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FROM INDEX SETS TO RANDOMNESS IN ∅n:

RANDOM REALS AND POSSIBLY INFINITE COMPUTATIONS

PART II

VERÓNICA BECHER AND SERGE GRIGORIEFF

Abstract. We obtain a large class of significant examples of n-random reals (i.e., Martin-Löf random

in oracle ∅(n−1)) à la Chaitin. Any such real is defined as the probability that a universal monotone

Turing machine performing possibly infinite computations on infinite (resp. finite large enough, resp. finite

self-delimited) inputs produces an output in a given set O ⊆ P(N). In particular, we develop methods to

transfer Σ0n or Π
0
n many-one completeness results of index sets to n-randomness of associated probabilities.

§1. Introduction. In Part I of this work [5] (Problem 1.8) we posed the following

Question. For which sets O the probability that a universal monotone Turing
machine U performing possibly infinite computations produces an output in O is
n-random (i.e., Martin-Löf random in oracle ∅(n−1))?

The question can be considered either for infinite inputs with U : 2ù → X

a total map, or for finite inputs with U : 2<ù → X a partial map with prefix-free
domain (hereafter called self-delimited inputs). Following the idea developed in
our paper [6], the question for finite inputs can also be considered for large enough
finite inputs with U : 2<ù → X a total map. This leads to three different probabil-
ities denoted by Ω∞

U [O ] (infinite inputs), Ω
▷◁
U [O ] (self-delimited finite inputs) and

Ω∝
U [k,O ] (length ≥ k finite inputs).
Different notions of output can also be considered. The most natural choice
is to consider outputs which are finite or infinite sequences of binary digits, i.e.,
X = 2≤ù = 2<ù ∪ 2ù . As shown in [3], the range of Ω∞

U [O ], as a function
of O ⊆ 2≤ù, is a finite union of closed intervals. In particular, Ω∞

U [O ] can be
rational for non trivial simply defined O ’s. Nevertheless, in Part I [5], we proved
2-randomness of Ω∞

U [O ] and Ω
▷◁
U [O ] under various conditions on O .

In this paper, we consider outputs in P(N), the family of all subsets of N,
a choice which allows significant transfer results from the theory of many-one
degrees. A more general notion of output is possible, involving particular com-
pletions of computable partially ordered sets; it is developed in the forthcoming
paper [7].

Main randomness results. Denoting by O the complement of O , Table 1 summa-
rizes some randomness results given by Theorems 9.4, 9.7 and 9.11. The Ω∝

U [k,O ]
column of Table 1 gives the type of randomness for both O and O . As for the
Ω∞
U [O ] column of Table 1, the type of randomness of Ω

∞
U [O ] is the dual of that of

Ω∞
U [O ] since Ω

∞
U [O ] = 1 − Ω

∞
U [O ]. The = 0 and = 1 results of Table 1 are either
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O is the set of X ’s such that
Ω∝
U [k,O ]
/ Ω∝

U [k,O ]
Ω∞
U [O ]

Ω▷◁U [O ]
/ Ω▷◁U [O ]

0 all X ’s = 1/ = 0 = 1 Σ02/ = 0
1a X ⊇ A A finite, A 6= ∅ Σ01/Σ

0
2 Σ01 Σ02/Σ

0
2

1b X ⊇ A A infinite comput. or Σ02 Σ03/Σ
0
2 Π02 ?/Σ02

2a X ⊆ A A 6= N comput. or Π01 Σ02/Σ
0
1 Π01 Σ02/Σ

0
2

2b X ⊆ A A Π02 and not Π
0
1 ?/? ? ?/Σ02

3 X ⊆ Y Σ03/Σ
0
2 Π02 ?/Σ02

4a X = ∅ Σ02/Σ
0
1 Π01 Σ02/Σ

0
2

4b X = A A 6= ∅ finite ?/? ? Σ02/Σ
0
2

4c X = A A infinite c.e. Σ03/Σ
0
2 ? ?/Σ02

4d X = A A not c.e. = 0/ = 1 = 0 = 0/ = 1
5 X = Y Σ03/Σ

0
2 Π02 ?/Σ02

6a X is finite Σ02/Σ
0
3 Σ02 Σ02/?

6b |X | ≤ p p ∈ N Σ02/Σ
0
1 Π01 Σ02/Σ

0
2

6c ∀p |X ∩ {0, .., p}| ≤ |Y ∩ {0, .., p}| Σ03/Σ
0
2 Π02 ?/Σ02

7 X ⊆ N2 is a linear ordering Σ03/Σ
0
2 Π02 ?/Σ02

8 X is cofinite Σ03/Σ
0
4 Σ03 ?/?

9a X is c.e. = 1/ = 0 Σ03 Σ02/ = 0
9b X is boolean combination of c.e. = 1/ = 0 Σ03 Σ02/ = 0
9c Idem with X A-c.e. if A low c.e. = 1/ = 0 Σ03 Σ02/ = 0
10a X is computable Σ03/Σ

0
4 Σ03 ?

10b the complement of X is c.e. Σ03/Σ
0
4 Σ03 ?

11a X is simple Σ04/Σ
0
3 ? ?

11b X is c.e. not simple Σ03/Σ
0
4 Σ03 ?

12 X is maximal Σ05/Σ
0
4 ? ?

13 X is atomless Σ06/Σ
0
5 ? ?

14a A ≤Turing X where A is low c.e. Σ03/Σ
0
4 Σ03 ?

14b A ≡Turing X where A is low c.e. Σ03/Σ
0
4 ? ?

14c Idem with X c.e. Σ03/Σ
0
4 ? ?

15a A ≤Turing X where A is high c.e. Σ04/Σ
0
5 Σ04 ?

15b A ≡Turing X where A is high c.e. Σ04/Σ
0
5 ? ?

15c Idem with X c.e. Σ04/Σ
0
5 ? ?

16a X ≤Turing Y Σ04/Σ
0
5 Σ04 ?

16b X ≡Turing Y Σ04/Σ
0
5 ? ?

17a X is c.e. and n-low Σ0n+3/Σ
0
n+4 ? ?

17b X is c.e. and n-high Σ0n+4/Σ
0
n+5 ? ?

18 X ∈ Set(w) with w ∈ {FIN,COF}<ù , Σ0i+2j+1 Σ0i+2j+1 ?

|w|FIN = i , |w|COF = j (cf. §4.2) / Σ0i+2j+2
19 X ⊆ N2 is well-founded Π11/? Π11 ?

Σ0n (resp. Π
0
n) in the last three columns means that Ω

···
U [O ] is n-random

with Σ0n (resp. Π
0
n) left cut in the set of rational numbers.

Table 1. Some randomness results implied by Theorems 9.4, 9.7, 9.11.
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trivial (line 0) or straightforward consequences of Propositions 2.3 and 2.5. Ques-
tion marks in Table 1 are open questions for which the methods of this paper do not
apply or which are technically challenging. Observe that we have few randomness
results for families O which are Σ0n ∧ Π

0
n (in the sense of the Scott arithmetical

hierarchy on P(N) introduced in §3.1): one with n = 1 for Ω▷◁U [O ] (line 4b) and
one with n = 3 for Ω∝

U [k,O ] (line 11a).
The material is organized as follows. §2 formalizes three notions of computable
maps associated to possibly infinite computations with outputs inP(N) and inputs
in 2ù or in 2<ù (all words) or in a prefix-free set of words. §3 introduces the pertinent
topology onP(N), which is a non Hausdorff (but still T0) weakening of the Cantor
topology. The associated Scott arithmetical hierarchy, i.e., the effectivization of the
finite levels of the Scott Borel hierarchy, does not coincide with that associated to
the Cantor topology. Definability with respect to that hierarchy is studied in §4. In
particular, we give a general theorem to get syntactical complexity of “index like”
definable subsets ofP(N) (cf. Corollary 4.5).
§5 is devoted to three concepts of hard subsets O ⊆ P(N) associated to the three
types of computable maps. Such hardness is relative to subsets of the Cantor space
2ù or of the discrete space 2<ù . In the case of 2ù, the so-called effective Wadge
hardness is the effective analog of the classical Wadge hardness in descriptive set
theory (cf. Wadge [19]).
These concepts of hardness for Σ0n(2

ù) or for Σ0n(2
<ù) are key hypotheses in the

basic randomness Theorems 9.2, 9.5 and 9.8, asserting n-randomness of the reals
Ω∞
U [O ], Ω

∝
U [k,O ] and Ω

▷◁
U [O ] (associated to the three types of computable maps)

provided O is Scott Σ0n definable. These theorems are direct generalizations of
Theorem 1.11 of Part I [5] where we proved 2-randomness. The core of their proofs
brings nothing new, being uniform for every n ≥ 1, only the proof forΩ∝

U [k,O ] needs
an extra argument similar to that developed in our paper [6]. Equality Ω∞

U [O ] =
1−Ω∞

U [O ] allows for randomness results with Scott Π
0
n families O ⊆ P(N).

The case of Ω▷◁U [O ] is very particular: the associated (so-called) open special
hardness is rather trivial for Σ02, impossible for Σ

0
n , n ≥ 3, and the weaker measure

special hardness is problematic (cf. § 8.3). This is why we have no application of the
a priori useful equality Ω▷◁U [O ] = Ω

▷◁
U [P(N)]−Ω

▷◁
U [O ].

Although there is no such equality with Ω∝
U [k,O ], a much better result holds

in that case since then open second order many-one Π0n hardness implies Σ
0
n+1

hardness (cf. Theorem 5.11). Whence the surprising Σ0n/Σ
0
n+1 and Σ

0
n+1/Σ

0
n pairs in

the Ω∝
U [k,O ] column of Table 1.

Sections §6, §7and §8 prove sufficient conditions (which are also necessary in
a few cases) for each of the three hardness notions for families of subsets of P(N).
At level 1, second order many-one hardness and effective Wadge hardness of Scott
open families ofP(N) are both equivalent to the conditionO 6= ∅∧∅ /∈ O (cf. Propo-
sitions 6.1, 7.1). At level 2, effective Wadge hardness is characterized (cf. Proposi-
tion 7.3) and implies second order many-one hardness (cf. Proposition 6.5). A suf-
ficient very efficient condition is the “chain property” (cf. Proposition 6.4). As for
open special hardness, level 1 and 2 are both equivalent to the condition that O con-
tains a c.e. set (cf. Proposition 8.1). These results lead to significant 1-random and
2-random reals Ω∝

U [k,O ] and Ω
∞
U [O ] and 2-random Σ

0
2 reals Ω

▷◁
U [O ] (cf. Table 1).
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Most important, one can prove (cf. Theorem 6.9) that the usual many-one hard-
ness of the index set of a family O of c.e. sets is equivalent to second order many-one
hardness of O . This gives a very powerful tool to get significant n-random Σ0n
reals Ω∝

U [k,O ] (cf. Table 1).
A version of such a general transfer theorem from many-one hardness of index
sets also holds for effective Wadge hardness (cf. Theorem 7.20). It takes advantage
of the fact that most of the many-one hardness results for index sets of c.e. sets
relativize –with trivial changes in the proof– to index sets of A-c.e. sets uniformly
in the oracle A ⊆ N. This is the source of randomness of Ω∞

U [O ] in lines 7,8, 18,
19 of Table 1. However, this transfer theorem is more suited for families defined in
a set theoretic way. For families O defined by computability conditions, effective à
la Wadge hardness happens to be the most difficult to prove at levels ≥ 3. We show
how to transfer Rogers and Yates classical proofs of many-one hardness of index
sets at levels 3 and 4 into effective Wadge hardness of associated subsets of P(N),
cf. Theorems 7.6, 7.18. This leads to significant n-random reals Ω∞

U [O ], for n = 3, 4
(cf. Table 1, lines 9abc,10ab,14a,15a,16a).

Notation 1.1. The alphabet {0, 1} is denoted with 2 and, as usual, we write
2≤n, 2≥n and 2<ù to denote, respectively, the set of all words up to length n, the set
of all words with length at least n and that of all finite words. The length of a word
w is denoted by |w| and the cardinal of a finite set X is denoted by |X |. P(X )
denotes the power set of X andP<ù(X ) is the set of all finite subsets of X whereas
2ù denotes the set of all infinite words, i.e, the Cantor space. The Lebesgue measure
of a subsetX of the Cantor space 2ù is denoted by ì(X ).
Let A ⊆ N be some fixed oracle. We denote by (We)e∈N and (W A

e )e∈N standard
enumerations of computably enumerable sets (in short c.e.) and A-c.e. subsets of N
or of Nd , (the dimension d being clear from context).

§2. Three notions of computable maps intoP(N) for infinite computations.

2.1. Monotone machines with outputs in P(N) or P(Nd )ℓ . We consider Turing
machines with finite or infinite binary words as inputs which enumerate sets of
natural numbers. These aremonotoneTuringmachines performing possibly infinite
computations which output integers from time to time. The input tape is one-way
read-only and the output tape –which receives integers, not digits (whatever be the
coding of these integers)– is one-way write-only (i.e., no erasing nor over-writing is
possible). We care neither about the order of appearance of these integers nor the
number of times that a given integer appears. Thus, the resulting output of such
a possibly infinite computation is a finite or infinite set of integers.
Considering monotone machines with ℓ output tapes that receive d -tuples of
integers, we similarly get outputs in P(Nd )ℓ . This straightforward extension is
needed for results in lines 3, 5, 6c, 7, 16b, 18, 19 of Table 1.
Throughout the paper the term monotone Turing machine means such machines.
To simplify notations, we shall consider the case d = ℓ = 1. All notions and results
stated for P(N) go through in an obvious way in the general case of P(Nd )ℓ (for
Theorem 2.8 and Proposition 2.9, we give proofs for the general case).

