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Abstract. We propose a new approach to the notion of recognition,
which departs from the classical definitions by three specific features.
First, it does not rely on automata. Secondly, it applies to any Boolean
algebra (BA) of subsets rather than to individual subsets. Thirdly, topol-
ogy is the key ingredient. We prove the existence of a minimum recognizer
in a very general setting which applies in particular to any BA of subsets
of a discrete space. Our main results show that this minimum recognizer
is a uniform space whose completion is the dual of the original BA in
Stone-Priestley duality; in the case of a BA of languages closed under
quotients, this completion, called the syntactic space of the BA, is a com-
pact monoid if and only if all the languages of the BA are regular. For
regular languages, one recovers the notions of a syntactic monoid and
of a free profinite monoid. For nonregular languages, the syntactic space
is no longer a monoid but is still a compact space. Further, we give an
equational characterization of BA of languages closed under quotients,
which extends the known results on regular languages to nonregular lan-
guages. Finally, we generalize all these results from BAs to lattices, in
which case the appropriate structures are partially ordered.

Recognizability is one of the most fruitful concepts in computer science [16,
3]. Originally introduced for finite words, it has been successfully extended to
infinite words, general algebras, finite and infinite trees and to many other struc-
tures. Roughly speaking, a set is recognizable if it is saturated by a congruence of
finite index. A desirable property for any notion of recognition is the existence of
a minimum recognizer. Here, the word “minimum” does not refer to algorithmic
properties, like the minimal number of states of an automaton, but rather to a
final object in a suitable category. For instance, there is a well defined notion
of morphism of deterministic automata. Final objects exist in this category and
are just the usual minimal automata. But no such notion is known for automata
on infinite words, even for ω-regular languages. This problem has been overcome
by using another type of recognizer. For languages of finite words, automata can
be replaced by monoids, for which there is a minimal recognizer, the syntactic
monoid. For ω-regular languages, ω-semigroups are a category in which minimal
recognizers do exist again [9, 17].

⋆ The authors acknowledge support from the AutoMathA programme of the European
Science Foundation and from the programme Research in Paris.



The aim of this paper is to propose a general definition of recognition for
which each object has a unique minimum recognizer. Our approach departs from
the classical definitions of recognition by three specific features:

(1) it does not rely at all on automata;

(2) it applies to Boolean algebras or more generally to lattices of subsets rather
than to individual subsets;

(3) topology, and in particular Stone-Priestley duality, is the key ingredient.

Our most general definition is given in the category of uniform spaces, an abstrac-
tion of the notion of metric spaces well-known to topologists. We predominantly
consider discrete spaces where the topology itself carries no valuable information.
However, an appropriate uniformity gives rise by completion to a compact space,
a common practice in mathematics, where it is often said that “compactness is
the next best thing to finiteness”.

We develop a notion of recognition in this general setting and prove that any
Boolean algebra of subsets of a uniform space admits a minimum recognizer,
which is again a uniform space, whose completion is the dual space of the original
Boolean algebra in the sense of Stone-Priestley duality.

When the uniform space carries an algebraic structure for which the opera-
tions are at least separately uniformly continuous, it is natural to require that the
recognizing maps be morphisms for the algebraic structure as well. In the case
of a monoid, this amounts to working in the category of semiuniform monoids
and imposes closure under quotients of the Boolean algebra. The minimum rec-
ognizer is then a semiuniform monoid whose completion is called the syntactic

space of the Boolean algebra with quotients. We prove that this syntactic space
is a compact monoid if and only if all the subsets of the Boolean algebra are rec-
ognizable. For a regular language, one recovers the classical notion of a syntactic
monoid. For a variety of regular languages, one obtains the free profinite monoid
of the corresponding variety of monoids. For nonregular languages, the syntactic
space is no longer a monoid but is still a compact space. We also prove that any
Boolean algebra of languages closed under quotient has an equational descrip-
tion. Finally, we generalize all these results from Boolean algebras to lattices
and recover in this way the notion of a syntactic ordered monoid.

1 The topological setting

In this section, we recall the notions of topology needed to read this paper. We
invite the reader to look at Wikipedia for an introduction and suitable references
(notably the entries uniform spaces and Stone-Čech compactification).

