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Functionals using bounded information
and the dynamics of algorithms

The framework of this talk is

1 the operational theory of computations

2 the Abstract State Machines computation model developed by Yuri
Gurevich.

In the first part of this talk, we shall review this framework.
This will explain what is meant by “dynamics of algorithms”

Then we shall present our contribution.
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Algorithms & computation models

how data is how data
structured evolves

Turing mach. (1936) infinite tape test & set
How Gandy sees it: ≡ growing array program

dynamic graph test & set
Kolmogorov (1953) undirected, bounded degree program
Schönhage (1970) directed, bounded fan-out

Cook & Reckow (1973) Indirect access test & set
RAM program

Gurevich (1984) Algebra on a multisort test & set
Abstract State Mach. domain (= finite tuple program

(aka Evolving Algebras) of partial functions)︸ ︷︷ ︸
ultimate extension
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Algorithms & computation models
Out of the long list of existing computation models the table picks out
four breakthroughs. They are turning points in the operational theory of
computation.

Do not be outraged that lambda-calculus is not in our pick. We are just
following how Gurevich came to ASMs.

Two features emerge

1 The data structure gets more and more involved.
The last passage to algebras is a crucial move and an ultimate one,
indeed.

2 On the opposite, programs keep very elementary: in imperative
programming, this is conditional and assignment
Of course, there is no loop in these programs since a loop instruction
is NOT a single action. In fact, the loop is ousted in the computation
run obtained as the repeated execution of the program (each
execution gives one computation step).
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Three aspects of an ALGORITHM
What is What is the detailed What is the

computed? computation? computation rule?

denotational operational descriptional
Computable Gurevich 1st & 2d Program

function Postulates for algo.: +
=⇒ it is an Algebra Primitive Operations

Sequence of (≡ Oracles)
tuples of partial Algorithm does NOT tell
functions over a how they are computed
multisort domain

Semantics Semantics Syntax+Semantics

TURING Algebra = state, head position, tape contents
MACHINE Primitive Oper. = read, write, move head, change state
LAMBDA CALCULUS Primitive operation: substitution
MATRIX PRODUCT Primitive operations: +, × on scalars
BSS MACHINE null test on R is a primitive oper. Uncomputable!

Serge Grigorieff & Pierre Valarcher (Paris) Functionals using bounded information . . . June 2012 5 / 34



Three aspects of an ALGORITHM
These three natural questions seem to exhaust the question

“What is an algorithm?”

The answer to the 1st question is well-known. That to the 2d question
follows Gurevich’s “Sequential time” and “Abstract state” Postulates.
The answer to the 3rd question mixes syntax and semantics and is kind of
a surprise. The reason is that algorithms are intrinsically ORACULAR. A
priori, we expect them to tell everything about how the computation is
done. This is false. They describe a mechanism of computation which uses
some primitive operations to achieve its basic actions. The sole thing
which is known about these primitive operations is their semantics. But
the algorithm (that is its program) tells nothing about how the primitive
operations are computed. Explaining the operationality of a primitive
operation would introduce simpler primitive operations and so on. . .

In some computation models the basic actions are so simple that the
primitive operations are simply ignored. Nevertheless, there do exist: cf.
Turing machines. The last example, the Blum-Shub-Smale machine has a
NON computable primitive operation.
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Denotational vs Operational Completeness
What Complexity Theory (and other topics. . . ) tells us

Operational strength discriminates among
computation models with equal denotational strength

(Palindrome recognition time discriminates 1-tape and 2-tape TM)

Small-step = uniformly bounded work at each computation step
Small-step Operational completeness of ASMs

Gurevich’s Abstract State Machines Thesis
Computations of small-step algorithms
are matched step-by-step by ASMs

Lambda-calculus (benignly enriched)
is operationally complete (Ferbus & SG, 2010)

Lambda-calculus (benignly enriched) matches ASMs
k reductions to match 1 step (k depends on the simulated algo.)
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Denotational vs Operational Completeness
As expected, comparison with respect to operational strength is much finer
than comparison with respect to denotational strength. There are several
ways to witness this fact. Complexity theory is a very powerful one.
Denotationally, there is a strongest computation model. Lots of them in
fact. So, what for the operational strength? A bit of caution. Algorithm is
a generic term which covers many different meanings: small-step, parallel,
distributive, quantum,. . . So let us restrict to small-step algorithms.

