Borel Determinacy

Serge Grigorieff

LIAFA, CNRS \& Université Denis Diderot-Paris 7

> Groupe de travail
> Calculabilité, Complexité et Hasard
> April 12-18th 2012

Alternations of quantifier

versus

Games

Alternations of quantifier

$F(\vec{z}) \equiv \exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} P\left(x_{0}, \ldots, x_{4}, \vec{z}\right)$
The human mind seems limited in its ability to understand and vizualize beyond four or five alternations of quantifier. Indeed, it can be argued that the inventions, subtheories and central lemmas of various parts of mathematics are devices for assisting the mind in dealing with one or two additional alternations of quantifier.

Hartley Rogers
"Theory of recursive functions and effective computability"
(1967)
(cf. page 322 §14.7)

Another (partial) explanation:

complexity $\geq \Sigma_{4}^{0}\left(\omega^{\omega}\right) \sim$ Higher set theory!!!

Alternations of quantifier versus Games

$F(\vec{z}) \equiv \exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} P\left(x_{0}, \ldots, x_{4}, \vec{z}\right)$
Roland Fraïssé's idea (1954)
Relate $F(\vec{z})$ to a game
Two players
I
and
II

move $0:$	I plays some x_{0}
move 1:	II plays some x_{1}
move 2:	I plays some x_{2}
move $3:$	II plays some x_{3}
move $4:$	I plays some x_{4}

Who wins?
I wins iff $P\left(x_{0}, \ldots, x_{4}, \vec{z}\right)$ holds
$F(\vec{z}) \Longleftrightarrow$ player I has a winning strategy

Strategies

move 0: I plays some x_{0} The x_{i} 's in X move 1: II plays some x_{1} move 2: I plays some x_{2} move 3: II plays some x_{3} move 4: I plays some x_{4}

I wins jiff $P\left(x_{0}, \ldots, x_{4}, \vec{z}\right)$

Strategy for $\mathrm{I}=\sigma_{\mathrm{I}}:\{$ nil $\} \cup X \cup X^{2}$
$\longrightarrow X$ Strategy for II $=\sigma_{\mathrm{I}}: X \cup X^{2} \longrightarrow X$
I follows strategy σ_{I} if $\left\{\begin{array}{l}x_{0}=\sigma_{\mathrm{I}}(n i l) \\ x_{2}=\sigma_{\mathrm{I}}\left(x_{1}\right)\end{array}\right.$
II follows strategy $\sigma_{\text {II }}$ if $\left\{\begin{array}{l}x_{1}=\sigma_{\text {II }}\left(x_{0}\right) \\ x_{3}=\sigma_{\text {II }}\left(x_{0}, x_{1}\right)\end{array}\right.$
Winning strategy: ALWAYS wins

Alternations of quantifier and games

$$
\begin{aligned}
F(\vec{z}) \equiv & \exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} P\left(x_{0}, \ldots, x_{4}, \vec{z}\right) \\
\equiv & \text { player } I \text { has a winning strategy } \\
& \text { for the game where I wins } \\
& \text { if }\left(x_{0}, \ldots, x_{4}\right) \in P \\
\neg F(\vec{z}) \equiv & \forall x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \neg P\left(x_{0}, \ldots, x_{4}, \vec{z}\right) \\
\equiv & \text { player II has a winning strategy } \\
& \text { for the game where I wins } \\
& \text { if }\left(x_{0}, \ldots, x_{4}\right) \in P
\end{aligned}
$$

Law of Excluded Middle: either $F(\vec{z})$ or $\neg F(\vec{z})$
Hence either I has a winning strategy or II has a winning strategy

Infinitely many alternations of quantifier

$$
\exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \ldots \quad P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)
$$

Moschovakis' game quantifier $כ \alpha P(\alpha, \vec{z})$

$$
\forall x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \ldots \quad \quad \neg P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)
$$

What does this mean?

Infinite game

Two players Iand II
move $2 i$: I plays $x_{2 i}$
move $2 i+1$: II plays $x_{2 i+1}$
where $A=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \mid P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)\right\}$

Two players I and II

Rule

move $2 i$: I plays $x_{2 i}$
 move $2 i+1$: II plays $x_{2 i+1}$

I wins iff
$P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)$

Strategy for $I=\sigma_{\mathrm{I}}: X^{<\omega} \longrightarrow X$
Strategy for II $=\sigma_{\text {II }}:\left(X^{<\omega} \backslash\{n i l\}\right) \longrightarrow X$
I follows σ_{I} if $\forall i \in \mathbb{N} x_{2 i}=\sigma_{\mathrm{I}}\left(\left(x_{2 j+1}\right)_{j<i}\right)$
II follows $\sigma_{\text {II }}$ if $\forall i \in \mathbb{N} x_{2 i+1}=\sigma_{\text {II }}\left(\left(x_{2 j}\right)_{j \leq i}\right)$
Winning strategy: ALWAYS wins

$$
\begin{array}{r}
\exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \ldots \quad P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right) \\
\equiv I \text { has a winning strategy }
\end{array}
$$

$$
\forall x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \ldots \neg P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)
$$

$\equiv I I$ has a winning strategy
Need X well-ordered or Axiom of dependent choices

Excluded middle and determinacy

$$
\begin{array}{r}
\exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \ldots \quad P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right) \\
\equiv I \text { has a winning strategy } \\
\forall x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \ldots \neg P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right) \\
\equiv \text { II has a winning strategy }
\end{array}
$$

Fact.

$$
\left\{\begin{array}{c}
\neg\left(\exists x_{0} \forall x_{1} \exists x_{2} \forall x_{3} \ldots P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)\right) \\
\text { is equivalent to } \\
\forall x_{0} \exists x_{1} \forall x_{2} \exists x_{3} \ldots \neg P\left(\left(x_{i}\right)_{i \in \mathbb{N}}, \vec{z}\right)
\end{array}\right.
$$

if and only the game is determined
(one of the players has a winning strategy)

Which sets are determined?

Countable sets are determined

Infinite game $\mathcal{G}(A)$

Two players I and II

Rule

move $2 i:$	I plays $x_{2 i}$
move $2 i+1:$	II plays $x_{2 i+1}$

> I wins iff
> $\left(x_{i}\right)_{i \in \mathbb{N}} \in A$

Fact. If $A \subset X^{\omega}$ is countable then II has a winning strategy in $\mathcal{G}(A)$

Proof. Diagonal argument. If $A=\left\{f_{i} \mid i \in \mathbb{N}\right\}$, $2 i+1$ player II plays $x_{2 i+1} \neq f_{i}(2 i+1)$

Are all sets determined?
NO (requires the axiom of choice)

Borel subsets of X^{ω}

Discrete topology on $X \quad$ Product topology on X^{ω} metrics $d(f, g)=2^{-\max \{n \mid \forall i<n f(i)=g(i)\}}$
Basis of clopen sets: the $u X^{\omega}$ for $u \in X^{<\omega}$
Care. if X uncountable, open sets may be unions of uncountably many clopen sets But metrizability implies closed set are \mathbf{G}_{δ} in $X^{<\omega}$
($\mathbf{G}_{\delta}=$ intersection of countably many open sets)
This allows for the usual definition of Borel sets
$\boldsymbol{\Sigma}_{1}^{0}\left(X^{\omega}\right)=$ open sets
$\boldsymbol{\Sigma}_{\alpha}^{0}\left(X^{\omega}\right)=$ countable unions of sets in $\bigcup_{\beta<\alpha} \prod_{\beta}^{0}\left(X^{\omega}\right)$
$\prod_{\alpha}^{0}\left(X^{\omega}\right)=$ complements of sets in $\boldsymbol{\Sigma}_{\alpha}^{0}\left(X^{\omega}\right)$

Borel determinacy

Theorem. (Donald Martin, 1975)
All Borel subsets of X^{ω} are determined (whatever big is X)

Find simple winning strategies in $\mathcal{G}(A)$?
Alas. . . best (general) complexity is $\Delta_{2}^{1, S}$
if A is Borel with code S
Upper bound proof. The set of ws for I is $\Pi_{1}^{1, S}$:

$$
\sigma_{\mathrm{I}} \text { is } w s \equiv \forall g \sigma_{\mathrm{I}} \star g \in A
$$

and every $\Pi_{1}^{1, S}$ family contains some $\Delta_{2}^{1, S}$ set

Determinacy in classical mathematics

- 1953, Gale \& Stewart Boolean combinations
of open subsets of X^{ω}
- 1955, Philip Wolfe $\boldsymbol{\Sigma}_{2}^{0}\left(X^{\omega}\right)$ and $\prod_{2}^{0}\left(X^{\omega}\right)$ sets
- 1964, Morton Davis $\sum_{3}^{0}\left(X^{\omega}\right)$ and $\prod_{3}^{0}\left(X^{\omega}\right)$ sets

Results proved in 2d-order arithmetic
\equiv mathematics of \mathbb{N} and $\mathcal{P}(\mathbb{N})$
\equiv classical set theory for mathematicians
(with \mathbb{N} and $\mathcal{P}(\mathbb{N})$ one can encode reals, continuous functions,...)

