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Abstract

We consider the four families of recognizable, synchronous, de-
terministic rational and rational subsets of a direct product of free
monoids. They form a strict hierarchy and we investigate the follow-
ing decision problem: given a relation in one of the family, does it
belong to a smaller family? We settle the problem entirely when all
monoids have a unique generator and fill some gaps in the general case.
In particular, adapting a proof of Stearns, we show that it is recursively
decidable whether or not a deterministic subset of an arbitrary number
of free monoids is recognizable. Also we exhibit a single exponential
algorithm for determining if a synchronous relation is recognizable.

1 Introduction

The rational relations are the subsets of a direct product of free monoids ac-
cepted by multi-tape automata, historically introduced by Rabin and Scott
in their deterministic version in the late fifties, see [12]. The nondeterminis-
tic model which is nowadays considered as the right generalization, was very
shortly proposed by Elgot and Mezei [6] who gave a far reaching account of
their closure properties. Concerning the decision problems, the most gen-
eral undecidable results were discovered by Fischer and Rosenberg [7] shortly
thereafter. A decade later, these results were refined under specific condi-
tions on the direct products by Lisovik, [11] and Ibarra, [10], almost at the
same time, though independently, yet another consequence of the division
of the world between the West and the East. There are very few nontrivial
decidable properties, essentially Stearns [14] (though expressed in a different
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framework, see paragraph 3.2 below, and therefore overlooked) and Bertoni
[2].

The present work focuses on specific decision properties. Indeed, let us
recall that for a monoid of the form M = A∗

1 × · · · × A∗
k with k > 1, there

exists a strict hierarchy of families of subsets (their definition is given in
section 2),

F0 = Rec(M) ( F1 = Sync(M) ( F2 = DRat(M) ( F3 = Rat(M) (1)

respectively known in increasing order, as the recognizable, synchronous,
deterministic rational and rational families. A natural question is therefore
the following. Given 0 ≤ i < j ≤ 3 and a subset of M belonging to Fj , is is
decidable whether or not it belongs to Fi ?

For the general class of rational subsets, i.e., for F3, the question has
long been settled by Fischer and Rosenberg who proved that it is unde-
cidable whether or not a rational relation is deterministic, see [7, Theorem
9]. This result requires however at least two free monoids with at least two
generators. Lisovik [11] strengthened this result by showing none of the
proper subclasses of the Rat(M) to be decidable, even in the special case of
the direct product of a two generator and a one generator free monoids, see
column 1 of Table 1. In his textbook, J. Sakarovitch raises the question for
the three remaining nontrivial cases when k = 2, [13, p. 632 and 659]. It
just happens that in this case, a strong result due to Stearns implicitly pro-
vides a decision procedure for the question whether a deterministic relation
is recognizable or not. The complexity of Stearns’ procedure was further
improved by Valiant, as explained in paragraph 3.1.

Let us now discuss the three main results of this contribution. First,
adapting Stearns’ result, we prove that it is recursively decidable whether or
not a determinisitic relation over an arbitrary product of free monoids is rec-
ognizable. Second, we show that there exists a single exponential algorithm
deciding whether or not a synchronous relation is recognizable whatever the
number of free monoids in the direct product. Third, we settle completely
the special case where all alphabets Ai’s consist of a unique letter or, equiv-
alently, where the product A∗

1 × · · · × A∗
k is commutative. Indeed, under

this hypothesis, all problems can be decided by resorting to the decidability
of the arithmetics of Presburger. Provided that rational relations are given
as Presburger formulas, the complexity of any of the above decision prob-
lem is that of Presburger arithmetics (up to a linear factor). Consequently,
there remains open the problem of deciding whether or not a deterministic
relation is synchronous when k > 1.
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Rat(M) DRat(M) Sync(M)

DRat(M) undecidable (1)

Sync(M) undecidable (2) open

Rec(M) undecidable (3) decidable (4)
decidable (5)
in exponential

time

Table 1: Decision status in M = A∗
1 × · · · ×A∗

k

Credits for Table 1:
(1) Case k ≥ 2 and |A1|, |A2| ≥ 2 : Fischer & Rosenberg [7], 1967.

(1, 2, 3) Case k = 2 and |A1| = 1, |A2| = 2 : Lisovik [11], 1979.

(4)


k = 2, Stearns [14], 1967 (triple exponential time)
Valiant [15], 1975, (double exponential time)
Arbitrary k : this paper.

(5) This paper.

2 Preliminaries

Given an alphabet A, we denote by A∗ the free monoid it generates, i.e.,
the set of words written on the alphabet A, by 1 the empty word and by
A+ the set of nonempty words. The length of a word u ∈ A∗ is denoted by
|u|. All alphabets considered here are finite and non-empty. The purpose of
this paper is to study some decision properties of the product monoid A∗

1 ×
· · ·×A∗

k. The componentwise concatenation of the direct product extends to
subsets: if R,S ⊆ A∗

1×· · ·×A∗
k, then RS = {(x1y1, . . . , xkyk) | (x1, . . . , xk) ∈

R, (y1, . . . , yk) ∈ S}. Observe that such a monoid is commutative if and only
if all alphabets have one generator, in which case it is isomorphic to Nk.

We assume some familiarity of the reader with the theory of k-tape
automata and of rational subsets of free commutative monoids. The stan-
dard references are the handbooks of J. Berstel [1], S. Eilenberg [3] and J.
Sakarovitch [13] for the former and the article [5] for the latter. We take
for granted all closure properties of synchronous, deterministic and rational
relations as well as the characterization of rational subsets of Nk as finite
union of linear sets.

2.1 Nondeterministic and deterministic k-tape automata

The k-tape automaton is the direct generalization of the ordinary one tape.
There are possible variations in the definition, leading to equivalent notions.

3



We choose the one which is convenient in this work.
With minor technical differences, a k-tape automaton is a k-tape, one-

way, read only Turing machine meant to accept k-tuples of words. It is
provided with a finite memory and k input tapes divided into cells each
containing a symbol. At the beginning of the computation read-only heads
are positioned on the leftmost cell of each tape. Based on the current state,
one and only one of the symbols is read and the corresponding head moves
one step to the right and a transition to a new state is performed. There
exists a nondeterministic and a deterministic versions of these devices. We
start with the first one.

It is convenient, given k alphabets A1, A2, . . . , Ak, to denote by Hi the
set of all k-tuples such that the i-th component is the unique which is not
the empty word. We denote by H the union of the Hi’s.

Hi = {1}i−1 ×Ai × {1}k−i , H =
k⋃

i=1

Hi

Definition 2.1. A k-tape automaton A is a tuple (A1, A2, . . . , Ak, Q,E, I, T )
where:

i) A1, A2, . . . Ak are finite non-empty alphabets,

ii) Q is the finite set of states,

iii) I ⊆ Q is the set of initial states,

iv) T ⊆ Q is the set of final states,

v) E ⊆ Q×H ×Q is the set of transitions.