The ASM Thesis is analogous to Church Thesis. Gurevich (& al.) checked
that algorithms from all existing small-step computation models can be
FAITHFULLY simulated by ASMs. FAITHFULLY means that the
simulated environment is (up to isomorphism) that of the ASM and one
transition is simulated by one ASM step.
Lambda-calculus is enriched by constants which represent the diverse
primitive operations (and primitive constants) plus some reduction rules.
The increased power of such a Lambda calculus is benign because the
added reduction rules apply only to evaluate GROUND terms built with
these new constants
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Proving the ASM Thesis

Theorem (Gurevich, 1999)

ASM Thesis proved from 3 Postulates
1 “State Transition System” already considered

2 “States are Algebras” already considered

3 “Bounded exploration”:

basic actions are defined via terms

We improve this theorem

by replacing the 3rd Postulate by a “lighter” one
which is purely semantical
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Proving the ASM Thesis

Of course, the ASM Thesis cannot be proved from scratch. Some
POSTULATES are required.

We improve Gurevich’s theorem by removing the syntactical contents of
the “Bounded exploration” Postulate.
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TRANSITION FUNCTIONALS
What is What is the detailed What is the

computed? computation? computation rule?

denotational operational descriptional
Computable Sequence of tuples Program +

function of partial functions Primitive Operations
on multisort domain Syntax+Semantics︸ ︷︷ ︸

T = T1 × . . .× T` TRANSITION FUNCTIONAL

Ti set of partial functions Ψ : T −→ T
over the sorts (f1, . . . , f`) 7−→ (f ′1 , . . . , f

′
` )

WHAT ARE THESE TRANSITION FUNCTIONALS?
(for small-step algorithms)

This is the subject of this talk
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TRANSITION FUNCTIONALS

Let us go back to our second slide.
The answer to the third question is a mix of syntax and semantics.

We can remove the syntactic part by looking at the transition functional.
This functional maps a tuple of partial functions over the sorts of the
multidomain data structure to another such tuple

This transition functional can be viewed as an answer to both the
operational and descriptional aspects of an algorithm

What are the properties of these transition functionals?
Can we characterize them?
This is the subject of this talk.
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Characterizing transition functionals
Our contribution (for small-step algorithms)

Proof of the ASM Thesis from set-theoretical

conditions on the transition functionals

Topological characterization of transition

functionals

We present our results for
transition functional restricted to total functions

(assuming that total functions are mapped to total functions)

and assume countable sorts

But our results. . .

extend to transition functionals on partial functions
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Characterizing transition functionals

The transition functional maps tuples of partial functions to tuples of
partial functions.
Why do we restrict to TOTAL functions?

This restriction is NOT necessary. The general case with partial
functions is also relevant to analogous topological methods

However, the case of “total functions” is by far much simpler to
present. It avoids adding to the (already not so simple) proof the
notions relevant to the consideration of partial functions.

Let us say how things are modified in the case of partial functions.
1 The usual total function spaces with their Hausdorff topology have to

be replaced by their non Hausdorff (but T0) Scott domain avatar.
2 The Vuillemin & Milner notion of sequentiality index comes in

Why do we restrict to countable sorts? Useful only for effective versions.
Non effective results do not need any countability assumption
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Two properties of transition functionals
Ψ(f1, . . . , f`) = (f ′1 , . . . , f

′
` ) (small-step algorithms)

Small-step
algorithms do bounded work

at each step

⇓
Bounded Effect property

∃k ∀~f f ′i is fi modified at ≤ k points i = 1, . . . , `

Bounded Cause property

∃k ∀~f ∀~x f ′i (~x) depends on the values
of f1, . . . , f` on ≤ k points

i = 1, . . . , `
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Two properties of transition functionals
Ψ(f1, . . . , f`) = (f ′1 , . . . , f

′
` ) (small-step algorithms)

These properties witness the two facets of “small-step” algorithms

local modification of the current environment

and to do so, local query of the current environment
(since query is part of the work. . . )
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From Ψ : T→ T to Φ : NN→ N
We focus on the Bounded Cause property

Recall: all sorts are countable
environment consists of total functions

T = T1 × · · · × T` Ti = function space over the sorts ≡ NN

normalize uncurryfy
Ψ : T → T

(f1, . . . , f`) 7→ (f ′1 , . . . , f
′
` )

Θ : NN → NN Φ : NN → N

Bounded Cause for Ψ ⇐⇒ Bounded Cause for Φ

∃k ∀~f ∀~x f ′i (~x) depends on the values
of f1, . . . , f` on ≤ k points

i = 1, . . . , `

IF AND ONLY IF
∃k ∀f Φ(f ) depends on the values of f on ≤ k points
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From Ψ : T→ T to Φ : NN→ N

The bounded cause property for Ψ : NN → NN has some global character:
it is a bounded cause for each value of the image tuple of functions.

