N Ci ,jX
ω Ci ,j ⊆ X<ω

Hi ⊆ Hi+1

Case X finite Suppose I has no ws in G(A)
We inductively define a decreasing sequence (Tn)n∈N of
non-catastrophic II-strategies which avoid the Hi ’s

By Lemma 2, get a II-strategy T0 st
(1) I has no ws for GT0(A) and (2) H0 ∩ [T0] = ∅
By Lemma 2’, get II-strategy T1 relative to subgame T0 st
(1) I has no ws for GT1(A) and (2) H2 ∩ [T2] = ∅
And so on. . .

X being finite, X ω is compact hence [T ] =
⋂

i∈N[Ti ] 6= ∅
T is a II-strategy st
(1) I has no ws for GT (A) (obvious since T ⊆ T0)
(2) (

⋃
i∈N Hi) ∩ [T ] = ∅

Thus, the intersection T of the Ti ’s is a ws for II in GT (A)
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Proof of Σ
::

0
3(X ω) determinacy

Case X is infinite
Consider the interior U of A.
Then A = U ∪ B where B is also Gδσ

:::

B contains no open set.

B =
⋃

i∈N Hi with Hi Gδ
::

Up to subsequence extraction, can suppose Hi contains no
sX ω with |s| ≤ i

Use condition (3) in Lemma 2’ to get Ti+1 such that
Ti+1 ∩ X≤i = Ti ∩ X≤i .

Then
⋂

i∈N[Ti ] 6= ∅
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Donald Martin’s proof of

Borel determinacy
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Main idea of the proof
In usual reduction theories one looks for a hard set A
which reduces every set Z in a particular family F :

∀Z ∈ F Z = f −1(A) for some f
(f computable or polytime or continuous)

In Martin’s proof, the association is reversed
For every Borel set A ⊆ [S ] ⊆ X ω S pruned tree
Martin’s proof looks for

a space Y ω, a pruned tree T ⊆ X<ω (possibly huge Y )
a clopen subset C of [T ] ⊆ Y ω (very simple set)
a continuous surjective map π : [T ]→ [S ] (the reduction map)

such that

1. C = π−1(A) (A is Borel whereas C is clopen)

2. every winning strategy in GT (C ) yields a ws in GS(A)
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No direct extension beyond Borel sets

Case X = ωω

Suppose C = π−1(A), π continuous and C clopen
Then A = π(C ) and ωω \ A = π(F \ C )

In general, π(closed) has descriptive complexity Σ
::

1
1

Thus, π(C ) and π(F \ C ) are Σ
::

1
1

Thus, A and ωω \ A are Σ
::

1
1,

i.e. A is ∆
::

1
1 hence is Borel (Suslin’s theorem, 1917)
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À la Martin reductions in pure topology
(Almost) forget strategies. Topological problem
For every Borel set A ⊆ [S ] ⊆ X ω S pruned tree

look for
a topological space Y ω, a tree T ⊆ Y <ω

a clopen C ⊆ [T ] ([T ]= set of infinite branches)

a continuous surjective map π : [T ]→ X ω

such that C = π−1(A)

• Trivial if we do not ask for a topological space Y ω :

Set Y = X and increase the topology so that A is clopen

• Trivial if surjectivity is omitted: (case A 6= ∅, Xω)

let

{
a ∈ A
b ∈ F \ A

, [T ] clopen 6= ∅,Y ω, π(x) =

{
a if x ∈ C
b if x /∈ C

• If X is finite, Y has to be infinite else π(clopen) is compact

• If X = ω, true by Wadge hardness theorem

A Borel not Σ
:

0
ξ implies every Σ

:

0
ξ in ωω is π−1(A) for some π

Vicious circle: Wadge theory relies on Borel determinacy!!!
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A combinatorico-topological problem:
drills before entering Martin’s proof

Extend the problem to allow inductive constructions
and future strategy requirements
For every tree S ⊆ X<ω, ([S ]= set of infinite branches)

for every k ∈ N (technical point: k is a trick to cope with

non compactness in inductive constructions)

for every Borel set A ⊆ [S ] ⊆ X ω look for

a topological space Y ω where Y ⊇ X
a tree T ⊆ Y <ω such that T ∩ Y ≤k = S ∩ X≤k

a clopen C ⊆ [T ] ([T ]= set of infinite branches)

a monotone length preserving surjective map π : T → S
(alphabetical transduction)

such that C = π−1(A)

where π : [T ]→ [S ] obvious extension of π
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Topological problem: A open in [S ], k = 0
A open in [S ] hence A =