Given (q, h, p) ∈ E, q is the current state, p is the next state and h is
the label of the transition. A path from q0 to qn in A, where q0, qn ∈ Q, is a
sequence of transitions of E of the form

(q0, h1, q1)(q1, h2, q2) . . . (qn−1, hn, qn)

also written
q0

h1−→ q1
h2−→ q2 · · · qn−1

hn−→ qn (2)

The path is said to be a successful if and only if q0 ∈ I and qn ∈ T . The label
of the path is the componentwise concatenation of the labels of the successive
transitions, namely, the k-tuple h ∈ A∗

1 × · · · × A∗
k where h = h1h2 . . . hn.

We shall use the simpler notation q0
h1h2...hn−−−−−−→ qn.

The relation R ⊆ A∗
1 × · · · × A∗

k accepted by the automaton A is the
set of labels of successful paths of A. A relation accepted by some k-tape
automaton is called rational and Rat(A∗

1 × · · · × A∗
k) denotes the family of

all rational relations.
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The deterministic version of multi-tape automata imposes two restric-
tions. The current state determines which tape to read from, independently
of the actual contents of the cells scanned. Secondly, given the state and
the letter on the corresponding tape, there is at most one possible next
state. Furthermore, in order to increase the recognition power, the device
is allowed to sense the end of the input, i.e., to scan the empty cell to the
right of the last letter of the input. Technically, the input on each tape is
provided with an endmarker #.

Definition 2.2. 1. A k-tape automaton A is deterministic if the set of
states is partitioned as Q = Q1 ∪Q2 ∪ · · · ∪Qk and the set of transitions E
is subject to the following conditions

i) the set I of initial states is reduced to a unique element q−,

ii) E ⊆
k⋃

i=1

(Qi ×Hi ×Q)

iii) for all (qi, hi) ∈ Qi ×Hi, there exists at most one transition (qi, hi, p)
in E.

2. Let # be a new symbol not belonging to any of the alphabets Ai. A
relation R ⊆ A∗

1 × · · · ×A∗
k is deterministic rational if the relation

{(w1#, . . . , wk#) | (w1, . . . , wk) ∈ R}

is accepted by some deterministic k-tape automaton. The family of deter-
ministic rational relations is denoted by DRat(A∗

1 × · · · ×A∗
k).

2.2 Synchronous relations

In the previous paragraphs, the input tapes are processed at different vari-
able speeds. The idea with the synchronous relations is to oblige the read
heads to move simultaneously. This seems to imply that the input has the
same length on each tape. In order to overcome this too severe restric-
tion, all shortest components of the input are padded with occurrences of
an extra dummy symbol # not belonging to any of the alphabets Ai, i.e.,
(w1, w2, . . . , wk) is transformed into

w# = (w1#e1 , w2#e2 , . . . , wn#en)
with ei = −|wi|+ max1≤j≤n |wj |, i = 1, . . . , n

(3)

For example, with the triple w = (ab, cdab, 1) we get w# = (ab##, cdab,
####). We extend this notation to subsets R ⊆ A∗

1 × · · · × A∗
k in the

natural way by writing R# for the result of this operation. Observe that
R# can be viewed as a subset of the free monoid generated by (A1∪{#})×
· · · × (Ak ∪ {#}). In particular, the above triple can be viewed as a word of
length 4.
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Definition 2.3. A relation R ⊆ A∗
1×· · ·×A∗

k is synchronous, if the relation
R#, viewed as a subset of the free monoid generated by (A1 ∪ {#})× · · · ×
(Ak∪{#}), is recognizable by a finite automaton. The family of synchronous
relations is denoted by Sync(A∗

1 × · · · ×A∗
k).

An important case are the so-called length-preserving synchronous rela-
tions all the tuples of which satisfy the condition that all their non-empty
components have the same length. Call support of such a relation the sub-
set of indices whose components are non-empty. The following can be easily
established by resorting to standard automata-theoretic methods.

Proposition 2.4. Each synchronous relation on A∗
1 × · · · × A∗

k is a finite
union of subsets of the form R1R2 . . . Rn for some n > 0, where the Ri’s are
synchronous length-preserving relations of decreasing supports.

2.3 Recognizable relations

This family has the weakest expressive power of the four families that we
consider. Contrarily to the model of k-tape automaton, it does not assume
a common memory for all tapes. Instead, each tape has its own memory
and may work separately. More formally, with the notations of Definition
2.1, we have

Definition 2.5. A relation R ⊆ A∗
1 × A∗

2 × · · · × A∗
k is recognizable if it is

accepted by a k-tape automaton satisfying the following conditions

(i) Q = Q1 ×Q2 × · · · ×Qk,

(ii) the set of transitions E ⊆ Q×H ×Q satisfies the following condition

(q1, . . . , qk, h, p1, . . . , pk) ∈ E ∧ h ∈ Ei ⇒
∧
j 6=i

pj = qj

The family of recognizable relations is denoted by Rec(A∗
1 × · · · ×A∗

k).

The following result attributed to Elgot and Mezei is a useful character-
ization of the recognizable subsets of a direct product of free monoids.

Theorem 2.6. A subset R ⊆ A∗
1 × · · · ×A∗

k is recognizable if and only if it
is a finite union of direct products of the form X1 × · · · ×Xk where Xi is a
recognizable subset of A∗

i .

3 The general case

In this section we show that for the direct product of two free monoids, the
decidability of the family of recognizable relations in the family deterministic
rational relations was implicit in a result of Stearns. We explain how this
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can be seen. In the last paragraph, using Stearns’ method, we extend this
result to deterministic relations of arbitrary arity. Then we give a direct
procedure of lower complexity, which solves recognizability in the family
of synchronous relations. This answers the question posed in [13] by J.
Sakarovitch’s handbook.

3.1 Interpretation of relations as languages

Binary rational relations can be viewed as particular context-free languages.
This very simple observation has some happy consequences. Indeed, polyno-
mial time decidable or more generally decidable properties for context-free
languages carry over to rational relations. Conversely, undecidable results
for rational relations can be extended to context-free languages.

To each relation R ⊆ A∗
1×A∗

2 we associate the language L(R) = {uρ#v ∈
A∗

1#A
∗
2 | (u, v) ∈ R} where uρ is the mirror image of u (1ρ = 1 and

(a1 · · · an)ρ = an · · · a1). The following will be of little surprise for most
readers.

Proposition 3.1. The relation R is rational if and only if the language L(R)
is a linear language where the symbol # can only be produced by a terminal
rule of the form X → #. Furthermore, L(R) is a rational language if and
only if R is a recognizable relation. Finally, if R is a deterministic rational
relation then L(R) is a deterministic context-free language.