2.2. Three notions of computable maps. First, we consider the simplest definition
of possibly infinite computations on finite or infinite inputs.
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Definition 2.1 (Computable total maps). A total map F : 2<ù → P(N) (resp.
F : 2ù → P(N)) is computable if there exists some monotone Turing machineM
such that, for every u ∈ 2<ù (resp. α ∈ 2ù), F (u) (resp. F (α)) is the subset of N

output byM through a possibly infinite computation on input u (resp. α).

If finite inputs are restricted to a prefix-free set we obtain the following.

Definition 2.2 (Self-delimited partial computable maps). Let k, ℓ ≥ 1. A par-
tial map F : 2<ù → P(N) is self-delimited partial computable if there exists some
monotone Turing machineM such that, for every u ∈ 2<ù ,

i. F (u) is defined if and only if the input head reads u entirely during the
computation and does not visit any cell beyond u.

ii. When defined, F (u) is the subset ofN output byM through a possibly infinite
computation on input u.

The following results are straightforward.

Proposition 2.3. Let F : 2<ù → P(N) be either a computable total map or
a self-delimited partial computable map. The range of F is included in the family
of computably enumerable (c.e.) subsets of N. In particular, F−1(O ) is empty if O
contains no c.e. set.

Proposition 2.4. The domain of a self-delimited partial computable map F :
2<ù → P(N) is a prefix-free subset of 2<ù which is Σ01 ∧Π

0
1 in 2

<ù .

The version of Proposition 2.3 for maps from 2ù is as follows.

Proposition 2.5. Let F : 2ù → P(N) be a computable total map. For any
α ∈ 2ù the image F (α) is α-c.e. In particular, F−1({A}) has Lebesgue measure
zero if A is not a c.e. set.

Proof. The first assertion is obvious. For the second one, apply Sacks’ result
which insures that {α ∈ 2ù | A is α-c.e.} has measure 0 if A is not c.e. (Sacks [14]
p.156 Theorem 2). ⊣

2.3. Universality by adjunction. An enumeration theorem holds for all the above
types of computablemaps. We state it in terms of universality by adjunction, a notion
heavily used in Part I [5].

Notation 2.6. If F : 2ù → P(N) and i ∈ N, we denote by Fi : 2ù → P(N) the
map such that Fi(α) = F (0i1α) for all α.
If F : 2<ù → P(N) and i ∈ N, we denote by Fi : 2

<ù → P(N) the map such that
Fi(u) = F (0i1u) for all u ∈ 2<ù . Observe that if F has prefix-free domain then so
have all Fi ’s.

Definition 2.7 (Universality by adjunction). 1. Acomputable totalmapU∝ :
2<ù → P(N) (resp. U∞ : 2ù → P(N)) is universal by adjunction if for any
computable total map F : 2<ù → P(N) (resp. F : 2ù → P(N)) there exists
i ∈ N such that F = (U∝)i (resp. F = (U∞)i).

2. A self-delimited computable partial map U▷◁ : 2<ù → P(N) is universal by
adjunction if for any self-delimited partial computable map F : 2<ù → P(N)
there exists i ∈ N such that F = (U▷◁)i .



FROM INDEX SETS TO RANDOMNESS IN ∅n . PART II 129

Theorem 2.8. 1. There exists computable total maps U∝ : 2<ù → P(N) and
U∞ : 2ù → P(N) which are universal by adjunction.

2. There exists a self-delimited partial computable map U▷◁ : 2<ù → P(N)
which is universal by adjunction. Moreover, the domain of U▷◁ can be taken
to be included in 0<ù12<ù .

Proof. We give the proof in the general case P(Nd )ℓ instead of P(N) since it
needs a simple additional trick.
Case of total maps. Let (Mi)i∈N be a computable enumeration of monotone
Turing machines with ℓ output tapes and let Fi : 2

<ù → P(Nd )ℓ (resp. Fi : 2
ù →

P(Nd )ℓ) be the computable map associated to Mi . Set U∝(0i) = (∅, ..., ∅) and
U∝(0i1u) = Fi(u). (resp. U∞(0ù) = (∅, ..., ∅) and U∞(0i1α) = Fi(α)). It is
straightforward to see that U∝ (resp. U∞) is computable.
Case of self-delimited maps. Define U▷◁ with domain {0i1u | u ∈ dom(Fi)} so
that U▷◁(0i1u) = Fi(u). ⊣

Proposition 2.9. 1. If U∞ : 2ù → P(N) is total computable universal by
adjunction then U∞ is surjective.

2. If U∝ : 2
<ù → P(N) (resp. U▷◁ : 2

<ù → P(N)) is total computable (resp.
self-delimited partial computable) universal by adjunction then its range is the
family of c.e. subsets of N.

Proof. Again, we give the proof in the general case P(Nd )ℓ instead ofP(N).
Case U∞ : 2ù → P(Nd )ℓ . Since U∞ is universal, its range contains the range of
any computable total map F : 2ù → P(Nd )ℓ . Observe that there exists a surjective
such F , for instance F (α) = ({f(i) | α(iℓ + j) = 1})j=0,...,ℓ−1 where f is some
fixed computable bijection N → Nd .
Case U▷◁ : 2<ù → P(Nd )ℓ (resp. U∝ : 2<ù → P(Nd )ℓ). Same proof: con-
sider the total (resp. partial) computable map F : 2<ù → P(Nd )ℓ such that
F (0i11...10iℓ1v) = (Wi1 , ...,Wiℓ ) and F (w) = (∅, ..., ∅) (resp. F undefined) if w has
less than ℓ 1’s. ⊣

§3. Topology and arithmetical hierarchy onP(N) andP(Nd )ℓ .

3.1. Scott topology and arithmetical hierarchy. The pertinent topology onP(Nd )
with respect to computable maps 2ù → P(Nd ) is the Scott topology (Scott, [15]
1972). In order to get a proper hierarchy, the usual definition of the finite levels of
the Borel hierarchy has to be distorted at level 2, cf. Selivanov [16], 2005.

Definition 3.1. 1. (Scott topology on P(N)) If A ⊂ N, let BA = {X | X ⊇ A}.
Let BScott = {BA | A ⊂ N is finite}. The open sets of the Scott topology on P(N)
are all arbitrary unions of sets in the basisBScott.
2. The Scott arithmetical hierarchy on theP(N)×Nm’s is defined by induction on
n ∈ N as follows: let X ⊂ P(N)× Nm and n ∈ N,

X ∈ Σ01(P(N)× Nm)⇔ X =
⋃

(A,~i)∈C

BA × {~i}

where C is a c.e. subset of P<ù(N)× Nm,

X ∈ Σ02(P(N)× Nm)⇔ X = {(X,~i) | ∃j (X,~i, j) ∈ (Y \Z )}

where Y ,Z ∈ Σ01(P(N)× Nm+1),
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X ∈ Σ0n+3(P(N)× Nm)⇔ X = {(X,~i) | ∃j (X,~i, j) ∈ Y }

where Y ∈ Π0n+2(P(N)× Nm+1),

X ∈ Π0n(P(N)× Nm)⇔ (P(N)× Nm) \X ∈ Σ0n(P(N)× Nm).

We shall also say that X ⊆ P(N) is Scott Σ0n or Π
0
n when it is in Σ

0
n(P(N)) or in

Π0n(P(N)).
3. The Scott topology onP(N)ℓ is the ℓ-th power of the Scott topology onP(N).
The Scott arithmetical hierarchy onP(N)ℓ is obtained similarly as above. Replacing
P(N)ℓ by P(Nd )ℓ is straightforward.

Remark 3.2. The Scott topology on P(N) is not Hausdorff. However, it is T0,
i.e., for any pair of distinct elements X,Y ∈ P(N), there is an open set which
contains X and not Y or there is an open set which contains Y and not X . In fact,
suppose X 6= Y and let i be in the symmetric difference of X and Y . Then B{i}

contains either X or Y but not both.

Remark 3.3. As noticed by Selivanov [16], the Scott arithmetical hierarchy on
P(N) does not coincide with the arithmetical hierarchy on the Cantor space 2ù

(modulo the standard identification of P(N) with 2ù). In fact, for all n,

Σ0n(P(N)) ( Σ0n(2
ù) ( Σ0n+1(P(N)).

The same is true with the Borel hierarchy. For instance, X = P(N) \ {N}, defined
by the formula ∃x x /∈ X , is Σ01(2

ù) and Scott Σ02 but neither Scott open nor
Scott closed. However, the infinite levels of the Borel hierarchies and the projective
hierarchies onP(N) and 2ù coincide.

A straightforward induction shows that one can compute the Scott level from
a defining first-order formula (with first-order and second order variables), in the
usual way, provided that x ∈ X be considered as Scott Σ01.

Proposition 3.4. Let Ri(x1, . . . , xp), i ∈ N be predicates to be interpreted by
computable relations on N. Let φ(X1, . . . , Xℓ , x1, . . . , xk) be a first-order formula
built on the atomic predicates x ∈ X plus the Ri ’s. Let O ⊆ P(N)ℓ × Nk

be the family defined by φ. Let ø(x1, . . . , xp) be the formula obtained from
φ(X1, . . . , Xℓ , x1, . . . , xk) by substituting to any atomic formula x ∈ X the exis-
tential formula ∃t P(x,X, t) where P is a new atomic predicate (intuitive meaning:
x is put in X at time t). If the syntactical complexity of ø is Σn (resp. Πn) then O
is Scott Σ0n (resp. Scott Π

0
n).

3.2. Computability, continuity and arithmetical hierarchy. The following results
partly transfer to P(N) andP(Nd )ℓ what was proved for 2≤ù in [4], Theorem 81.

Theorem 3.5. Every computable totalmapF : 2ù → P(N) is continuous relative
to the Cantor topology on 2ù and the Scott topology onP(N). Idem withP(Nd )ℓ .

Proof. LetM be a monotone machine which computes F . Let A ⊂ N be finite.
If F (α) ∈ BA then there exists some step t such that, on input α, M has already
output all elements of A. Since at step t the input head has read at most the t
first symbols of α, we see that if â ↾ t = α ↾ t then F (â) ⊇ A. Thus, (α ↾ t)2ù is
a neighborhood of α mapped intoBA by F . This proves continuity of F . ⊣
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O is the set of X ’s such that O is conditions
1a X ⊇ A Σ01 A finite, A 6= ∅
1b X ⊇ A Π02 A infinite comput. or Σ02
2a X ⊆ A Π01 A 6= N comput. or Π01
2b X ⊆ A Π02 A Π02 and not Π

0
1

3 X ⊆ Y Π02
4a X = ∅ Π01
4b X = A Σ01 ∧Π

0
1 A finite, A 6= ∅

4c X = A Π02 A infinite comput. or Σ01
4d X = A Π02 A infinite ∆02 not Σ

0
1

5 X = Y Π02
6a X is finite Σ02
6b |X | ≤ p Π01 p ∈ N

6c ∀p |X ∩ {0, .., p}| ≤ |Y ∩ {0, .., p}| Π02
7 X ⊆ N2 is a linear ordering Π02
8 X is cofinite Σ03

18 X ∈ Set(w) Σ0i+2j+1
w ∈ {FIN,COF}<ù (Def.4.2)
|w|FIN = i , |w|COF = j

19 X ⊆ N2 is well-founded Π11

Table 2. Complexity of set theoretic families O in the Scott arith-
metical hierarchy.

Theorem 3.6. Let O ⊆ P(N) be Scott Σ0n.

1. If n ≥ 1 and F : 2ù → P(N) is a computable total map then F−1(O ) is
Σ0n(2

ù).
2. If n ≥ 1 and F : 2<ù → P(N) is a computable total map then F−1(O ) is
Σ0n(2

<ù).
3. If n ≥ 2 and F : 2<ù → P(N) is a self-delimited partial computable map then
F−1(O ) is Σ0n(2

<ù).
4. Idem with Π0n or Π

1
1 in place of Σ

0
n andP(Nd )ℓ in place ofP(N).

Proof. 1. Effectivization of the argument of the proof of Theorem 3.5 yields the
Σ01 case and the extension to sequences of sets: if O ⊆ P(N)× Nm is Scott Σ01 then

{(α,~i) | (F (α),~i) ∈ O } ∈ Σ01(2
ù × Nm). Commutation of F−1 with set difference

and countable unions reduces all cases to the Σ01 case.
2. Argue as in the proof of Theorem 3.5 with input u ∈ 2<ù in place of α ∈ 2ù .
Then argue as in point 1.
3. Again argue as in the above proof of Theorem 3.5 with input u ∈ 2<ù .
However, since F is partial, we have to add the condition u ∈ dom(F ) which is
Σ01 ∧Π

0
1 (cf. Proposition 2.4). Whence the constraint n ≥ 2. ⊣

§4. Definability in P(N) w.r.t. Scott arithmetical hierarchy. Tables 2, 3 give the
level in Scott arithmetical hierarchy of diverse families O ⊆ P(N) or ⊆ P(Nd )ℓ .
They are referred to in Propositions 4.1, 4.7. Let’s recall that Scott definability in
P(N) is not the same as definability in the Cantor space 2ù, cf. Remark 3.3.
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4.1. Simple set theoretic predicates onP(N).

Proposition 4.1 (Set theoretic predicates onP(N)). Table 2 gives the level in the
Scott arithmetical hierarchy of some families O ⊂ P(N) (or P(N2) or P(N)2)
defined by some set theoretic properties involving fixed parameters A ⊆ N and
p ∈ N subject to specified restrictions.
When O is stated to be Scott Σ0n (resp. Π

0
n or Π

1
1) then it is not Scott Π

0
n (resp. Σ

0
n

or Σ11).