To facilitate the study of the Bounded Cause property, it is convenient to
flatten the target space T to a discrete space. In fact,
the bounded cause property for functionals NN → N
is much easier to handle than for functionals NN → NN

What is Φ ? In the simple case ` = 1, T = T1 = NN, we have

Ψ(g)(a) = Φ(f ) where f (0) = a f (x + 1) = g(x)
Φ(f ) = Ψ(g)(f (0)) where g(x) = f (x + 1)
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BOUNDED CONTINUITY
Basic clopen of NN :
Domain size of [u] = |X |

{
[u] = {g ∈ NN | g extends u}
u : X → N with X FINITE

Continuity as “Finite Cause”
Φ : NN → N is continuous if and only if NN can be
covered

partitioned
by basic clopens on which Φ is constant

Definition Bounded continuity (= Bounded Cause)

Φ : NN → N is k-continuous iff NN can be covered by
basic clopens of domain size ≤ k on which Φ is constant

Theorem Witnessing k-continuity: From a covering to a partition

If Φ : NN → N is k-continuous then NN can be partitioned
in basic clopens of domain size ≤ k2 on which Φ is constant
Effective version true with blow-up 2k2 − k
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BOUNDED CONTINUITY

Since Φ takes values in a discrete space, continuity can be expressed in
terms of a covering by clopen sets on which Φ is constant. This covering
can also be supposed to be a partition.

What this first theorem says is that the same passage from a covering to a
partition is also possible for k-continuity modulo a quadratic blow-up of
the domain-size of the involved clopens.

The k2 blow-up in the theorem is optimal
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Example of a 3-continuous functional

Φ : NN → N Φ(f ) = f (h(f (0), f (1)) )
(h : N2 → N fixed function)

Φ(f ) known with 3 values of f : at 0, 1, h(f (0), f (1))

Φ(f ) is the value of the term f( h(f(a), f(b)) )

when

{
f interpreted by f

auxiliary symbols a, b, h interpreted by 0, 1, h

We shall see that all k-continuous functionals

NN → N are analogous to the above one
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Example. A 3-continuous functional

A simple non trivial example of a 3-continuous functional

This functional is typically in the ASM spirit. In particular, its definition
reduces to a term.

When looking for examples of k-continuous functionals, this kind of
example is the sole that we can find. Indeed, there is a reason for that
which is expressed by this rough and informal statement of the next
Lemma.
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ASM Thesis vs Bounded effect & cause

Lemma (Bounded continuity = Bndd Cause⇐⇒Term Query Cause)

Suppose Φ : NN → N had Bounded Cause.

Then there exist fixed

{
auxiliary functions h1, . . . , hn
term γ(f, h1, . . . , hn)

such that ∀f Φ(f ) is the value of γ(f,~h)
when f, h1, . . . , hn are interpreted by f , h1, . . . , hn

A proof of the ASM Thesis from semantical conditions

Main Theorem 1 Bounded Effect & Cause ⇐⇒ ASM
Suppose Ψ : T → T had Bounded Effect & Cause.
Then Ψ is the transition functional of some ASM.
In particular, Bounded Effect & Cause ⇐⇒ ASM

The Lemma & Theorem have effective versions
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ASM Thesis vs Bounded effect & cause

Lemma.
If Φ has k-bounded cause then the term γ(f,~h) has ≤ k2 occurences of f.
That means that Φ(f ) can be computed by querying f at ≤ k2 points
For the effective version the blow-up is 2k2 − k.

Theorem.
From the Bounded effect & cause property, our proof finds terms (and also
finds the auxiliary functions for the parameters in the term) which give the
“Bounded exploration” Postulate.

If Ψ has k-bounded cause and p-bounded effect then the ASM program
will show (an apparent) (kp)2-bounded effect and cause (though, its
transition functional is Ψ hence has k-bounded cause and p-bounded
effect).

For the effective version the blow-up is 2(kp)2 − kp.
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Why is the problem non trivial?