Proof. The construction is an immediate extension of that yielding a left-
linear grammar from a finite automaton. More precisely, consider a two-tape
automaton (A1, A2, Q,E, I, T ) recognizing the relation R. Without loss of
generality we may assume that I = {i} and T = {t}. Then a linear grammar
generating L(R) is obtained by taking Q as set of nonterminal symbols, t
as axiom, i as the symbol generating the marker # and the following as set
of production rules: to each (q, a, b, p) ∈ E assign the rule p → aqb. We
leave it to the reader to check that the grammar is correct. The converse is
also clear. Observe that the condition on the production of the marker # is
necessary, see e.g., the grammar S → U#, U → aUb|1 does not generate a
rational relation.

If the relation is recognizable then it a finite union of direct productsX1×
X2 with X1 ∈ Rat(A∗

1) and X2 ∈ Rat(A∗
2). Because of the closure property

of rational languages under union, it suffices to observe that equality L(X1×
X2) = Xρ

1#X2 holds. Conversely, assume the language L(R) is recognized
by a finite deterministic automaton with set of states Q. For all q ∈ Q define
Prefq as the subset of words taking the initial state to q and Suffq as the
subset of words taking q to a final state. Then R is the union of Prefρq ×Suffp

for all pairs (q, p) for which (q,#, p) is a transition of the automaton.
If the relation is deterministic then the language is recognized by a de-

terministic pushdown automaton working in two step. First, given a pair
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(u, v) it pushes the word uρ onto the stack (the top of the stack being
the first letter of u) then it alternatively consumes the word v or pops the
stack according to whether the transition is in Q1 × A1 × {1} × Q1 or in
Q2 × {1} ×A2 ×Q2.

3.2 Deciding Rec(A∗
1 × . . .× A∗

k) in DRat(A∗
1 × . . .× A∗

k)

Stearns proved in 1967 [14] that given a deterministic pushdown context-
free language it is recursively decidable whether or not it is recognizable
by a automaton. Valiant lowered the complexity to a double exponential.
With the above considerations this yields an algorithm working in double
exponential time, which decides whether or not a deterministic relation R ⊆
A∗

1 × A∗
2 is recognizable. The purpose of this paragraph is to extend this

decidability result to arbitrary k-ary deterministic relations.

Before tackling the actual proof which is an elaboration on Stearns’s
proof and which proceeds by induction on the integer k, we observe that we
can somehow simplify the deterministic automaton given as instance. In-
deed, a deterministic relation R ⊆ A∗

1×· · ·×A∗
k can be uniquely decomposed

as R∩A+
1 ×· · ·×A∗

k and R∩({1} ×A∗
2 · · · ×A∗

k). The second relation can be
identified with a deterministic relation on a product of k − 1 free monoids.
Concerning the first relation, we leave it to the reader to verify that without
loss of generality, we may assume, first, that the initial state q− belongs to
Q1 and second that the set of terminal states is reduced to a unique state
q+ which also belongs to Q1 and which is the source of no transition.

In order to make the connection between the general k-ary case and the
binary case, we will have A∗

1 and A∗
2 × · · · × A∗

k play a dissymmetric role.
Given a pair (u, x) ∈ A∗

1× (A∗
2 × · · · ×A∗

k), we say that u is the input and x
the output. Finally, given q ∈ Q1 and u ∈ A∗

1 we define

Rq(u) = {x ∈ A∗
2 × · · · ×A∗

k | q
(u,x)−−−→ q+}

This notation is reminiscent of the right contexts associated with the state
of a one tape deterministic automaton.

The following two crucial definitions are adapted from Stearns’ original
paper. It uses the following notion. A path as in (2) is an N -path if there
exist at most N times where the visited state passes from Q1 to Q2∪· · ·∪Qk

or conversely (i.e., qi ∈ Q1 if and only if qi+1 /∈ Q1). Somewhat incorrectly
we denote by 1 the unit of the product monoid A∗

2× · · · ×A∗
k instead of the

more rigorous (and awkward) (
k−1 times︷ ︸︸ ︷
1, . . . , 1 ).

Definition 3.2. Given an integer N and two input words u, v ∈ A∗
1, the

word v is N -invisible in the context of u if the following holds for all x ∈ A∗
1

for all states q ∈ Q and all N -paths q
(u,x)−−−→ p there exists a path p

(v,1)−−−→ p.
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Stearns was working with pushdown automata. Our first component (the
u and the v) plays the role of the top of his stack. Our second component
plays the role of his input word. Saying that the top of the stack is invisible
means that it can be popped without consuming the input word. We kept the
same terminology for easier reference to the original paper. The justification
of this notion can be seen as follows. Consider for simplicity a binary relation
R ⊆ A∗

1 ×A∗
2. With each x ∈ A∗

2 in the image of R associate a word u ∈ A∗
1

of minimal length satisfying (u, x) ∈ R. If R is recognizable, there exist
only finitely many such words u ∈ A∗

1. Fix one such u and consider the
regular set containing all x ∈ A∗

2 associated to it. In the above definition,
an invisible word is simply an idempotent in the transition monoid of this
regular set.

Definition 3.3. A nonempty input word u ∈ A∗
1 is null-transparent if

for all states q, p ∈ Q1, the condition that q
(u,1)−−−→ p is a path implies that

p
(u,1)−−−→ p is also a path.

Here again, we did not modify the original definition. The intuition is
the following. Consider two integers 0 ≤ n < m and a word w ∈ A∗. If
inequality Rq(unv) 6= Rq(umv) holds then an element x = (x2, · · · , xk) ∈
A∗

2 × · · · × A∗
k belonging to the symmetric difference satisfies the condition

|x2| + · · · + |xk| ≥ n. Indeed, if this condition is not satisfied, consider

for example the case where q
(unv,x)−−−−→ q+ holds. Because the labels of the

transitions have all empty components except one which is a letter of a
subalphabet, for some 0 ≤ i < n the path is of the following form

q
(ui,x′)−−−−→ p

(u,1)−−−→ r
(un−i−1v,x′′)−−−−−−−−→ q+

for x′x′′ = x and p, r ∈ Q. Because the existence of the path r
(u,1)−−−→ r is

guaranteed by the property, there exists a path of the form

q
(ui,x′)−−−−→ p

(u,1)−−−→ r
(um−n,1)−−−−−−→ r

(un−i−1v,x′′)−−−−−−−−→ q+

leading to a contradiction. The first bound of the following Lemma is The-
orem 3 in [14], the second is Lemma 3 in [15] (and is an improvement of
Theorem 4 in[14]). We denote by K the cardinality of the set of states.

Lemma 3.4. Let A be a deterministic n-tape automaton with K states and
let u1 · · ·u` be a product of ` nonempty words in A∗

(i) If ` > K! then there exists 1 ≤ i < j ≤ ` such that ui+1 · · ·uj is
null-transparent.

(ii) If ` > 2(NK)K then there exists 1 ≤ i < j ≤ ` such that ui+1 · · ·uj is
N -invisible in the context of u1 · · ·ui.
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The following is, in our setting, Theorem 4 of [14] in the version of
Theorem 5 of [15]. We pose f(N) = 2(NK)K .