Let X be a set. We denote by Lc the complement of a subset L of X . The
subsets of X × X can be viewed as relations on X . Given a relation U , the
transposed relation of U is the relation tU =

{
(x, y) ∈ X × X | (y, x) ∈ U

}
. We

denote by UV the composition of two relations U and V on X . Thus

UV =
{
(x, y) ∈ X × X | there exists z ∈ X, (x, z) ∈ U and (z, y) ∈ V

}
.

Finally, if x ∈ X and U ⊆ X×X , we write U(x) for the set {y ∈ X | (x, y) ∈ U}.
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1.1 Uniform spaces

Uniform spaces generalize metric spaces and enable the formalization of the
notion of relative closeness. See [4] for a thorough discussion of these notions
and [12] for a connection with Eilenberg’s variety theory.
A uniformity on a set X is a nonempty set U of subsets of X ×X satisfying the
following properties:

(1) if a subset U of X × X contains an element of U , then U ∈ U ,

(2) the intersection of any two elements of U is an element of U ,

(3) each element of U contains the diagonal of X × X ,

(4) for each U ∈ U , there exists V ∈ U such that V V ⊆ U .

(5) for each U ∈ U , tU ∈ U .

The elements of a uniformity are called entourages. The pair (X,U) (or the set
X if U is understood) is called a uniform space. The discrete uniformity on X
is the unique uniformity which contains the diagonal of X × X .

A basis of a uniformity U is a subset B of U such that each element of U
contains an element of B. In particular, U consists of all the relations on X
containing an element of B. We say that U is generated by B.

A subbasis of a uniformity U is a subset B of U such that the finite intersec-
tions of members of B form a basis of U .

If X and Y are uniform spaces, a function ϕ : X → Y is said to be uniformly

continuous if, for each entourage V of Y , (ϕ × ϕ)−1(V ) is an entourage of X ,
or, equivalently, if for each entourage V of Y , there exists an entourage U of X
such that (ϕ × ϕ)(U) ⊆ V .

1.2 Pervin uniformities

Pervin uniformities were first introduced in [10]. They play a key role in our
definition of recognition given in Section 2.

For each subset L of a set X , consider the equivalence relation UL on X :

UL = (L × L) ∪ (Lc × Lc) = {(x, y) ∈ X × X | x ∈ L ⇐⇒ y ∈ L}

Let S be a collection of subsets of X . The sets of the form UL, for L ∈ S, form
the subbasis of a uniformity of X , called the Pervin uniformity defined by S and
denoted by US . The space (X,US) is called a Pervin space.

1.3 Induced topology

Let U be a uniformity on X . For each x ∈ X , let U(x) = {U(x) | U ∈ U }. There
exists a unique topology on X , called the topology induced by U , for which U(x)
is the set of neighborhoods of x for each x ∈ X .

If U is a uniformity on X , the intersection of all its entourages is an equiva-
lence relation ∼ on X , which is equal to the diagonal if and only if the topology
induced by U is Hausdorff. Further, if π : X → X/∼ denotes the quotient map,
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then the sets of the form (π × π)(U), where U is an entourage of X , form a
subbasis of a uniformity on X/∼. This map is uniformly continuous and the
Hausdorff uniform space X/∼ is called the Hausdorff quotient of X .

Let L be a Boolean algebra of subsets of X . In the topology induced by the
Pervin uniformity UL, the neighborhoods of x are the supersets of the sets of L
containing x.

1.4 Filters, ultrafilters and Stone duality

Let L be a Boolean algebra of subsets of X . A filter of L is a nonempty subset
F of L such that:

(1) the empty set does not belong to F ,

(2) if K ∈ F and K ⊆ L, then L ∈ F (closure under extension),

(3) if K, L ∈ F , then K ∩ L ∈ F (closure under intersection).