Determinacy in higher set theory

- 1970, Donald Martin ${\underset{\sim}{1}}_{1}^{1}\left(\omega^{\omega}\right)$ in ZF + large cardinal axiom $\sum_{1}^{1}\left(X^{\omega}\right)$ in ZF + stronger large cardinal axiom
- 1972, Jeff B. Paris $\boldsymbol{\Sigma}_{4}^{0}\left(X^{\omega}\right)$ and $\boldsymbol{\Pi}_{4}^{0}\left(X^{\omega}\right)$ sets in ZF (set theory with cardinal $\left(2^{\aleph_{0}}\right)^{+}$is enough hence 3rd-order arithmetic is enough)
- 1975, Donald Martin Borel subsets of X^{ω} in ZF
- 1985, Donald Martin Much simpler proof (by far...) in ZF

Higher set theory (in ZF) is required!!!

- 1971, Harvey Friedman

For $\sum_{5}^{0}\left(\omega^{\omega}\right)$ and beyond, 2d-order arithmetic NOT ENOUGH
For $\sum_{5+\alpha}^{0}\left(\omega^{\omega}\right)$ need α iterations of set exponentiation

- ~2010, Donald Martin

For $\sum_{4}^{0}\left(\omega^{\omega}\right) 2 d$-order arithmetic NOT ENOUGH

A few simple results about determinacy and strategies

Determinacy and complementation

If $A \subseteq X^{\omega}$ then the shift of A is
$\left.X A=\left\{\left(x, x_{0}, x_{1}, x_{2}, \ldots\right) \mid\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in A\right)\right\}$
Let $\mathcal{A} \subseteq \mathcal{P}\left(X^{\omega}\right)$ be closed under shift:

$$
A \in \mathcal{A} \Longrightarrow x A \in \mathcal{A}
$$

$\forall A \in \mathcal{A} \quad A$ is determined

$\forall A \in \mathcal{A} \quad X^{\omega} \backslash A$ is determined

I has a wo in $\mathcal{G}(X A) \Longrightarrow$ II has a ms in $\mathcal{G}\left(X^{\omega} \backslash A\right)$
II has a ms in $\mathcal{G}(X A) \Longrightarrow$ I has a ms in $\mathcal{G}\left(X^{\omega} \backslash A\right)$

Winning strategies viewed as trees

Strategy $\sigma_{\text {I }}$ for $I \equiv$ tree $S_{\sigma_{\text {I }}} \subseteq X^{<\omega}$ of

$$
\begin{cases} & \text { all plays when I follows } \sigma_{\mathrm{I}} \\ u \in S_{\sigma_{\mathrm{I}}} \wedge|u| \text { even } \Longrightarrow \exists!x u x \in S_{\sigma_{\mathrm{I}}} \\ u \in S_{\sigma_{\mathrm{I}}} \wedge|u| \text { odd } \Longrightarrow \forall x u x \in S_{\sigma_{\mathrm{I}}}\end{cases}
$$

(Thus, I always has exactly one possible move and there is no constraint for II-moves)
Strategy $\sigma_{\text {II }}$ for II \equiv tree $S_{\sigma_{\text {II }}} \subseteq X^{<\omega}$ of all plays when II follows $\sigma_{\text {II }}$
$\left\{u \in S_{\sigma_{\text {II }}} \wedge|u|\right.$ odd $\Longrightarrow \exists!x u x \in S_{\sigma_{\text {II }}}$ $u \in S_{\sigma_{\text {II }}} \wedge|u|$ even $\Longrightarrow \forall x u x \in S_{\sigma_{\text {II }}}$
(Thus, II always has exactly one possible move and there is no constraint for I-moves)
σ_{I} winning for $\mathrm{I} \quad \Longleftrightarrow \quad\left[S_{\sigma_{\mathrm{I}}}\right] \subseteq A$
$\sigma_{\text {II }}$ winning for II $\Longleftrightarrow\left[S_{\sigma_{\text {II }}}\right] \subseteq X^{\omega} \backslash A$
([S] = set of infinite branches of S)

Non deterministic winning strategies

ND strategy σ_{I} for $\mathrm{I} \equiv$ tree $S_{\sigma_{\mathrm{I}}} \subseteq X^{<\omega}$ of all plays when I follows $\sigma_{\text {I }}$
$\left\{S_{\sigma_{\mathrm{I}}}\right.$ is pruned: $\forall u \in S_{\sigma_{\mathrm{I}}} \exists x u x \in S_{\sigma_{\mathrm{I}}}$ $u \in S_{\sigma_{\mathrm{I}}} \wedge|u|$ odd $\Longrightarrow \forall x u x \in S_{\sigma_{\mathrm{I}}}$
(Thus, I always has some move and there is no constraint for II-moves)
ND strategy $\sigma_{\text {II }}$ for II \equiv tree $S_{\sigma_{\text {II }}} \subseteq X^{<\omega}$ of all plays when II follows $\sigma_{\text {II }}$
$\left\{\begin{array}{l}S_{\sigma_{\mathrm{I}}} \text { is pruned: } \forall u \in S_{\sigma_{\mathrm{II}}} \exists x u x \in S_{\sigma_{\mathrm{I}}} \\ u \in S_{\sigma_{\mathrm{II}}} \wedge|u| \text { even } \Longrightarrow \forall u x \in S_{\sigma_{\mathrm{II}}}\end{array}\right.$
(Thus, II always has some move and there is no constraint for I-moves)
$\sigma_{\text {I }}$ winning for $\mathrm{I} \quad \Longleftrightarrow \quad\left[S_{\sigma_{\mathrm{I}}}\right] \subseteq A$
$\sigma_{\text {II }}$ winning for II $\Longleftrightarrow\left[S_{\sigma_{\text {II }}}\right] \subseteq X^{\omega} \backslash A$

Winning strategies and positions
$u \in X^{<\omega} A \subseteq X^{\omega} \quad A_{u}=A \cap$ clopen set $u X^{\omega}$
Fact. If $|u|$ is odd (next move for II) then
II has no winning strategy in $\mathcal{G}\left(A_{u}\right)$ iff
$\forall x \in X$ II has no winning strategy in $\mathcal{G}\left(A_{u x}\right)$ (No "miracle" move x for player II)

Winning and Defensive strategies

$u \in X^{<\omega} A \subseteq X^{\omega} \quad A_{u}=A \cap$ clopen set $u X^{\omega}$
Fact. Let $|u|$ even (next move for player I)
II has no winning strategy in $\mathcal{G}\left(A_{u}\right)$ iff
$\exists x \in X$ II has no winning strategy in $\mathcal{G}\left(A_{u x}\right)$
(Player I has a move x so that II still has no ws afterwards)
Always choosing such an $x=$
Defensive strategy for player I
CARE: defensive strategy \nRightarrow winning strat.

Gale \& Stewart's results about
 $$
\boldsymbol{\Sigma}_{1}^{0}\left(X^{\omega}\right)
$$

they contain

many core ideas of the theory

Determinacy of $\Sigma_{1}^{0}\left(X^{\omega}\right)$ and $\Pi_{1}^{0}\left(X^{\omega}\right)$

Theorem. (Gale \& Stewart, 1953)
Every closed or open $A \subseteq X^{\omega}$ is determined
Proof. Let A closed be the set of infinite branches of a pruned tree $T \subseteq X^{<\omega}$, i.e. $A=[T]$
If player II has no ws in $\mathcal{G}(A)$ then any DEFENSIVE strategy for player I is winning:
$\exists x_{0}$ (move of I) so that II has no ws in $\mathcal{G}\left(A_{x_{0}}\right)$
$\forall x_{1}$ (move of II) II has no ws in $\mathcal{G}\left(A_{x_{0} x_{1}}\right)$
$\exists x_{2}$ (move of I) II has no ws in $\mathcal{G}\left(A_{x_{0} x_{1} x_{2}}\right)$
$\forall x_{3}$ (move of II) II has no ws in $\mathcal{G}\left(A_{x_{0} x_{1} x_{2} x_{3}}\right)$
$\forall n x_{0} \ldots x_{n} \in T$ else the play enters the open set $X^{\omega} \backslash A$ so that any strategy for II in $\mathcal{G}\left(A_{x_{0} \ldots x_{n}}\right)$ is winning. But II has no ws in $\mathcal{G}\left(A_{x_{0} x_{1} x_{2} x_{3}}\right)$. Contradiction!
$\forall n x_{0} \ldots x_{n} \in T \Rightarrow$ the infinite play \in closed set $A=[T]$