Lemma 3.5. Let R ⊆ A∗
1×A∗

2×· · ·×A∗
k be a deterministic relation accepted

by an automaton with K states. The set {R(u) | u ∈ A∗
1} is finite if and

only if it is equal to the set {R(u) | u ∈ A∗
1, |u| ≤ f(KK!)}.

Proof. Given q ∈ Q1 and u, v ∈ A∗
1, we write u ∼qv whenever Rq(u) =

Rq(v). The Lemma asserts that the equivalence relation ∼q− has finite
index.

By contradiction, assume there exists a word in A∗
1 of length greater

than f(KK!) which is not ∼q− equivalent to any word of length less than
or equal to f(KK!). By Lemma 3.4 (ii) this word factorizes as uvw such
that v is KK!-invisible relative to u, which by minimality of the length
of uvw implies that the word u is greater than KK! (otherwise equality
uw ∼q− uvw would hold). We prove that the condition uw 6∼q− uvw, leads
to a contradiction. Take t ∈ A∗

2 × · · ·A∗
k which is an evidence of this non

equivalence with minimal sum of lengths of the k − 1 components. Factor
the prefix u as α1 · · ·α`+1 in the following way

q−
(α1,τ1)−−−−→ q

(α2,τ2)−−−−→ q . . . q
(α`,τ`)−−−−→ q

(α`+1,τ`+1)
−−−−−−−→ p

where τ1 · · · τ`+1 is a componentwise prefix of t. By the length of u there
exists such a factorization for which ` > K! holds and all τi’s are nonempty.
Apply Lemma 3.4 (i). There exits 1 ≤ i < j ≤ ` such that αi+1 · · ·αj is null-
transparent in the context of α1 · · ·αi. Set u1 = α1 · · ·αi, u2 = αi+1 · · ·αj

and u3 = αj+1 · · ·α`+1, i.e., u = u1u2u3. We show that the hypothesis
uw 6∼q− uvw implies that all u1(u2)iu3vw, i ≥ 0 are pairwise nonequivalent
relative to ∼q− . There exists a factorization t1t2t3 = t such that

q−
(u1,t1)−−−−→ q

(u2,t2)−−−−→ q
(u3vw,t3)−−−−−−→ q+ (resp. r with r 6= q+)

and

q−
(u1,t1)−−−−→ q

(u2,t2)−−−−→ q
(u3w,t3)−−−−−→ p with p 6= q+(resp. q+)

(4)

Observe that we have u2u3vw 6∼q u3vw or u2u3w 6∼q u3w. Indeed,
if this were not the case, then because t2 is non-empty, we would have
t1t3 ∈ R(uw) ⇔ t1t3 /∈ R(uvw) which would violate the minimality of t.
Assume without loss of generality that there exists z ∈ A∗

2 × · · · × A∗
k such

that z ∈ Rq(u2u3vw) ⇔ z /∈ Rq(u3vw) holds. Then, because the automaton
is deterministic, for all integers i ≥ 0, we have ti2s ∈ Rq(ui+1

2 u3vw) ⇔ ti2s /∈
Rq(ui

2u3vw). Assume we have ui+K
2 u3vw ∼q u

i
2u3vw for some i ≥ 0 and

K > 0. This would imply for all integers λ ≥ 0, ui+λK
2 u3vw ∼q u

i
2u3vw and

ui+1+λK
2 u3vw ∼q u

i+1
2 u3vw and therefore ti2s ∈ Rq(ui+1+λK

2 u3vw) ⇔ ti2s /∈
Rq(ui+λK

2 u3vw). For sufficiently large values of λ, this contradicts the fact
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that u2 is null transparent as observed after Definition 3.3 and completes
the proof.

Proposition 3.6. A rational relation R ⊆ A∗
1 × · · · ×A∗

k, is recognizable if
and only if there exist a finite set of words x1, . . . , xm ∈ A∗

1 satisfying the
following conditions

(i) for all 1 ≤ i ≤ m, R(xi) ∈ Rec(A∗
2 × · · · ×A∗

k)

(ii) for all x ∈ Dom(R) there exists an integer 1 ≤ i ≤ n such that R(x) =
R(xi) holds.

Proof. The condition is necessary. Indeed, assume R is of the form⋃
1≤j≤m

X
(j)
1 × · · · ×X

(j)
k

where X
(j)
i ∈ Rec(A∗

i ). We may assume without loss of generality that
for each fixed 1 ≤ i ≤ k and all 1 ≤ j ≤ j′ ≤ m the condition X

(j)
i ∩

X
(j′)
i 6= ∅ implies X(j)

i = X
(j′)
i . Pick an element in X

(j)
1 . The finite set of

these elements satisfy the two conditions of the statement. The converse is
clear.

We are now in a position to prove the main result of this section.

Theorem 3.7. It is recursively decidable whether or not a deterministic
relation R ⊆ A∗

1 × · · · ×A∗
k is recognizable.

Proof. The proof is by induction on k. By the previous two results, it suffices
to prove that it is possible to determine given an integer λ (1) whether or
not for all y ∈ A∗

1 there exists x ∈ A∗
1, |x| ≤ λ such that R(x) = R(y) and

(2) whether or not each R(x), |x| ≤ λ, is recognizable. By induction, this
last condition is decidable since R(x) is deterministic. The first condition
can be tested as follows: let (Yp)p∈P be the coarsest refinement of all R(x),
|x| ≤ λ. Since the Yp’s are recognizable, the subsets Xp = R−1(Yp), p ∈ P
are rational in A∗

1. Let Zx ⊆ A∗
1 be the union of all Xp’s such that Yp

is a subset of R(x). Then the statement is true if and only if R equals
S =

⋃
|x|≤λ

Zx×R(x). Since R is deterministic and S is recognizable, equality

holds if and only if the rational relation (R− S) ∪ (S −R) is empty, which
is recursively decidable.
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3.3 Deciding Rec(A∗
1 × · · · × A∗

k) in Sync(A∗
1 × · · · × A∗

k)

Here we prove a direct, elementary decision procedure of low complexity.
We show that it is decidable in simple exponential time whether or not a
synchronous relation over a direct product of an arbitrary number of free
monoids, is recognizable. To our knowledge, the membership problem for
the class DRat relative to the class Sync is still open. Also, determining
whether or not an k-ary deterministic relation, k > 2, is recognizable does
not seem to be covered by Stearns’ result.

As a preliminary result, we state the following consequence of Proposi-
tion 3.6 whose proof by induction is left to the reader.

Proposition 3.8. A rational relation R ⊆ A∗
1×· · ·×A∗

k is recognizable if and
only if for any integer j there exist only finitely many different restrictions
R|u1,...,uj

.

We are now in a position to prove the existence of our exponential time
decision procedure.

Proposition 3.9. There exists an exponential time algorithm which decides,
given a synchronous relation, whether or not it is recognizable.