⋃
u∈τ uX ω ∩ [S ] τ ⊆ X<ω \ {nil}

• Add elements representing the u’s: Y = X ∪ {puq | u ∈ τ}
To preserve length, a new element is always the first one
if u = x0x1 . . . xn−1 then puq has unique length < n successors

τ̃ = {puqx1 . . . xn−1 | u = x0x1 . . . xn−1 ∈ τ} antichain of Y<ω

T = (S \ τX<ω) ∪ {puqx1 . . . xi | u = x0x1 . . . xn−1 ∈ τ
∧ (u ≤pref x0 . . . xi or x0 . . . xi ≤pref u)}

∧ x0 . . . xi ∈ S}
C = [τ̃X<ω] = {(yi)i∈N ∈ [T ] | y0 ∈ Y \ X} [C ] clopen in [T ]

(a condition on the sole first component defines a clopen set)

• π : T → S st π(s) = s if s ∈ S \ τX<ω

π(puqx1 . . . xi) = x0x1 . . . xi if u = x0x1 . . . xn−1 ∈ τ
π : T → S alphabetical
π : [T ]→ [S ] bijective, continuous but not homeomorphism
π−1(A) = [C ] Y has the cardinality of X
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Topological problem: A open in [S ], any k

A open in [S ] hence A =
⋃

u∈τ uX ω ∩ [S ]

Choose antichain τ ⊆ X<ω

st every u in τ has length > k and set

τ̃ = {x0 . . . xk−1puqxk+1 . . . xn | u = xk . . . xn ∈ τ}
T = (S \ τX<ω)

∪ {x0 . . . xk−1puqxk+1 . . . xi | u = x0 . . . xn ∈ τ
∧ (u ≤pref xk+1 . . . xi or xk+1 . . . xi ≤pref u)}

∧ x0 . . . xk−1xkxk+1 . . . xn ∈ S}
C = [τ̃X<ω] = {(yi)i∈N ∈ [T ] | yk ∈ Y \ X} [C ] clopen in [T ]

(a condition on the sole k-th component defines a clopen set)

Then argue as in the case k = 0
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The topological problem: induction step
Suppose the problem has positive answer for all levels < ξ of
the Borel hierarchy over X ω. We get positive answer for level ξ

Let A =
⋃

n∈N An where the An’s have Borel ranks < ξ
• Applying the induction hypothesis with k

C0 = π−1
0 (A0) for Y0 ⊇ X , T0 ⊆ Y <ω

0 , clopen C0 of [T0],
π0 : [T0]→ [S ], T0 ∩ Y ≤k0 = S ∩ X≤k

• In [T0], Borel rank of π−1
0 (A1) is ≤ rank A1 in [S ] hence < ξ

Applying the induction hypothesis with k + 1

C1 = π−1
1 (π−1

0 (A1)) for Y1 ⊇ Y0, T1 ⊆ Y <ω
1 , clopen C1 of

[T1], π1 : [T1]→ [T0], T1 ∩ Y ≤k+1
1 = T0 ∩ Y ≤k+1

0

• In [T1], Borel rank of (π0 ◦π1)−1(A2) is ≤ rank A2 in [S ] < ξ
Applying the induction hypothesis with k + 2

C2 = π−1
2 ((π1 ◦ π0)−1(A2)) for Y2 ⊇ Y1, T2 ⊆ Y <ω

2 , clopen C2

of [T2], π1 : [T2]→ [T1], T2 ∩ Y ≤k+2
2 = T1 ∩ Y ≤k+2

1

• and so on · · ·
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The topological problem: induction step
· · · −→ [Ti+1]

πi+1−→ [Ti ] −→ · · ·T1
π1−→ [T0]

π0−→ [S ]

Ti+1 ∩ Y ≤k+i+1
i+1 = Ti ∩ Y ≤k+i+1

i T0 ∩ Y ≤k0 = S ∩ X≤k

Consider the inverse limit (No cardinal explosion here)
←−
Y =

⋃
i∈N Yi

←−
T = {u | u ∈ Ti for all i ≥ |u|}

←−πi : [
←−
T ]→ [Ti ]

←−π : [
←−
T ]→ [S ]

where ←−πi �Tj = πj+1 ◦ · · · ◦ πi for j > i
πi+1 ◦←−−πi+1 =←−πi and π0 ◦←−π0 =←−π

Since π−1
i (Ai) is clopen in [Ti ],

←−π −1(Ai) is clopen in [
←−
T ]

Thus, ←−π −1(A) =
⋃

i∈N
←−π −1(Ai) is open in [

←−
T ].