An ultrafilter is a filter which is maximal for the inclusion. Recall that a filter is
an ultrafilter if and only if, for every L ∈ L, either L ∈ F or Lc ∈ F . Let S(L)
be the set of ultrafilters of L. For each L ∈ L, let ωL be the set of ultrafilters
containing L. The set Ω = {ωL | L ∈ L} is a Boolean algebra of subsets of S(L),
which defines a Pervin uniformity UΩ. The uniform space (S(L),UΩ) is called
the Stone dual space of L and S(L) with the induced topology is the Stone dual
space of L in the topological sense. Note that Ω is a basis of clopen sets for the
topology of S(L) (recall that a set is clopen if it is both open and closed).

If X is a space, a filter of P(X) is simply called a filter on X . A filter F
converges to a point x of X if, for each neighborhood U of x, there is a set B of
F such that B ⊆ U . In this case, x is called a limit of F .

1.5 Blocks

A subset L of a uniform space X is a block if UL is an entourage. Intuitively,
blocks are to uniformities what clopen sets are to topologies. Recall that the
characteristic function of a subset L of X is the function χL from X to {0, 1}
defined by χL(x) = 1 if x ∈ L and χL(x) = 0 if x ∈ Lc.

Proposition 1.1. Let X be a topological [uniform ] space. A subset of X is

clopen [a block ] if and only if its characteristic function is a [uniformly ] contin-

uous function from X to the discrete [uniform ] space {0, 1}.

In the same way, Pervin uniformities are the uniform analogs of zero-dimensional
topologies: a topology is zero-dimensional [a uniformity is Pervin] if and only if
it has a basis of clopen sets [blocks].

Proposition 1.2. The blocks of a uniform space form a Boolean subalgebra of

the Boolean algebra formed by the clopen sets. These two Boolean algebras coin-

cide if the space is compact.

The next result gives a simple description of the blocks of a Pervin uniformity.
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Proposition 1.3. Let S be a collection of subsets of X. The blocks of the Pervin

uniformity defined by S form a Boolean algebra, equal to the Boolean algebra L
generated by S. Further, S and L define the same Pervin uniformity.

1.6 Hausdorff completion of a uniform space

Let X be a uniform space. A filter F on X is a Cauchy filter if, for every
entourage U , there exists B ∈ F with B × B ⊆ U . In Pervin spaces, Cauchy
filters have a simple description.

Proposition 1.4. Let L be a Boolean algebra of subsets of X. A filter F is

Cauchy for the Pervin uniformity defined by L if and only if, for every L ∈ L,

either L ∈ F or Lc ∈ F .

A uniform space X is complete if every Cauchy filter converges. Every uniform
space admits a unique Hausdorff completion [4]. More precisely, let X be a

uniform space. Then there exist a complete Hausdorff uniform space X̂ and a
uniformly continuous mapping ı : X → X̂ such that ı(X) is dense in X̂ and
the following universal property holds: for each uniformly continuous mapping
ϕ from X into a complete Hausdorff uniform space Y , there exists a unique
uniformly continuous mapping ϕ̂ : X̂ → Y such that ϕ̂ ◦ ı = ϕ. The image of X
under ı is the Hausdorff quotient of X and ı is thus injective if and only if X is
Hausdorff.

A uniform space is said to be totally bounded if, for each entourage U , there
exists a finite cover (Bi)i∈F of X such that, for all i ∈ F , Bi × Bi is a subset
of U . The interest of totally bounded uniformities lies in the following result
[4, TG.II.29, Thm. 3]: a uniform space is totally bounded if and only if its
completion is compact. This result applies in particular to Pervin spaces. Indeed,
the subbasic entourages of the form UL contain the sets L×L and Lc ×Lc and
{L, Lc} is a finite cover of X . Thus we obtain

Proposition 1.5. Any Pervin space is totally bounded.

1.7 Pervin completions

We now show that complete Pervin spaces are the uniform analogs of topological
Stone spaces. Let L be a Boolean algebra of subsets of X and let UL be the
Pervin uniformity defined by L. By Proposition 1.5, the completion X̂ of X
for this uniformity is compact. It consists of all Cauchy filters on X that are
minimal for the inclusion order on filters. For each x ∈ X , ı(x) is the filter of

neighborhoods of x in X and X̂ is equipped with the Pervin uniformity defined
by the sets {F ∈ X̂ | L ∈ F}, for each L ∈ L. For this reason, we call X̂ the
Pervin completion of X with respect to L.