Proof. Given a synchronous relation R ⊆ A∗
1 × · · · × A∗

k and an integer
1 ≤ j ≤ k, we must check whether the collection of restrictions of the
form R|u1,...,uj

is finite when the vector (u1, . . . , uj) ranges over the direct
product A∗

1×· · ·×A∗
j . Define the equivalence relation S ⊆ (A∗

1×· · ·×A∗
j )

2 by
setting (x, y) ∈ S if and only if (x, z) ∈ R ⇐⇒ (y, z) ∈ R holds for all z ∈
A∗

j+1 × · · · ×A∗
k. If R is synchronous, then S is again synchronous. Indeed,

let R′ be the (again synchronous) relation obtained from R by exchanging
the j first and the k − j last components: R′ = {(xj+1, . . . , xk, x1, . . . , xj) |
(x1, . . . , xk) ∈ R}. We have

(x, y) /∈ S ⇐⇒ ∃z ∈ A∗
j+1 × · · · ×A∗

k

((x, z) ∈ R ∧ (z, y) /∈ R′) ∨ ((x, z) /∈ R ∧ (z, y) ∈ R′)
(5)

Thus S is the complement of the relation R◦R′∪R◦R′ which is synchronous
because of the closure properties of synchronous relations under complement,
union and composition.

Now we are left with testing whether the equivalence relation S has finite
index. The idea is to assign to each j-tuple (x1, . . . , xj) a canonical represen-
tative for the class it belongs to. This could be done via the characterization
of the synchronous relations as established in [4] but this result does not lead
in an obvious way to a polynomial upper bound. Therefore, we use a dif-
ferent, automaton driven approach which takes advantage of the notion of
hierarchical ordering on a free monoid A∗ which we recall briefly. Choose
an arbitrary linear ordering < on A and extend it to the free monoid A∗ by

12



setting u < v if |u| < |v| or if |u| = |v| and u <lex v (there exist w, u′, v′ ∈ A∗

and a, b ∈ A, such that u = wau′, v = wbv′ and a < b holds). Given the
alphabets A1, . . . , Aj we extend the individual hierarchical orderings to the
lexicographical ordering on the direct product A∗

1 × · · · × A∗
j in the usual

way (if the first component of the vector x is smaller than that of the vector
y then claim x is lexicographically smaller than y, else compare recursively
the next components of the two vectors). Denote by <hl this combination
of hierarchical and lexicographical orders on A∗

1 × · · · ×A∗
j .

Now we modify the synchronous automaton recognizing S in such a way
as a to select the 2k-tuples (x1, . . . , xj , y1, . . . , yj) ∈ S such that the relation
(x1, . . . , xj) <hl (y1, . . . , yj) holds. This is achieved in the following way. For
each integer 1 ≤ i ≤ j, add two components to each state of the automaton.
The first of these two components records whether xi has length less than,
equal to or greater than the length of yi. This can be done easily because
the automaton is synchronous. The second component records, when xi

and yi are not prefix of one another, whether or not the leftmost letters,
say a and b respectively for which xi and yi disagree, satisfy a < b. More
technically, this means that we have the conditions xi = uax′i and yi = uby′i
where u, x′i, y

′
i ∈ A∗

i and a, b ∈ Ai. Based on these pieces of information, it
is easy, upon termination of the run, to determine whether or not the vector
(x1, . . . , xj) is smaller than the vector (y1, . . . , yj) in the above ordering <hl.
Let L ⊆ A∗

1×· · ·×A∗
j be the set of such vectors (y1, . . . , yj). Then S has finite

index if and only if the subset range(R)−L is finite. The complexity claim
is a direct consequence that all constructions involved in the proof can be
achieved in polynomial time except for the computation of the complement
of relations which can be achieved in exponential time.

4 The commutative case

When all k > 1 free monoids are generated by a single element, and only
in this case, do the rational subsets of the direct product form a Boolean
algebra, [8, 5]. It is convenient to assume that the unique generator of these
monoids is the symbol 1 and to denote by 0 the empty word. Then the direct
product is isomorphic to additive monoid Nk through the mapping which
assigns to the unary representation of k numbers, these numbers themselves.
Said differently, we shall identify the element (1n1 , · · · , 1nk) with the k-tuple
of integers (n1, · · · , nk) and we shall denote by (0, · · · , 0) the unit of the
monoid.

The general tool for deciding properties under this hypothesis is a combi-
nation of the decidability of the theory of the integers with the addition only,
due to Presburger, and of Ginsburg and Spanier’s characterization of the ra-
tional subsets of Nk as the family of sets of tuples expressible in this theory,
[8, Theorem 1.3.]. More precisely, given a formula of the Presburger arith-
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metics with the free variables x1, . . . , xk, the set of k-tuples (a1, . . . , ak) ∈ Nk

for which the formula is true once the ai’s are substituted for the variables
xi’s, is a rational relation and conversely, all rational relations can be ob-
tained this way.

We prove decidability results corresponding to column 1 of Table 1 in
the commutative case, and reserve the last paragraph for a precise estimate
of the complexity issues.

4.1 Deciding Rec(Nk) in Rat(Nk)

Ginsburg and Spanier showed that it is possible, given a rational subset of
Nk, to express in Presburger arithmetics the fact that it is recognizable.

Theorem 4.1 (Ginsburg and Spanier, [8] 1966). Given a rational relation
in Nk, it is recursively decidable whether or not it is recognizable.

We shall return to the proof of this result in paragraph 4.4 when dealing
with complexity issues.

4.2 Deciding DRat(Nk) in Rat(Nk)

Given two vectors u, v ∈ Nk we write u ≤ v if u is componentwise smaller
than or equal to v and u < v if u ≤ v and u 6= v holds. If u, v are two
vectors, we denote by min(u, v) their greatest lower bound, i.e., the vector
w satisfying wi = min{ui, vi} for all i = 1, . . . , k.

The following further notations are useful. Given u ∈ Nk we define the
set of indices on which it has nonzero, resp. zero, components.

Supp(u) = {i ∈ {1, . . . , k} | ui 6= 0} Null(u) = {i ∈ {1, . . . , k} | ui = 0}

Given I ⊆ {1, . . . , k} we denote by Nk
I the subsets of vectors whose entries

in I are equal to 0.

Nk
I = {u ∈ Nk | Supp(u) ⊆ I}

Finally, if R,S are subsets of Nk then we set R − S = {t ∈ Nk | ∃s ∈
S, s+ t ∈ R}.

Theorem 4.2. Given R ⊆ Nk, the following conditions are equivalent

(i) R is deterministic rational

(ii) there exist µ, π ∈ Nk such that, for u < µ and v < π, the relations

Su = (R− u) ∩ Nk
Null(µ−u) , Tv = (R− µ− v) ∩ Nk

Null(π−v)

are deterministic rational and the following equality holds

R = (
⋃
u<µ

u+ Su) ∪

(
π∗ +

⋃
v<π

(µ+ v + Tv)

)
(6)
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In the case where k = 2, the situation is depicted in Figure 1.