Apply the open case to get

set Yω, tree Sω ⊆ Y <ω
ω

clopen subset Cω of [Tω]

onto map πω : [Tω]→ [
←−
T ]

st

Cω = π−1
ω (←−π −1(A)). Finally, Cω = (←−π ◦ πω)−1(A)
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The topological problem: end of proof
The family of sets A ⊆ X ω for which the problem
has a solution (Y , S ,C , π)

• contains the open subsets of X ω

• is closed under countable unions

• is (trivially) closed under complementation

⇓

Topological problem solved

for all Borel subsets of X ω

There is no cardinal explosion: Y has cardinality of X
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Martin’s proof: Covering of a pruned tree
StratI(S) is the set of non deterministic I-strategies where
both players have to stay in the pruned tree S

k-covering of a pruned tree S ⊆ X<ω

=

pruned tree T ⊆ Y <ω

monotone length preserving surjective map π : T → S
map φI : StratI(T )→ StratI(S)
map φI : StratII(T )→ StratII(S)

such that

(1) Y ≤2k ∩ T = X≤2k ∩ S (2k = k moves of I + k moves of II)

(2) φI : StratI(T )→ StratI(S) and φII are local:

∀β ∈ StratI(T ) ∀u ∈ S φI(β)(u) depends on β �{v | |v | ≤ |u|}
(3) Plays in S where I follows φI(β) can be lifted

to plays in T where I follows β Idem with II and φII
∀β ∈ StratI(T ) ∀f ∈ [S ] ∃g ∈ [T ]

(f ∈ [φI(β)] =⇒ (g ∈ [β] ∧ π(g) = f )
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Martin’s proof: unravelling and determinacy
S ⊆ X<ω pruned tree and A ⊆ [S ]

k-covering (Y ,T , π, φI, φII) of S

unravels A ⊆ [S ]

if π−1(A) is clopen in [T ]

Fact. If some covering unravels A ⊆ [S ]

then the game GS(A) is determined
Proof. The clopen game GT (π−1(A)) is determined
Let β be a ws for I (same argument with a ws for II)

Lift any infinite play f in the S-game where I follows φI(β)
to an infinite play g in the T -game where I follows β

Since β is a ws for I in GT (π−1(A)), we have g ∈ π−1(A)
Since π(g) = f we have f ∈ A.

Thus, φI(β) is a ws for I in GS(A)
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Martin’s proof: unravelling closed sets

Space where we play: pruned tree S ⊆ X<ω

Game GT (A) closed set A = [J] ⊆ [S ] J pruned subtree of S

Copy of the set (X 2)<ω : E = {puq | u ∈ X<ω, |u| even}

k-covering to unravel A

Y = X ∪ YI ∪ Y +
II ∪ Y −II

YI = X ××StratI(S)
Y +
II =

⋃
α∈StratI(S) X × StratII(α)

Y −II = X × E

T̃ = prefixes of X 2k × YI × (Y +
II ∪ Y −II)× X<ω

(Only moves y2k and y2k+1 are not in X )

T = sequences in T̃ such that. . . (see next slide)
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k-covering to unravel A A = [J] with J subtree of S

Y = X ∪ YI ∪ Y +
II ∪ Y −II

{
YI = X ××StratI(S)
Y +
II =

⋃
α X × StratII(α)

Y −
II = X × E

T̃ = prefixes of X 2k × YI × (Y +
II ∪ Y −II)× X<ω

(Only moves y2k and y2k+1 are not in X )

T = sequences in T̃ such that

(1) if I chooses (x2k , σI) then I follows σI afterwards

(2) if II chooses (x2k+1, σII) then σII is a subtree of J and of σI
and II follows σII afterwards

(3) if II chooses (x2k+1, puq) then |u| even, x0 . . . x2k+1u ∈ σI \ J

and every extension of x0 . . . x2k+1 in T is compatible with x0 . . . x2k+1u

(thus, T forces the players to play u after x0 . . . x2k+1)

(The infinite play is in A in case (2) and outside A in case (3))

π : T → S is the obvious map such that
π (x0 . . . x2k−1(x2k , σI)(x2k+1, σII or puq) x2k+2 . . . xn) = x0 . . . xn

φI and φII . . . see next slides 58 / 65



φI β strategy for I in T ; φI(β) strategy for I in S

Suppose II plays x1, x3, . . . in the S-game

• For its k first moves x0, x2, . . . , x2k−2 in the S-game,
φI(β) tells I to follow what strategy β does in the T -game.