We now give an alternative description of X̂. If G is a filter on the Boolean
algebra L, we denote by ↑G the filter on X generated by G.
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Theorem 1.6. The space X̂ is the dual space of L as defined in Section 1.4.

Further, the maps F 7→ F ∩ L and G 7→ ↑G define mutually inverse uniformly

continuous bijections between the set of minimal Cauchy filters on X and the set

of ultrafilters of L.

The next series of results gives another natural correspondence between the
blocks of X and the clopen sets of X̂ . We shall use freely the following notation.
Let χL be the characteristic function of some block L. By Proposition 1.1, χL

is uniformly continuous. The universal property of the completion ensures that
there is a unique uniformly continuous map χ̂L : X̂ → {0, 1} such that χ̂L ◦ ı =
χL. If L is a subset of X , we set L̃ = ı−1(ı(L)).

Theorem 1.7. One has L̃ ∈ L if and only if ı(L) is clopen and ı(L) ∩ ı(X) =
ı(L). If these conditions are satisfied, then ı(L) = χ̂−1

L̃
(1).

If the space (X,UL) is Hausdorff, then ı is the identity map and Theorem 1.7
can be simplified as follows:

Corollary 1.8. Suppose that (X,UL) is Hausdorff. Then L ∈ L if and only if

L is clopen and L ∩ X = L. If these conditions are satisfied, then L = χ̂−1

L
(1).

Let us denote by Clopen(X̂) the Boolean algebra of all clopen sets of X̂.

Theorem 1.9. The maps L 7→ ı(L) and K 7→ ı−1(K ∩ ı(X)) define mutually

inverse isomorphisms between the Boolean algebras L and Clopen(X̂). In par-

ticular, the following formulas hold, for all L, L1, L2 ∈ L:

(1) ı(Lc) = ı(L)
c

,

(2) ı(L1 ∪ L2) = ı(L1) ∪ ı(L2),

(3) ı(L1 ∩ L2) = ı(L1) ∩ ı(L2),

2 Recognition in a uniform space

In this section, we define a notion of recognition for Boolean algebras of blocks of
a uniform space. In spite of the analogy between clopen sets and blocks illustrated
by Proposition 1.1, our definition can only be reformulated in terms of clopen
sets and continuous maps if one moves to the Hausdorff completions. Indeed,
there are nontrivial Pervin uniformities inducing the discrete topology.

2.1 Recognition of a Boolean algebra

Let (X,U) be a uniform space and let L be a Boolean algebra of blocks of X .

Definition 1. A [surjective] uniformly continuous map ϕ from X into a uni-
form space Y [ fully ] recognizes L if, for each L ∈ L, ϕ(L) is a block of Y and
ϕ−1(ϕ(L)) = L.

Let us state two important consequences of this definition. The first one shows
that recognition preserves the Boolean structure and the second one is a transi-
tivity property.
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Proposition 2.1. If ϕ recognizes L, then ϕ induces an isomorphism of Boolean

algebras between L and ϕ(L).

Proposition 2.2. Let X, Y and Z be three uniform spaces and let L be a

Boolean algebra of blocks of X. If L is [ fully ] recognized by ϕ : X → Y and

ϕ(L) is [ fully ] recognized by γ : Y → Z, then L is [ fully ] recognized by γ ◦ ϕ.

2.2 Minimum recognizer of a Boolean algebra

If L is a Boolean algebra of blocks of X , the Pervin uniformity UL is contained
in U and therefore, the identity on X is a uniformly continuous map from (X,U)
onto (X,UL). The canonical map from (X,UL) onto its Hausdorff quotient XL is
surjective and uniformly continuous. The composition of these two maps yields
a surjective and uniformly continuous ηL from X onto XL, called the minimum

recognizing map of L. The space XL is called the minimum recognizer of L. This
terminology is justified by the following universal property:

Proposition 2.3. The map ηL : X → XL fully recognizes L. Further, if ϕ :
X → Y fully recognizes L, there exists a unique surjective uniformly continuous

map π : Y → XL fully recognizing the Boolean algebra ϕ(L) and such that

π ◦ ϕ = ηL. Further, η(L) is the set of blocks of XL.