Subgames

Pruned subtree S of $X^{<\omega}$
$[S]=$ infinite branches of S
$\mathcal{G}_{S}(A)$ or $\mathcal{G}_{F}(A)$: New rule for the two players: The play stays in the subtree S
\equiv replace A by $A \cap[S], \quad X^{\omega} \backslash A$ by $\left(X^{\omega} \backslash A\right) \cap[S]$
Trivial example: Game $\mathcal{G}\left(A_{s}\right)$ at position s
reduces to the subgame $\mathcal{G}_{s \times \omega}(A)$

Determinacy of $\operatorname{BOOL}\left(\Sigma_{1}^{0}\left(X^{\omega}\right)\right.$

Theorem. (Gale \& Stewart, 1953)
If every subgame of $\mathcal{G}(A)$ is determined then $\mathcal{G}(A \cup U)$ is determined for all U open
Proof. We show that there is a particular subgame F st if $\mathcal{G}_{F}(A)$ is determined then so is $\mathcal{G}(A)$
$S=\left\{s \mid I\right.$ has a ws in $\left.\mathcal{G}\left((A \cup U)_{s}\right)\right\} \quad(S$ may not be a tree) $F=X^{\omega} \backslash S X^{\omega}=[T]$ for some pruned tree T disjoint from S $U \cap F=\emptyset:$ if $s X \subseteq U$ then $s \in S$ trivially I has a ws in $\mathcal{G}_{F}(A) \Longrightarrow I$ has a ws in $\mathcal{G}(A \cup U)$ Playing in $\mathcal{G}(A \cup U)$, I follows his ws for $\mathcal{G}_{F}(A)$ while II stays in T. If II leaves T then the play gets into S and I uses a ws for $\mathcal{G}\left((A \cup U)_{s}\right)$
II has a ws in $\mathcal{G}_{F}(A) \Rightarrow$ II has a ws in $\mathcal{G}(A \cup U)$
Playing in $\mathcal{G}(A \cup U)$, II follows his ws for $\mathcal{G}_{F}(A)$ while I stays in T. I cannot leave T : else, if I leaves T at s then $s \in S$ and I gets a ws for $\mathcal{G}\left((A \cup U)_{s}\right.$, contradicting Fact page 20

Determinacy of $\operatorname{BOOL}\left(\Sigma_{1}^{0}\left(X^{\omega}\right)\right.$

Theorem. (Gale \& Stewart, 1953)
If every subgame of $\mathcal{G}(A)$ is determined then
$\mathcal{G}(A \cap U)$ is determined for all U open
Proof. $S=\left\{s \mid s X^{\omega} \subseteq U\right.$ and I has a ws in $\mathcal{G}\left(A_{s}\right\}$ $T=\left\{s \mid s X^{\omega} \subseteq U\right.$ and II has a ws in $\mathcal{G}\left(A_{s}\right\}$
I has a ws in $\mathcal{G}\left(S X^{\omega}\right) \Longrightarrow$ I has a ws in $\mathcal{G}(A \cap U)$
I follows a ws for $\mathcal{G}\left(S X^{\omega}\right)$ until the play enters S
Then he uses a ws for $\mathcal{G}\left(A_{s}\right)$
II has a ws in $\mathcal{G}\left(S X^{\omega}\right) \Rightarrow$ II has a ws in $\mathcal{G}(A \cap U)$ II follows ws for $\mathcal{G}\left(S X^{\omega}\right)$. If output $\notin U$ II wins
Else the play enters S ot T. Cannot enter S else I could win.
If it enters T then II uses ws for $\mathcal{G}\left(A_{s}\right)$

Determinacy of $\operatorname{BOOL}\left(\Sigma_{1}^{0}\left(X^{\omega}\right)\right.$

Corollary. (Gale \& Stewart, 1953) Every Boolean combination of open subsets of X^{ω} is determined

Proof.

Extend closed determinacy to subgames Apply closure by complementation, union and intersection with open sets

Closed sets and largest non deterministic ws

Fact. If I has a winning strategy for a closed game then it has a largest non deterministic one
Proof. S a tree, $\Theta(S) \subseteq S, \wedge(S) \subseteq S$
$\left\{\begin{array}{l}\Theta(S)=\{u \in S \mid \forall v \leq \text { pref } u(|v| \text { odd } \Rightarrow \forall x v x \in S)\} \\ \wedge(S)=\{u \in S \mid \exists x \in X \text { ux } \in S)\} \\ \text { To prune a tree one has to transtinitely iterate } \Lambda(\text { cf. page } 31)\end{array}\right.$
Suppose I has a ws for $\mathcal{G}(F) \quad F=[T] T$ tree $\subseteq X^{<\omega}$ $T^{(0)}=T \quad T^{\alpha+1}=\Lambda\left(\Theta\left(T^{(\alpha)}\right)\right) \quad T^{(\lambda)}=\bigcap_{\alpha<\lambda} T^{(\alpha)}$
Fact: $\exists \xi<\aleph_{1}$ st $T^{(\xi)}=T^{(\xi+1)}=\Lambda\left(T^{(\xi)}\right)=\Theta\left(T^{(\xi)}\right)$
Fact: 1) Every ND ws for I (viewed as a tree) is $\subseteq T^{(\alpha)}$
2) If I has a ws for $\mathcal{G}([T])$ then $T^{(\xi)} \neq \emptyset$
3) $T^{(\xi)}$ is a non deterministic ws for I and is the largest one

1) Proof by induction over α. 2) Obvious from 1)
2) Closure under pruning and Θ insures $T^{(\xi)}$ is a strategy for I (if non empty). It is winning since $T^{(\xi)} \subseteq T$ and $F=[T]$

Winning strategies may be quite complex even for closed games!

Fact. There exists a computable tree $T \subseteq \omega^{<\omega}$ st

- I has a ws in the closed game $\mathcal{G}([T])$
- I has no Δ_{1}^{1} ws in $\mathcal{G}([T])$

Proof. Recall Kleene's result (cf. Rogers $\$ 16.7$ Coro. XL(b), p. 419):
Fact. There exists a computable tree $S \subseteq \omega^{<\omega}$ which has an infinite branch but no Δ_{1}^{1} one Let $\theta: \omega^{<\omega} \rightarrow \omega^{<\omega}$ suppress all odd rank letters of a finite sequence: for instance, $\theta(a b c d e)=\theta(a b c d e f)=a c e$ Let $T=\theta^{-1}(S) \quad T$ is a computable tree Player I has a ws in $\mathcal{G}([T])$: do not care about II moves play a fixed infinite branch of S If σ is a ws for I in $\mathcal{G}([T])$ and II plays 0^{ω} then $\sigma \star 0^{\omega} \in[T]$ hence $f=\theta\left(\sigma \star 0^{\omega}\right) \in[S]$ If σ were Δ_{1}^{1} then f would be Δ_{1}^{1} branch of S. Contradiction!

Why so complex ws for closed games? Because pruning a tree may require iterations beyond recursive ordinals!

$$
T^{(0)}=T \quad T^{\alpha+1}=\Lambda\left(\Theta\left(T^{(2 \alpha)}\right)\right) \quad T^{(\lambda)}=\bigcap_{\alpha<\lambda} T^{(\alpha)}
$$

$$
T^{(\xi)}=T^{(\xi+1)} \text { largest ND ws for } \mathrm{I} \text { in } \mathcal{G}([T])
$$

R order on \mathbb{N} of type $\eta>\xi \quad \iota: \mathbb{N} \rightarrow \eta$ isomorphism
Fact. $T^{(\xi)}$ is $\Delta_{1}^{1, T, R}$ hence so is its leftmost infinite branch
Proof. $\Phi_{T}\left(Z^{(k)}, Z^{(\ell)}\right) \equiv\left(\theta(k)=0 \Rightarrow Z^{(k)}=T\right)$

$$
\wedge\left(\theta(\ell)=\theta(k)+1 \Rightarrow Z^{(\ell)}=\wedge\left(\Theta\left(Z^{(k)}\right)\right)\right)
$$

$\wedge\left(\theta(k)\right.$ limit $\left.\Rightarrow Z^{(k)}=\bigcap\left\{Z^{(p)} \mid \theta(p)<\theta(k)\right\}\right)$
$u \in T^{(\xi)} \equiv \exists\left(Z^{(n)}\right)_{n \in \mathbb{N}} \forall k, \ell\left(u \in Z^{(k)} \wedge \Phi_{T}\left(Z^{(k)}, Z^{(\ell)}\right)\right)$

$$
\left.\equiv \forall\left(Z^{(n)}\right)_{n \in \mathbb{N}}\left(\forall k, \ell \Phi_{T}\left(Z^{(k)}, Z^{(\ell)}\right)\right) \Rightarrow\left(\forall n u \in Z^{(n)}\right)\right)
$$

Fact. Let $T=\theta^{-1}(S)$ with S a computable tree with an infinite branch but no Δ_{1}^{1} one. Then the ordinal ξ is not Δ_{1}^{1}
Proof. $S \Delta_{1}^{1} \Rightarrow T \Delta_{1}^{1}$ and $T, R \Delta_{1}^{1} \Rightarrow \Delta_{1}^{1, T, R}=\Delta_{1}^{1}$

