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Abstract

Jiang, 1989 [2, 3], proved a remarkable result: for every k, there
exists a cellular automaton synchronizing every degree ≤ k connected
graph with arbitrary symmetric communication delays. The synchro-
nization time obtained by Jiang is O(∆3) where ∆ is the maximum
communication delay between two cells. Mazoyer, 1990 [6] proved an
O(D2) synchronization time where D is the sum of the communication
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delays of the degree ≤ k connected graph (together with an O(D log D)
synchronization time in case the graph has only two cells).
In this paper, we prove (cf. Theorem 2.13) that, for any m ≥ 2 one
can synchronize in time Dblogm(D)c all lines of total communication
delay > m9 (shorter lines being synchronized in time 4D). A result
which extends to bounded degree connected graphs using Rosensthiel’s
technique [8, 9]. As shown by Vivien, 1994 [12], this result is already
optimal for lines of two cells with arbitrary communication delay.
The method relies heavily on Jiang technique of circuit with revolving
information.

1 Computations with Jiang circuits

1.1 Lines of ca’s with communication delays

Letting n vary in N \{0}, we consider a line of n identical cellular automata
(in short ca) A = (Q, δ) where Q is the finite set of states and

δ : (Q ∪ {$})×Q× (Q ∪ {$}) → Q
is the transition function and $ denotes the constant virtual state of the
virtual cells left to the leftmost cell and right to the rightmost cell.

A state e is said to be quiescent if δ(e, e, e) = δ($, e, e) = δ(e, e, $)

We shall suppose that there is a symmetric communication delay between
adjacent cells i, i + 1 where 1 ≤ i < n. This means that there exists strictly
positive integers (di,i+1)i=1,...n−1 such that the evolution of the line, i.e. its
space-time diagram, obeys the rules stated in the following Definition.

Definition 1.1. The space-time diagram (in short STD) of a line of n copies
of automatonA with strictly positive communication delays (di,i+1)i=1,...n−1,
in initial configuration C ∈ Qn, is the function

STDC : {1, ..., n} × N→ Q

such that, for every k ∈ {1, ..., n} and t ≥ 1,

STDC(k, 0) = C(k)
STDC(k, t) = δ( STDC( k − 1 , t− dk−1,k ),

STDC( k , t− 1 ),
STDC( k + 1 , t− dk,k+1 ) )

with the following conventions:

for any τ (≥ 0 or < 0) replace STDC(0, τ), STDC(n + 1, τ) by $
for τ < 0 replace STDC(1, τ), ..., STDC(n, τ) by e

Remark 1.2. We follow the usual conventions for finite lines of n ca’s:
cells are numbered 1, ..., n, but time steps are counted from 0, i.e. the initial
configuration is that at time t = 0.
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We shall use the following notation.

Notation 1.3. If 1 ≤ i < j ≤ n, we denote by Di,j the total communication
delay between cells i and j :

Di,j =
∑

i≤k<j

dk,k+1

This is the minimal time necessary for an information to be transmitted
from cell i to cell j or from cell j to cell i.
We shall also write D in place of D1,n when n is clear from context.

1.2 Jiang circuits

Let’s say that a cell P in a line of cells is rightward passive if it acts as a
pure rightward transmission unit: it conveys rightwards the information it
receives from its left neighbor without modifying it and with no delay.
Formally, this means that the definition of the transition function δ has to
be modified as follows.

Definition 1.4 (Rightwards passive cells). Let Q be a finite set and
〈Q〉 be a copy of Q. Passive cells take states in 〈Q〉 and active cells take
states in 〈Q〉×Q (Intuition: the first component is the information an active
cell sends to a passive right neighbor). The transition function δ satisfies
the following property when applied to a passive cell: for all 〈p〉, 〈q〉 ∈ 〈Q〉,
s ∈ Q and ξ ∈ 〈Q〉 ∪ (〈Q〉 ×Q),

δ(〈p〉, 〈q〉, ξ) = δ((〈p〉, s), 〈q〉, ξ) = 〈p〉

Note 1.5. 1. One can similarly define leftwards passive cells.
2. Observe that rightwards (resp. leftwards) passive cells break the possibil-
ity of leftwards (resp. rightwards) communication between two active cells
separated by some rightwards (resp. leftwards) passive cells.
This can be avoided with the more complex notion of two-way passive cells
which take states in 〈Q×Q〉 whereas active cells take states in 〈Q×Q〉×Q
(Intuition: the two first components are the informations an active cell sends
to a passive right or left neighbor). The transition function δ now satisfies
the following property relative to passive cells: for all 〈u, q〉, 〈r, s〉, 〈p, t〉 ∈
〈Q×Q〉 and v, w ∈ Q,

〈p, q〉 = δ( 〈u, q〉 , 〈r, s〉 , 〈p, t〉 )
= δ( (〈u, q〉, v) , 〈r, s〉 , 〈p, t〉 )
= δ( 〈u, q〉 , 〈r, s〉 , (〈p, t〉, w) )
= δ( (〈u, q〉, v) , 〈r, s〉 , (〈p, t〉, w) )

and the following property relative to active cells: for all 〈u, q〉, 〈p, t〉 ∈
〈Q×Q〉 and α, β, γ ∈ 〈Q2〉 ×Q,
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- δ(〈u, q〉, β, γ) depends solely on q, β, γ, not on u,
- δ(α, β, 〈p, t〉) depends solely on α, β, p, not on t,
- δ(〈u, q〉, β, 〈p, t〉) depends solely on q, β, p, neither on u nor on t.

Following Jiang [2, 3], we can interpret a communication delay d ≥ 1
between two cells A,B as d−1 fictive two-way passive cells P1, ..., Pd−1 lying
between A and B, the communications delays between adjacent (active or
passive) cells being 1 unit of time.
In this way, Jiang associates to lines with communication delays circuits
consisting of active and passive cells with no communication delay.
In this paper, it will be sufficient to consider that, in such associated circuits,
passive cells are rightwards passive.

Definition 1.6 (Jiang circuits). 1. To a line of n cells C1, ..., Cn with
communication delays d1,2,...,dn−1,n, we associate the closed circuit with
2n− 2 cells obtained by doubling cells C2, ..., Cn−1:

C2 − C3 − ... − Cn−2 − Cn−1

| |
C1 Cn

| |
C2 − C3 − ... − Cn−2 − Cn−1

Applying Jiang’s idea of fictive passive cells, we get a circuit of a total of
2D1,n cells:

• 2n− 2 ones are active,

• (d1,2−1)+...+(dn−1,n−1)+(dn,n−1−1)+...+(d2,1−1) = 2D1,n−(2n−2)
ones are (fictive) rightwards passive associated to the communication
delays between the 2n− 2 pairs of adjacent active cells.