Proof. The stated complexities are easily obtained using Proposition 3.4. Let’s
look at the negative assertion of the Proposition. The Σ01 and Π

0
1 cases (lines 1a,

2a, 4a, 6b) are easy to handle since the involved O ’s are obviously not Scott clopen.
Similarly, for the Σ01 ∧Π

0
1 case (line 4b), observe that O is neither open nor closed.

The Π11 case (line 19) is also easy since Scott Π
1
1 coincides with Π

1
1 in the sense of

2ù and the result is well-known in the Cantor space framework.
Using Theorem 3.6, we see that if U is total computable U : 2<ù → P(N) or
U : 2ù → P(N) and O is Scott Σ0n then U

−1(O ) is Σ0n in 2
<ù , so that the left cut of

the real ì(U−1(O )) is Σ0n. The same is true ifU is self-delimited partial computable
U : 2<ù → P(N) and n ≥ 2.
Now, an (n + 1)-random real cannot have Σ0n left cut. Thus, the randomness
results stated in Table 1 and proved in Theorems 9.4, 9.7 and 9.11 (their proofs
do not depend on the negative assertion of the present Proposition) imply the
remaining wanted negative results, except that for line 4d. If {A} is Scott Σ02 then
it is a countable union of Scott Σ01 ∧Π

0
1 families and, being a singleton family, it is

equal to one of these families, hence it is Scott Σ01 ∧Π
0
1. Finally, observe that {A} is

Scott Σ01 ∧Π
0
1 if and only if A is finite. In fact, let X = (

⋃
C∈C BC ) ∩ (

⋂
D∈D BD)

where C ,D are c.e. subsets of P<ù(N). If A is infinite and A ∈ X and C ∈ C is
such that C ⊂ A then any subset of A which contains C is also in X , so that X
cannot be equal to {A}. ⊣

4.2. Iterating operators FIN and COF.

Definition 4.2 (Operators FIN and COF). 1. We denote by FIN and COF
the operatorsP(Nd )→ P(Nd+1) such that, for allX ⊆ P(Nd ),

FIN(X ) = {X ⊆ Nd+1 | {i | Xi ∈ X } is finite},

COF(X ) = {X ⊆ Nd+1 | {i | Xi ∈ X } is cofinite}

where Xi denotes the set Xi = {(i1, . . . , ik) | (i, i1, . . . , ik) ∈ X}.
2. To any non empty word w in the alphabet {FIN,COF} we associate a family
Set(w) ⊆ P(N|w|) by the following induction:

Set(FIN) = {X ⊆ N | X is finite}, Set(FIN⌢w) = FIN(Set(w)),

Set(COF) = {X ⊆ N | X is cofinite}, Set(COF⌢w) = COF(Set(w)).

Proposition 4.3. 1. If n ≥ 1 and X ⊆ P(Nd ) is Scott Σ0n in P(Nd )) then
FIN(X ) and COF(X ) are respectively Scott Σ0n+1 and Σ

0
n+2 in P(Nd+1).

2. Let w = w1...wi+j be a non empty word in the alphabet {FIN,COF} contain-
ing i occurrences of FIN and j occurrences of COF. Then Set(w) is Scott
Σ0i+2j+1 in P(N|w|).
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Proof. 1. Observe that FIN(X ) =
⋃
i∈N

⋂
j≥i{X | Xj /∈ X }, and COF(X ) =⋃

i∈N

⋂
j≥i{X | Xj ∈ X }.

2. We argue by induction on |w|. Initial step: |w| = 1. We already know that
Set(FIN) is Scott Σ02 in P(N) (cf. Table 2 line 18). As for Set(COF), observe that
{X | X is cofinite} =

⋃
n∈N

{X | X ⊇ In} where In = {i | i ≥ n}. Inductive step.
Apply point 1. ⊣

4.3. Many-one hardness of index sets for FIN,COF iterations. Simple variations
of known many-one completeness of index sets of finite and cofinite sets apply to
iterations of the FIN,COF operators (cf. §4.2).

Proposition 4.4. 1. Let n, d ≥ 1 andC ⊆ Nd . If index(C ) is Σ0n-complete then
index(FIN(C )) and index(COF(C )) are respectively Σ0n+1 and Σ

0
n+2-complete.

2. Let w = w1 . . . wi+j be a word in the alphabet {FIN,COF} containing i
occurrences of FIN and j occurrences of COF. Then index(Set(w)) (cf. Defi-
nition 4.2) is Σ0i+2j+1-complete.

Proof. Point 2 is immediate from point 1 and Proposition 4.3 for lines 6a and 8
of Table 2.
Hardness of index(FIN(C )).LetX ⊆ N be Σ0n+1. There is some Σ

0
n setR such that

x ∈ X ⇔ ∃i ¬R(x, i)

⇔ ∃i ∃j < i ¬R(x, j)

⇔ ∃i ¬(∀j < i R(x, j))

⇔ {i : ∀j < i R(x, j)} = [0, m] for some m,

x 6∈ X ⇔ {i : ∀j < i R(x, j)} = N.

Now, {(x, i) | ∀j < i R(x, j)} is still Σ0n, so that the hypothesis on C insures that
there is a computable map ϕ : N2 → N such that, for all x, i ,

∀j < i R(x, j) ⇔ ϕ(x, i) ∈ index(C ) ⇔ Wϕ(x,i) ∈ C

Let f : N → N be computable such that Wf(x) = {(i, y) | y ∈ Wϕ(x,i)}. Then
(Wf(x))i =Wϕ(x,i) and

x ∈ X ⇒ {i : (Wf(x))i ∈ C } = [0, m] for some m,

x 6∈ X ⇒ {i : (Wf(x))i ∈ C } = N.

In particular, X = f−1(FIN(C )).
Hardness of index(COF (C )). Let X ⊆ N be Σ0n+2. The first ∀∃ alternation in

the Π0n+2 definition of N \ X can be replaced by a ∃∞ quantifier (cf. Kreisel &
Shoenfield & Wang, [12] 1960, or Rogers’ book [13] p.329). Thus, there is some
Σ0n set R such that, for all x, x /∈ X ⇔ ∃∞i ¬R(x, i). The hypothesis on
C insures that there is a computable map ϕ : N2 → N such that, for all x, i ,
R(x, i) ⇔ ϕ(x, i) ∈ index(C ) ⇔ Wϕ(x,i) ∈ C . Let f : N → N be computable
such thatWf(x) = {(i, y) | y ∈Wϕ(x,i)}. Then (Wf(x))i =Wϕ(x,i) and

x 6∈ X ⇒ {i : (Wf(x))i /∈ C } is infinite,

x ∈ X ⇒ {i : (Wf(x))i /∈ C } is finite

⇒ {i : (Wf(x))i ∈ C } is cofinite.

Thus, X = f−1(COF (C )). ⊣
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4.4. From index sets to Scott definability of families of c.e. sets. In this section we
give a convenient tool to get the level in the Scott arithmetical hierarchy of some
families of c.e. sets.

Proposition 4.5 (From index sets to Scott definability). Let O ⊆ Σ01(N) and
index(O ) = {e ∈ N |We ∈ O } (cf. Notation 1.1) be the index set of O .

1. If O ⊆ Σ01(N) has Σ
0
k index set then O is Scott Σ

0
max(3,k)

in P(N).

2. If O ⊆ Σ01(N) has Π
0
k index set then O is Scott Σ

0
3 ∧Π

0
max(3,k)

in P(N).

3. If O ⊆ Σ01(N) has Π
1
1 index set then O is Scott Π

1
1 in P(N).

Proof. 1. First, observe that W = {(X, e) | X = We} is Scott Π02. In fact,
X 6= We if and only if ∃x ((x ∈ X ∧ x /∈We) ∨ (x /∈ X ∧ x ∈ We)), so thatW is
the complement of the projection over x ∈ N of a union of two Σ01 ∧ Π

0
1 families,

hence is Scott Π02. Now, X ∈ O if and only if ∃e (X =We ∧ e ∈ index(O )). Thus,
O is the projection over e ∈ N of the intersection of the Scott Π02 family W with
P(N)× index(O ), which is Σ0

max(3,k)
in P(N) if index(O ) is Σ0k .

2. We also haveX ∈ O if and only if (∃e X =We)∧∀e (X 6=We ∨e ∈ index(O ))
which shows that O is Scott Σ03 ∧Π

0
max(3,k)

. Point 3 is similar. ⊣

4.5. Some predicates on P(N) from computability theory. First, we recall some
classical definitions (cf. Soare’s book [17]).

Definition 4.6. - X is low if its jump X ′ has the same Turing degree as ∅′. If
X is low c.e., we have Σ0,X1 ⊆ ∆02 and, for n ≥ 2, Σ

0,X
n = Σ02 and Π

0,X
n = Π0n .

- X is high if its jump X ′ has the same Turing degree as ∅′′. If X is high c.e., we
have Σ0,Xn = Σ0n+1 and Π

0,X
n = Π0n+1 for all n ≥ 2.

- X is n-low if its n-th jump X (n) has the same Turing degree as ∅(n).
- X is n-high if its n-th jump X (n) has the same Turing degree as ∅(n+1).
- X is simple if it is c.e. and its complement is infinite but contains no infinite
c.e. set.
- X is maximal if it is c.e. and, for any c.e. set Y ⊇ X , either Y is cofinite or
Y \ X is finite.
- X is atomless if it is coinfinite c.e. with no maximal c.e. superset.

Proposition 4.7 (Recursion theoretic predicates onP(N)). Table 3 gives the le-
vel in the Scott arithmetical hierarchy of some families O ⊂ P(N) (or P(N)2)
defined by some recursion theoretic properties involving a fixed parameter A ⊆ N

subject to specified restrictions.
When O is stated to be Scott Σ0n (resp. Π

0
n) then it is not Scott Π

0
n (resp. Σ

0
n).

Proof. Excepted for lines 14abc, all stated complexities are easily obtained using
Proposition 3.4.
Case of line 14a. We adapt Yates argument for the Σ0,A3 character of the index
set {e | We ≤Turing A} when A is c.e. (cf. Soare [17], p.242). Denote by {e}

A the
partial A-computable function N → N with code e. Then

X ≤Turing A ⇔ ∃e ({e}A is total ∧ ∀x ((x ∈ X ⇔ {e}A(x) = 1))).

Observe that the total character of {e}A is a Π0,A2 statement about e. Since A is
low, this is also Π02. To deal with the last part of the above equivalence, consider
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O is the set of X ’s such that complex.
9a X is c.e. Σ03
9b X is a boolean combination of c.e. sets Σ03
9c Idem with X A-c.e. if A is low c.e. Σ03
10a X is computable Σ03
10b the complement of X is c.e. Σ03
11a X is simple Σ03 ∧Π

0
3

11b X is c.e. not simple Σ03
12 X is maximal Π04
13 X is atomless Π05
14a X ≤Turing A where A is low c.e. Σ03
14b X ≡Turing A where A is low c.e. Σ03
14c Idem with the additional condition X c.e. Σ03
15a X ≤Turing A where A is high c.e. Σ04
15b X ≡Turing A where A is high c.e. Σ04
15c Idem with the additional condition X c.e. Σ04
16a X ≤Turing Y Σ04
16b X ≡Turing Y Σ04
17a X is c.e. and n-low Σ0n+3
17b X is c.e. and n-high Σ0n+4

Table 3. Complexity of recursion theoretic families O in the Scott
arithmetical hierarchy.

the computable predicate S(x, u, e, y, z, t) which states that there is an oracular
computation of machine e on input x which at step t outputs u, using the sole
conditions that the oracle contains f(y) and is disjoint from f(z). The total
character of {e}A allows to express {e}A(x) = 1 in both forms

∃y, z, t (S(x, 1, e, y, z, t) ∧ f(y) ⊆ A ∧ f(z) ∩ A = ∅)

∀y, z, y, u ((S(x, u, e, y, z, t) ∧ f(y) ⊆ A ∧ f(z) ∩ A = ∅)⇒ u = 1)

which are Σ02 and Π
0
2 in N2 (A being a fixed c.e. set). Reporting in the above

equivalence, we see that the family O of line 14a is Scott Σ03.

Case of line 14b. Again, we adapt Yates argument for the Σ0,A3 character of the
index set {e |We ≡Turing A} when A is c.e. (cf. Soare [17], p.242):

X ≡Turing A⇔ ∃e, i ({e}A and {i}W
A
e are total

∧ ∀x ((x ∈ X ⇔ {e}A(x) = 1) ∧ (x ∈ A⇔ {i}X (x) = 1)))

Observe that the total character of {e}A and {i}W
A
e is a Π0,A2 statement about e, i .

Since A is low, this is also Π02.
Case of line 14c. Immediate from lines 9a and 14ab.
Negative assertion of theProposition. The randomness argument used to prove the
similar assertion of Proposition 4.1 works for all lines of Table 3, cf. the randomness
results stated in Table 1 and proved in Theorems 9.4, 9.7 and 9.11 (their proofs do
not depend on the negative assertion of the present Proposition). ⊣
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§5. Three notions of hardness for subsets of P(N) or P(Nd )ℓ . Effective Wadge
hardness, second order many-one hardness and special hardness are the basic tools
to obtain randomness results, and they arise from the three different sorts of com-
putable maps considered in §2. In this section we present their definitions, while
in §6, §7 and §8 we develop characterizations for families of subsets ofP(N) at Scott
levels Σ0n and Π

0
n.

Again, to simplify notations, we reduce to the caseP(N), the general caseP(Nd )ℓ

being trivial extension. Recall that we use ì(X ) to denote the Lebesgue measure of
a subsetX of the Cantor space 2ù of all infinite binary words of length ù.

5.1. Effective Wadge hardness.

Definition 5.1 (Effective Wadge hardness). 1. The set A ⊆ 2ù is effectively
Wadge reducible to O ⊆ P(N) if there exists a computable total map F : 2ù →
P(N) such thatA = F−1(O ).