How many iterations to prune a tree?
 $\left\{\begin{array}{rl|l}S^{(0)} & =S & \begin{array}{l}\Lambda(S)=\{u \in S \mid \\ S^{\alpha+1}\end{array}=\Lambda\left(S^{(\alpha)}\right) \\ S^{(\lambda)} & =\bigcap_{\alpha<\lambda} S^{(\alpha)} & \begin{array}{c}\exists x \in X u x \in S)\} \\ S^{(\xi)}=S^{(\xi+1)} \text { is pruned }\end{array}\end{array}\right.$

When S is well-founded, $\xi=$ ordinal rank of S, $\xi<\omega_{1}^{\mathrm{CK}}$ hence ξ is computable
(Spector, 1955: computable ordinals $=\Delta_{1}^{1}$ ordinals, cf. Rogers $\S 16.6$ Coro XXXVI p. 415)
In general, when S not well-founded, $\xi \geq \omega_{1}^{\mathrm{CK}}$
(nevertheless, ξ is Δ_{2}^{1}) Example: cf. page 30
Other example: $S=\left\{(e, u, t) \mid e, t \in \mathbb{N}, u \in \omega^{<\omega}\right.$ and the current output of φ_{e} at time t is $\left.u\right\}$
Order on S:
$(e, u, t) \leq\left(e^{\prime}, u^{\prime}, t^{\prime}\right) \Leftrightarrow e=e^{\prime} \wedge\left(u<_{\text {pref }} u^{\prime} \vee\left(u=u^{\prime} \wedge t \leq t^{\prime}\right)\right)$
S is a computable tree which contains every well-founded computable tree Hence the ξ associated to S is $\geq \omega_{1}^{C K}$

Wolfe's results about $\boldsymbol{\Sigma}_{2}^{0}\left(X^{\omega}\right)$ and $\boldsymbol{\Pi}_{2}^{0}\left(X^{\omega}\right)$ $\equiv \mathbf{F}_{\sigma}\left(X^{\omega}\right)$ and $\mathbf{G}_{\delta}\left(X^{\omega}\right)$

(countable unions of closed sets and
countable intersections of open sets)

Determinacy of $\Sigma_{2}^{0}\left(X^{\omega}\right)$ and $\Pi_{2}^{0}\left(X^{\omega}\right)$

Theorem. (Philip Wolfe, 1955)
Every \mathbf{F}_{σ} or \mathbf{G}_{δ} set $A \subseteq X^{\omega}$ is determined
Proof.(cf. Moschovakis) $A=\bigcup_{i \in \mathbb{N}}\left[T_{i}\right]$ an ${\underset{\sim}{F}}_{\sigma}$ set T_{i} pruned tree
Set W of sure winning positions for I in $\mathcal{G}(A)$ $u \in W_{0} \Longleftrightarrow \exists i \quad I$ wins $\mathcal{G}\left(\left[T_{i}\right]_{u}\right)$
$u \in H_{\alpha, i} \Longleftrightarrow \forall v \leq u\left(|v|\right.$ even $\left.\Rightarrow v \in T_{i} \cup \bigcup_{\beta<\alpha} W_{\beta}\right)$
$u \in W_{\alpha} \Longleftrightarrow \exists i \quad I$ wins $\mathcal{G}\left(\left[H_{\alpha, i}\right]_{u}\right)$
$W=\bigcup_{\alpha} W_{\alpha}=\bigcup_{\alpha \leq \xi} W_{\alpha} \quad \xi$ countable ordinal, $W_{\xi}=W_{\xi+1}$
Induction on ordinal $\alpha:\left\{\begin{array}{l}u \in W_{\alpha} \Rightarrow \text { I wins } \mathcal{G}\left(A_{u}\right) \\ u \notin W_{\alpha} \Rightarrow \text { II wins } \mathcal{G}\left(A_{u}\right)\end{array}\right.$

- Induction on ordinal $\alpha: u \in W_{\alpha} \Rightarrow$ I wins $\mathcal{G}\left(A_{u}\right)$

I follows a ws for $\mathcal{G}\left(\left[H_{\alpha, i}\right]_{u}\right)$
If the play enters $\bigcup_{\beta<\alpha} W_{\beta}$ at uu' then I switches to aws for $\mathcal{G}\left(A_{u u^{\prime}}\right)$. By induction hypothesis, the infinite play is in A
Else the play stays in T_{i} hence the infinite play is in A

- If nil $\in W$ then I has a ws for $\mathcal{G}(A)$
- Else here is a ws for II in $\mathcal{G}(A)$:
nil $\notin W_{\xi+1}$ hence for all i, I has no ws for $\mathcal{G}\left(\left[H_{\xi+1, i}\right]\right)$ hence II has a ws for $\mathcal{G}\left(\left[H_{\xi+1, i}\right]\right)$ (closed games being determined) II follows his ws for $\mathcal{G}\left(\left[H_{\xi+1,0}\right]\right)$ until the play leaves $W_{\xi} \cup T_{0}$ at some $u_{0} \quad u_{0} \notin W_{\xi}$ and $u_{0} \notin T_{0}$
$u_{0} \notin W_{\xi}=W_{\xi+1}$ hence $\forall i$ I has no ws for $\mathcal{G}\left(\left[H_{\xi+1, i}\right]_{u_{0}}\right)$ hence II has a ws for $\mathcal{G}\left(\left[H_{\xi+1, i}\right]_{u_{0}}\right) \quad$ (since closed games are determined) II follows his ws until the play leaves $W_{\xi} \cup T_{0}$ at $u_{0} u_{1} \ldots$
The final play $\notin\left[T_{0}\right], \notin\left[T_{1}\right] \ldots$ hence $\notin A$ Thus, II has a ws in $\mathcal{G}(A)$

Morton Davis' results about

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{3}^{0}\left(X^{\omega}\right) \text { and } \boldsymbol{\Pi}_{3}^{0}\left(X^{\omega}\right) \\
\equiv & \mathbf{F}_{\sigma \delta}\left(X^{\omega}\right) \text { and } \mathbf{G}_{\delta \sigma}\left(X^{\omega}\right)
\end{aligned}
$$

(countable intersections of countable unions of closed sets and
countable unions of countable intersections of open sets)

Determinacy of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ and $\Pi_{3}^{0}\left(X^{\omega}\right)$

Theorem. (Morton Davis, 1964)
Every $\mathbf{F}_{\sigma \delta}$ or $\mathbf{G}_{\delta \sigma}$ set $A \subseteq X^{\omega}$ is determined

Strategies (non necessarily winning) are trees: II-strategy S
$\begin{cases}\forall u \in S(|u| \text { odd } \Rightarrow \exists x u x \in S) & \text { (II can stay in } S) \\ \forall u \in S(|u| \text { even } \Rightarrow \forall x u x \in S) & \text { (I cannot leave } S)\end{cases}$
II-strategy S relative to a subgame T
$\left\{\begin{array}{l}\forall u \in S(|u| \text { odd } \Rightarrow \exists x u x \in S) \\ \forall u \in S\left(|u| \text { even } \Rightarrow \forall x(u x \in T \Rightarrow u x \in S) \begin{array}{r}\text { (II can stay in } S) \\ \text { (I cannot leave } S \\ \text { except if it leaves } T)\end{array}\right.\end{array}\right.$

Determinacy of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ and $\Pi_{3}^{0}\left(X^{\omega}\right)$

Strategies (non necessarily winning) are trees: II-strategy S
$\begin{cases}\forall u \in S(|u| \text { odd } \Rightarrow \exists x u x \in S) & \text { (II can stay in S) } \\ \forall u \in S(|u| \text { even } \Rightarrow \forall x u x \in S) & \text { (I cannot leave S) }\end{cases}$
Lemma 1. Suppose $\left\{\begin{array}{l}I \text { has no ws for } \\ U \subseteq A \text { is open }\end{array}\right.$
Then there is a II-strategy S such that
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $U \cap[S]=\emptyset$
(II has a non-catastrophic strategy to avoid any fixed open set U catastrophic $=I$ has a ws in the associated subgame)

Lemma 1'. Suppose $\left\{\begin{array}{l}I \text { has no ws for } \mathcal{G}_{T}(A) \quad T \text { subgame }\end{array}\right.$ $U \subseteq A$ is open
Then there is a II-strategy S relative to the subgame T st
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $U \cap[S]=\emptyset$
(3) If U contains no clopen $s X^{\omega}$ with $|s| \leq n$ then one can require $S \cap X \leq n=T \cap X \leq n$
(variant of Lemma 1: subgame relativized + slightly improved) $37 / 65$

Determinacy of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ and $\Pi_{3}^{0}\left(X^{\omega}\right)$