• If strategy β in the T -game tells I to play (x2k , σI)
then strategy φI(β) in the S-game tells I to play x2k

• After II has played x2k+1 in the S-game, player I has to
imagine a corresponding move (x2k+1, ?) in the T -game

φI Case 1. I has a ws α in Gσ̃I([σI] \ A)

σ̃I = {v ∈ σI | x compatible with x0 · · · x2k+1}
φI(β) tells I to follow this strategy α
At some step the play is x0 · · · x2k+1u in the open set [σI] \ A,
Then L = x0 · · · x2k−1(x2k , σI)(x2k+1, puq)u ∈ T
From now on, φI(β) in the S-game tells I to follow what β
tells for a play extending L (in the T -game)

The lifting property holds
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φI Case 2. II has a ws in Gσ̃I([σI] \ A)

σ̃I = {v ∈ σI | x compatible with x0 · · · x2k+1}
Let δ be the defensive strategy of II which allows him to stay
in the closed set [σI] ∩ A
As long as II plays in δ, strategy φI(β) tells I to follow
strategy β assuming that I has played (x2k , σI) and II has
played (x2k+1, δ) in the T -game

If II leaves his defensive strategy δ at play v = x0 · · · xn then
I gets a ws (for the subtree of σI of sequences compatible with v) and
we can argue as in Case 1.

The lifting property holds
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φII β strat. for II in T ; φII(β) strat. for II in S

Suppose I plays x0, x1, . . . in the S-game

• For its k first moves x1, x3, . . . , x2k−1 in the S-game,
φII(β) tells II to follow what strategy β tells in the T -game

• After I has played x2k in the S-game. Player II has to
imagine a corresponding move (x2k , σI) in the T -game

Z = set of x2k+1u st |u| even and there is I-strat. σI in the
S-game st β tells II to play (x2k+1, puq) if I plays (x2k , σI)

Consider the (S ∩ (x1 · · · x2k)X<ω)-game where II wins
if the infinite play is in U = S ∩ (ZX<ω)

φII Case 1. II has a ws in this game

φII(β) tells II to follow this strategy until the play enters U ,
say at u. Let σI witness that u ∈ U .
Afterwards, φII(β) tells II to follow β on the T -game where
the special moves are (x2k , σI), (x2k+1, puq)
The lifting property holds
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φII Case 2. I has a ws in this game

Let δ be the defensive strategy of I which allows him to put
the play in the closed set
If I plays (x2k , δ) then β cannot ask II to play (x2k+1, puq).
Else x0 · · · x2k+1u ∈ U contradicting the fact that II cannot
leave the defensive I-strategy δ
Thus, β asks II to play some (x2k+1, σII) in the T -game

As long as I plays in σII, strategy φII(β) tells II to follow
strategy β assuming that I has played (x2k , δ)

If I leaves his defensive strategy δ then II has a ws and we
can argue as in Case 1.

The lifting property holds
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Martin’s proof: inverse limits of coverings
Fact. If (Ti+1, πi+1, φ

I
i+1, φ

II
i+1) is a (k + i)-covering of Ti

for i ∈ N
Then there are

a pruned tree T∞
maps π∞,i , φ

I
∞,i , φ

II
∞,i

such that
(T∞, π∞,i , φ

I
∞,i , φ

II
∞,i) is a (k + i)-covering of Ti

πi+1 ◦ π∞,i+1 = π∞,i

φIi+1 ◦ φI∞,i+1 = φI∞,i

φIIi+1 ◦ φII∞,i+1 = φII∞,i

Proof.
T∞ = the u’s such that u ∈ Ti for all i st |u| ≤ 2(k + i)

If |u| ≤ 2(k + i) then π∞,i(u) = u else
π∞,i(u) = πi+1 ◦ · · · ◦ πj(u) for any j st |u| ≤ 2(k + j)

φI∞,i , φ
II
∞,i : Similar because φIi is local:

φIi (β)�(S ∩ X≤i) depends only on β �(T ∩ Y ≤i) 63 / 65



Lifting property Suppose
β∞ I-strategy in the T∞-game
f ∈ [φI∞,i(β∞)] ⊆ [Ti ]

Lift f to fi+1 with πi+1, then to fi+2 with πi+2, and so on. . .

Since fj �2(k + i) = fi �2(k + i) for j ≥ i
the fi ’s converge to f∞ such that f∞ �2(k + i) = fi �2(k + i)

π∞,i(f∞) = fi

Martin’s proof completed
Closed sets are unravelled

Unravelling is closed under complementation

Unravelling is closed under countable unions
(use i -unravelling for the i -th set)

Conclusion: every Borel set can be unravelled

hence is determined (cf. page 56)
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Thank you for your attention
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