If X is a discrete space, then every subset is a block. It means that every
Boolean algebra L of subsets of X admits a minimum recognizer. In this case,
the space XL is simply the quotient of X under the equivalence relation ∼L

defined by u ∼L v if and only if, for each L ∈ L, the conditions u ∈ L and v ∈ L
are equivalent. But of course, the interesting part is the uniform structure of XL,
inherited from the Pervin uniformity UL on X , which is in general nontrivial.

2.3 Recognition with additional algebraic structure

The notion of recognition originates in the setting of monoids and automata.
Recall that a subset of a monoid is recognizable if its syntactic monoid is finite.
Equivalently, a subset is recognizable if and only if it has only finitely many
distinct quotients. We now consider additional algebraic structure on uniform
spaces. For this purpose, we require the operations to be separately uniformly
continuous for each variable and the recognizing maps be morphisms for the
algebraic structure. Theorem 2.4 below shows that this condition forces some
structural conditions upon the Boolean algebra being recognized. Due to the
lack of space, we only treat the case of monoids, which is sufficient to illustrate
our ideas.

Let us define a semiuniform monoid as a monoid M equipped with a uniform
structure for which the translations x 7→ xs and x 7→ sx are uniformly continuous
for each s ∈ M . If the multiplication is jointly uniformly continuous, that is, if
the map (x, y) 7→ xy is uniformly continuous, M is a uniform monoid.

Let L be a subset of M and let s and t be elements of M . The quotient

s−1Lt−1 of L by s and t is defined by the formula s−1Lt−1 = {x ∈ M | sxt ∈ L}.
We can now state:
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Theorem 2.4. Let L be a Boolean algebra of blocks of M . Then L is closed un-

der quotients if and only if (M,UL) is a semiuniform monoid. If these conditions

are satisfied, then the relation ∼L is a congruence of monoids.

Under the conditions of Theorem 2.4, the minimum recognizer ML of L is
a semiuniform monoid. This allows us to link our definition with the standard
definition of a syntactic monoid. Suppose that M is a discrete monoid and let
L be a subset of M . Consider the smallest Boolean algebra L containing L and
closed under quotients. Since quotients commute with Boolean operations, this
is also the Boolean algebra generated by the quotients of L. Now, the equivalence
∼L defined at the end of Section 2.2 is the syntactic congruence of L, defined
by u ∼L v if and only if, for all x, y ∈ M , the conditions xuy ∈ L and xvy ∈ L
are equivalent. In summary, we obtain:

Proposition 2.5. The minimum recognizer of the Boolean algebra generated by

a set L and its quotients is the usual syntactic monoid of L enriched with a

uniform structure which makes the translations uniformly continuous.

3 Syntactic monoid and syntactic space

We are now ready to introduce our second main definition.

Definition 2. Let L be a Boolean algebra of blocks of X . The completion
of its minimum recognizer is called the minimum space of L. If L is closed
under quotients the minimum recognizer will be called the syntactic monoid,
the minimum space the syntactic space, and the minimal recognizing map the
syntatic morphism.

Since XL is Hausdorff, it can be identified with a subset of X̂L. The minimum
space has a universal property similar to that of the minimum recognizer. Let
us say that a map ϕ : X → Y is dense if ϕ(X) is dense in Y . A map densely

recognizes L if it recognizes L and is dense. Then ηL : X → X̂L is minimum
among Hausdorff complete recognizers, in the following sense:

(1) ηL : X → X̂L densely recognizes L;

(2) if Y is an Hausdorff complete space and if ϕ : X → Y densely recognizes

L, there is a unique surjective uniformly continuous map π : Y → X̂L such
that π ◦ ϕ = ηL.

The results of Section 1.7 show that the syntactic space is precisely the dual
space of L. Although the minimum recognizer ML is a monoid, the product on
ML is not in general uniformly continuous and the completion of ML is not
in general a monoid. More precisely, the closure of the product is in general a
ternary relation, as shown in Example 3.2.

Let us give a few examples of syntactic spaces.