Lemma 1. Suppose $\left\{\begin{array}{l}I \text { has no ws for } \mathcal{G}(A) \\ U \subseteq A \text { is open }\end{array}\right.$
Then there is a II-strategy S such that
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $U \cap[S]=\emptyset$
(II has a non-catastrophic strategy to avoid any fixed open set U)
Proof of Lemma 1.
$S=$ defensive II-strategy
$S=\left\{s \in X^{<\omega} \mid I\right.$ has no ws in $\left.\mathcal{G}\left(A_{s}\right)\right\}$
(1): cf. slide 20
(2): Else there is some $s \in T$ such that $s X^{\omega} \subseteq U$ and any strategy for I is trivially winning in $\mathcal{G}\left(A_{s}\right)$

Remark. Lemma 1 reproves open determinacy. If A open let $U=A$, the non catastrophic strategy for II is a winning one

Determinacy of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ and $\Pi_{3}^{0}\left(X^{\omega}\right)$

Lemma 2. Suppose $\left\{\begin{array}{l}I \text { has no ws for } \mathcal{G}(A) \\ H \subseteq A \text { is } \underline{G}_{\delta}\end{array}\right.$
Then there is a II-strategy S such that
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $H \cap[S]=\emptyset$
(II has a non-catastrophic strategy to avoid any fixed \mathbf{G}_{δ} set U)
Remark. Lemma 2 reproves \mathbf{G}_{δ} determinacy. If A is \mathbf{G}_{δ} let $H=A$, the non catastrophic strategy for II is a winning one
Lemma 2'. Suppose $\left\{\begin{array}{l}I \text { has no ws for } \mathcal{G}_{T}(A) \quad T \text { subgame } \\ H \subseteq A \text { is } G_{0}\end{array}\right.$ $H \subseteq A$ is \mathbf{G}_{δ}
Then there is a II-strategy S relative to the subgame T st
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $H \cap[S]=\emptyset$
(3) If H contains no clopen $s X^{\omega}$ with $|s| \leq n$ then one can require $S \cap X \leq n=T \cap X \leq n$
(variant of Lemma 2: subgame relativized + slightly improved)

Determinacy of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ and $\Pi_{3}^{0}\left(X^{\omega}\right)$

Lemma 2. If I has no ws for $\mathcal{G}(A), H \subseteq A$ is \mathbf{G}_{δ}
Then there is a II-strategy S such that
(1) I has no ws for $\mathcal{G}_{S}(A)$ and (2) $H \cap[S]=\emptyset$
(II has a non-catastrophic strategy to avoid any fixed \mathbf{G}_{δ} set U)
Proof of Lemma 2. $H=\bigcap_{i \in \mathbb{N}} C_{i} X^{\omega}$ the C_{i} 's antichains of $X^{<\omega}, C_{i+1} \subseteq C_{i} X^{<\omega}, C_{0}=\{$ nil $\}$
$Z=\left\{u \in X^{<\omega} \mid \exists I I\right.$-strategy $T^{(u)}$ relative to subgame $u X<\omega$ st $H \cap\left[T^{(u)}\right]=\emptyset$ and I has no ws for $\left.\mathcal{G}_{T^{(u)}}(A)\right\}$

We prove
$(*)_{i} \quad u \in C_{i} \backslash Z \Rightarrow I$ has ws in $\mathcal{G}\left(\left(A \cup\left(C_{i+1} \backslash Z\right) X^{\omega}\right)_{u}\right)$

Suppose $(*)_{i}$ false. Let $u \in C_{i} \backslash Z$ be st I has ws in $\mathcal{G}\left(\left(A \cup\left(C_{i+1} \backslash Z\right) X^{\omega}\right)_{u}\right)$.
L.1' yields a II-strategy S relative to the subgame $u X^{<\omega}$ such that $[S] \cap\left(C_{i+1} \backslash Z\right) X^{\omega}=\emptyset$ and I has no ws in $\mathcal{G}_{S}\left(\left(A \cup\left(C_{i+1} \backslash Z\right) X^{\omega}\right)_{u}\right)$.
To get a contradiction, we describe a ws strategy for II relative to the subgame $u X^{<\omega}$.
First, II follows S. Since $[S]$ is disjoint from the open set $\left(C_{i+1} \backslash Z\right) X^{\omega}$, while II follows S it does not meet $C_{i+1} \backslash Z$.
If some $v \in C_{i+1}$ is reached then $v \in Z \cap C_{i+1}$ and II switches to its strategy $T^{(v)}$ (cf. definition of Z) st I has no ws in $\mathcal{G}_{T^{(v)}}(A)$ and $\left[T^{(v)}\right] \cap H=\emptyset$.
The resulting infinite play either avoids C_{i+1} hence $\notin H$ or meets $Z \cap C_{i+1}$ hence is given by some $T^{(v)}$ and $\notin H$.

Thus, II has a ws relative to the subgame $u X^{<\omega}$. In particular, $u \in Z$, contradicting the hypothesis $u \in C_{i} \backslash Z$.

To conclude the proof of Lemma 2, we show that nil $\in Z$.
Else, nil $\in X^{<\omega} \backslash Z=C_{0} \backslash Z$. We define a strategy for I. Using $(*)_{0}$ with $u=$ nil, I follows a ws in $\mathcal{G}\left(A \cup\left(C_{1} \backslash Z\right) X^{\omega}\right)$. If and when the play enters $C_{1} \backslash Z$ at u_{1} then, applying $(*)_{1}$ with $u=u_{1}$, I switches to a ws in $\mathcal{G}\left(\left(A \cup\left(C_{2} \backslash Z\right) X^{\omega}\right)_{u_{1}}\right)$. And so on...
The resulting infinite play

- either does not meet some $\left(C_{i+1} \backslash Z\right) X^{\omega}$ and is given by a ws for I in $\mathcal{G}\left(\left(A \cup\left(C_{i+1} \backslash Z\right) X^{\omega}\right)_{u_{i}}\right)$. Then it is in A and I wins. - or it does meet all $C_{i+1} \backslash Z$ hence all C_{j} 's and is in H hence in A.

Thus, we have obtained a ws for I in $\mathcal{G}(A)$. Contradicting the hypothesis of Lemma 2.

Proof of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ determinacy

$A=\bigcup_{i \in \mathbb{N}} H_{i} \quad H_{i}=\bigcap_{j \in \mathbb{N}} c_{i, j} X^{\omega} \quad c_{i, j} \subseteq X^{<\omega}$
$H_{i} \subseteq H_{i+1}$
Case X finite Suppose I has no ws in $\mathcal{G}(A)$
We inductively define a decreasing sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of non-catastrophic II-strategies which avoid the H_{i} 's
By Lemma 2, get a II-strategy T_{0} st
(1) I has no ws for $\mathcal{G}_{T_{0}}(A)$ and (2) $H_{0} \cap\left[T_{0}\right]=\emptyset$

By Lemma 2', get II-strategy T_{1} relative to subgame T_{0} st (1) I has no ws for $\mathcal{G}_{T_{1}}(A)$ and (2) $H_{2} \cap\left[T_{2}\right]=\emptyset$ And so on...
X being finite, X^{ω} is compact hence $[T]=\bigcap_{i \in \mathbb{N}}\left[T_{i}\right] \neq \emptyset$
T is a II-strategy st
(1) I has no ws for $\mathcal{G}_{T}(A) \quad$ (obvious since $T \subseteq T_{0}$)
(2) $\left(\bigcup_{i \in \mathbb{N}} H_{i}\right) \cap[T]=\emptyset$

Thus, the intersection T of the T_{i} 's is a ws for II in $\mathcal{G}_{T}(A)$

Proof of $\Sigma_{3}^{0}\left(X^{\omega}\right)$ determinacy

Case X is infinite
Consider the interior U of A.
Then $A=U \cup B$ where B is also $\mathbf{G}_{\delta \sigma}$
B contains no open set.
$B=\bigcup_{i \in \mathbb{N}} H_{i}$ with $H_{i} \underline{G}_{\delta}$
Up to subsequence extraction, can suppose H_{i} contains no $s X^{\omega}$ with $|s| \leq i$

Use condition (3) in Lemma 2' to get T_{i+1} such that $T_{i+1} \cap X \leq i=T_{i} \cap X \leq i$.