2. Letting C2, ..., Cn, ..., C2 act as passive cells, we get a variant of the
rightwards Jiang circuit which has one active cell C1 and 2D1,n−1 rightwards
passive cells. We shall call it the rightwards Jiang circuit (or simply Jiang
circuit) of the given line with active cell C1.

The importance of rightwards Jiang circuits comes from the following
observation. A rightwards Jiang circuit with only one active cell, all other
passive, can be used as a memory: it is able to convey a “revolving infor-
mation” (namely a word of length at most that of the circuit) which moves
rightwards and may be modified when (and only when) it passes through the
active cell.

1.3 Some computations on a rightwards Jiang circuit with
only one active cell

Let’s introduce notations for simple arithmetical operations.
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Notation 1.7. Let m, p ∈ N be such that 2 ≤ m and 1 ≤ p.

1. We denote logm the base m logarithm function.

2. We denote Basem(x) the m-ary representation of x ∈ N, i.e. Basem(x) =
xk...x0 where x =

∑
i=0,...,k xim

i and 0 ≤ xi < m, xk 6= 0, k = blogm xc.
3. If u is a word on some alphabet included in N, we denote SUM(u) the
sum of the digits of u. For any p ≥ 1, this map is a retraction of the map

Unaryp : N→ {λ} ∪ {1, ..., p}{p}∗

(where λ denotes the empty word) such that

Unaryp(x) =
{

p...p (with z times p) if x = zp
rp...p (with z times p) if x = zp + r ∧ 1 ≤ r < m

In particular, Unary1(x) is the usual unary representation of x.
Parts of the following proposition appear in Jiang [2, 3].

Proposition 1.8 (Computations on a Jiang circuit). 1. For any one
of the following sets T , there exists a cellular automaton A such that, for
any N > 0, in a rightwards Jiang circuit of A cells consisting of N − 1
passive cells and one active cell, the active cell enters a special “bip” state
at all times in T :
i. T = {t ∈ N : t ≡ 0 mod N}
ii. T = {t ∈ N : t ≡ 0 mod Nblogm Nc} where m ≥ 2 is fixed

2. Suppose m, p, c, j are fixed in N such that 2 ≤ m and 1 ≤ p, j.
Each line (u, v, T, C) of Table 1 indicates that there exists a cellular automa-
ton A such that, for any N > 0, for any words u, v ∈ A∗ = {0, ..., A− 1}∗,
in a rightwards Jiang circuit of A cells consisting of N − 1 passive cells and
one active cell, there exists distinguished states q, r such that, if u, v satisfy
conditions C and u = xk...x0 and v = y`...y0 then, in T steps, an initial
configuration

〈e〉N−k−1 〈xk〉...〈x1〉 (〈x0〉, q)
(where the last cell is the active one) is transformed into the configuration

〈e〉N−`−1 〈y`〉...〈y1〉 (〈y0〉, r)
Before entering the long proof of Proposition 1.8 in the next subsection,

let’s state an easy but useful observation (to be used in Remark 2.14).

Proposition 1.9. Let f ∈ N be some fixed constant ≥ 2. A rightwards Jiang
circuit with one active cell and N−1 rightwards passive ones can simulate a
rightwards Jiang circuit with one active cell and fN − 1 rightwards passive
ones.

Proof. Consider f tracks on the cells and distribute a word ak...a0 with
k < fN as follows: for every i = 1, ..., f , the subword aiN−1...a(i−1)N is
written on track i.
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1.4 Proof of Proposition 1.8

Conditions C. They insure that |u|, |v| ≤ N and that time T is enough. In
case u or v is of the form Basem(z), we have |Basem(z)| = 1 + blogm(z)c,
so that |Basem(z)| ≤ N ⇔ blogm(z)c ≤ N − 1 ⇔ logm(z) < N .

1i. To bip the active cell at times t ≡ 0 mod N , simply let it send a
rightwards signal at time 0. Such a signal will come back on the active cell
at times multiples of N .

1ii. To bip the active cell at time Nblogm Nc, we use the clock associated
to point 1i and proceed in successive phases, each lasting N time steps. In
phase 0, the active cell sends a rightwards signal at times 0, 1, ..., N − 1, i.e.
it send signals at each time step up to the moment the first sent signal gets
back. In phase i + 1, the active cell kills m − 1 out of m of the surviving
signals, namely it iteratively kills the m − 1 first encountered and let the
m-th alive. It also checks if < m signals are left alive. In case the check is
positive, the active cell bips at the end of the phase.
After phase i, there remains only b N

mi c of the N signals created during phase
0. Now,

1 ≤ b N

mi
c < m ⇔ mi ≤ N < mi+1 ⇔ i = blogm Nc

Therefore, the active cell will bip at the end of phase blogm Nc, i.e. at time
Nblogm Nc.
2i. When the active cell receives 〈e〉 for the first time, it sends b to its right
passive neighbor at the next time step.

2ii. At time 0, the active cell receives a0 and puts it in its memory and
sends b to its right passive neighbor. At time i, for i = 1, ..., k, the active cell
has ai−1 in its memory and receives ai, it sends ai−1 to its right neighbor
and puts ai in its memory. At time k + 1 it receives nothing and sends to
its right neighbor the contents ak of its memory.