Suppose

∣∣∣∣∣∣∣∣
(1) Φ : NN → N is computable

(2) there exists a computably enumerable sequence
([ui ])i∈N of basic open sets with domain-size ≤ k
on which Φ is constant.

A priori, the considered algorithm to compute Φ(f ) may query f
at more than k .

To compute Φ(f ), the simplest way to use the covering by the
[ui ]’s is to query f on dom(u0), dom(u1),. . . up to find i such
that f agrees with ui hence f ∈ [ui ].
But this is a WHILE loop which may query f on more than k

Our theorems tell that we can bound the WHILE loop to O(k2).
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Uniform topological spaces
Bounded continuity ≡ uniform continuity

(but not relative to a metric...)

Topology is defined via neighborhoods of points
Neighborhood of a point x ≡ set of points “close” to x

Uniformity is defined via entourages of the diagonal
Entourage of the diagonal ≡ set of pairs of “close” points

Paradigmatic Example: Metric spaces

Basic neighborhoods of x : {y | d(x , y) < ε}
Basic entourages: {(x , y) | d(x , y) < ε}
There are axioms for the general (non metric) notions of

topology on a set and of uniformity on a set
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Uniform topological spaces

It turns out that k-continuity is relevant to uniform continuity
(but not relative to a metric...)

Thus, we have to use the general theory of uniform spaces.

As is the case for topology, uniformities as best understood by starting
with the metric case.

We have no time to detail the axioms for uniformities
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Bounded Information Uniformity on NN

Definition. Bounded Information Uniformity on the Baire space

Basic entourages: equivalence relations
⋃

i∈N [ui ]× [ui ]
where ([ui ])i∈N is a partition by basic clopen sets
all of which have domain size ≤ k , for some k .

• The associated topology is the usual product topology
• This uniformity is transitive (≈ ultrametric)
• This uniformity does not come from any metric

though it refines the usual metric uniformity on NN
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Bounded Uniformity on the Baire space NN

The Bounded Information uniformity is not a classical one (up to our
knowledge).
The condition on the size of the basic clopen sets has motivation from
computer science and not from mathematical analysis or algebra.

Let us stress that this uniformity is compatible with the usual topology on
the Baire space but does not come from a metric.
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Bounded Cause and uniform continuity

T product of spaces of total functions over sorts ≈ NN

Theorem For any Φ : NN → N, the following cond. are equivalent

1. Φ has Bounded Cause

2. Φ is k-continuous for some k
3. Φ is uniformly continuous

(
bounded unif. on NN

discrete one on N

)

Theorem For any Ψ : T → T, the following cond. are equivalent

1. Ψ has Bounded Cause

2. Ψ is “linearly” uniformly continuous (≈ Lipschitz)
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Bounded Cause and uniform continuity

The bounded uniformity allows us to get rid of the parameter k

Lipschitz condition with a metric:

d(Ψ(~f ),Ψ(~g)) ≤ N d(~f , ~g)

means that
the inverse image of the basic entourage {(~f , ~g) | d(~f , ~g) < ε}
contains the basic entourage {(~f , ~g) | d(~f , ~g) < ε/N}

Here linear uniform continuity means that
the inverse image of a basic entourage with domain size ≤ k
contains a basic entourage which has domain size ≤ Nk .
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Summing up Ψ = (Ψ1, . . . , Ψ`) : T→ T

Main theorem 2 The following conditions are equivalent

1 Ψ is the transition functional of a small-step algorithm

2 Ψ is an ASM functional

3 Ψ has bounded effect and bounded cause

4 Ψ has bounded effect
and is “linearly” uniformly continuous (≈ Lipschitz)

5 ∃k ∀~f Ψi(~f ) = fi ⊕ ψi(~f ) for some unif. continuous
ψi : T → partial functions with domain size ≤ k

Effective versions are also equivalent

dom(g ⊕ h) = dom(g) ∪ dom(h)
(g ⊕ h)(~x) = IF ~x ∈ dom(h) THEN h(~x) ELSE g(~x)
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Summing up Ψ = (Ψ1, . . . , Ψ`) : T→ T

Bounded effect is a set theoretical condition

The statement with the oplus equation embeds the “Bounded effect” into
this equation

The oplus operator ⊕ (borrowed to Abrial’s Z notation) can be described
as follows: “the one who is right is the last to talk”
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THANK YOU
FOR YOUR ATTENTION
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