Proof. We first show that condition (i) implies condition (ii). Indeed, con-
sider a deterministic k-tape automaton. Without loss of generality, we can
suppose that it is never stuck. The labels of the transitions are of the from

(

j times︷ ︸︸ ︷
0, . . . , 0, a,

k−j−1 times︷ ︸︸ ︷
0, . . . , 0 ), where 0 ≤ j ≤ k and a ∈ {1,#}. Because of Defini-

tion 2.2 of deterministic automata there exists a unique infinite path starting
form the initial state and labeled by the vectors for which a = 1. Call µ the
label of the path before reaching a cycle (the “initial mess”) and π the label
of the cycle (the “period”). In particular, for every v ∈ Nk and j ∈ N, we
have

µ+ v ∈ R ⇔ µ+ jπ + v ∈ R

which yields equality

R− µ− v = R− µ− π − v = R− µ− π∗ − v (7)

This equality shows that the right handside of (6) is included in the left
handside. We now prove the opposite inclusion. Consider an input x ∈ R.
If x 6≥ µ, then we have x ∈ u+ Su where u = min(x, µ). If, on the contrary
x ≥ µ, let j ∈ N be the maximum integer such that x−µ− jπ is not greater
than or equal to π. Setting v = min(π, x− µ− jπ) we get x− µ− jπ ∈ Tv

as claimed.
It now suffices to observe that Su and Tv are deterministic rational.

Indeed, since R is deterministic rational, so are R−u and R−µ−v. Because
Nk

Null(µ−u) and Nk
Null(π−v) are recognizable, so are the intersections Su and

Tv.

We now turn to the proof that (ii) implies (i). Let Su and Tv be deter-
ministic automata accepting Su and Tv for u < µ and v < π. A determin-
istic automaton A accepting R works informally as follows. Given an input
x ∈ Nk, it determines whether or not x ≥ µ holds. If it does not, then the
computation proceeds by simulating Su where let u = min(x, µ). Otherwise,
it computes the maximum integer j such that x ≥ µ + jπ holds. Then it
simulates the automaton Tv where v = min(x, µ + jπ). More precisely, the
condition x ≥ µ is tested by determining, in increasing order of i, if xi ≥ µi

holds. The set of values i for which it fails determines the vector u. The
reader will easily be convinced that the case where x ≥ µ holds, can be
treated similarly.
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Figure 1: Illustration in N2, with S =
⋃
u<µ

(u+ Su), T =
⋃
v<π

(µ+ v + Tv)

Theorem 4.3. It is recursively decidable whether or not a rational subset
of Nk is deterministic.

Proof. By induction on k, we show that one can recursively associate to any
Presburger formula θ(x; y), where the k-tuple a will act as variables and the
`-tuple b as parameters, a Presburger formula Ψθ(y) satisfying the following
property:

For any b ∈ N`, the relation {x ∈ Nk | θ(x; b)} is deterministic
rational if and only if Ψθ(b) holds true.

Since Presburger arithmetics is decidable, this gives the decision proce-
dure asserted by the theorem.

For k = 1 it suffices to take as Ψθ(y) any tautology since all rational subsets
of N are deterministic.

Assume now the property holds for 1, . . . , k − 1 to k (where k ≥ 2). Let
θ(x; y) and b ∈ N` define the rational relation R = {x ∈ Nk | θ(x; b)}. From
θ we can construct a formula θ′(x; y, z, t) such that, for all µ, π, u, v ∈ Nk

the following holds

Su = (R− u) ∩ Nk
Null(µ−u) = {x ∈ Nk | θ′(x; b, µ, u)}

Tv = (R− µ− v) ∩ Nk
Null(π−v) = {x ∈ Nk | θ′(x; b, µ+ π, µ+ v)}

Now, for I ⊂ {1, . . . , k}, (R−w)∩Nk
I is deterministic rational if and only if

so is its projection on NI . Denoting xI the subtuple of x which retains the
sole variables indexed by I, there is a formula θ′I(xI ; y, z, t) which defines this
projection. Finally, observe that if the cardinal of I is strictly less than k, we
can apply the induction hypothesis to formula θ′I . Using Theorem 4.2, this
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leads to the following formula Ψθ(b) to express that R = {x ∈ Nk | θ(x; b)}
is deterministic:

Ψθ(b) = ∃µ ∃π (A(b, µ, π) ∧ ∀u < µ ∀v < π
∧
∅6=I⊆{1,...,k}

(Null(µ− u) = I ⇒ Ψθ′I
(b, µ, u))

∧ (Null(π − v) = I ⇒ Ψθ′I
(b, µ+ π, µ+ v)))

where A(b, µ, π) expresses equality (6).

4.3 Deciding Sync(Nk) in Rat(Nk)

With every subset subset ∅ 6= I ⊆ {1, . . . , k} we associate the vector eI
which has all entries equal to 0 except those positions in I which are equal
to 1. We recall that given an element a in a monoid, the expression a+

denotes the subset consisting of all ai with i > 0. Also N+ denotes the set
of strictly positive integers.

Theorem 4.4. Given a subset X ⊆ Nk, the following are equivalent

(i) X is rational (resp. synchronous)

(ii) for all strictly decreasing sequences of subsets {1, . . . , k} ⊇ I1 ) · · · )
Ip ) ∅ the following subset of Np is rational (resp. recognizable).

{(x1, . . . , xp) ∈ Np
+ | x1eI1 + · · ·+ xpeIp ∈ X} (8)

Proof. Observe that Nk−{0}k is the (finite) union of all subsets of the form

e+I1 + · · ·+ e+Ip
(9)

for all possible sequences {1, . . . , k} ⊇ I1 ) · · · ) Ip ) ∅. Thus a subset
X ⊆ Nk is equal to the union of all intersections of the form e+I1 + · · · +
e+Ip

∩ X. We show that if the set (8) is rational, i.e., by Ginsburg and
Spanier’s characterization if it is definable by a formula θ(x1, · · · , xp), then
so is e+I1 + · · · + e+Ip

∩X and therefore that the set X is rational. But this
intersection is expressed by the formula

ψ(y1, · · · , yk) = ∃x1 > 0 · · · ∃xp > 0 θ(x1, · · · , xp)
∧
i∈I1

(yi = x1)∧
1<r≤p

∧
i∈Ir−Ir+1

(yi = x1 + . . .+ xr)

Conversely, isX is rational, then its intersection with a subset of the form (9)
is rational, therefore expressible by a formula θ(y1, . . . , yk). For i = 1, . . . , p
let zi be any variable yj where j ∈ Ii. Then (8) is expressed by formula

∃y1 . . .∃yk θ(y1, . . . , yk)
∧

(x1 = z1)
∧

1<i≤p

(xi = zi − zi−1) (10)
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which completes the case when X is rational.