2iii. The active cell looks for the tail of zeroes as follows. It proceeds
through blogmj Nc phases of N times steps (using the clocks of Point 1
with mj in place of m). In phase 0, it colors the successive blocks of zeroes
alternatively in m3j colors C0, ..., Cm3j−1 and memorizes the color of the last
block and also if there is one or more colored blocks.
If at the end of phase i the color of the last colored block is Cε then in
phase i + 1, the active cell removes the colors of all blocks of color 6= Cε

and recolors all successive color Cε blocks of zeroes alternatively in the m3j

colors C0,...,Cm3j−1. It also memorizes the color of the last block and also
if there is one or more colored blocks.
When there is only one colored block, this block is necessarily the last block
of zeroes and, at the next phase, the active cell erases this block.
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In order to save one phase, we slightly modify the above process. Instead of
memorizing if there is one or more colored blocks, we memorize if there are
at most m3j−1 colored blocks and if so we memorize the number of colored
blocks. Now, when we know there are at most m3j − 1 colored blocks and
we also know their number, at the next phase we can erase the last colored
block (and remove colors of the other blocks).
Nothing is done in subsequent phases, up to phase blogmj Nc. Their role is
merely to have a total time of N blogmj Nc.
Observe that the set {z ∈ N : z < α} is equal to {0, ..., α− 1} if α ∈ N and
to {0, ..., bαc} if α /∈ N. Thus, the number of its elements is dαe − 1.
Let ni be the number of colored blocks at the end of phase i. Now, ni+1

is the number of elements of the set {x : 0 ≤ x < ni ∧ x ≡ ε mod m3j},
(for some ε < m3j), a set in bijection with {y : ym3j + ε < ni}. Thus,
ni+1 ≤ d(ni − ε)/m3je − 1 ≤ dni/m3je. So that

ni ≤ d...ddn0/m3je/m3je.../m3je = dn0/m3ije

(cf. Knuth [4], Ex.35 p.42). Now, n0 is the number of blocks of zeroes
in the word 0`ak...a0, which is trivially ≤ N . Therefore ni ≤ dN/m3ije.
Thus, there are < m3j colored blocks at the end of phase i for some i such
that dN/m3ije < m3j . Now, dN/m3ije < m3j ⇔ N/m3ij ≤ m3j − 1 ⇔
m3ij ≥ N/(m3j−1) ⇔ i ≥ logm3j (N/(m3j−1). Since logm3j (N/(m3j−1) <
logm3j N , we see that the least such i is ≤ dlogm3je. Thus, 1 + dlogm3j Ne
phases are enough (the +1 is the extra erasing phase).

2iv, 2v, 2vi. Straightforward.

2viia. Apply 2vi and 2iii. To keep time N(1 + dlogm Ne) (rather than
N(2 + dlogm Ne)), do simultaneously 2vi and the first phase of 2iii.

2viib. Similar.

2viii. The product xy is computed via the usual algorithm as a series of
products of x by the successive digits y0, ..., yk of y and a series of additions
of the numbers mi(xyi).
This is done through blogm Nc phases of N time steps and uses three tracks.
Initially tracks 1 and 2 contain Basem(x) and Basem(y) and track 3 con-
tains Basem(0). Track 2 is never modified. For i < |Basem(y)|, at the end
of phase i the contents of track 1 is shifted to the left so that the active cell
will simultaneously read the rightmost (least significant) digit of Basem(x)
and the (i + 1)-th digit of Basem(y). This (i + 1)-th digit is memorized by
the active cell throughout phase i + 1. During phase i + 1 the product of
this (i + 1)-digit with x is computed and added to the contents of track 3.
At the end of phase |Basem(y)|, track 3 contains the wanted result Basem(xy).
In all subsequent phases, the active cell does nothing. Since |Basem(y)| =
1 + blogm yc ≤ 1 + blogm Nc (assumed condition),we see that 1 + blogm Nc
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phases are enough.
Finally, group these phases by packs of j (the last pack may contain less
than j phases). The number of packs is d(1 + blogm Nc)/je which is

≤ 1+b(1+blogm Nc)/jc ≤ 2+bblogm Nc/jc = 2+blogm N/jc = 2+blogmj Nc

2ix, 2x. We proceed through blogm Nc phases of N time steps and use four
tracks. Tracks 1 and 2 contain x and y in base m. At the end of phase i,
track 3 contains Unaryp(i) and track 4 contains the base m representation
of x − iy with useless zeroes ahead so that it has the length of the base m
representation of x. This is done using 2vi as long as x − iy ≥ y (which
can be checked while writing down x − iy), i.e. up to i = bx/yc. In all
subsequent phases, the active cell does nothing.
Clearly, at the end of this process, track 3 contains Unaryp(bx/yc) and track
4 contains the base m representation of x mod y.
Condition bx/yc ≤ pN insures that there is no overflow. Condition bx/yc ≤
logm N insures that blogm Nc phases are enough.
Finally, grouping these phases by packs of j (as in the proof of 2viii) we get
1 + blogmj Nc phases.

2xi. We proceed through blogm Nc phases of N time steps and use three
tracks. Track 1 always contain x in base m. At the end of phase i, track
2 contains Unaryp(i) and track 3 contains Basem(mi) = 10i. This is done
as long as mi ≤ x (which can be checked while writing down mi−1), i.e.
up to i = blogm(x)c. Clearly, at the end of this process, track 2 contains
Unaryp(blogm(x)c).
Transformation 10i 7→ 10i+1 is done using 2ii. The passage from Unaryp(i)
to Unaryp(i+1) is either rpn 7→ (r +1)pn with 1 ≤ r < p or pn 7→ 1pn. The
first one is straightforward and the second one uses 2i.
Due to the comparison mi ≤ x, at least one phase is necessary. Which is no
problem due to the below grouping phase.
Again, grouping these phases by packs of j (as in the proof of 2viii) we get
1 + blogmj Nc phases.

2xii. Straightforward.

2xiii. Let x = SUMp(u). We proceed through blogm Nc phases of N time
steps and use two tracks. At time 0, track 1 contains u and track 2 is
empty.
For every j = 0, ..., blogm xc − 1, at the start of phase j, the following
properties will be true:

(α) Track 1 contains digits in {0, ..., p}, the sum of which is bx/mjc.
(β) Track 2 contains the suffix of Basem(x) with length j, i.e. digits

corresponding to m0, ..., mj−1.
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(γ) If j ≥ 1 then the active cell has memorized the digit of Basem(x)
corresponding to mj .

During phase j, as long as the sum of digits on track 1 is not zero, the active
cell does the following:

• If j ≥ 1, using 2i, it prefixes its memorized digit (cf. (γ)) to the con-
tents of track 2, so that this contents becomes the suffix of Basem(x)
with length j + 1. This insures the inductive step for (β).

• At any step of the phase it memorizes a current carry, always < m,
and initially 0. It computes the sum S′ of this current carry S with
the digit it receives from its left passive neighbor on track 1. Clearly,
S′ ≤ S + p < m + p.
If S′ < m then it sends 0 on track 1 to its right passive neighbor (in
other words, it erases the received digit) and memorizes S′ as the new
carry.
Suppose S′ ≥ m, so that 1 ≤ bS′/mc < 1 + bp/mc ≤ p. Then the
active cell sends bS′/mc on track 1 to its right passive neighbor and
memorizes S′ mod m as the new carry.