2. Effective almost everywhere Wadge reducibility and effective measure Wadge
reducibility are respectively obtained by weakening equality to equality up
to a set of measure zero and to equality of measures up to a computable in-
versible linear transformation. I.e. respectively asking forì(A∆F−1(O )) = 0,
ì(F−1(O )) = aì(A ) + b, with a, b computable, a 6= 0, where X∆Y =
(X \ Y ) ∪ (Y \ X ) is the symmetric difference of the sets X,Y .

We write A ≤effW O , A ≤a.e.W O , A ≤measW O .
3. The set O ⊆ P(N) is effectively Wadge hard for a class C of subsets of 2ù if

A ≤effW O for all A ∈ C . Effective almost everywhere Wadge hardness and
effective measure Wadge hardness are defined similarly.

Remark 5.2. Since computable maps 2ù → P(N) are continuous, the above
notions of effective Wadge reducibility and effective Wadge hardness are effectiviza-
tions of the classical topological notions of reducibility and hardness introduced by
Wadge [19].

Remark 5.3. The almost everywhereWadge andmeasureWadge variants happen
to be pertinent conditions for some of our applications (cf. Theorems 7.7 and 9.2).
In particular, the family of c.e. subsets of N will be proved to be effective almost
everywhere Wadge hard for Σ03(2

ù) but not effective Wadge hard, cf. Theorem 7.7.

5.2. Second order many-one hardness. We extend the classical many-one re-
ducibility between sets of integers or finite words to a second order context using
computable total maps F : 2<ù → P(N).

Definition 5.4 (Second order many-one hardness). 1. The setA ⊆ 2<ù is sec-
ond order many-one reducible to O ⊆ P(N) (written A ≤m O ) if there exists
a computable total map F : 2<ù → P(N) such that A = F−1(O ).

2. Open (resp. almost everywhere, resp. measure) second order many-one re-
ducibility is obtained by weakening equality A = F−1(O ) to equality of the
open subsets of 2ù associated to the restrictions ofA andF−1(O ) to length≥ k
words (resp. equality up to a set ofmeasure zero, resp. equality ofmeasures up
to a computable inversible linear transformation). I.e. respectively asking for
A2ù = F−1(O )2ù , ì(A2ù∆F−1(O )2ù) = 0, ì(F−1(O )2ù) = aì(A2ù) + b
with a, b with computable, a 6= 0.
We write A ≤m O , A ≤openm O , A ≤a.e.m O and A ≤measm O .
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3. The set O ⊆ P(N) is second order many-one hard for a class C of subsets of
2<ù if A ≤m O for all A ∈ C . Open, almost everywhere and measure second
order many-one hardness are defined similarly.

5.3. Special hardness. Replacing inDefinition 5.4 the conditionF : 2<ù → P(N)
is total computable by the condition F is self-delimited partial computable, we get
the notion of special reducibility and its variants.

Definition 5.5 (Special hardness). 1. The set A ⊆ 2<ù is special reducible to
O ⊆ P(N), if there exists a self-delimited partial computable map F : 2<ù →
P(N) such that A = F−1(O ).

2. Open (resp. almost everywhere, resp. measure) special reducibility is obtained
by weakening equality A = F−1(O ) to equality of the associated open subsets
of 2ù (resp. equality up to a set of measure zero, resp. equality of mea-
sures up to a computable inversible linear transformation). I.e. asking for
A2ù = F−1(O )2ù (resp. ì(A2ù∆F−1(O )2ù) = 0, resp. ì(F−1(O )2ù) =
aì(A2ù) + b for some computable a, b with a 6= 0).
We write A ≤sp O , A ≤opensp O , A ≤a.e.sp O and A ≤meassp O .

3. The set O ⊆ P(N) is special hard for a class C of subsets of 2<ù ifA ≤spec O for
all A ∈ C . Special almost everywhere hardness and special measure hardness
are defined similarly.

Remark 5.6. Clearly, special reducibility of A to O implies that A is included in
someprefix-freeΣ01∧Π

0
1 subset of 2

<ù (namely, the domain ofF , cf. Proposition 2.4).
As we shall see in §8.2, this forbids the existence of Σ0n or Π

0
n open special hard

families O for n ≥ 3.

5.4. Hardness and complementation.

Proposition 5.7. Let A ⊆ 2ù and O ⊆ P(N).

1. A ≤effW O if and only if A ≤effW O .

2. O is effectively Wadge hard for C ⊆ P(2ù) if and only if O is effectively Wadge
hard for the class Č = {X | X ∈ C }.

3. Points 1 and 2 also hold with almost everywhere and with measure reducibility
hardness.

Proof. For points 1,2, use commutation of F−1 with complementation. For 3,
use the identity A∆B = A∆B . ⊣

Proposition 5.8. Let A ⊆ 2<ù and O ⊆ P(N).

1. A ≤m O if and only if A ≤m O .
2. O is second order many-one hard for C ⊆ P(2<ù) if and only if O is second
order many-one hard for the class Č = {X | X ∈ C }.

3. Points 1, 2 fail for open, almost everywhere and measure second order many-
one hardness.

Proof. For points 1,2, use commutation ofF−1 with complementation over 2≥k .
The basic reason for point 3 is that A2ù and A2ù may be non complementary sets
(they may even be equal sets). Counterexamples proving point 3 are given by
Theorem 5.11 and Proposition 5.16 below. ⊣
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Remark 5.9. Proposition 5.8 is always false with special reducibility since F is
partial and F−1(O ) = dom(F )\F−1(O ) is not the complement of F−1(O ). In fact,
O = P(N) is open special hard for Σ02 (cf. Proposition 8.1) whereas its complement
special reduces the sole empty set.

5.5. Open many-one hardness and al.: fromΠ0n to Σ
0
n+1.

Lemma 5.10. Let n ≥ 1. For any Σ0n set A ⊆ 2<ù there exists some prefix-free
Π0n−1 set B ⊆ 2<ù such that A2ù = B2ù .

Proof. Case n = 1. Well-known fact (where Π00 means computable). Recall
the argument: (1) replace a word u ∈ A by all words in u2k for some k so as to
transform some fixed computable enumeration of A into a length non decreasing
computable enumeration of A0 such that A2ù = A02ù , (2) remove from A0 any
word which has some prefix already enumerated.
Getting B ∆0n. Relativizing case n = 1 to oracle ∅

(n), we get the statement of the
Lemma with B ∆0n .
Case n = 2. We have just observed that one can reduce to the caseA is prefix-free
(and also ∆02 but this will be of no use). Let A = {u | ∃x ∀y R(x, y, u)} where
R ⊆ N2 × 2<ù is computable. The intuition for the following definition is to extend
any u ∈ A to all v with length coding the following triple of integers:

(i) the length of u (in order to recover u as a prefix of v).
(ii) the value of the least x such that ∀y R(x, y, u).
(iii) the value of the least z such that ∀s < x ∃y ≤ z ¬R(s, y, u).

Letting (ð31, ð
3
2, ð

3
3) : N → N3 be Cantor computable bijection. Recall that ð3i (t) ≤ t

for all t. Define B as follows:

B = {v ∈ 2<ù | ∀y R(ð32(|v|), y, v ↾ð31(|v|))

∧ ∀x < ð32(|v|) ∃y ≤ ð33(|v|) ¬ R(x, y, v ↾ð31(|v|))

∧ ∃x < ð32(|v|) ∀y < ð
3
3(|v|) R(x, y, v ↾ð31(|v|))}.

Clearly, B is Π01 definable. Let’s see that B is prefix-free. Suppose v ≤pref w and
v,w are both in B. Then v ↾ ð31(|v|) and w ↾ ð31(|w|) are both in A. Since they
are prefix comparable (as are v and w) and A has been supposed prefix-free they
are equal. Let u = v ↾ ð31(|v|) = w ↾ ð31(|w|). Now, ð

3
2(|v|) and ð

3
2(|w|) are both

equal to the least x such that ∀y R(x, y, u). Similarly, ð33(|v|) and ð
3
3(|w|) are both

equal to the least z such that ∀x′ < x ∃y ≤ z ¬R(x′, y, u). Thus, |v| = |w| and
condition v ≤pref w yields equality v = w. Let’s see thatA2

ù = B2ù . For inclusion
B2ù ⊆ A2ù , observe that any v ∈ B extends some u ∈ A. Now, suppose u ∈ A
and let k code |u|, x and z as in conditions (i), (ii), (iii) above. Then all extensions
of u with length k are in B. This insures A2ù ⊆ B2ù.
Case n ≥ 3. Relativize case n = 2 to oracle ∅(n−1). ⊣

As an immediate corollary, we get

Theorem 5.11. If O is open second order many-one hard for Π0n(2
<ù) then it is

also open second ordermany-onehard for Σ0n+1(2
<ù). Idemwith almost everywhere

and with measure hardness. Idem with special hardness.

Proof. Given a Σ0n+1 set A, apply Π
0
n open (resp. a.e., resp. measure) many-one

hardness to a Π0n set B such that A2
ù = B2ù. ⊣
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5.6. Relations between the three notions of hardness. The next Proposition char-
acterizes second order many-one hardness in terms of effective Wadge hardness.

Proposition 5.12. Let C ⊆ P(2<ù) be a class of sets such that if X ∈ C then
è(X ) ∈ C for every computable injective è : 2<ù → 2<ù which has computable
range (for example C = Σ0n(2

<ù) or C = Π0n(2
<ù)). Consider the following

conditions:

i. O is effectivelyWadge hard for the class of all setsX2ù whereX ∈ C is a subset
of some infinite computable prefix-free set of words.

ii. O is second order many-one hard for C .

Then,

1. i⇒ ii.
2. ii⇒ i holds if ∅ /∈ O .

Proof. 1. Let B ⊆ 2<ù be an infinite computable prefix-free set of words. Then,
O is effectivelyWadge hard for the class of all setsX2ù whereX ∈ C is a subset ofB.
Fix some computable bijection è between 2<ù and B. Let A ∈ C . Then è(A) ∈ C .
Let F : 2ù → P(N) be a total computable map such that è(A)2ù = F−1(O )
and define G : 2<ù → P(N) as G(u) = F (è(u)0ù). G is total computable and
G(u) ∈ O ⇔ è(u)0ù ∈ F−1(O ) ⇔ è(u)0ù ∈ è(A)2ù ⇔ è(u) ∈ è(A) ⇔ u ∈ A
(for the third equivalence, use the fact that the range B of è is prefix-free).
2. Let X ∈ C be a subset of the computable prefix-free Z ⊆ 2<ù . Let M
be a Turing machine computing a total computable F : 2<ù → P(N) such that
X = F−1(O ). Consider the Turing machine T which, on input α ∈ 2ù , outputs
nothing until it has read a prefix of its input α lying in Z. If and when such a prefix
α ↾ t appears, T starts ouputting F (α ↾ t) asM does. Clearly, T computes a total
map G : 2ù → P(N). If α /∈ Z2ù then G(α) = ∅ /∈ O . If α = uâ with u ∈ Z
then α ∈ X2ù ⇔ u ∈ X ⇔ F (u) ∈ O ⇔ G(α) ∈ O . Thus, X2ù = G−1(O ), as
wanted. ⊣

Remark 5.13. Proposition 5.12 can be improved replacing point 2 with:

2. ii ⇒ i holds if ∅ /∈ O or ∃C (C is c.e. not in O ∧ ∀X ∈ P(2<ù) ∀Y ∈
P<ù(C ) (X ∈ O ⇔ X ∪ Y ∈ O )).

The given proof adapts requiring that machine T , which computes the wanted re-
ductionG , first outputs the elements of a computable enumeration ofC until it reads
prefix of α lying in Z. If such prefix exists, G(α) is F (u) augmented with finitely
many elements of C . The extra hypothesis insures that G(α) ∈ O ⇔ F (u) ∈ O .

To get the expected Corollary 5.15, let’s look at the relations between the com-
plexity of A ⊆ 2<ù and that of A2ù .

Proposition 5.14. Let n ≥ 1 and A ⊆ 2<ù . Then,

i. A is Σ0n ⇒ A2
ù is Σ0n ,

ii. A is Π0n ⇒ A2
ù is Π0n if ∃B prefix-free Σ0n−1 A ⊆ B,

iii. A2ù is Σ0n ⇒ A is Σ
0
n if ∃B prefix-free Σ0n A ⊆ B,

iv. A2ù is Π0n ⇒ A is Π
0
n if ∃B prefix-free Π0n A ⊆ B.

Proof. For i and ii, observe that α ∈ A2ù if and only if ∃n α ↾n ∈ A if and only
if (∃n α ↾n ∈ B) ∧∀n (α ↾n ∈ B ⇒ α ↾n ∈ A). As for iii and iv, observe that u ∈ A
if and only if u ∈ B ∧ u0ù ∈ A2ù . ⊣
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Corollary 5.15. If O ⊆ P(N) is effectively Wadge hard for Σ0n(2
ù) then it is also

second order many-one hard for Σ0n(2
<ù). Idem with Π0n .

Proof. Use points i, ii of Proposition 5.14 and i⇒ iii in Proposition 5.12. ⊣

5.7. Hardness and the arithmetical hierarchy. NeitherWadge duality theoremnor
Wadge hardness theorem [19] apply to effectiveWadge, second order many-one, nor
special reducibility. Nevertheless, the easy direction of the hardness theorem does
hold.

Proposition 5.16. Let n ≥ 1 and B be an infinite computable prefix-free set of
words. Let C be the class of Σ0n (resp. Π

0
n) subsets of B.

1. If O ⊆ P(N) is effectively Wadge hard for Σ0n(2
ù) (resp. Π0n(2

ù)) then O is
not Scott Π0n (resp. not Scott Σ

0
n).