Then $\bigcap_{i \in \mathbb{N}}\left[T_{i}\right] \neq \emptyset$

Donald Martin's proof of Borel determinacy

Main idea of the proof

In usual reduction theories one looks for a hard set A which reduces every set Z in a particular family \mathcal{F} :

$$
\forall Z \in \mathcal{F} \quad Z=f^{-1}(A) \quad \text { for some } f
$$

(f computable or polytime or continuous)
In Martin's proof, the association is reversed
For every Borel set $A \subseteq[S] \subseteq X^{\omega} \quad S$ pruned tree Martin's proof looks for

$$
\begin{array}{ll}
\text { a space } Y^{\omega} \text {, a pruned tree } T \subseteq X^{<\omega} & \text { (possibly huge } Y \text {) } \\
\text { a clopen subset } C \text { of }[T] \subseteq Y^{\omega} & \text { (very simple set) } \\
\text { a continuous surjective map } \pi:[T] \rightarrow[S] & \text { (the reduction map) }
\end{array}
$$

such that

$$
\begin{aligned}
& \text { 1. } C=\pi^{-1}(A) \quad(A \text { is Borel whereas } C \text { is clopen }) \\
& \text { 2. every winning strategy in } \mathcal{G}_{T}(C) \text { yields a ws in } \mathcal{G}_{S}(A)
\end{aligned}
$$

No direct extension beyond Borel sets

Case $X=\omega^{\omega}$
Suppose $C=\pi^{-1}(A), \pi$ continuous and C clopen Then $A=\pi(C)$ and $\omega^{\omega} \backslash A=\pi(F \backslash C)$

In general, $\pi($ closed $)$ has descriptive complexity $\boldsymbol{\Sigma}_{1}^{1}$
Thus, $\pi(C)$ and $\pi(F \backslash C)$ are $\boldsymbol{\Sigma}_{1}^{1}$
Thus, A and $\omega^{\omega} \backslash A$ are $\boldsymbol{\Sigma}_{1}^{1}$,
i.e. A is $\boldsymbol{\Delta}_{1}^{1}$ hence is Borel (Suslin's theorem, 1917)

À la Martin reductions in pure topology

 (Almost) forget strategies. Topological problemFor every Borel set $A \subseteq[S] \subseteq X^{\omega} \quad S$ pruned tree
a topological space Y^{ω}, a tree $T \subseteq Y^{<\omega}$
look for a clopen $C \subseteq[T] \quad([T]=$ set of infinite branches) a continuous surjective map $\pi:[T] \rightarrow X^{\omega}$
such that $C=\pi^{-1}(A)$

- Trivial if we do not ask for a topological space Y^{ω} :

Set $Y=X$ and increase the topology so that A is clopen

- Trivial if surjectivity is omitted: (case $A \neq \emptyset, X^{\omega}$)
let $\left\{\begin{array}{l}a \in A \\ b \in F \backslash A\end{array},[T]\right.$ clopen $\neq \emptyset, Y^{\omega}, \pi(x)=\left\{\begin{array}{l}a \text { if } x \in C \\ b \text { if } x \notin C\end{array}\right.$
- If X is finite, Y has to be infinite else π (clopen) is compact
- If $X=\omega$, true by Wadge hardness theorem
A Borel not ${\underset{\sim}{\xi}}_{\xi}^{0}$ implies every ${\underset{\sim}{\Sigma}}_{\xi}^{0}$ in ω^{ω} is $\pi^{-1}(A)$ for some π Vicious circle: Wadge theory relies on Borel determinacy!!!

A combinatorico-topological problem: drills before entering Martin's proof

Extend the problem to allow inductive constructions

 and future strategy requirementsFor every tree $S \subseteq X^{<\omega}$,
([S]= set of infinite branches) for every $k \in \mathbb{N}$ (technical point: k is a trick to cope with non compactness in inductive constructions) for every Borel set $A \subseteq[S] \subseteq X^{\omega}$ look for

> a topological space Y^{ω} where $Y \supseteq X$
> a tree $T \subseteq Y^{<\omega}$ such that $T \cap Y \leq k=S \cap X \leq k$
> a clopen $C \subseteq[T] \quad([T]=$ set of infinite branches)
> a monotone length preserving surjective map $\pi: T \rightarrow S$
> (alphabetical transduction)
such that

$$
\begin{array}{r}
\text { where } \pi:[T] \rightarrow[S] \text { obvious extension of } \pi \\
\text { wh }(A)
\end{array}
$$

Topological problem: A open in [S], $k=0$

A open in $[S]$ hence $A=\bigcup_{u \in \tau} u X^{\omega} \cap[S] \quad \tau \subseteq X^{<\omega} \backslash\{$ nil $\}$

- Add elements representing the u 's: $Y=X \cup\{\ulcorner u\urcorner \mid u \in \tau\}$ To preserve length, a new element is always the first one if $u=x_{0} x_{1} \ldots x_{n-1}$ then $\ulcorner u\urcorner$ has unique length $<n$ successors $\tilde{\tau}=\left\{\ulcorner u\urcorner x_{1} \ldots x_{n-1} \mid u=x_{0} x_{1} \ldots x_{n-1} \in \tau\right\} \quad$ antichain of $Y^{<\omega}$ $T=\left(S \backslash \tau X^{<\omega}\right) \cup\left\{\ulcorner u\urcorner x_{1} \ldots x_{i} \mid u=x_{0} x_{1} \ldots x_{n-1} \in \tau\right.$ $\wedge\left(u \leq_{\text {pref }} x_{0} \ldots x_{i}\right.$ or $\left.\left.x_{0} \ldots x_{i} \leq_{\text {pref }} u\right)\right\}$ $\left.\wedge x_{0} \ldots x_{i} \in S\right\}$
$C=\left[\tilde{\tau} X^{<\omega}\right]=\left\{\left(y_{i}\right)_{i \in \mathbb{N}} \in[T] \mid y_{0} \in Y \backslash X\right\}[C]$ clopen in $[T]$
(a condition on the sole first component defines a clopen set)
- $\pi: T \rightarrow S$ st $\pi(s)=s$
if $u=\begin{array}{r}\text { if } s \in S \backslash \tau X^{<\omega} \\ x_{0} x_{1} \ldots x_{n-1} \in \tau\end{array}$
$\pi: T \rightarrow S$
alphabetical
$\pi:[T] \rightarrow[S]$
$\pi^{-1}(A)=[C]$
bijective, continuous but not homeomorphism Y has the cardinality of X

Topological problem: A open in [S], any k

A open in [S] hence $A=\bigcup_{u \in \tau} u X^{\omega} \cap[S]$
Choose antichain $\tau \subseteq X^{<\omega}$ st every u in τ has length $>k$ and set

$$
\begin{aligned}
& \widetilde{\tau}=\left\{x_{0} \ldots x_{k-1}\ulcorner u\urcorner x_{k+1} \ldots x_{n} \mid u=x_{k} \ldots x_{n} \in \tau\right\} \\
& T=\left(S \backslash \tau X^{<\omega}\right) \\
& \cup\left\{x_{0} \ldots x_{k-1}\ulcorner u\urcorner x_{k+1} \ldots x_{i} \mid u=x_{0} \ldots x_{n} \in \tau\right. \\
& \left.\wedge\left(u \leq_{\text {pref }} x_{k+1} \ldots x_{i} \text { or } x_{k+1} \ldots x_{i} \leq_{\text {pref }} u\right)\right\} \\
& \left.\wedge x_{0} \ldots x_{k-1} x_{k} x_{k+1} \ldots x_{n} \in S\right\} \\
& C=\left[\tilde{\tau} X^{<\omega}\right]=\left\{\left(y_{i}\right)_{i \in \mathbb{N}} \in[T] \mid y_{k} \in Y \backslash X\right\}[C] \text { clopen in }[T] \\
& \text { (a condition on the sole } k \text {-th component defines a clopen set) }
\end{aligned}
$$

Then argue as in the case $k=0$

The topological problem: induction step

Suppose the problem has positive answer for all levels $<\xi$ of the Borel hierarchy over X^{ω}. We get positive answer for level ξ Let $A=\bigcup_{n \in \mathbb{N}} A_{n}$ where the A_{n} 's have Borel ranks $<\xi$

- Applying the induction hypothesis with k
$C_{0}=\pi_{0}^{-1}\left(A_{0}\right)$ for $Y_{0} \supseteq X, T_{0} \subseteq Y_{0}^{<\omega}$, clopen C_{0} of [$\left.T_{0}\right]$,
$\pi_{0}:\left[T_{0}\right] \rightarrow[S], \quad T_{0} \cap Y_{0}^{\leq k}=S \cap X \leq k$
- $\ln \left[T_{0}\right]$, Borel rank of $\pi_{0}^{-1}\left(A_{1}\right)$ is $\leq \operatorname{rank} A_{1}$ in $[S]$ hence $<\xi$ Applying the induction hypothesis with $k+1$
$C_{1}=\pi_{1}^{-1}\left(\pi_{0}^{-1}\left(A_{1}\right)\right)$ for $Y_{1} \supseteq Y_{0}, T_{1} \subseteq Y_{1}^{<\omega}$, clopen C_{1} of
$\left[T_{1}\right], \pi_{1}:\left[T_{1}\right] \rightarrow\left[T_{0}\right], \quad \quad T_{1} \cap Y_{1}^{\leq k+1}=T_{0} \cap Y_{0}^{\leq k+1}$
- In [T_{1}], Borel rank of $\left(\pi_{0} \circ \pi_{1}\right)^{-1}\left(A_{2}\right)$ is $\leq \operatorname{rank} A_{2}$ in $[S]<\xi$ Applying the induction hypothesis with $k+2$
$\begin{array}{lr}C_{2}=\pi_{2}^{-1}\left(\left(\pi_{1} \circ \pi_{0}\right)^{-1}\left(A_{2}\right)\right) \text { for } Y_{2} \supseteq Y_{1}, T_{2} \subseteq Y_{2}^{<\omega}, \text { clopen } C_{2} \\ \text { of }\left[T_{2}\right], \pi_{1}:\left[T_{2}\right] \rightarrow\left[T_{1}\right], & T_{2} \cap Y_{2}^{\leq k+2}=T_{1} \cap Y_{1}^{\leq k+2}\end{array}$
- and so on ...