At the end of phase j, the sum of digits on track 1 has been divided by m.
Using (α), we see that this sum is now bbx/mjc/mc = bx/mj+1c (cf. Knuth
[4], Ex.35 p.42). This insures the inductive step for (α).
Also, the current carry at the end of phase j is the associated remainder
bx/mjc mod m, i.e. the digit of Basem(x) corresponding to mj+1. This
insures the inductive step for (γ).
When the sum of digits on track 1 is zero, i.e. for phases j > 1 + blogm xc,
the active cell does nothing. Clearly, this process computes Basem(x) on
track 2 and needs 1 + blogm xc ≤ 1 + blogm(pN)c phases.
Finally, grouping phases by packs of j, we get 2 + blogm xc phases.

2xiv. Let 1′, 1′′, ...p′, p′′ be new symbols. Again, we proceed through blogm Nc
phases of N time steps and use two tracks.
Initially, Basem(x) = xk...x0 is written on track 1 and track 2 is empty.
At the end of phase i ≤ k the following properties will be true:

(α) Digits xi, ..., x0 of Basem(x) are erased from track 1.

(β) The contents of track 2 is the word

Unaryp(x0 + mx1 + ... + mixi) u

where u is a sequence of words Unaryp(mi+1), alternatively written
with digits {1′, ..., p′} and digits {1”, ..., p”}, ended by a word also
written with the primed or double primed digits such that the sum of
its digits is < mi.
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To get these properties, the active cell acts as follows:

1. During phase 0, it deletes x0 from track 1. Then it writes Unaryp(x0)
(which is empty if x0 = 0) on track 2. Left to that, it fills track 2
with a sequence of words Unaryp(m) alternatively written with digits
{1′, ..., p′} and digits {1”, ..., p”}, ended by a prefix of Unaryp(m) also
written in the primed or double primed alphabet.

2. During phase i < k, it deletes xi from track 1. It also considers on
track 2 the word Unaryp(x0 + mx1 + ... + mi−1xi−1) followed by the
xi first words Unaryp(mi) alternately written with primed and double
primed digits. Using an add and carry process, it computes their sum
and writes down Unaryp(x0 + mx1 + ... + mixi).

3. To end phase i, the active cell considers successive blocks of m words
Unaryp(mi) alternatively with primed and double primed digits. It
computes the sum of each such block and writes down Unaryp(mi+1).
This last word is written down alternatively with primed and double
primed digits.

4. During phase k (which the active cell recognizes since at the end of
the previous phase, only one digit remains on track 1), the active cell
follows point 2 but not point 3 and erases the prime and double prime
digits which are now useless.
In all subsequent phases, the active cell does nothing.

Clearly, this process puts Unaryp(x) on track 2.
Condition logm x ≤ blogm Nc insures that blogm Nc phases are enough.
Finally, grouping phases by packs of j, we get 1 + blogmj xc phases.

2xv. Interpret xy as the sum of y terms: x + ... + x and apply 2iv. Since
there are y − 1 additions, max(1, blogm yc − 1) phases are enough.
Finally, grouping phases by packs of j, we get max(1, blogmj xc) phases.

Case N ≥ m2j . In all points i to xv replace mj by m3j . Observe that
dlogm3j Ne+ 1 ≤ blogm3j Nc+ 2 = b(logmj N)/3c+ 2 = bblogmj Nc/3c+ 2
Now, bx/3c+ 2 ≤ x ⇔ x/3 < x− 1 ⇔ x > 3/2. Thus, for blogmj Nc ≥ 2,
i.e. for N ≥ m2j , a total of blogmj Nc phases is enough. 2

Remark 1.10. Even if N < m2j , all times in Table 1 can also be replaced
by Nblogmj Nc provided that the active cell knows (i.e. has coded in its
state) the values modulo m2 of the inputs (in case of inputs given in base
m, this is the two rightmost digits). Indeed, it is easy to check that this
allows to collapse two phases in each of the operations of Table 1.
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2 Synchronization of a line in time Dblogm Dc
2.1 Strategy for synchronization

1. The dichotomy process (§2.2): creating sublines L` and Lr (2.3).
We adapt Minsky dichotomy process ([7], p.28-29 & 282-283) to split a line
L = {1, ..., n} with total communication delay D into two (left and right)
sublines L` = {1, ..., h} and Lr = {h + 1, ..., n} with total communication
delays D` = D1,h and Dr = Dh+1,n. In general, due to the delays, there is no
middle of the line, so that it is not possible to create sublines with equal total
delays. We merely do for the best with L` and Lr by choosing h maximum
such that D1,h ≤ Dh,n. Then an easy computation (cf. Proposition 2.1)
shows that

(∗) D` < D/2 ≤ D` + d , Dr ≤ D/2 < d + Dr

where d denotes the communication delay dh,h+1 from cell h to h + 1.

2. Idle times and extended sublines (§2.5).
Since the dichotomy process does not create sublines L` and Lr with equal
delay, the sublines have to start their synchronization process after adequate
idle times T` and Tr (cf. §2.8).
Now, sublines L` and Lr can be arbitrarily short: it may happen that most
of the total delay lies between cells h and h + 1. However, as shown by
inequalities (∗) above, the extended sublines L+

` = {1, ..., h, h + 1} and
L+

r = {h, h + 1, ..., n} have total delays at least D/2. Therefore, we shall
create Jiang circuits J (L+

` ) and J (L+
r ) on these extended sublines and use

them to compute, code and consume the idle times (cf. §2.4).
Important point: observe that this extension process does not give rise to
an unbounded accumulation of signals for cells h and h + 1 because none
of these cells will be involved as the extra cell of any subsequent extended
subline.

3. Getting the values of D`, Dr + d (resp. D`, Dr + d and 2d) on the right-
wards Jiang circuit J (L+

` ) (resp. J (L+
r )), cf. §2.5.

These are the values we shall need in order to compute the adequate idle
times T` and Tr on circuits J (L+

` ) and J (L+
r ) using operations from Table

1 of Proposition 1.8. It will be sufficient to represent these parameters as
unary words. inequalities (∗) above show that these unary words can be
coded on at most two tracks of J (L+

` ) and J (L+
r ), i.e. such words can be

longer that the circuit but shorter than twice the circuit. This is detailed in
§2.5.

4. Computing idle times on extended sublines (§2.8).
We shall compute the idle times T` and Tr on the extended sublines {1, ..., h, h+
1} and {h, h + 1, ..., n}. This is possible since

12



• Each of these two extended sublines has total communication delay
≥ D/2, so that computations involving D logm D are possible on the
associated rightwards Jiang circuit (using binary representations).