Example 3.1. Let P(M) be the Boolean algebra of all subsets of a monoid M .
Its minimum recognizer is M and its syntactic space is the Stone-Čech com-
pactification of M , traditionally denoted by βM , and studied in detail in [7].
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As foretold by Theorem 4.1 below, the closure in βM of the product on M is
not a binary operation any longer. As a function from βM ×βM into P(βM) it
maps a pair of ultrafilters (p, q) to the family of ultrafilters extending the filter
of supersets of {XY | X ∈ p, Y ∈ q}.

Example 3.2. The minimal recognizer of the language {u ∈ {a, b}∗ | |u|a = |u|b}
is (Z, +). Its syntactic image is {0} and its quotients are the sets {n}, where
n ∈ Z. The Boolean algebra generated by these quotients is the set of finite
or cofinite subsets of Z. The associated Pervin completion of Z is Z ∪ {∞}: Z

corresponds to the principal ultrafilters on L and ∞ is the ultrafilter of cofinite
subsets of Z.

The minimal recognizer of the language Majority = {u ∈ {a, b}∗ | |u|a >

|u|b} is also (Z, +) and its syntactic image is [0, +∞[. Its quotients are [n, +∞[,
with n ∈ Z, and they generate the Boolean algebra of all subsets of Z having a
finite symmetric difference with one of the sets ∅, Z, −N or N. The associated
Pervin completion of Z is Z ∪ {−∞, +∞}: again Z corresponds to the principal
ultrafilters, and +∞ [−∞] is the ultrafilter containing the cofinite subsets of N

[−N].

Let us denote by Ẑ the completion of Z. Thus Ẑ = Z ∪ {∞} in the first

case, and Ẑ = Z∪ {−∞, +∞} in the second case. The tables below describe the
closure +̂ of the addition on Z for these two completions. These are not binary
operations any longer. We give them as functions from Ẑ × Ẑ into P(Ẑ).

+̂ i ∞

j {i + j} {∞}

∞ {∞} Ẑ

+̂ i −∞ +∞

j {i + j} {−∞} {+∞}

−∞ {−∞} {−∞} Ẑ

+∞ {+∞} Ẑ {+∞}

4 Recognizable Boolean algebras

When L is a Boolean algebra of regular languages of A∗ its syntactic space is the
profinite monoid attached to L, in the sense of [1, 6]. In particular, this syntactic
space is a compact monoid, that is, a compact space equipped with a monoid
operation which is jointly continuous. This is in fact characteristic, as we show
in the following theorem. Let us say that a Boolean algebra of blocks of M is
recognizable if all its members are recognizable.

Theorem 4.1. Let L be a Boolean algebra of blocks of M closed under quotients.

The following conditions are equivalent:

(1) the syntactic monoid of L is a uniform monoid,

(2) the syntactic space of L is a compact monoid,

(3) the closure of the operation on the syntactic monoid of L is functional,

(4) all the languages of L are recognizable.
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Example 4.1. In this example, we consider three Boolean algebras on Z.
Let Rec(Z) be the Boolean algebra of all recognizable subsets of Z, that is,

the family of finite unions of congruence classes {a + nZ | n > 1, 0 6 a < n}.

Its minimal recognizer is Z and its syntactic space Ẑ is the free profinite group
on one generator. Note that in this case, the closure of the addition is the usual
addition on Ẑ. In the sequel, we denote by i 7→ i the natural embedding from Z

into Ẑ and by + the addition on Ẑ.
Consider now the Boolean algebra L generated by Rec(Z) and by the finite

subsets of Z. Its minimal recognizer is Z and its syntactic space is the disjoint
union Z ∪ Ẑ: Z consists of the principal ultrafilters of L and the profinite group
Ẑ corresponds to the nonprincipal ones. The closure +̂ of the addition on Z is
commutative but nonfunctional. It extends + on Z and is such that, for i ∈ Z

and u, v ∈ Ẑ, i +̂ u = i + u and u +̂ v is {k, k} if u + v = k for some k ∈ Z and
is {u + v} otherwise.