The topological problem: induction step

$\cdots \longrightarrow\left[T_{i+1}\right] \xrightarrow{\pi_{i+1}}\left[T_{i}\right] \longrightarrow \cdots T_{1} \xrightarrow{\pi_{1}}\left[T_{0}\right] \xrightarrow{\pi_{0}}[S]$

$$
T_{i+1} \cap Y_{i+1}^{\leq k+i+1}=T_{i} \cap Y_{i}^{\leq k+i+1} \quad T_{0} \cap Y_{0}^{\leq k}=S \cap X \leq k
$$

Consider the inverse limit (No cardinal explosion here)

$$
\begin{array}{rlrl}
\overleftarrow{Y} & =\bigcup_{i \in \mathbb{N}} Y_{i} & \overleftarrow{T}=\left\{u \mid u \in T_{i} \text { for all } i \geq|u|\right\} \\
\overleftarrow{\pi_{i}}:[\overleftarrow{T}] \rightarrow\left[T_{i}\right] & \overleftarrow{\pi}:[\overleftarrow{T}] \rightarrow[S]
\end{array}
$$

where $\overleftarrow{\pi}_{i} \upharpoonright T_{j}=\pi_{j+1} \circ \cdots \circ \pi_{i}$ for $j>i$
$\pi_{i+1} \circ \overleftarrow{\pi_{i+1}}=\overleftarrow{\pi_{i}} \quad$ and $\quad \pi_{0} \circ \overleftarrow{\pi_{0}}=\overleftarrow{\pi}$
Since $\pi_{i}^{-1}\left(A_{i}\right)$ is clopen in $\left[T_{i}\right], \quad \overleftarrow{\pi}^{-1}\left(A_{i}\right)$ is clopen in [$\left.\overleftarrow{T}\right]$
Thus, $\overleftarrow{\pi}^{-1}(A)=\bigcup_{i \in \mathbb{N}} \overleftarrow{\pi}^{-1}\left(A_{i}\right)$ is open in $[\overleftarrow{T}]$.
set Y_{ω}, tree $S_{\omega} \subseteq Y_{\omega}^{<\omega}$
Apply the open case to get clopen subset C_{ω} of $\left[T_{\omega}\right]$ st onto map $\pi_{\omega}:\left[T_{\omega}\right] \rightarrow[\bar{T}]$
$C_{\omega}=\pi_{\omega}^{-1}\left(\overleftarrow{\pi}^{-1}(A)\right) . \quad$ Finally, $\quad C_{\omega}=\left(\overleftarrow{\pi} \circ \pi_{\omega}\right)^{-1}(A)$

The topological problem: end of proof

The family of sets $A \subseteq X^{\omega}$ for which the problem has a solution (Y, S, C, π)

- contains the open subsets of X^{ω}
- is closed under countable unions
- is (trivially) closed under complementation

$$
\Downarrow
$$

Topological problem solved
for all Borel subsets of X^{ω}
There is no cardinal explosion: Y has cardinality of X

Martin's proof: Covering of a pruned tree

$\operatorname{Strat}_{\mathrm{I}}(S)$ is the set of non deterministic I-strategies where both players have to stay in the pruned tree S
k-covering of a pruned tree $S \subseteq X^{<\omega}$
pruned tree $T \subseteq Y^{<\omega}$
$=\left\lvert\, \begin{array}{ll}\text { monotone length preserving surjective map } & \pi: T \rightarrow S \\ \operatorname{map} & \phi_{\mathrm{I}}: \operatorname{Strat}_{\mathrm{I}}(T) \rightarrow \operatorname{Strat}_{\mathrm{I}}(S) \\ \operatorname{map} & \phi_{\mathrm{I}}: \operatorname{Strat} t_{\mathrm{II}}(T) \rightarrow \operatorname{Strat}_{\mathrm{II}}(S)\end{array}\right.$ such that
(1) $Y \leq 2 k \cap T=X \leq 2 k \cap S \quad(2 k=k$ moves of $I+k$ moves of II)
(2) $\phi_{\text {I }}: \operatorname{Strat}_{\mathrm{I}}(T) \rightarrow \operatorname{Strat}_{\mathrm{I}}(S)$ and $\phi_{\text {II }}$ are local:
$\forall \beta \in \operatorname{Strat}_{\mathrm{I}}(T) \forall u \in S \quad \phi_{\mathrm{I}}(\beta)(u)$ depends on $\beta \upharpoonright\{v||v| \leq|u|\}$
(3) Plays in S where I follows $\phi_{I}(\beta)$ can be lifted to plays in T where I follows β Idem with II and $\phi_{I I}$
$\forall \beta \in \operatorname{Strat}_{\mathrm{I}}(T) \forall f \in[S] \exists g \in[T]$

$$
\left(f \in\left[\phi_{\mathrm{I}}(\beta)\right] \Longrightarrow(g \in[\beta] \wedge \pi(g)=f)\right.
$$

Martin's proof: unravelling and determinacy

$S \subseteq X^{<\omega}$ pruned tree and $A \subseteq[S]$

$$
\begin{gathered}
\text { k-covering }\left(Y, T, \pi, \phi_{\mathrm{I}}, \phi_{\mathrm{II}}\right) \text { of } S \\
\text { unravels } A \subseteq[S] \\
\text { if } \pi^{-1}(A) \text { is clopen in }[T]
\end{gathered}
$$

Fact. If some covering unravels $A \subseteq[S]$ then the game $\mathcal{G}_{S}(A)$ is determined
Proof. The clopen game $\mathcal{G}_{T}\left(\pi^{-1}(A)\right)$ is determined Let β be a ws for I (same argument with a ws for II) Lift any infinite play f in the S-game where I follows $\phi_{\mathrm{I}}(\beta)$ to an infinite play g in the T-game where I follows β
Since β is a ws for I in $\mathcal{G}_{T}\left(\pi^{-1}(A)\right)$, we have $g \in \pi^{-1}(A)$ Since $\pi(g)=f$ we have $f \in A$.

Martin's proof: unravelling closed sets

Space where we play: pruned tree $S \subseteq X^{<\omega}$
Game $\mathcal{G}_{T}(A)$ closed set $A=[J] \subseteq[S] J$ pruned subtree of S
Copy of the set $\left(X^{2}\right)^{<\omega}: E=\left\{\ulcorner u\urcorner\left|u \in X^{<\omega},|u|\right.\right.$ even $\}$
k-covering to unravel A

$$
\begin{aligned}
& Y=X \cup Y_{\mathrm{I}} \cup Y_{\mathrm{II}}^{+} \cup Y_{\mathrm{II}}^{-} \\
& \left\{\begin{array}{l}
Y_{\mathrm{I}}=X \times \times \operatorname{Strat}_{\mathrm{I}}(S) \\
Y_{\mathrm{II}}^{+}=\cup_{\alpha \in S \text { Strat }}(S) \\
Y_{\mathrm{II}}^{-}=X \times \operatorname{Strat}_{\mathrm{II}}(\alpha)
\end{array}\right. \\
& \widetilde{T}=\text { prefixes of } X^{2 k} \times Y_{\mathrm{I}} \times\left(Y_{\mathrm{II}}^{+} \cup Y_{\mathrm{II}}^{-}\right) \times X^{<\omega}
\end{aligned}
$$