• Point 2 insures that all needed information has been put on each of
these extended sublines.

Of course, the time needed to compute the idle time has to be considered in
the evaluation of the idle time.

5. Consuming the idle times T` and Tr.
The obvious way to consume an idle time (in order to delay some process),
needs this idle time to be represented in unary. This will not be possible
here because the idle times T` and Tr are of order D logm D whereas the
total communication delays of the extended sublines are of order D.
However, we shall use another trick which is based on the fact that the idle
time T` (resp. Tr) will always satisfy T` < D logm D ≤ 2(D` +d) log(2(D` +
d)) ≤ (2(D` + d))2 (resp. Tr < (2(Dr + d))2).
In fact, given T < N2 (with N ≥ 2), let’s write it as T = αN + β where
α, β < N . On a Jiang circuit with total delay N , we represent the idle time
T by the unary representations of α, β written on two tracks of the circuit,
with their last letter on the active cell (this is a unary representation of the
two digits of BaseN (T )). Such a representation allows to consume the idle
time T quite easily:

• If α 6= 0 (i.e. if the active cell reads a digit 1 on the track containing
α) then the active cell starts counting α many cycles (cf. point 1i
of Proposition 1.8). At each cycle, the active cell erases the nearest
remaining digit of Unary(α). The process stops when all digits of
Unary(α) have been erased. This process consumes time αN .

• Then the active cell starts a new cycle reading Unary(β) but halts as
soon as this reading is over. This consumes time β.

6. Short lines (§2.7).
For short lines there is not enough time to compute the idle times as
described in the above points. For such short lines, we shall halt the
dichotomy process, compute another idle time and synchronize using a
bounded counter.
Observe that we need to test whether the subline is short or not. This is
time consuming and to be taken into consideration for the computation of
the idle time.

2.2 The dichotomy process

The dichotomy process does not use Jiang circuits but classical signals as is
the case for most synchronization solutions (cf. Mazoyer [5]). As in Mazoyer
[6], we use Minsky’s dichotomy process set up by the following three signals:
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1. Signal S is launched by cell 1 (the general) at time 0 and goes right-
wards at maximum speed. Thus, S reaches cell i at time D1,i.

2. Signal S̃ is launched by cell n when receiving signal S, i.e at time D1,n.
This signal goes leftwards at maximum speed. Thus, S̃ reaches cell i
at time D1,n + Di,n.

3. Signal Z is launched by cell 1 at time 0 and goes rightwards through
zigzags in the following way:

1 → 2 → 1 → 2 → 3 → 2 → 3 → ... → n− 1 → n → n− 1 → n

Let’s say that Z reaches cell i when it does it for the second time, i.e.
at time 3 D1,i.

The wanted synchronization is obtained by iteratively splitting the line. The
line of n cells L = {1, . . . , n} is split in two sublines:

L` = {i : S̃ reaches i strictly later than Z does}
Lr = {i : S̃ reaches i no later than Z does}

Proposition 2.1. 1. Let n ≥ 2. There exists h such that 1 ≤ h < n and

L` = {i : S̃ reaches i strictly later than Z does} = {1, . . . , h}
Lr = {i : S̃ reaches i no later than Z does} = {h + 1, . . . , n}

2. The total communication delays D` = D1,h and Dr = Dh+1,n of L` and
Lr satisfy

i. D` < D/2 ≤ D` + d
ii. Dr ≤ D/2 < d + Dr

where d denotes the communication delay dh,h+1 from cell h to h + 1.

Proof. 1. Signals Z and S̃ reach cell i at respective times 3D1,i and D1,n +
Di,n. Thus,

i ∈ L` ⇔ 3D1,i < D1,n + Di,n

⇔ 3D1,i < D1,i + 2 Di,n

⇔ D1,i < Di,n

i ∈ Lr ⇔ D1,i ≥ Di,n

Since n > 1 we have D1,n > 0 (in fact D1,n = d1,2 + ...+dn−1,n ≥ n−1 since
the di,i+1’s are ≥ 1), so that 0 = D1,1 < D1,n and D1,n > Dn,n = 0. Thus,
1 ∈ L` and n ∈ Lr, which insures that the two sublines L` and Lr are non
empty.
Clearly, L` and Lr are disjoint and respectively initial and final segments of
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{1, ..., n}. Therefore there exists h satisfying point 1 of the Proposition.

2. Applying the above inequalities to i = h and i = h + 1, we get

D` < d + Dr D` + d ≥ Dr (1)

Adding respectively D` and Dr to inequalities (1) and observing that D =
D` + d + Dr, we get

2D` < D , D ≥ 2Dr

Adding respectively d + Dr and D` + d to inequalities (1), we get

D < 2(d + Dr) , 2(D` + d) ≥ D

which proves the inequalities of point 2 of the Proposition.

2.3 Creating sublines L` = {1, ...h} and Lr = {h + 1, ...n}
Proposition 2.2. One can distinguish cell h in time D + Dr + d and cell
h + 1 in both times D + Dr + 2d and max(D + Dr, 3D` + d).

Note 2.3. Formally, the above Proposition means that there is an automa-
ton A with distinguished states G, G`, Gr such that, given a line with total
communication delay D, for every n ≥ 2, a line of n cells (each one with au-
tomaton A) in initial configuration Gen−1, evolves so that at the indicated
time cell h (resp. h + 1) enters state G` (resp. Gr) for the first time.

Proof. 1. Distinguishing cell h at time D + Dr + d. When cell i receives
the S̃ signal, i.e. at time D + Di,n, it can decide whether it belongs to the
subline Lr or to L` : if it has strictly previously received the Z signal then
it belongs to L`, else it belongs to Lr.
Let cell i send a message to cell i − 1 at time D + Di,n telling whether it
belongs to Lr or not.
Now, cell h is the sole one which belongs to L` with its right neighbor in Lr.
Thus, cell h “understands” its status at time D + Dn,h = D + Dr + d.

2. Distinguishing cell h + 1 at time D + Dr + 2d. When cell h has been
distinguished, it sends a special message to its right neighbor h + 1. Thus,
cell h + 1 is distinguished when it receives this special message, i.e. at time
D + Dr + 2d.