Assume now that X is synchronous. By Proposition 2.4 it is a finite
union of subsets of the form

E1eJ1 + · · ·+ EqeJq (11)

where J1 ) · · · ) Jq and E1, · · · , Eq are rational subsets of N\{0}. Observe
that the unique subset of the form (9) which has a nonempty intersection
with E1eJ1 + · · ·+EqeJq is e+J1

+ · · ·+ e+Jq
. Therefore it suffices to prove that

for a synchronous relation such as (11), the subset

{(x1, . . . , xq) ∈ Nq
+ | x1eJ1 + · · ·+ xqeJq ∈ X} (12)

is recognizable. To that purpose, observe that an automaton recognizing
the set (11), when appropriately transformed as in paragraph 2.2, has a set
of states decomposed into q disjoint subsets, Q = Q1 ∪ · · · ∪ Qq. Indeed,
consider a computation on the input x1eJ1 + · · · + xqeJq . The successful
path is divided into q successive subpaths, respectively labeled by x1eJ1 ,
then x2eJ2 , . . . , finally xqeJq . These subpaths visit states in Q1 then in Q2,
. . . , finally in Qq. Thus we may decompose the set (12) into finitely many
subsets

E
(i)
1 eJ1 + · · ·+ E(i)

q eJq , i = 1, . . . , N (13)

where E
(i)
1 , . . . , E(i)

q are recognizable such that the transitions between
successive subsets of states are fixed. This shows that (12) is precisely the
recognizable subset ⋃

1≤i≤N

E
(i)
1 × · · · × E(i)

q ⊆ Nq

Conversely, assume each subset (8) is recognizable, say it is a finite union
of subsets of the form E1 × · · · × Ep where each Ei is a rational subset of
N. Then (e+I1 + · · · + e+Ip

) ∩ X is a finite union of synchronous relations
E1e

+
I1

+ · · · + Epe
+
Ip

thus X is also a finite union of synchronous relations
and consequently it is itself synchronous.

Corollary 4.5. It is recursively decidable whether or not a rational subset
X of Nn is synchronous.

Proof. Given a rational subset X we proceed as follows. For all sequences
{1, . . . , k} ⊇ I1 ) · · · ) Ip we construct the intersection (e+I1 + · · ·+ e+Ip

)∩X
obtaining thus a formula of the form as in (10) . Checking whether or not
it defines a recognizable subset is done by using Theorem 4.1.
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4.4 Complexity of the decision procedures

We now reduce the complexity of all the decision procedures described in
paragraphs 4.1, 4.2, 4.3 to that of Presburger arithmetics.

Definition 4.6. We denote by P (n, α) the complexity of the decision prob-
lem of Presburger formulas of length less than or equal to n and quantifier
alternation less than or equal to α.

Remark 4.7. It is known (Grädel, 1988 [9]) that P (n, α) is bounded by
alternating time O(1)nα+O(1)

.

4.4.1 Complexity of deciding Rec(Nk) in Rat(Nk)

Theorem 4.8. Given a Presburger formula θ with k free variables, length
n and quantifier alternation α, there exists an algorithm with complexity
P (2n + O(k log k), α + 4) which decides whether the rational relation {a ∈
Nk | θ(a)} is recognizable or not.

Proof. We restate Ginsburg and Spanier’s decision procedure [8]and look at
its complexity. Let R = {a ∈ Nk | θ(a)}. Consider the congruence on Nk

associated to R, namely

a ∼R b ⇔ ∀c (a+ c ∈ R⇔ b+ c ∈ R)

As is well-known, R is recognizable if and only if ∼R has finite index. This
is expressible in Presburger arithmetics via the closed formula

∃N ∈ N ∀a ∈ Nk ∃b ∈ Nk (
∧

1≤i≤k

bi ≤ N ∧ ∀c ∈ Nk (θ(a+ c) ⇔ θ(b+ c)))

which has length 2n + O(k log k) (the log k term appears when counting
the length in binary of the indices of variables) and quantifier alternation
≤ α+ 4.

4.4.2 Complexity of deciding DRat(Nk) in Rat(Nk)

The analysis of complexity of the decision procedure requires some involved
technique which basically consists of developing the recursive definition of
Theorem 4.2 in order to get an equivalent iterative expression.

The following obvious result will be useful in the proof of Theorem 4.10.

Proposition 4.9. Let R,S ⊆ Nk and I, J ⊆ {1, · · · , k}. Then

((R ∩ Nk
I )− S) ∩ Nk

J ⊆ Nk
I∪J

Theorem 4.10. Given a Presburger formula θ with k free variables, length
n and quantifier alternation α, there exists an algorithm with complexity
P (n+ O(k2k log k), α + 2k + 1) which decides whether the rational relation
{a ∈ Nk | θ(a)} is deterministic or not.
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Proof. Let R = {x ∈ Nk | θ(x)}. The inclusion of the right handside in the
left handside of equality (6) of Theorem 4.2 always holds. Concerning the
opposite inclusion, observe that, if x ∈ R then x ∈ u + (R − u) ⇔ x ≥ u
and (using (7)) x ∈ µ+ jπ + v + (R− µ− v) ⇔ x ≥ µ+ jπ + v. Thus,

x ∈ R ⇒ (x ∈ u+ Su ⇔ (x ≥ µ+ v ∧ x− µ− v ∈ Nk
Null(π−v)))

x ∈ R ⇒ (x ∈ µ+ jπ + v + Tv ⇔ (x ≥ µ+ jπ + v

∧x− µ− jπ − v ∈ Nk
Null(π−v)))

Thus, equality (6) can be written

∀x (x ∈ R⇒ ∃u ∃v A(x, µ, π, u, v))

where

A(x, µ, π, u, v) = (u < µ ∧ v < π) ∧ ((x ≥ u ∧ x− u ∈ Nk
Null(µ−u))

∨ ∃j (x ≥ µ+ jπ + v ∧ x− µ− jπ − v ∈ Nk
Null(π−v)))

To avoid confusion in the iteration, let’s write Sµ,u(R) and Tµ,π,v(R) in place
of Su and Tv. Renaming variables and reorganizing quantifications, we see
that Theorem 4.2 can be restated as follows: R is deterministic rational if
and only if

∃µ(0) ∃π(0) ∀u(0) < µ(0) ∀v(0) < π(0)

[∀x (x ∈ R ⇒ ∃u ∃v A(x, µ(0), π(0), u, v))
∧ (Sµ(0),u(0)(R), Tµ(0),π(0),v(0)(R) are deterministic rational)]

(14)

Iteratively applying ` times (14) to itself (i.e. to the last part about relations
having to be deterministic rational), we see that R is deterministic rational
if and only if

∃µ(0) ∃π(0) ∀u(0) < µ(0) ∀v(0) < π(0)

· · · ∃µ(`) ∃π(`) ∀u(`) < µ(`) ∀v(`) < π(`)∧
i=0,··· ,`

∧
f∈{0,1}i ∀x (x ∈Wf ⇒ ∃u ∃v A(x, µ(i), π(i), u, v))

∧
∧

f∈{0,1}` Wf is deterministic rational]

(15)

where

- Wε = R if ε is the empty word,

- Wf0 = Sµ(i),u(i)(Wf ) if f ∈ {0, 1}i

- Wf1 = Tµ(i),π(i),v(`)(Wf ) if f ∈ {0, 1}i

Now, for ` = k − 1, the last conjunct asserting that some relations are
deterministic is trivially true since, applying Proposition 4.9, these relations
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are included in Nk
I where I ⊆ {1, · · · , k} contains at least k − 1 elements.