(Only moves $y_{2 k}$ and $y_{2 k+1}$ are not in X)
$T=$ sequences in \widetilde{T} such that. . . (see next slide)
$A=[J]$ with J subtree of S
$Y=X \cup Y_{\mathrm{I}} \cup Y_{\mathrm{II}}^{+} \cup Y_{\mathrm{II}}^{-}\left\{\begin{array}{l}Y_{\mathrm{I}}=X \times \times \operatorname{Strat}_{\mathrm{I}}(S) \\ Y_{\mathrm{II}}^{+}=\bigcup_{\alpha} X \times \operatorname{Strat}_{\mathrm{II}}(\alpha) \\ Y_{\mathrm{II}}=X \times E\end{array}\right.$
$\widetilde{T}=$ prefixes of $X^{2 k} \times Y_{\mathrm{I}} \times\left(Y_{\mathrm{II}}^{+} \cup Y_{\mathrm{II}}^{-}\right) \times X^{<\omega}$
(Only moves $y_{2 k}$ and $y_{2 k+1}$ are not in X)
$T=$ sequences in \tilde{T} such that
(1) if I chooses $\left(x_{2 k}, \sigma_{I}\right)$ then I follows σ_{I} afterwards
(2) if II chooses $\left(x_{2 k+1}, \sigma_{I I}\right)$ then $\sigma_{I I}$ is a subtree of J and of σ_{I} and II follows $\sigma_{\text {II }}$ afterwards
(3) if II chooses $\left(x_{2 k+1},\ulcorner u\urcorner\right)$ then $|u|$ even, $x_{0} \ldots x_{2 k+1} u \in \sigma_{I} \backslash J$ and every extension of $x_{0} \ldots x_{2 k+1}$ in T is compatible with $x_{0} \ldots x_{2 k+1} u$ (thus, T forces the players to play u after $x_{0} \ldots x_{2 k+1}$)
(The infinite play is in A in case (2) and outside A in case (3))
$\pi: T \rightarrow S$ is the obvious map such that

$$
\pi\left(x_{0} \ldots x_{2 k-1}\left(x_{2 k}, \sigma_{\text {I }}\right)\left(x_{2 k+1}, \sigma_{\text {II }} \text { or }\ulcorner u\urcorner\right) x_{2 k+2} \ldots x_{n}\right)=x_{0} \ldots x_{n}
$$

- For its k first moves $x_{0}, x_{2}, \ldots, x_{2 k-2}$ in the S-game, $\phi_{\mathrm{I}}(\beta)$ tells I to follow what strategy β does in the T-game.
- If strategy β in the T-game tells I to play $\left(x_{2 k}, \sigma_{I}\right)$ then strategy $\phi_{\mathrm{I}}(\beta)$ in the S-game tells I to play $x_{2 k}$
- After II has played $x_{2 k+1}$ in the S-game, player I has to imagine a corresponding move $\left(x_{2 k+1}, ?\right)$ in the T-game ϕ_{I} Case 1. I has a ws α in $\mathcal{G}_{\widetilde{\sigma_{I}}}\left(\left[\sigma_{I}\right] \backslash A\right)$

$$
\widetilde{\sigma_{\mathrm{I}}}=\left\{v \in \sigma_{\mathrm{I}} \mid x \text { compatible with } x_{0} \cdots x_{2 k+1}\right\}
$$

$\phi_{\mathrm{I}}(\beta)$ tells I to follow this strategy α
At some step the play is $x_{0} \cdots x_{2 k+1} u$ in the open set $\left[\sigma_{I}\right] \backslash A$, Then $L=x_{0} \cdots x_{2 k-1}\left(x_{2 k}, \sigma_{I}\right)\left(x_{2 k+1},\ulcorner u\urcorner\right) u \in T$
From now on, $\phi_{\mathrm{I}}(\beta)$ in the S-game tells I to follow what β tells for a play extending L (in the T-game)
The lifting property holds
ϕ_{I} Case 2. II has a ws in $\mathcal{G}_{\widetilde{\sigma_{I}}}\left(\left[\sigma_{I}\right] \backslash A\right)$

$$
\widetilde{\sigma_{\mathrm{I}}}=\left\{v \in \sigma_{\mathrm{I}} \mid x \text { compatible with } x_{0} \cdots x_{2 k+1}\right\}
$$

Let δ be the defensive strategy of II which allows him to stay in the closed set $\left[\sigma_{\mathrm{I}}\right] \cap A$
As long as II plays in δ, strategy $\phi_{\mathrm{I}}(\beta)$ tells I to follow strategy β assuming that I has played $\left(x_{2 k}, \sigma_{I}\right)$ and II has played $\left(x_{2 k+1}, \delta\right)$ in the T-game
If II leaves his defensive strategy δ at play $v=x_{0} \cdots x_{n}$ then
I gets a ws (for the subtree of σ_{I} of sequences compatible with v) and we can argue as in Case 1.
The lifting property holds

- For its k first moves $x_{1}, x_{3}, \ldots, x_{2 k-1}$ in the S-game, $\phi_{\text {II }}(\beta)$ tells II to follow what strategy β tells in the T-game
- After I has played $x_{2 k}$ in the S-game. Player II has to imagine a corresponding move ($x_{2 k}, \sigma_{I}$) in the T-game
$Z=$ set of $x_{2 k+1} u$ st $|u|$ even and there is I-strat. σ_{I} in the S-game st β tells II to play $\left(x_{2 k+1},\ulcorner u\urcorner\right)$ if I plays $\left(x_{2 k}, \sigma_{I}\right)$
Consider the $\left(S \cap\left(x_{1} \cdots x_{2 k}\right) X^{<\omega}\right)$-game where II wins if the infinite play is in $U=S \cap\left(Z X^{<\omega}\right)$
$\phi_{\text {II }}$ Case 1. II has a ws in this game
$\phi_{\text {II }}(\beta)$ tells II to follow this strategy until the play enters U, say at u. Let $\sigma_{\text {I }}$ witness that $u \in U$.
Afterwards, $\phi_{\text {II }}(\beta)$ tells II to follow β on the T-game where the special moves are $\left(x_{2 k}, \sigma_{\mathrm{I}}\right),\left(x_{2 k+1},\ulcorner u\urcorner\right)$
The lifting property holds
$\phi_{\text {II }}$ Case 2. I has a ws in this game
Let δ be the defensive strategy of I which allows him to put the play in the closed set
If I plays $\left(x_{2 k}, \delta\right)$ then β cannot ask II to play ($x_{2 k+1},\ulcorner u\urcorner$).
Else $x_{0} \cdots x_{2 k+1} u \in U$ contradicting the fact that II cannot leave the defensive I-strategy δ
Thus, β asks II to play some ($x_{2 k+1}, \sigma_{\text {II }}$) in the T-game
As long as I plays in $\sigma_{\text {II }}$, strategy $\phi_{\text {II }}(\beta)$ tells II to follow strategy β assuming that I has played ($x_{2 k}, \delta$)
If I leaves his defensive strategy δ then II has a ws and we can argue as in Case 1.
The lifting property holds

Martin's proof: inverse limits of coverings

Fact. If $\left(T_{i+1}, \pi_{i+1}, \phi_{i+1}^{\mathrm{I}}, \phi_{i+1}^{\mathrm{II}}\right)$ is a $(k+i)$-covering of T_{i} for $i \in \mathbb{N}$

Then there are	a pruned tree T_{∞}
maps $\pi_{\infty, i}, \phi_{\infty, i}^{\mathrm{I}}, \phi_{\infty, i}^{\mathrm{II}}$	such that

$$
\left\{\begin{array}{l}
\left(T_{\infty}, \pi_{\infty, i}, \phi_{\infty, i}^{\mathrm{I}}, \phi_{\infty, i}^{\mathrm{II}}\right) \text { is a }(k+i) \text {-covering of } T_{i} \\
\pi_{i+1} \circ \pi_{\infty, i+1}=\pi_{\infty, i} \\
\phi_{i+1}^{\mathrm{I}} \circ \phi_{\infty, i+1}^{\mathrm{I}}=\phi_{\infty, i}^{\mathrm{I}} \\
\phi_{i+1}^{\mathrm{II}} \circ \phi_{\infty, i+1}^{\mathrm{II}}=\phi_{\infty, i}^{\mathrm{II}}
\end{array}\right.
$$

Proof.

$T_{\infty}=$ the u 's such that $u \in T_{i}$ for all i st $|u| \leq 2(k+i)$
If $|u| \leq 2(k+i)$ then $\pi_{\infty, i}(u)=u$ else

$$
\pi_{\infty, i}(u)=\pi_{i+1} \circ \cdots \circ \pi_{j}(u) \text { for any } j \text { st }|u| \leq 2(k+j)
$$

$\phi_{\infty, i}^{\mathrm{I}}, \phi_{\infty, i}^{\mathrm{II}}$: Similar because ϕ_{i}^{I} is local: $\phi_{i}^{\mathrm{I}}(\beta) \upharpoonright(S \cap X \leq i)$ depends only on $\beta \upharpoonright(T \cap Y \leq i)$

Lifting property Suppose
β_{∞} I-strategy in the T_{∞}-game $f \in\left[\phi_{\infty, i}^{\mathrm{I}}\left(\beta_{\infty}\right)\right] \subseteq\left[T_{i}\right]$

Lift f to f_{i+1} with π_{i+1}, then to f_{i+2} with π_{i+2}, and so on...
Since $f_{j} \upharpoonright 2(k+i)=f_{i} \upharpoonright 2(k+i)$ for $j \geq i$ the f_{i}^{\prime} 's converge to f_{∞} such that $f_{\infty} \upharpoonright 2(k+i)=f_{i} \upharpoonright 2(k+i)$
$\pi_{\infty, i}\left(f_{\infty}\right)=f_{i}$
Martin's proof completed
Closed sets are unravelled
Unravelling is closed under complementation
Unravelling is closed under countable unions
(use i-unravelling for the i-th set)
Conclusion: every Borel set can be unravelled hence is determined (cf. page 56)

Thank you for your attention