Idem if O is effectively Wadge hard for the class of subsets X2ù such that
X ∈ C .

2. IfO ⊆ P(N) is second order openmany-onehard for Σ0n(2
<ù) (resp. Π0n(2

<ù))
then O is not Scott Π0n (resp. Σ

0
n).

Idem if O is second order open many-one hard for C .
3. If n ≥ 2 and O ⊆ P(N) is open special hard for Σ0n(2

<ù) (resp. Π0n(2
<ù)) then

O is not Scott Π0n (resp. Σ
0
n).

Idem if O is second order open many-one hard for C .

Proof. Proposition 5.14 shows that it suffices to prove the statements involvingC .
We consider the sole case C = Σ0n(B), the case C = Π

0
n(B) is similar.

Case O is effectively Wadge hard for X2ù ’s such that X ∈ C . Consider some Σ0n
set X ⊆ B which is not Π0n . If O were Scott Π

0
n then, by Theorem 3.6, X2

ù , being
effectively Wadge reducible to O , would be Π0n(2

ù). Using Proposition 5.14, this
would imply that X is Π0n, a contradiction.
Case O is second order open many-one hard for C . Similar.
Case O is open special hard for C . Idem but n ≥ 2 is required in Theorem 3.6. ⊣

§6. Criteria for second order many-one hardness.

6.1. Second order many-one hardness at level 1.

Proposition 6.1 (Hardness at level Σ01). Let O ⊆ P(N) be Scott Σ01. The follow-
ing conditions are equivalent:

i. O is second order many-one hard for Σ01(2
<ù),

ii. O 6= ∅ and ∅ /∈ O .

Proof. i ⇒ ii. If O were empty (resp. equal to P(N)) then F−1(O ) would be
empty (resp. equal to 2<ù) for all total F : 2<ù → P(N), contradicting i. Since O
is Scott Σ01 it is open for the Scott topology and condition O 6= P(N) is equivalent
to ∅ /∈ O .
ii⇒ i. Being Scott Σ01 and non empty, O contains a basic open set BA for some
finite A. Since ∅ /∈ O we have A 6= ∅. Let X be Σ01(2

<ù). Define a computable total
map F : 2<ù → P(N) such that F (u) = A if u ∈ X and F (u) = ∅ otherwise. Since
A ∈ O and ∅ /∈ O , we have F−1(O ) = X . ⊣

As a straightforward application, we get hardness results for the level 1 families of
Table 2 (cf. Proposition 4.1).
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Proposition 6.2. The family {X ∈ P(N) | X ⊇ A} (line 1a of Table 2) is second
order many-one hard for Σ01(2

<ù) if A ⊆ N is finite non empty.
The families P(A) with A 6= N Π01 (line 2a), {∅} (line 4a) and {X | |X | ≤ p}
(line 6b) from Table 2 are second order many-one hard for Π01(2

<ù).

6.2. Computable sieves for O ⊆ P(N). To get a convenient sufficient condition
for second order many-one and effective Wadge hardness at level Σ02, we introduce
the notion of sieve.

Definition 6.3 (Computable sieve for O ). A computable sieve for O ⊆ P(N) is
a computable map v : N<ù → P<ù(N) such that, denoting ó⌢n the finite sequence
obtained by appending n ∈ N to ó ∈ N<ù ,

i. For every ó ∈ N<ù , the sequence (v(ó⌢n))n∈N is monotone nondecreasing
(w.r.t. set inclusion) and its union is in O ,

ii. For every ϕ ∈ Nù , the sequence (v(ϕ ↾n))n∈N is monotone nondecreasing and
its union is not in O .

The notion extends easily to O ⊆ P(Nd )ℓ with componentwise set inclusion.
A co-sieve for O ⊆ P(N) is a sieve for its complement O .

The chain condition below was already used for subsets of 2≤ù in Definition 1.15
of part I [5].

Proposition 6.4. The following “computable chain condition” implies that O ⊆
P(N) admits a computable sieve:

(chain)
There exists a computable monotone non decreasing chain

(Xi)i∈N ∈ (P(N))ù of sets in O , the limit of which is not in O .

Proof. Let v(〈〉) = ∅ and v(〈n1, . . . , nk〉) = Xk ∩ {0, . . . , k + nk}. ⊣

6.3. Second order many-one hardness at level 2. We can now get a sufficient
condition second order many-one hardness for Σ02.

Proposition 6.5. If O ⊆ P(N) has a computable sieve (resp. co-sieve) then O is
second order many-one hard for Σ02(2

<ù) (resp. Π02(2
<ù)).

Proof. Let X ∈ Σ02(2
<ù) be such that X = {u | ∃i ∀j R(i, j, u)} where R is

computable. The second order many-one reduction F : 2<ù → P(N) of X to O
will be such that F (u) =

⋃
t∈N
v(h(u, t)) where h : 2<ù×N → N<ù is a computable

map defined by the following induction: for u ∈ 2<ù , t ∈ N,

h(u, 0) = 〈0〉,

h(u, t + 1) =

{
ó⌢(p + 1) if h(u) = ó⌢p and R(|ó|, p, u) holds,
ó⌢p⌢0 otherwise.

For u ∈ 2<ù , if h(u, t) = 〈n1, ..., nk〉 then

- t = k − 1 +
∑
i=1,...,k ni

- R(i, j, u) holds for i ≤ k and j < ni
- R(i, j, u) fails for i < k and j = ni .

Observe that the sequence (h(u, t))t∈N is monotone increasing with respect to the
lexicographic ordering on N<ù .
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Case u ∈ X . Let i be least such that ∀j R(i, j, u) and ó = 〈n0, ..., ni−1〉 where,
for ℓ < i , nℓ is least such that R(ℓ, nℓ , u) fails. Then h(u, t) = ó⌢(t − p) for all
t ≥ p = i − 1+ n0+ ...+ ni−1. Since v is a sieve for O , the sequence (v(h(u, t)))t∈N

has limit in O , i.e. F (u) ∈ O .
Case u /∈ X . Then the lengths of the h(u, t)’s are unbounded. Let f ∈ N<ù be
such that the f(t)⌢0’s are the successive terms with last element 0 in the sequence
(h(u, n)n∈N). By monotonicity, we have

⋃
n∈N
v(h(u, n)) =

⋃
t∈N
v(f(t)). Since v

is a sieve for O , this union is not in O , i.e. F (u) /∈ O .
We have shown F−1(O ) = X . ⊣

The following result shows forwhich level 2 familiesO ofTable 2 (cf. Proposition 4.1)
one can apply Proposition 6.5.

Proposition 6.6. 1. The familyP<ù(N) (line 6a of Table 2) satisfies the com-
putable chain condition, hence is second order many-one hard for Σ02(2

<ù).
2. The families of P(N), P(N)2 or P(N2) of lines 1b,3,5,6c,7 of Table 2) satisfy
the computable co-chain condition, hence are second order many-one hard
for Π02(2

<ù).
3. Whatever be A ⊆ N, the families P(A) and {A} (cf. lines 2b,4c,4d of Table 2)
admit no sieve and no co-sieve (even non computable ones).

4. Though it has no co-sieve, the Scott Π02 family O = {A} where A is infinite
c.e. (cf. line 4c of Table 2) is second order many-one hard for Π02(2

<ù).

Proof. 1 and 2. Lines 1b,6a : set Xi = {0, . . . , i}. Lines 3,5,6c : set (Xi , Yi) =
({0, . . . , i + 1}, {0, . . . , i}). Line 7 : set Xi = {(j, k) | j ≤ k ≤ i} \ {(0, i)}.
3. No sieve for P(A) (line 2b). Sieve condition i insures that

⋃
n∈N
v(ó⌢n) ⊆ A.

Which implies that all v(ó)’s are included in A. Therefore
⋃
n∈N
v(ϕ ↾ n) ⊆ A for

any ϕ : N → N, contradicting sieve condition ii.
No co-sieve forP(A). Co-sieve condition i insures that

⋃
k∈N
v(〈k〉) 6⊆ A. Which

implies that some v(〈k〉) is not included in A. Therefore
⋃
n∈N
v(ϕ ↾n) 6⊆ A for any

ϕ : N → N such that ϕ(0) = k, contradicting co-sieve condition ii.
No sieve for {A} (lines 4cd ). Sieve condition i insures that

⋃
n∈N
v(ó⌢n) = A.

Which implies that all v(ó)’s are included in A and ∀x ∈ A ∀ó ∃n x ∈ v(ó⌢n).
This allows the inductive construction of ϕ : N → N such that ∀x (x ∈ A ⇒ x ∈
v(ϕ ↾(x + 1))), which yields

⋃
n∈N
v(ϕ ↾n) = A and contradicts sieve condition ii.

No co-sieve for {A}. First, observe that co-sieve condition ii insures that all v(ó)’s
are included in A. Then argue as forP(A).
4. Fix a computable enumeration (ai)i∈N of A and let Tot = {e | We = N}.
Consider the monotone Turing machine which, on input e, outputs ai if and
when i appears in We . The associated computable map G : N → P(N) satis-
fies G−1({A}) = Tot. Now, if C ⊆ 2<ù is any Π02 set and f : 2

<ù → N is
a many-one reduction of C to Tot, the map u 7→ G(f(u)) is the wanted second
order many-one reduction of C to {A}. ⊣

Remark 6.7. Since the range of all computable maps 2<ù → P(N) consists of
c.e. sets, if A ⊆ N is not c.e. then only the empty set is second order many-one
reducible to {A}. This rules out any second order many-one hardness in the case of
line 4d of Table 2.
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Problem 6.8. When A is Π02 and not Π
0
1, Is P(A) second order many-one hard

for Π02? (cf. line 2b of Table 2).

6.4. From many-one hardness of index sets to second order many-one hardness.
The following very simple theorem allows to get second order many-one hardness
from usual many-one hardness of index sets. It is the source of a lot of randomness
results.

Theorem 6.9 (Transfer Theorem). Let index(O ) = {e | We ∈ O } ⊆ N where
O ⊆ P(N). The following conditions are equivalent:

1. index(O ) is many-one hard for Σ0n (resp. Π
0
n , resp. Π

1
1) in the usual sense

2. O is second order many-one hard for Σ0n(2
<ù) (resp. Π0n , resp. Π

1
1).

Proof. 1 ⇒ 2. Let A ⊆ 2<ù be Σ0n (resp. Π
0
n, resp. Π

1
1) and let f : 2

<ù → N

be a computable reduction of A to index(O ). Let M be the monotone Turing
machine which, on input u ∈ 2<ù , enumeratesWf(u). The associated computable
total map F : 2<ù → P(N) satisfies F (u) = Wf(u), so that, for all u ∈ 2<ù ,
u ∈ A⇔ f(u) ∈ index(O )⇔Wf(u) ∈ O ⇔ F (u) ∈ O . Thus, F is a second order
many-one reduction of A to O .
2 ⇒ 1. Starting from F : 2<ù → P(N), let f : 2<ù → N be a computable map
such that F (u) = Wf(u). Then u ∈ A ⇔ F (u) ∈ O ⇔ Wf(u) ∈ O ⇔ f(u) ∈
index(O ). ⊣

As an application of known many-one hardness results of index sets (cf. Soare’s
book [17]) plus the ones from Proposition 4.4, we get the following result.

Proposition 6.10. The Scott Σ0n (resp. Π
0
n, resp. Π

1
1) families of lines 6a, 8, 10a

to 19 of Table 2 and Table 3 (cf. Propositions 4.1, 4.7) are second order many-one
hard for Σ0n(2

<ù) (resp. Π0n , resp. Π
1
1).

§7. Criteria for effective Wadge hardness.

7.1. Effective Wadge hardness at level 1.

Proposition 7.1 (Hardness at level Σ01). Let O ⊆ P(N) be Scott Σ01. The follow-
ing conditions are equivalent:

i. O is second order many-one hard for Σ01(2
<ù),

ii. O is effectively Wadge hard for Σ01(2
ù),

iii. O 6= ∅ and ∅ /∈ O .

Proof. i⇔ iii is Proposition 6.1.
ii⇒ iii. Same proof as i⇒ ii of Proposition 6.1 with total F : 2ù → P(N).
iii ⇒ ii. Let A 6= ∅ be finite such that O ⊇ BA. In particular, A ∈ O . Let X
be Σ01(2

ù). There exists a c.e. subset X of 2<ù such that X = X2ù . Define a total
computable map F : 2ù → P(N) such that F (α) = A if α has some prefix in X and
F (α) = ∅ otherwise. Then, F−1(O ) = X . ⊣

Proposition 6.2 has its analog with effective Wadge hardness.

Proposition 7.2. The family {X ∈ P(N) | X ⊇ A} (line 1a of Table 2) is
effectively Wadge hard for Σ01(2

ù) if A ⊆ N is finite non empty.
The families P(A) with A 6= N Π01 (line 2a), {∅} (line 4a) and {X | |X | ≤ p}
(line 6b) from Table 2 are effectively Wadge hard for Π01(2

ù).
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7.2. Effective Wadge hardness at level 2.

Proposition 7.3. A family O ⊆ P(N) is effectively Wadge hard for Σ02(2
ù) if and

only if O admits a computable sieve.