3. Distinguishing cell h + 1 at time max(D + Dr, 3D` + d). When cell i
receives the Z signal, i.e. at time 3D1,i, it can decide whether it belongs
to the subline L` or to Lr : if it has not yet received the S̃ signal then it
belongs to L`, else it belongs to Lr. Let then cell i send a message to cell
i + 1 telling whether it belongs to L` or not.
Now, cell h + 1 is the sole one which belongs to Lr with its left neighbor in
L`. The first information is obtained at time D + Dr and the second one at
time 3D` +d. Thus, at time max(D+Dr, 3D` +d), cell h+1 “understands”
its status.
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Time max(D + Dr, 3D` + d) is better than D + Dr + 2d.

Proposition 2.4. max(D + Dr, 3D` + d) ≤ D + D` + d

Proof. Since 2D` < D, we get 3D`+d < D+D`+d. Also, Dr ≤ D/2 ≤ D`+d
hence D + Dr ≤ D + D` + d.

2.4 Creating Jiang circuits J (L+
` ) and J (L+

r )

Following Definition 1.6, we consider the following rightwards Jiang circuits
associated to the line L = {1, ..., n} with total communication delay D.

Definition 2.5. 1. J (L+
` ) is the rightwards Jiang circuit associated to the

extended subline {1, ..., h, h + 1} which has active cell h and 2(D` + d) − 1
rightwards passive cells. (of which h are real cells, the other ones being
fictive).

2. J (L+
r ) is the rightwards Jiang circuit associated to the extended subline

{h, h+1, ..., n} and has active cell h+1 and 2(d+Dr)−1 rightwards passive
cells. (of which n− h are real cells, the other ones being fictive).

The Jiang circuit J (L+
` ) (resp. J (L+

` )) is created as soon as cell h (resp.
h + 1) is distinguished.
Though, as a cell in J (L+

` ), cell h+1 is a passive one, it is used as a normal
(active) cell of line {1, ..., n} to manage the Jiang circuit J (L+

` ) as is done
in §2.5 below. Idem for cell h and circuit J (L+

` ).

2.5 Getting D`, Dr, d on circuits J (L`
+) and J (Lr

+)

Proposition 2.6. Let x be D` (resp. Dr) or d. After cell h (resp. h+1) is
distinguished, it takes 2x units of time to get the unary representation of 2x
on both Jiang circuits J (L`

+) and J (Lr
+). Such a representation is always

shorter than twice the length of the circuit, hence can be coded on at most
two tracks (if and when the first track is filled then the second track receives
the remaining part). Thus,

i. After cell h is distinguished, it takes max(2D`, 2d, 2Dr + d) units of
time to put the unary representations of 2D`, 2Dr and 2d on circuit
J (L`

+).

ii. After cell h + 1 is distinguished, it takes max(2Dr, 2d, 2D` + d) units
of time to put the unary representations of 2D`, 2Dr and 2d on circuit
J (Lr

+).

Proof. 1. The assertion about the length of such representations compared
to that of the circuit is an obvious corollary of inequalities of Proposition
2.1.
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2. After cell h is distinguished, let it send a signal to cell 1 and another
to cell h + 1 and wait for their returns. While waiting, it writes the unary
representations of 2D` and 2d on (one or two tracks of) circuits J (L`

+) and
J (L+

r ).

3. After cell h + 1 is distinguished, let it send a signal to cell n and another
to cell h and wait for their returns. While waiting, it writes the unary
representations of 2Dr and 2d on (one or two tracks of) circuits J (L`

+) and
J (L+

r ).

4. Condition i. Use 1 to get 2D` and 2d. To get 2Dr use 2 and observe
that cell h can be distinguished d units of time after cell h + 1. Idem with
condition ii.

2.6 Testing whether D` and Dr are short

As we shall treat in a special way short lines (or short sublines obtained
through the recursive splitting), we have to test shortness.

Proposition 2.7. Let ξ > 0 be fixed. Cell h (resp. h + 1) can test in time
2D` (resp. 2Dr) whether D` ≤ ξ or not (resp. Dr ≤ ξ) or not.

Proof. Simply send a signal from cell h to cell 1 which goes back to cell h
at time 2D`. A counter up to 2ξ allows to compare D` and ξ. Idem with
cell h + 1 and Dr.

2.7 Synchronization of short lines using counters

Short lines are those for which D is less than or equal to some fixed bound.
They appear through the dichotomic splitting of the initial line.

Proposition 2.8. Let ξ > 0 be fixed. All lines with total communication
delay D ≤ ξ can be synchronized in time 4D.

Proof. We use counters up to 3D.
1. Cell i can know the communication delay D1,i at time 3D1,i.
Induction on i. The initial case i = 1 is trivial.
Inductive step: from i to i + 1. When i knows D1,i at time 3D1,i, it looks
for the value of di,i+1. A signal to cell i + 1 comes back to cell i at time
3D1,i +2di,i+1, bringing to cell i the value of di,i+1. Then cell i sends to cell
i+1 the value of D1,i +di,i+1 = D1,i+1. Cell i+1 receives this value at time
(3D1,i + 2di,i+1) + di,i+1 = 3D1,i+1.

2. Synchronization in time 4D.
When the last cell n receives the value of D1,n = D, i.e. at time 3D, it sends
a leftwards signal. This signal is received by cell i at time 3D + Di,n. Then
cell i counts up to D1,i (a value cell i knows since time 3D1,i) and fires. The
firing time is (3D + Di,n) + D1,i = 4D.
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For the computation of idle times of short sublines, we shall need the
following obvious analog of Proposition 2.6.

Proposition 2.9. Let ξ > 0 be fixed. Let x be D` or d (resp. Dr or d). For
all lines with total communication delay D ≤ ξ, after cell h (resp. h + 1)
is distinguished, it takes 2x units of time to cell h (resp. h + 1) to code the
value of x in its state. Thus,

i. After cell h is distinguished, it takes max(2D`, 2d, 2Dr + d) units of
time to code D`, Dr and d within the state of cell h.

ii. After cell h + 1 is distinguished, it takes max(2Dr, 2d, 2D` + d) units
of time to code D`, Dr and d within the state of cell h + 1.

Proof. Same proof as Proposition 2.6 : instead of writing on a Jiang circuit,
let’s cell h (resp. h + 1) use a counter up to ξ.

2.8 Idle times for synchronization

Let ω be some constant to be fixed later on (its actual value will be 9, cf.
§2.9). In order to synchronize a line with total communication delay D in
time

T (D) =
{

Dblogm Dc if D > mω

4D if D ≤ mω

we manage the splitting process as follows:

• If the initial line has total communication delay D ≤ mω then there is
no splitting process: the line is synchronized via counters (cf. Propo-
sition 2.8).