Finally, let Rat(Z) be the Boolean algebra of rational subsets of Z. Its minimal

recognizer is again Z and its syntactic space is the disjoint union (Ẑ×{−})∪Z∪

(Ẑ × {+}) : as before Z stands for the principal ultrafilters and, for ε ∈ {+,−},

Ẑ×{ε} consists of the nonprincipal ones which contain εN. The closure +̂ of the
addition on Z is commutative but nonfunctional. It extends the addition on Z and
on each copy of Ẑ. Further, for i ∈ Z and u, v ∈ Ẑ, one has i +̂ (u, ε) = (i + u, ε)
and

(u, +) +̂ (v,−) =

{
{(k,−), k, (k, +)} if u + v = k for some k ∈ Z

{(u + v,−), (u + v, +)} otherwise

5 Equational theory

Let A∗ be a free monoid. We consider A∗ as a uniform space, endowed with the
Pervin uniformity defined by P(A∗). As we have seen, its completion is βA∗, the
Stone-Čech compactification of A∗. Let L be a Boolean algebra of languages of
A∗ closed under quotients and let η : A∗ → ML be its syntactic morphism. Then
η extends uniquely to a uniformly continuous map η̂ : βA∗ → M̂L. We denote
by L the closure in βA∗ of a language L of A∗.

Formally, an equation is a pair (u, v) of elements of βA∗. We say that L
satisfies the equation u = v if, for all L ∈ L, and for all x, y ∈ A∗, the conditions
xuy ∈ L and xvy ∈ L are equivalent. This is equivalent to stating that η̂(u) =
η̂(v). Given a set E of equations, the set of languages defined by E is the set
of all languages of A∗ satisfying all the equations of E. We are now ready to
state our equational characterization of Boolean algebras closed under quotients,
which extends the results of [6] to nonregular languages.

Theorem 5.1. A set of languages of A∗ is a Boolean algebra of languages closed

under quotients if and only if it can be defined by a set of equations of the form

u = v, where u, v ∈ βA∗.
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6 Lattices and ordered structures

Let us briefly indicate how to generalize these definitions and results to lattices.
It consists mainly in extending the ideas developed in [11, 12]. We treat directly
the case of a monoid M .

Let L be a lattice of subsets of M . Define the specialization preorder on M
given by L as the relation 4 defined by x 4 y if and only if for all L ∈ L,

y ∈ L =⇒ x ∈ L

We define the preordered Pervin uniformity given by L to be (M, 4,UL). The
minimum recognizer of L is the Hausdorff quotient (ML, 6) with 6 = 4 /∼,
where ∼ is the Hausdorff equivalence defined in Section 1.3 and the minimum
space of L is the ordered completion (M̂L, 6) of (ML, 6). The latter is the
uniform space version of the Priestley space of L [13]. If the syntactic space is a
monoid, we obtain an ordered monoid. For instance, if L is a regular language,
one gets the syntactic ordered monoid of L as defined in [11]. The order of the
syntactic monoid of the language Majority considered in Example 3.2 is the
usual order on Z.

7 Conclusion and perspectives

We have developed a topological approach to the notion of recognition which
seems general enough to be applied not only to monoids but to more general
algebras, notably those having finitely determined syntactic congruences in the
sense of [5], including vector spaces, Boolean algebras, groups and rings.

Let us come back to finite words. The notion of a syntactic monoid has been
extremely successful for regular languages and has developed into a rich theory.
However, besides the noticeable exception of the theory of context-free groups
[8], this notion is not doing so well beyond regular languages. The reason is that
the syntactic monoid does not capture enough information. To work around this
difficulty, Sakarovitch [14] proposed to use pointed monoids, a category which
also admits minimal recognizers. The pointed syntactic monoid of a language is
the pair formed by its syntactic monoid and by the image of the language in
its syntactic monoid. Our new definition is an extension of this idea. However,
instead of adding a ”point” to the syntactic monoid, we attach to it a uniform
structure (which also depends on the original language) and we consider its
completion as a uniform space.

The power of topological methods opens new perspectives for the solution of
problems beyond regular languages. Let us give a concrete example. Let AC0 be
the class of languages accepted by unbounded fan-in, polynomial size, constant-
depth Boolean circuits. A famous result [2] states that a regular language belongs
to AC0 if and only if its syntactic monoid is quasi-aperiodic. It would be nice to
prove this result (and the more general conjectures of this nature proposed by
Straubing in his book [15]) by finding some suitable property of the syntactic
space of AC0.
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