Proof. ⇐. Similar to the proof of Proposition 6.5. ⇒. Consider the Σ02(2
ù) set

2<ù0ù and let F : 2ù → P(N) be a computable total map such that F−1(O ) =
2<ù0ù. For any extension α of u, only u or a prefix of u has been read at step |u|.
Thus, one can define è : 2<ù → P<ù(N) so that è(u) is the approximation of F (α)
obtained at step |u| (i.e., the current output) for any extension α of u. In particular,
F (α) =

⋃
t∈N
è(α ↾ t). Define v : N<ù → P<ù(N)ℓ as follows: v(〈s0, s1, . . . , sk〉) =

è(0s010s11 . . . 0sk ). Clearly, for (si)i∈N ∈ N<ù , limn→∞ v(〈s0, s1, . . . , sk , n〉) =
F (0s010s11 . . . 0sk10ù) ∈ O , and limi→∞ v(〈s0, s1, . . . , si〉) = F (0s010s110s2 . . . ) /∈ O
so that v is a computable sieve for O . ⊣

Using Proposition 6.6, the above characterization Proposition 7.3 allows to get
positive and negative effective Wadge hardness results.

Proposition 7.4. 1. The family P<ù(N) (line 6a of Table 2) is effectively
Wadge hard for Σ02(2

ù).
2. The families of lines 1b,3,5,6c,7 of Table 2 are effectively Wadge hard
for Π02(2

ù).
3. Whatever be A ⊆ N, the families P(A) and {A} (cf. lines 2b,4c,4d of Table 2)
are not effectively Wadge hard neither for Σ02(2

ù) nor for Π02(2
ù).

Problem 7.5. The almost everywhere or measure hardness of P(A) for A non
Π01, and that of {A} for A 6= ∅ are open questions.

7.3. Effective (almost everywhere) Wadge hardness at level 3.

Theorem 7.6. Suppose O ⊂ P(N) is countable, and contains all cofinite subsets
of N. Then,

i. O is effectively almost everywhere Wadge hard for Σ03(2
ù).

ii. If ∀X ∈ O ∅′ 6≤Turing X , i.e. no set in O allows to compute ∅′ (for instance if
all sets in O are computable), then O is effectively Wadge hard for Σ03(2

ù).

Proof. Main idea of the proof. We develop a variation of Rogers’ classical proof
of the Σ03 completeness of the index set of the class of computable sets. Let R ⊆ N3

be computable such that, for all α ∈ 2ù ,

α ∈ X ⇔ ∃x ∃∞y R(x, α ↾y).

Observe that ∃∞y R(x, α ↾ y) ⇔ ∃∞y ≥ x R(x, α ↾ y). We define a computable
map F : 2ù → P(N) with the following properties. For all α ∈ 2ù ,

α ∈ X ⇒ F (α) is cofinite, (1)

α /∈ X ⇒ α′ is Turing computable in F (α). (2)

Proof of point i. Let E ⊆ 2ù be the countable family of α ∈ 2ù such that the
jump α′ is Turing computable in some set in O . From (2), we get

α /∈ X ⇒ F (α) /∈ O ∨ α ∈ E . (3)

Since cofinite sets are in O and E is countable (hence of measure zero), conditions
(1) and (3) insure thatX =a.e. F−1(O ).
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Proof of point ii. Since α′ ≤T F (α) implies ∅′ ≤T F (α), the extra hypothesis of
point ii of the Theorem insures that α /∈ X ⇒ F (α) /∈ O . Whence X = F−1(O ).
Construction of F . We define F such that

- If x0 is least such that ∃∞y R(x0, α ↾y) then F (α) is cofinite
- If ∀x ¬(∃∞y R(x, α ↾ y)) then F (α) =

⋃
x∈N
[ax , bx] where 0 = a0 ≤ b0 <

a1 ≤ b1 < a2 ≤ b2 < ..., and for all x, ax+1 − bx = 2− α′(x)

To get F computable, we define a computable monotone increasing è : 2<ù →
P<ù(N) such that F (α) =

⋃
n∈N
è(α ↾ n) for all α ∈ 2ù. Consider a machine

M which enumerates α′ using oracle α and let α′t be the set of n ≤ t which are
enumerated byM within t steps using only questions to the oracle about α ↾ t. The
function è is such that

è(u) =
⋃

x≤|u|

[aux , b
u
x ] where






au0 ≤ b
u
0 < a1 ≤ b

u
1 < · · · < au|u| ≤ b

u
|u|,

∀x ≤ |u| bux − a
u
x ≡ α

′
|u|(x) mod 2,

∀x < |u| aux+1 − b
u
x ≥ 2− α

′
|u|(x)

and, letting i ∈ {0, 1}, è is defined by induction on |u| as follows:

• è(ε) = [aå0 , b
å
0] = [0, α

′
0(0)],

• If ∀x ≤ |u| ¬R(x, ui) then, for all x ≤ |u| we let auix = a
u
x and b

ui
x =

bux + (α
′
|ui|(x) − α

′
|u|(x)) (i.e., if and when x appears in α

′, we increment the

length of the interval [auix , b
ui
x ] so that it becomes odd).

We also set aui|ui| = b
ui
|u| + 2 and b

ui
|ui| = a

ui
|ui| + (2− α

′
|ui|(|ui |)).

• If ∃x ≤ |u| R(x, ui) and î is least such, then we let
- auix = a

u
x and b

ui
x = b

u
x + (α

′
|ui|(x)− α

′
|u|(x)) for all x <pref î.

- auiî = a
u
î and b

ui
î is equal to b

u
|u| or b

u
|u| + 1 so that b

ui
î − auiî ≡ α′|ui|(î)

mod 2 (i.e., [auiî , b
ui
î ] covers all intervals [a

u
y , b

u
y ] for y = î, . . . , |u|).

- For z = î + 1, . . . , |ui |, let auiz = b
ui
z−1 + 3 and b

ui
z = a

ui
z + α

′
|ui|(z).

We now prove (1). Supposeα ∈ X and let x0 be least such that ∃∞y R(x0, α ↾y).
Let N = max{y | ∃x < x0 R(x, α ↾y)}. An easy induction on x < x0 shows that,

for x < x0, the intervals [a
α↾y
x , b

α↾y
x ] are constant for y ≥ N . On the opposite,

[aα↾yx0 , b
α↾y
x0 ] tends to [a

α↾N
x0
,+∞) when y tends to +∞. Thus, F (α) is cofinite.

We finally prove (2). Suppose α /∈ X . For x ∈ N, let Y (x) = max{y | ∃x′ ≤ x

R(x′, α ↾ y)}. An easy induction shows that, for every x, the left endpoint aα↾yx
remains constant for y ≥ Y (x) and the right endpoint bα↾yx is incremented at
most once if and when x appears in α′. Let ax , bx be the limit values. Then
bx − ax ≡ α′|u|(x) mod 2, i.e. α

′(x) is the parity of the length of the x + 1-th

interval in F (α). Thus, α′ is computable with oracle F (α). ⊣

As an application of Theorem 7.6, we get

Theorem 7.7. 1. The families of cofinite sets ⊆ N (line 8 of Table 2) and of
computable sets (line 10a of Table 3) are effectively Wadge hard for Σ03(2

ù).
2. Whatever beA ⊆ N, the families ofA-c.e. sets and of boolean combinations of
A-c.e. sets (lines 9a,9b,9c of Table 3) are effectively almost everywhere Wadge
hard for Σ03(2

ù) but not effectively Wadge hard.
3. The families of co-c.e. sets and of c.e. non simple sets (lines 10b,11b of Table 3)
are effectively almost everywhere Wadge hard for Σ03(2

ù).
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Proof. The positive assertions are straightforward applications of Theorem 7.6.
For the negative assertion in Point 2, recall that effective Wadge hardness implies
second order many-one hard (Corollary 5.15). Now, since the families O of lines
9a,9b,9c contain all c.e. sets, we have F−1(O ) = 2<ù for every computable map
F : 2<ù → P(N), which rules out any second order many-one hardness. ⊣

Problem 7.8. Effective Wadge hardness of the family of co-c.e. sets and of the
family of c.e. non simple sets are open questions.

Remark 7.9. The condition “O is countable” in Theorem 7.6 cannot be replaced
by ì(O ) = 0. In fact, this last hypothesis does not imply that ì(E ) = ì({α | ∃â ∈
O α′ ≤T â}) = 0. Consider, for instance O = {α | ∀n α(2n) = 0}.

7.4. Effective almost everywhere Wadge hardness at level 4. We review the results
leading to the Σ0,C3 many-one completeness of the index set {e | C ≤T We} where
C is c.e. and not computable (which is Σ03 or Σ

0
4 completeness depending whether

C is low or high) and state their counterparts when an argument in 2ù is added or
replaces an argument in 2<ù . The final result is Theorem 7.18 which is the Wadge
hardness counterpart to this completeness result. The proof uses a second order
version of Yates Index set theorem, that we prove in the next subsections. We follow
notations from Soare’s book as much as possible.

7.4.1. Strong thickness lemma with a second order argument.

Lemma 7.10 (Strong thickness lemma, [17] p.135). Suppose C ⊂ N is c.e. and
not computable and B ⊆ N2 is c.e. Then there exists a c.e. A ⊆ B such that, letting
Be = {x | (x, e) ∈ B} and B [<e] =

⋃
j<e Bj ,

1. A ≤T B,
2. (a) ∀e (C 6≤T B [<e] ⇒ Be \Ae is finite),
(b) (∀e C 6≤T B [<e]) ⇒ C 6≤T A.

A second order counterpart is as follows, where α⊕X is any computable coding
of the pair (α,X ) ∈ 2ù × P(Nd ) as a set, for instance

α ⊕ X = 2α−1(1)× Nd−1 ∪ {(2x + 1, ~y) | (x, ~y) ∈ X}.

Lemma 7.11 (Second order strong thickness lemma). Suppose C ⊂ N is c.e. and
B ⊆ 2ù × N2 is Σ01(2

ù × N2). Then there exists a Σ01(2
ù × N2) subset A ⊆ B such

that, for all α,

1. Aα ≤T α ⊕Bα ,
2. if C 6≤T α then
(a) ∀e (C 6≤T α ⊕B [α,<e] ⇒ Bα,e \Aα,e is finite),
(b) (∀e C 6≤T α ⊕B [α,<e]) ⇒ C 6≤T α ⊕Aα .

7.4.2. Yates Representation theorem with a second order argument. We restate
Lemma XII 1.4 and Theorem XII 1.3 from Soare’s book [17] (pp.242–243).

Lemma 7.12. If C ⊆ N is a c.e. set and R ⊆ N is Π0,C2 then there is a c.e. set
B ⊆ N2 which is C -computable and such that, for all e ∈ N,

e ∈ R⇒ Be ≡T C,

e /∈ R⇒ Be is computable.
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Theorem 7.13 (Yates Representation theorem). Let C ⊆ N be any c.e. set. For
any Σ0,C3 set S ⊆ N there is a c.e. set B ⊆ N3 which is C -computable and such that,
for all k ∈ N,

k ∈ S ⇒ ∃e0 [(∀e ≥ e0 Bk,e ≡T C ) ∧ (∀e < e0 Bk,e is computable)],

k /∈ S ⇒ ∀e Bk,e is computable.

These results can be reformulated as follows in a second order context. The
proofs are slight modifications of those in [17].

Lemma 7.14. Let C ⊆ N be any c.e. set. To any Π0,C2 (2
ù) set R ⊆ 2ù × N one

can associate a setB ⊆ 2ù ×N2 which is Σ01(2
ù ×N2) and C -computable and such

that, for all α and e,

(α, e) ∈ R ⇒Bα,e ≡T α ⊕ C,

(α, e) /∈ R ⇒Bα,e is computable.

Proof. To simplify notations, we shall getB ⊆ 2ù × N3. A simple computable
coding of the two last components makes B included in 2ù × N2. Let ñ ⊆ 2<ù ×
2<ù × N3 be computable such that (α, e) ∈ R ⇔ ∀y ∃z (α ↾ z,C ↾ z, e, y, z) ∈ ñ.
Denote by Ct the finite approximation of C obtained at step t of some computable
enumeration of C . Define integers ntα,e,y by induction on t as follows: n

0
α,e,y = 0

and

nt+1α,e,y =

{
ntα,e,y if ∀y′ ≤ y ∃z ≤ t + 1 (α ↾z,Ct+1 ↾z, e, y, z) ∈ ñ,
ntα,e,y + 1 otherwise.

Let Dy = 3N+ 2 if y ∈ C and Dy = ∅ if y /∈ C . DefineB ⊆ 2ù × N3 as follows

Bα,e,y = (3N+ α(y)) ∪ Dy ∪
⋃

t∈N

[0, ntα,e,y].

The construction ofB insures that it is Σ01 and computable in C .
Suppose (α, e) ∈ R . Then, for all y the sequence (ntα,e,y)t is eventually constant,

so that Bα,e,y = (3N + α(y)) ∪ Dy ∪ [0, n] for some n. Observe that y /∈ C
if and only if ∃x 3x + 2 /∈ Bα,e,y , which proves that C is co-c.e. in Bα,e , hence
computable fromBα,e (since C is c.e.). Similarly, for ε = 0, 1, α(y) = ε if and only
if ∃x 3x + (1 − ε) /∈ Bα,e,y , which proves that α is computable from Bα,e . Thus,
α ⊕ C ≤T Bα,e . Finally,Bα,e ≤T α ⊕ C sinceB is computable in C .
Suppose (α, e) /∈ R . Let y0 be least such that ∀z (α ↾z,C ↾z, e, y0, z) /∈ ñ. Then
Bα,e,y = N for all y ≥ y0 andBα,e,y is of the form (3N+ α(y)) ∪ Dy ∪ [0, ny ] for
all y < y0 where Dy is 3N+ 2 or ∅. Clearly,Bα,e is then computable. ⊣

Theorem 7.15 (Second order Yates Representation theorem). Let C ⊆ N be any
c.e. set. To any Σ0,C3 (2

ù) set S ⊆ 2ù one can associate a setB ⊆ 2ù × N2 which is
Σ01(2

ù × N2), C -computable and such that, for all α,

α ∈ S ⇒ ∃e0 [(∀e ≥ e0 Bα,e ≡T α ⊕ C ) ∧ (∀e < e0 Bα,e is computable)],

α /∈ S ⇒ ∀e Bα,e is computable.
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Proof. Let R ⊆ 2ù × N be Π0,C2 (2
ù × N) such that α ∈ S ⇔ ∃e R(α, e).