• If the initial line has total communication delay D > mω then there is
a recursive splitting process. This splitting process stops for sublines
with total communication delay ≤ mω. Such sublines are not split and
are synchronized via counters (cf. Proposition 2.8).

• Whatever be its length, the synchronization of a subline starts after
an adequate idle time. As said in §2.1, point 3, the idle time for
subline L` = {1, . . . , h} will be computed on the rightwards Jiang
circuit J (L+

` ) and that for Lr = {h + 1, . . . , n} on J (L+
r ).

Let’s look at the different components which have to enter in the idle time
for L` (resp. Lr) when we split the line L.

C1. First, there is the gross difference T (D)−T (D`) (resp. T (D)−T (Dr)).
Observe that T (D) = Dblogm Dc since we split. However, T (D`) (resp.
T (Dr)) depends on how D` (resp. Dr) compares to mω.
This gross difference has to be diminished of the following quantities.
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C2. The time needed to distinguish cell h (resp. h + 1). Applying Propo-
sition 2.2, this time is D + Dr + d (resp. D + Dr + 2d or max(D +
Dr, 3D` + d)).

C3. The time needed to test whether D` > mω (resp. Dr > mω) or not
and whether D` + d > m2j/2 or not (resp. Dr + d > m2j/2). The
first test is needed for the value of T (D`) (resp. Tr) : if true then
T (D`) = D`blogm D`c else T (D`) = 4D`. The second test is needed in
point C5 below. Proposition 2.7 insures that these tests can be done
in time 2(D` + d) (resp. 2(Dr + d)).

C4. The time needed to get 2D`, 2Dr, 2d on the Jiang circuit J (L+
` ) (resp.

J (L+
r )) or to code them within the state of cell h (resp. h+1) in case

2(D` + d) ≤ m2j (resp. 2(Dr + d) ≤ m2j). Applying Propositions 2.6
and 2.9, this time is that to distinguish cell h (resp. h+1) augmented
of these values.
This can be done in parallel with point C3. The total time of C3 and
C4 is therefore max(2(D` + d), 2Dr) (resp. max(2(Dr + d), 2D`)).

C5. The time needed for the arithmetic computations in order to compute
the idle time. Here there is a “fixed point problem” since the computa-
tion time of the idle time is itself a component of the idle time (entering
in subtraction of the gross difference). As we shall use Proposition 1.8,
in particular property (†) from Table 1, we shall fix some constant j,
the exact value of which will be determined later on (it will be 67, cf.
Proposition 2.12). This is to simplify the expression of the computa-
tion times of the diverse operations in case 2(D` + d) > m2j (resp.
2(Dr +d) > m2j). When 2(D` +d) ≤ m2j (resp. 2(Dr +d) ≤ m2j), all
arithmetic computations can be done in one step since all parameters
are coded in the state of cell h (resp. h + 1).

We can now get the expressions of the idle times idle` and idler.

Proposition 2.10. Let j, ω be some fixed constants.

1. If D` ≤ mω (i.e. L` is short) then

idle` = Dblogm Dc − 4D` − (D + Dr + d)−max(2(D` + d), 2Dr)

2. If mω < D` and 2(D` + d) ≤ m2j, then

idle` = Dblogm Dc −D`blogm D`c − (D + Dr + d)
−max(2(D` + d), 2Dr)

3. If mω < D` and 2(D` + d) > m2j then

idle` = Dblogm Dc −D`blogm D`c − (D + Dr + d)
−max(2(D` + d), 2Dr)− 6(D` + d)blogmj 2(D` + d)c

4. If Dr ≤ mω (i.e. Lr is short) then
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idler = Dblogm Dc − 4Dr −max(D + Dr, 3D` + d)
−max(2(Dr + d), 2D`)

5. If mω < Dr and 2(Dr + d) ≤ m2j, then

idler = Dblogm Dc −Drblogm Drc
−max(D + Dr, 3D` + d)−max(2(Dr + d), 2D`)

6. If mω < Dr and 2(Dr + d) > m2j then

idler = Dblogm Dc −Drblogm Drc −max(D + Dr, 3D` + d)
−max(2(Dr + d), 2D`)− 6(Dr + d)blogmj 2(Dr + d)c

Proof. 1 & 2 & 4 & 5. The computation time of the idle time (point C5 in
the above analysis) is null. In fact, the state of cell h (resp. h + 1) codes all
parameters entering the idle time so that idle` (resp. idler) is known from
the state of cell h (resp. h + 1). This uses the ability of an automaton to
compute from parameters bounded by some fixed constant. The value of
idle` (resp. idler) is thus given by points C1 to C4 in the above analysis.

3 & 6. As explained in §2.1, points 3 and 4, the idle time idle` (resp. idler)
is to be computed on the Jiang circuit J (L+

` ) (resp. J (L+
r )) and is to be

given as two unary representations of the digits of its representation in base
the length of J (L+

` ) (resp. J (L+
r )), i.e. base 2(Dl + d) (resp. 2(Dr + d)).

The computation starts when all parameters are written on J (L+
` ) (resp.

J (L+
r )), i.e. after time for C2, C3 and C4 in the above analysis. It is done

as follows:

i. Compute in parallel

(a) the base m representations of D, D`, Dr, d and 2(D` + d) (resp.
2(Dr + d)),

(b) the unary representations of blogm Dc and blogm D`c (resp. blogm Drc),
(c) the unary representations of blogmj (D` + d)c (resp. blogmj (Dr +

d)c).
ii. While achieving i(a) (i.e. as digits of increasing significance are ob-

tained), determine (in parallel) the largest elements out of the sets
{D + Dr, 3D` + d}, {2D`, 2d, 2Dr + d} and {2Dr, 2d, 2D` + d}.

iii. Compute in parallel the base m representations of the products
• Dblogm Dc and D`blogm D`c (resp. Drblogm Drc),
• (D` + d)blogmj (D` + d)c (resp. (Dr + d)blogmj (Dr + d)c).

iv. While achieving iii (i.e. as digits of increasing significance are ob-
tained), compute the linear combination leading to idle` (resp. idler)
as seen from Proposition 2.10.
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v. Lastly, compute the unary representations of idle` mod 2(D`+d) (resp.
idler mod 2(Dr + d)) and bidle`/2(D` + d)c (resp. bidler/2(Dr + d)c).
Observe that idle` ≤ D logm D ≤ 2(D` + d) logm 2(D` + d). Thus, the
unary representation of bidle`/2(D` + d)c has length logm 2(D` + d) ≤
2(D` + d) hence can be written on circuit J +

` . Idem for idler and
circuit J +

r .