Thus, R is deterministic if and only if the following formula holds:

∃µ(0) ∃π(0) ∀u(0) < µ(0) ∀v(0) < π(0)

· · · ∃µ(k−1) ∃π(k−1) ∀u(k−1) < µ(k−1) ∀v(k−1) < π(k−1)

∀x
∧

i=0,··· ,k−1

∧
f∈{0,1}i(x ∈Wf ⇒ ∃u ∃v A(x, µ(i), π(i), u, v))

(16)

Now, if f ∈ {0, 1}i then x ∈Wf can be expressed as follows:

x ∈Wε ⇔ θ(x)
x ∈Wf0 ⇔ (x+ u(i) ∈Wf ∧ x ∈ Nk

Null(µ(i)−u(i))
)

x ∈Wf1 ⇔ ∃j (x+ µ(i) + jπ(i) + v(i) ∈Wf ∧ x ∈ Nk
Null(π(i)−v(i))

)

Let us abusively denote τf (x) and Bf (x) the following terms and formulas
which also contain some variables jm’s, µm’s, πm’s, um’s and vm’s:

- τε = x and Bε is any tautology

- τf0(x) = τf (x) + u(i)

- τf1(x) = τf (x) + µ(i) + jiπ
(i) + v(i)

- Bf0(x) is Bf (x+ u(i)) ∧ x ∈ NNull(µ(i)−u(i))

- Bf1(x) is Bf (x+ µ(i) + jiπ
(i) + v(i)) ∧ x ∈ NNull(µ(i)−u(i))

Thus, Bf (x) is a conjunction of formulas of the form x+ τ ∈ Nk
I where τ is

a sum of some u(s)’s and some µ(t) + jiπ
(i) + v(t)’s. Also,

x ∈Wf ⇔ ∃j0 · · · ∃ji−1 (θ(τf (x)) ∧ Bf (x))

and we can rewrite (16) as follows:

∃µ(0) ∃π(0) ∀u(0) < µ(0) ∀v(0) < π(0)

. . . ∃µ(k−1) ∃π(k−1) ∀u(k−1) < µ(k−1) ∀v(k−1) < π(k−1)

∀x ∀j0 . . .∀jk−2
∧

i=0,...,k−1

∧
f∈{0,1}i

(θ(τf (x)) ∧Bf (x) ⇒ ∃u ∃v A(x, µ(i), π(i), u, v))

(17)

In order to avoid repeating θ in formula (17), we rewrite its last conjunct.

∃µ(0) ∃π(0) ∀u(0) < µ(0) ∀v(0) < π(0)

. . . ∃µ(k−1) ∃π(k−1) ∀u(k−1) < µ(k−1) ∀v(k−1) < π(k−1)

∀x ∀j0 . . .∀jk−2 ∀y (θ(y) ⇒
∧

i=0,...,k−1(
∧

f∈{0,1}i

(y = τf (x) ∧Bf (x) ⇒ ∃u ∃v A(x, µ(i), π(i), u, v)))

(18)

This is the formula to which we apply the decision procedure of Presburger
arithmetics to get the wanted algorithm for Theorem 4.10. If θ has length n
and quantifier alternation α then formula (18) has length n + O(k2k log k)
and quantifier alternation α+2k+1. The log k term comes from the length in
binary of the indices of variables. And the 2k term comes from the conjunct
over f ∈ {0, 1}<k.
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4.4.3 Complexity of deciding Sync(Nk) in Rat(Nk)

In order to get a reasonable lower bound we avoid performing a test for all
decreasing subsets as suggested in Theorem 4.4 by grouping them together.
This yields the following result.

Theorem 4.11. Given a Presburger formula θ with k free variables, length
n and quantifier alternation α, there exists an algorithm with complexity
P (2n+ kk+O(1), α+ 5) which decides whether the rational relation {a ∈ Nk |
θ(a)} is synchronous or not.

Proof. Let q(k) be the cardinal of the set Sk of strictly decreasing sequences
{1, . . . , k} ⊇ I1 ) . . . ) Ip 6= ∅. We first prove that q(k) is bounded by
(k + 1)!. Observe that Sk+1 can be split into two parts Ak+1 and Bk+1

depending on whether or not I1 is equal to {1, . . . , k + 1}. Clearly, Ak+1

is in bijection with Sk, hence it contains exactly q(k) sequences. Now,
Bk+1 =

⋃
i=1,...,k+1B

i
k+1 where Bi

k+1 is the subfamily of sequences such
that i /∈ I1. Each Bi

k+1 is also in bijection with Sk. Thus, Bk+1 contains at
most (k + 1)q(k) sequences. Finally, q(k + 1) ≤ (k + 2)q(k). Since q(1) = 1
holds we get the bound as claimed.

Now we enumerate the different such sequences σ0, . . . , σq(k)−1 and we

use the following notations: σi = (I(i)
1 , . . . , I

(i)
pi ). Observe that pi ≤ k. Set

Tσi(X) = {(x1, . . . , xp) ∈ Np
+ | x1eI(i)

1

+ · · ·+ xpipeI(i)
pi

∈ X}

Group the Tσi(X)’s into a single relation T (X) ⊂ Nk as follows where q =
q(k)

T (X) =
⋃

i<q(k)

q(Tσi(X)× {0}k−pi) + (

k times︷ ︸︸ ︷
i, . . . , i)


Clearly, Tσi(X) = {(r1, . . . , rpi) | (qr1 + i, . . . , qrpi + i, i, . . . , i) ∈ T (X)}. In
particular, all the Tσi(X)’s are recognizable if and only if T (X) is recogniz-
able. Thus, X is synchronous rational if and only if T (X) is recognizable.
Now, T (X) is Presburger definable by the following formula Ω(x1, . . . , xk) :

Ω(x1, . . . , xk) = ∃y (θ(y) ∧
∨
i<q

x1eIi
1
+ . . .+ xpieIi

p
= qy + (i, . . . , i))

This is the formula to which we apply the decision procedure for recog-
nizability of Theorem 4.8. If θ has length n and quantifier alternation α
then this formula has length n + O(kq(k) log k) and quantifier alternation
α + 1. The log k term comes from the length in binary of the indices of
variables. And the q(k) term comes from the conjunct over i < q(k). Since
q(k) ≤ (k+1)!, we see that the length of our formula is n+kk+O(1). Applying
the decision procedure of Theorem 4.8 to this formula yields the required
complexity.
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