ReplacingR(α, e) by ∃e′ ≤ e R(α, e′), we have

α ∈ S ⇒ ∃e0 [(∀e ≥ e0 (α, e) ∈ R) ∧ (∀e < e0 (α, e) /∈ R)],

α /∈ S ⇒ ∀e (α, e) /∈ R .

To conclude, apply Lemma 7.14 above. ⊣

7.4.3. Yates index set with a second order argument.

Theorem 7.16 (Yates index set theorem). Given c.e. sets C,D, S ⊂ N such that
D <T C and S is Σ

0,C
3 , there is a computable function g such that

∀k D ≤T Wg(k) ≤T C and ∀k (k ∈ S ⇔ C ≡T Wg(k)).

In particular, {e ∈ N |We ≡T C} and {e ∈ N | C ≤T We} are Σ
0,C
3 complete.

A second order analogue is as follows.

Theorem 7.17 (Second order Yates index set theorem). Let C ⊂ N be c.e. and
not computable. For every S ⊆ 2ù which is Σ0,C3 (2

ù), there exists a computable
map F : 2ù → P(N2) such that, for all α,

F (α) ≤T α⊕C, α ∈ S ⇒ α⊕C ≤T F (α), C 6≤T α ⇒ (α /∈ S ⇒ C 6≤T F (α)).

Proof. For point 1, we argue as in [17]. Let B ⊆ 2ù × N2 be given by Theo-
rem 7.15. Apply the second order Thickness Lemma 7.11 to get A ⊆ B which is
again Σ01(2

ù × N2) and such that, for all α,

Aα ≤T α ⊕Bα , (4)

C 6≤T α ⇒

{
∀e (C 6≤T α ⊕B [α,<e] ⇒ Bα,e \Aα,e is finite),
(∀e C 6≤T α ⊕B [α,<e]) ⇒ C 6≤T α ⊕Aα .

(5)

Since A is Σ01(2
ù × N2), the map F : 2ù → P(N2) such that F (α) = Aα is

computable (in the sense of Definition 2.1).
SinceB ≤T C we haveBα ≤T α ⊕C . Using (4) we get F (α) = Aα ≤T α ⊕C .
Suppose α ∈ S . ThenBα,e ≡T α ⊕ C for e big enough. Let e be least such that
Bα,e ≡T α⊕C . ThenBα,j is computable for all j < e so thatB [α,<e] is computable.
Applying the first line of (5), we see thatAα,e andBα,e differ only on finitely many
elements. In particular, Aα,e ≡ α ⊕ C . Thus, α ⊕ C ≤T Aα,e ≤T Aα = F (α).
Suppose α /∈ S and C 6≤T α. Then Bα,e and B

[α,<e] are computable for all e.
Applying the second line of (5), we see that C 6≤T α ⊕ Aα hence C 6≤T Aα =
F (α). ⊣

Theorem 7.18. 1. The family {X ∈ P(N) | C ≤T X} is effectively almost
everywhere Wadge hard for Σ0,C3 (2

ù) whenever C ⊂ N is a non computable
c.e. set. In particular, this is effective almost everywhere hardness for Σ03(2

ù)
if C is low c.e. for Σ04(2

ù) if C is high c.e. (lines 14a, 15a of Table 3).
2. The family {(X,Y ) ∈ P(N)2 | X ≤T Y} is effectively almost everywhere
Wadge hard for Σ04(2

ù) (line 16a of Table 3).

Proof. 1. Let S and F be as in Theorem 7.17. On the set {α | C 6≤T α} we have
α ∈ S ⇔ C ≤T F (α). Since C is not computable, Sacks’ theorem ([14] p.154)
insures that {α | C 6≤T α} hasmeasure 1. Thus, F is an effective almost everywhere
Wadge reduction of S to O .
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2. Let S ⊆ 2ù be Σ04(2
ù) and let F be as above for S and C = ∅′ (which is high).

The map G : 2ù → P(N)2 such that G(α) = (∅′, F (α)) is then an effective almost
everywhere Wadge reduction of S to {(X,Y ) ∈ P(N)2 | X ≤T Y}. ⊣

Problem 7.19. In the classical many-one framework, Yates index set Theorem
also insures the many-one hardness of the index set {e ∈ N | We ≡T C}.
However, the above argument fails to give effective Wadge hardness of the set
{X ∈ P(N) | X ≡T C}. In the proof we have (for α ∈ S ) F (α) ≡T α ⊕ C instead
of F (α) ≡T C .
How much effective Wadge hard is this set O is an open problem. It cannot
be Σ04(2

ù) hard. In fact, every singleton family in P(N) is Scott Π02 (the boldface
classes are the Scott Borel classes of finite levels, which are defined by forgetting
the condition C is c.e. in Definition 3.1). So that, being countable, O is Scott
Σ03. And F

−1(O ) is Σ03(2
ù) whereas there exists some Σ04(2

ù) family which is not

Σ03(2
ù).

7.5. From many-one hardness of index sets to effective Wadge hardness. As we
experienced in §7.4, some many-one hardness results for index sets of c.e. sets
relativize – with easy changes in the proof – to index sets of A-c.e. sets uniformly in
the oracle α ∈ 2ù . This leads to effective Wadge hardness results. Theorem 7.20 is
a straightforward formalization of this observation.

Theorem 7.20 (Transfer Theorem). Suppose O ⊆ P(N) is such that

i. index(O ) = {e |We ∈ O } is many-one hard for Σ0n(N),
ii. this hardness relativizes uniformly, i.e., for every Σ0n formula ø(x,f) of the
language of second order arithmetics with free variables x and f varying in N

and 2ù , there exists some total computable è : N → N (depending on ø only)
such that

∀α ∀i (ø(i, α) ⇔ W α
è(i) ∈ O ). (6)

Then O is effectively Wadge hard for the class of Σ0n(2
ù) sets.

Idem with Π0n or Π
1
1 in place of Σ

0
n.

Proof. Let A be Σ0n(2
ù). Apply the hypothesis to A × N to get a computable

map è : N → N satisfying (6). The computable map F : 2ù → P(N) such that
F (α) =W α

è(0)
is an effective Wadge reduction of A to O . ⊣

As an application of Theorem 7.20, we get a new proof of level 1 and 2 effective
Wadge hardness for the O ’s of lines 6bc, 7 of Table 2, and also

Proposition 7.21. 1. Let w = w1...wi+j be a non empty word in the alphabet
{FIN,COF } containing i occurrences of FIN and j occurrences of COF .
Then Set(w) (cf. Definition 4.2 and lines 6a,8, 18 of Table 2) is effectively
Wadge hard for Σ0i+2j+1(2

ù).

2. The family {X ∈ P(N2) | X is well-founded} (line 19 of Table 2) is effectively
Wadge hard for Π11(2

ù).

Proof. Observe that the proof of Proposition 4.4 (and that for the index set of
well-founded c.e. subsets of N2) relativizes in such a way that the conditions of
Theorem 7.20 are satisfied. ⊣
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§8. Criteria for special hardness.

8.1. Open special hardness at levels 1 and 2. It happens that open special hardness
for Σ01(2

<ù) and Σ02(2
<ù) coincide and are always true except in a trivial case.

Proposition 8.1. Let O ⊆ P(N). The following conditions are equivalent:

i. O is open special hard for Σ01(2
<ù),

ii. O is open special hard for Σ02(2
<ù),

iii. O contains some c.e. set.

Proof. ii ⇒ i and i ⇒ iii are obvious. It remains to prove iii ⇒ ii. Suppose iii
and let X ∈ O be c.e. In case X 6= ∅, let f : N → N be a computable enumeration
of X . Let A ⊆ 2<ù be Σ02. Applying Lemma 5.10, let B ⊆ 2<ù be prefix-free
and Π01 such that A2

ù = B2ù . Let B = {u | ∀y R(y, u)} where R is computable.
Let F : 2<ù → P(N) be the self-delimited constant partial map with value X and
domain B. Clearly, F−1(O ) = B so that F−1(O )2ù = A2ù . We show that F is
partial computable in the sense of Definition 2.2. Consider the monotone Turing
machineM which behaves as follows. At time t, whatever be the input, the current
output ofM is {f(s) | s < t} if X 6= ∅. Otherwise it is empty. The computation
of M consists of successive phases corresponding to the successive prefixes of the
input read by the input head: during phase i ,M has read ui with length i . The role
of phase i is to test condition ∀y R(y, ui), i.e., to test whether ui is in B. Let ti be
the starting time of phase i . If the condition is true then phase i lasts forever. Else
phase i halts at time ti + z where z is the least y such that R(y, ui) fails. It is clear
thatM is self-delimited with domain B and computes F . ⊣

8.2. No open special hardness at level ≥ 3. Special hardness and open special
hardness happen to be void concepts at levels≥ 3. First, recall a well-known result.

Proposition 8.2. Let X ⊆ 2<ù and u ∈ 2<ù . Then u2ù ⊆ X2ù if and only if
there exists n ≥ |u| such that every extension of u of length n extends some word
in X .

Proof. Consider the tree T of words which extend u and have no prefix in X .
Since u2ù ⊆ X2ù , this tree has no infinite branch. By König’s lemma, T has to be
finite. To conclude, let n be greater than the height of T . ⊣

Proposition 8.3. There exists a ∆03 set A which is not open special reducible to
any family O ⊆ P(N). In particular, there is no open special hard family O for any
class C ⊆ P(2<ù) which includes ∆03.

Proof. Choose î ∈ 2ù such that î−1(1) is ∆03 and not Σ
0
2 ∧ Π

0
2 and let A =

{uε | u ≤pref î ∧ ε = 1 − î(|u|)}. Clearly, A2
ù = 2ù \ {î}. To prove the

Proposition, it suffices to show that if F : 2<ù → P(N) is self-delimited computable
and X ⊆ dom(F ) then A2ù 6= X2ù . Arguing by way of contradiction, suppose
A2ù = X2ù . Then 2ù \ {î} = A2ù = X2ù ⊆ dom(F )2ù . There are only two cases
for this last inclusion.
Case X2ù ( dom(F )2ù . Since A2ù is the complement of a singleton set, we
necessarily have dom(F )2ù = 2ù . Let n be as in Proposition 8.2 applied with u
being the empty word. Any length n word has a prefix in dom(F ). Since dom(F ) is
prefix-free, this ensures that dom(F ) hence also X is finite. But then X2ù is open
and closed so that it cannot be equal to A2ù = 2ù \ {î} which is not closed.
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Case X2ù = dom(F )2ù . Then 2ù \ {î} = A2ù = dom(F )2ù . Consider the
map ñ : P(2<ù) → P(2<ù) such that ñ(Z) is the set of minimal words u (relative
to the prefix ordering) such that u2ù ⊆ Z2ù . Observe that ñ(A) = A. Since
A2ù = dom(F )2ù and ñ(Z) depends only on Z2ù , we have ñ(domF ) = ñ(A) = A.
Now, using Proposition 8.2, ñ(dom(F )) can be defined as follows:

u ∈ ñ(X )⇔ (∃n ∀v ∈ 2n (u ≤pref v ⇒ ∃x ≤pref v x ∈ dom(F ))

∧ (∀w <pref u ∀n ∃v ∈ 2
n (w ≤pref v ∧ ∀x ≤pref v x /∈ dom(F ))).

Since dom(F ) is Σ01 ∧ Π
0
1 (cf. Proposition 2.4), we see that ñ(dom(F )) is Σ

0
2 ∧ Π

0
2.

Now, dom(F ) = A and we have chosen A not Σ02 ∧Π
0
2. Contradiction. ⊣

8.3. Almost everywhere and measure special hardness: from Π0n to Σ
0
n+1. The

analog of Theorem 5.11 holds for the special framework with the same proof. Due
to the negative result obtained in §8.2, we state it solely for almost everywhere and
measure special hardness.

Theorem 8.4. If O is almost everywhere special hard for Π0n(2
<ù) then it is also

almost everywhere special hard for Σ0n+1(2
<ù). Idem with measure hardness.

Problem 8.5. Do there exist almost everywhere or measure special hard families
for Σ0n , n ≥ 3?

§9. Theorems for n-randomness. Using the ideas developed in [6], we extend the
proof of the Pattern Theorem 6.1 of Part 1 [5] to outputs inP(N) in three different
contexts, correponding to the three types of computable maps introduced in §2.2.
Thus, we present three variants of a basic randomness theorem. The three have
a common definability hypothesis in a given set O ⊆ P(N) (or P(Nd )ℓ), and vary
in the hardness hypothesis on O : effective Wadge hardness, second order many
one hardness, and special hardness. It turns out that in all three cases the weaker
hypothesis of measure hardness suffices, so that we state these theorems with this
hypothesis. To simplify notations, we state these theorems for O ⊆ P(N). Of
course, they are still valid with O ⊆ P(Nd )ℓ .
The main randomness results of this paper are obtained as applications of the
three variants of the basic theorem.

Notation 9.1. We assume Martin-Löf ’s definition of randomness (or its equiv-
alent counterpart in terms of program-size complexity). For n ≥ 1, n-randomness
is randomness relative to oracle ∅(n−1), so that 1-randomness is usual Martin-Löf
randomness. We also use Π11Martin-Löf randomness (which is simply obtained by
replacing c.e. by Π11 in the definition of Martin-Löf randomness) and some results
obtained by Hjort & Nies in [11] about this notion.