Computations i, iii and v above are successively done via respective opera-
tions 2xiii+2xi, 2xv and 2ix+2x of Table 1 (cf. Proposition 1.8). Condition
2(D` + d) > m2j (resp. 2(Dr + d) > m2j)) insure that property (†) of Table
1 can be applied. Thus, the total computation time for i, iii and v above is
6(D` + d) (resp. 6(Dr + d)).

Remark 2.11. Observe that when 2D`, 2Dr, 2d are put in unary on a Jiang
circuit, the active cell can memorize the values of D` mod m2, Dr mod m2,
d mod m2. Also, at the end of the computation of points ii and iii of the
above proof, the active cell can memorize the values modulo m2 of the
results. This allows to use Remark 1.10 and to avoid point 2 (resp. 4) in the
above Proposition 2.10 and consider that point 3 (resp. 6) applies whenever
D` < mω (resp. Dr < mω).

2.9 Idle times are non negative

The above computations of idle` and idler are purely algebraic. It remains
to check that these idle times are non negative!

Proposition 2.12. If ω ≥ 9 and j ≥ 67 then idle` and idler are positive in
all cases.

Proof. Recall that
• blogmj xc = b(logm x)/jc = bblogm xc/jc ≤ blogm xc/j,
• D` < D/2 and Dr ≤ D/2 (cf. Proposition 2.1).

Case D` ≤ mω.

idle` = Dblogm Dc − 4D` − (D + Dr + d)−max(2(D` + d), 2Dr)
= Dblogm Dc −D −max(6D` + Dr + 3d, 4D` + 3Dr + d)
= Dblogm Dc −D −max((D` + Dr + d) + 2(D` + d) + 3D`,

(D` + Dr + d) + 2(D` + Dr) + D`)
= Dblogm Dc −D − (D` + Dr + d)− 2(D` + d)− 3D`

≥ Dblogm Dc − 5.5D

> 0 if ω ≥ 6 (since D > mω implies blogm Dc ≥ bωc)
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Case Dr ≤ mω. We apply inequality from Proposition 2.4 to reduce to the
analog of the previous case.

idler = Dblogm Dc − 4Dr −max(D + Dr, 3D` + d)
−max(2(Dr + d), 2D`)

≥ Dblogm Dc − 4Dr − (D + D` + d)−max(2(Dr + d), 2D`)
> 0 if ω ≥ 6

Case D` > mω. In view of the expressions of idle` in points 2, 3 of Propo-
sition 2.10, it suffices to consider the subcase 2(D` + d) > m2j .

idle` = Dblogm Dc −D`blogm D`c − (D + Dr + d)
−max(2(D` + d), 2Dr)− 6(D` + d)blogmj 2(D` + d)c

≥ Dblogm Dc − (D/2)blogm Dc − (6D/j)(blogm Dc+ 1)
−(D + Dr + d)−max(2(D` + d), 2Dr)

= Dblogm Dc(1
2
− 6

j
)−D(1 + (6/j))

−max(2D` + Dr + 3d, 3Dr + d)

≥ Dblogm Dc(1
2
− 6

j
)−D(1 + (6/j))

−max(D + (D` + d) + d, (Dr + d) + 2Dr)

= Dblogm Dc(1
2
− 6

j
)−D(4 + (6/j))

= (
1
2
− 6

j
)D (blogm Dc − 2(4j + 6)/(j − 6))

= (
1
2
− 6

j
)D (blogm Dc − 8− (60/(j − 6)))

> 0 if ω ≥ 9 and j > 66

(since D > mω ⇒ blogm Dc ≥ bωc ≥ 9 and j > 66 ⇒ 60/(j − 6) < 1).

Case Dr > mω. Again, it suffices to consider the subcase 2(Dr +d) > m2j .
As already seen, max(D + Dr, 3D` + d) ≤ D + D` + d. Thus,

idler = Dblogm Dc −Drblogm Drc −max(D + Dr, 3D` + d)
−max(2(Dr + d), 2D`)− 6(Dr + d)blogmj 2(Dr + d)c

≥ Dblogm Dc −Drblogm Drc − (D + D` + d)
−max(2(Dr + d), 2D`)− 6(Dr + d)blogmj 2(Dr + d)c

> 0 if ω ≥ 9 and j > 66
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2.10 Main theorem for the line

§2.1–2.9 prove the following theorem.

Theorem 2.13. Let m ≥ 2. There exists a cellular automaton synchro-
nizing every line of cells with arbitrary symmetric communication delays in
time {

Dblogm Dc if D > m9

4D if D ≤ m9

where D is the total communication delay of the line.

Remark 2.14. 1. Vivien [11, 12]) has shown that O(D log(D)) is a lower
bound for synchronizing lines of two cells with arbitrary symmetric commu-
nication delays. Thus, Thm.2.13 is optimal.

2. Nevertheless, one can achieve linear time synchronization under particu-
lar restrictive conditions, namely (cf. Umeo, 1994 [10], and Yunes [13]),

• a bound on the number of pairs of cells with communication delay > 1,

• and inequalities stating that around a pair of cells with communication
delay d > 1 there at least d pairs with communication delay 1.

3 Synchronization of graphs of degree ≤ d

We shall consider graphs with degree ≤ d and such that the edges connected
to some vertex are labelled in {1, ..., d}.
Let’s call total communication delay D of a graph the sum of all communi-
cation delays between pairs of cells constituting the edges of the graph.

Use a depth-first search of the graph as in Rosenstiehl [8, 9] to cover the
graph by a line which visits each cell twice. The total communication delay
of this line is equal to twice the total communication delay of the graph.
Under the above hypothesis on the graph, there is an automaton which is
able to set up this line. Finally, synchronization of the line is a synchroniza-
tion of the graph.
From Theorem 2.13 we deduce the following result.

Theorem 3.1. Fix some constant d ≥ 1 and let m ≥ 2. There exists a
cellular automaton synchronizing every graph of cells with degree ≤ d and
arbitrary symmetric communication delays in time

{
2Dblogm 2Dc if 2D > m9

8D if 2D ≤ m9

where D is the total communication delay of the graph.

Acknowledgements. I am very grateful to the referee for his corrections
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