9.1. Basic randomness theorem for Ω∞
U [O ].

Theorem 9.2 (Basic randomness theorem: infinite inputs). Let U : 2ù → P(N)
be a computable total map universal by adjunction and O ⊆ P(N) and n ≥ 1.
Suppose that O is Scott Σ0n in P(N) and measure Wadge hard for the class of open
subsets of 2ù of the form X2ù where X is Σ0n(2

<ù). Then the reals

Ω∞
U [O ] = ì(U

−1(O )), Ω∞
U [O ] = ì(U

−1(O ))
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(the probabilities that an input in 2ù is mapped by U into O and outside O ) are
n-random respectively with Σ0n and Π

0
n left cuts (in the set of rational numbers).

Idem with Π11 in place of Σ
0
n.

Proof. First, Theorem 3.6 insures that U−1(O ) is Σ0n(2
ù), hence is Lebesgue

measurable. Thus, we can consider its measure.
Consider an optimal (in the sense of the invariance theorem for Kolmogorov
prefix complexity) prefix-free partial ∅(n−1)-computable function ϕ(n−1) : 2<ù →
2<ù . The oracular version of Chaitin’s celebrated theorem [9] insures that Ωϕ(n−1) =

ì(dom(ϕ(n−1))2ù) is n-random with Σ0n left cut. Since the domain of ϕ
(n−1) is

Σ0n(2
<ù), the assumed measure Wadge hardness of O insures that there is some

computable total map F : 2ù → P(N) and computable reals a, b such that

ì(F−1(O )) = aì(dom(ϕ(n−1))2ù) + b = aΩϕ(n−1) + b. (7)

Since U is universal by adjunction, there exists i ∈ N such that F = Ui . In
particular, F−1(O ) = U−1

i (O ) = {α ∈ 2ù | 0i1α ∈ U−1(O )} so that

U−1(O ) ∩ 0i12ù = 0i1 F−1(O ). (8)

Using (7) and (8), we get ì(U−1(O ) ∩ 0i12ù) = 2−i−1(aΩϕ(n−1) + b). Finally,

U−1(O ) = (U−1(O ) ∩ 0i12ù) ∪ (U−1(O ) \ 0i12ù),

ì(U−1(O )) = ì(U−1(O ) ∩ 0i12ù) + ì(U−1(O ) \ 0i12ù)

= 2−i−1(aΩϕ(n−1) + b) + ì(U
−1(O ) \ 0i12ù).

Since Ωϕ(n−1) is n-random with Σ
0
n left cut, so is 2

−i−1(aΩϕ(n−1) + b). Also, since

U−1(O ) is Σ0n(2
ù), so is U−1(O ) \ 0i12ù and its measure is a real with Σ0n left cut

([8], cf. also [5] Prop.3.2). It is known that the sum of two reals with Σ0n left cuts is
n-random whenever one of them is n-random ([8], cf. also [5] Prop.3.6 or Downey
& Hirschfeldt’s book [10]); we conclude that ì(U−1(O )) = Ω∞

U [O ], is n-random
with Σ0n left cut.
As for the complement O , observe that, since U is a total map, Ω∞

U [O ] =
1−Ω∞

U [O ] hence is n-random with Π
0
n left cut.

In case O is Scott Π11 in P(N) and Π11 measure Wadge hard, the above argument
goes through using

- the Π11 version ϕ
(Π11) of a universal map ϕ(n−1) for self-delimited partial ∅(n−1)-

computable maps 2<ù → 2<ù and the associated Π11 version of Chaitin’s
Ωϕ(n−1) (cf. Hjort & Nies, [11]) which is a Martin-Löf Π

1
1 random real with Π

1
1

left cut,
- the extension to Π11 of the fact that the sum of two n-random reals with Σ

0
n left

cut is n-random. ⊣

Remark 9.3. In the above theorem, and also in Theorem 9.5 below, the assump-
tion O is Scott Σ0n in P(N) can be weakened to U−1(O ) is Σ0n(2

ù).

9.2. Applications to n-randomness with Ω∞
U [O ].

Theorem 9.4 (n-randomness with Ω∞
U [O ]). Let U : 2ù → P(N) be a com-

putable total map universal by adjunction. Then, for each line of the Ω∞
U [O ]
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column of Table 1, the real Ω∞
U [O ] is n-random (or Π

1
1-random) with Σ

0
n or Π

0
n

(or Π11) left cut as stated.

Proof. Observe that the conditions of application of Theorem 9.2 are fulfilled for
every line stating some randomness result for Ω∞

U [O ]. In fact, the Scott definability
of O is given by Propositions 4.1 and 4.7. The Wadge or almost everywhere Wadge
hardness of O is given by Propositions 7.2 and 7.4, Theorems 7.7 and 7.18 and
Proposition 7.21. ⊣

9.3. Basic randomness theorem for Ω∝
U [k,O ].

Theorem 9.5 (Basic theorem: large enough finite inputs). Let U : 2<ù → P(N)
be a computable total map universal by adjunction and O ⊆ P(N) and n ≥ 1.
Suppose that O is Scott Σ0n in P(N) and measure second order many-one hard for
the class of Σ0n(2

<ù) sets of words. Then, for k large enough, the reals

Ω∝
U [k,O ] = ì((U

−1(O ) ∩ 2≥k)2ù), Ω∝
U [k,O ] = ì((U

−1(O ) ∩ 2≥k)2ù)

(the probabilities that an element in 2ù has at least one length ≥ k prefix mapped
by U into O and outside O ) are respectively n-random and (n+1)-randomwith Σ0n
and Σ0n+1 left cuts.

If O is Scott Π11 in P(N) and measure second order many-one hard for the class
of Π11(2

<ù), the real Ω∝
U [k,O ] is Martin-Löf Π

1
1 random with Π

1
1 left cut.

Problem 9.6. In the Π11 case, we do not know whether and how much Ω
∝
U [k,O ]

is random.

Proof. We argue as in the proof of Theorem 9.2 with a complementary argument
in the vein of that developed in our paper [6]. Using the assumed measure second
order many-one hardness of O , let F : 2<ù → P(N) be a computable total map
such that ì(F−1(O )2ù) = a ì(dom(ϕ(n−1))2ù) + b where a, b are computable
reals, a 6= 0. Using universality by adjunction of U , let i ∈ N be such that
F = Ui . Then F−1(O ) = U−1

i (O ) = {u ∈ 2<ù | 0i1u ∈ U−1(O )}, so that
U−1(O ) ∩ 0i12<ù = 0i1 F−1(O ) and

ì((U−1(O ) ∩ 0i12<ù)2ù) = ì(0i1 F−1(O )2ù) = 2−i−1(aΩϕ(n−1) + b).

Thus, ì((U−1(O ) ∩ 0i12<ù)2ù) is n-random. Since dom(ϕ(n−1)) is prefix-free so
are F−1(O ) and U−1(O ) ∩ 0i12<ù . For k ≥ i , we have

U−1(O ) ∩ 0i12<ù = U−1(O ) ∩ 0i12≥k−i−1 ∪ U−1(O ) ∩ 0i12<k−i−1.

The two sets on the right are disjoint and their union is prefix-free, therefore
(U−1(O ) ∩ 0i12<ù)2ù is the disjoint union of (U−1(O ) ∩ 0i12≥k−i−1)2ù and
(U−1(O ) ∩ 0i12<k−i−1)2ù . So that

ì((U−1(O ) ∩ 0i12<ù)2ù) = ì((U−1(O ) ∩ 0i12≥k−i−1)2ù)

+ ì((U−1(O ) ∩ 0i12<k−i−1)2ù).

Now, U−1(O ) ∩ 0i12<k−i−1 is finite, so that the second term on the right is dyadic
rational. As a consequence, the real ì((U−1(O ) ∩ 0i12≥k−i−1)2ù) is n-random.
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Finally, (U−1(O ) ∩ 2≥k)2ù is the disjoint union of (U−1(O ) ∩ 0i12≥k−i−1)2ù and
(U−1(O ) ∩ {v ∈ 2≥k | 0i1 6≤pref v})2

ù . Thus,

ì((U−1(O ) ∩ 2≥k)2ù) = ì((U−1(O ) ∩ 0i12≥k−i−1)2ù)

+ ì((U−1(O ) ∩ {v ∈ 2≥k | 0i1 6≤pref v})2
ù).

The two reals on the right side have Σ0n left cuts. Since the first one is n-random, so
is their sum. Thus, ì((U−1(O ) ∩ 2≥k)2ù) = Ω∝

U [k,O ] is n-random with Σ
0
n left cut

for any k ≥ i .
As for the complement O , apply Proposition 5.8 and Theorem 5.11.
As for Π11, argue as in the proof of Theorem 9.2. ⊣

9.4. Application to n-randomness with Ω∝
U [k,O ].

Theorem 9.7 (n-randomness with Ω∝
U [k,O ]). Let U : 2

<ù → P(N) be a com-
putable total map universal by adjunction. Then, for each line of the Ω∝

U [k,O ]
column of Table 1, the real Ω∝

U [k,O ] is n-random (or Π
1
1-random), for k large

enough, with Σ0n or Π
0
n (or Π

1
1) left cut as stated.

Proof. Observe that the conditions of application of Theorem 9.5 are fulfilled
for every line stating some randomness result for Ω∝

U [k,O ]. In fact, the Scott
definability of O is given by Propositions 4.1 and 4.7. The second order many-one
hardness of O is given by Propositions 6.2, 6.6 and 6.10. ⊣

9.5. Basic randomness theorem with Ω▷◁U [O ].

Theorem 9.8 (Basic theorem: self-delimited finite inputs). Let U : 2<ù → P(N)
be a self-delimited partial computable map universal by adjunction and O ⊆ P(N).
Suppose n ≥ 2 and O is Scott Σ0n in P(N) and measure special hard for the class of
Σ0n(2

<ù) sets of words. Then the real

Ω▷◁U [O ] = ì(U
−1(O )2ù)

(the probability that an element in 2ù has some prefix in the domain of U which is
mapped by U into O ) is n-random with Σ0n left cut.
Idem with Π11 in place of Σ

0
n.

In case n ≥ 3, the real Ω▷◁U [O ] = ì((U
−1(O )2ù) (the probability that an element

in 2ù has some prefix in the domain of U which is mapped by U outside O ) is
n-random with Π0n left cut.

Proof. Similar to the proof of Theorem 9.2, with F−1(O )2ù and U−1(O )2ù in
place of F−1(O ) and U−1(O ). Prefix-freeness of the domain of F (hence of Ui)
allows all arguments to go through. In order to see that U−1(O ) is Σ0n(2

<ù) and
U−1(O ) is Π0n(2

<ù), the application of Theorem 3.6 requires respectively conditions
n ≥ 2 and n ≥ 3.
As for the complement O , observe that Ω▷◁U [O ] = Ω

▷◁
U [P(N)]−Ω

▷◁
U [O ]. Apply-

ing the theorem with O = P(N), which is Scott Σ01 hence also Scott Σ
0
2 and open

special hard for Σ02(2
<ù) (Proposition 8.1), we see that Ω▷◁U [P(N)] is 2-randomwith

Σ02 left cut. If n ≥ 3, the above equation insures that Ω▷◁U [O 2
ù] is n-random with

Σ0n left cut.
As for Π11, argue as in the proof of Theorem 9.2. ⊣
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Remark 9.9. In the above theorem, the assumption O is Scott Σ0n in P(N) can
be weakened to U−1(O ) is Σ0n(2

<ù). In this case, conditions n ≥ 2 or n ≥ 3 can be
removed.

Remark 9.10. In case O is Σ02 and contains some c.e. set, then Ω
▷◁
U [O ] =

Ω▷◁U [P(N)] − Ω
▷◁
U [O ] is the difference of two reals with Σ

0
2 left cuts. Rettinger’s

Theorem (cf. Downey & Hirschfeldt’s book, §8.5.2) insures that such a real cannot
be 2-random except if its left cut is Σ02 or Π

0
2.

Although the 2-randomness result with Ω▷◁U [O ] given by Theorem 9.11 is far
more powerful than those for 2-randomness with Ω∝

U [k,O ] (§9.4) and with Ω
∞
U [O ]

(§9.2), the methods developed in this paper do not lead to any n-randomness result
for n ≥ 3 with Ω▷◁U [O ]. The reason is Proposition 8.3 and Problem 8.5.

9.6. Application to 2-randomness with Ω▷◁U [O ]. The following theorem with
Ω▷◁U [O ] generalizes Theorem 1.10 of [5] to the P(N) context.

Theorem 9.11 (2-randomness with Ω▷◁U [O ]). Let U : 2
<ù → P(N) be a self-

delimited partial computable map universal by adjunction.

1. If O is Scott Σ01 in P(N) and contains some computably enumerable set of
integers then the reals Ω▷◁U [O ] and Ω

▷◁
U [O ] are both 2-random with Σ

0
2 left

cuts.
2. If O is Scott Σ02 in P(N) and contains some computably enumerable set of
integers then the real Ω▷◁U [O ] is 2-random with Σ

0
2 left cut.

This justifies all randomness results mentioned in the Ω▷◁U [O ] column of Table 1.

Proof. Observe that the conditions of application of Theorem 9.8 are fulfilled for
every line stating some randomness result for Ω▷◁U [O ]. In fact, the Scott definability
of O is given by Propositions 4.1 and 4.7. The second order open special hardness
of O for Σ02 is given by Proposition 8.1. which applies in case O or is Scott Σ

0
1, Π

0
1,

Σ01 ∧Π
0
1 or Σ

0
2,

As for lines 9a, 9b, 9c, observe that Ω▷◁U [O ] = Ω
▷◁
U [Õ ] whenever O and Õ have

the same c.e. sets. Letting Õ = P(N), the Ω▷◁U [O ] randomness results for lines 9a,
9b, 9c reduces to that of line 0. ⊣
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