
Kolmogorov Complexity

and

Set theoretical Representations of Integers

Marie Ferbus-Zanda ∗

ferbus@logique.jussieu.fr

Serge Grigorieff ∗

seg@liafa.jussieu.fr

May 20, 2005

Contents

1 Introduction 3
1.1 Notations . 3
1.2 Kolmogorov complexity and representations of N, Z 3
1.3 Systems associated to representations of N, Z 5
1.4 Road map of the paper . 6

2 Abstract representations and effectivizations 6
2.1 Some arithmetical representations of N . 6
2.2 Abstract representations . 8
2.3 Effectivizing representations: why? . 8
2.4 Effectivizing of representations: how . 9
2.5 Partial recursive representations . 9

3 An abstract setting for Kolmogorov complexity: self-enumerated sys-
tems 10
3.1 Self-enumerated systems . 10
3.2 Good universal functions always exist . 11
3.3 Relativization of self-enumerated systems 12
3.4 The Invariance Theorem . 12

4 Some operations on self-enumerated systems 13
4.1 The composition lemma . 13
4.2 Product of self-enumerated systems . 14
4.3 From domain N to domain Z : the ∆ operation 15

5 Self-enumerated systems for r.e. sets 16

∗LIAFA, CNRS & Université Paris 7, 2, pl. Jussieu 75251 Paris Cedex 05

1

6 Infinite computations 17
6.1 Self-enumerated systems of max of partial recursive functions 17
6.2 Kolmogorov complexities Kmax, K∅′

max, ... 18
6.3 Max2∗→N

PR and the jump . 19
6.4 The ∆ operation on Max2∗→N

PR and the jump 20

7 Cardinal representations of N 22
7.1 Basic cardinal representation and its effectivizations 22
7.2 Syntactical complexity of cardinal representations 23
7.3 Characterization of the card self-enumerated systems 23
7.4 Characterization of the ∆card system . 24

8 Index representations of N 24
8.1 Basic index representation and its effectivizations 24
8.2 Syntactical complexity of index representations 25
8.3 Characterization of the index self-enumerated systems 25
8.4 Adding 1 to a system or maximizing it with 1 29
8.5 Kolmogorov complexity of the index systems 30
8.6 Characterization of the ∆index self-enumerated systems 30

9 Functional representations of N 31
9.1 Basic Church representation of N . 31
9.2 General Church self-enumerated systems . 32
9.3 Kolmogorov complexity of general Church systems 32
9.4 Kolmogorov complexity of the ∆ of general Church systems 33
9.5 Computable and effectively continuous functionals 33
9.6 Computability of functionals over PRX→Y 34
9.7 Effectivizations of Church representation of N and their characterization . . 35
9.8 Auxiliary results for the proof of Thm.9.14 36
9.9 Proof of Thm.9.14 characterizing the Church representation systems 40
9.10 Functional representations of Z . 41

Abstract

We reconsider some classical natural semantics of integers (namely
iterators of functions, cardinals of sets, index of equivalence relations)
in the perspective of Kolmogorov complexity. To each such semantics
one can attach a simple representation of integers that we suitably ef-
fectivize in order to develop an associated Kolmogorov theory. Such
effectivizations are particular instances of a general notion of “self-
enumerated system” that we introduce in this paper. Our main result
asserts that, with such effectivizations, Kolmogorov theory allows to
quantitatively distinguish the underlying semantics. We characterize
the families obtained by such effectivizations and prove that the asso-
ciated Kolmogorov complexities constitute a hierarchy which coincides
with that of Kolmogorov complexities defined via jump oracles and/or
infinite computations (cf. [6]). This contrasts with the well-known fact
that usual Kolmogorov complexity does not depend (up to a constant)
on the chosen arithmetic representation of integers, let it be in any
base n ≥ 2 or in unary. Also, in a conceptual point of view, our result
can be seen as a mean to measure the degree of abstraction of these
diverse semantics.

2

1 Introduction

1.1 Notations

Notation 1.1. Equality, inequality and strict inequality up to a constant
between total functions D → N, where D is any set, are denoted as follows:

f ≤ct g ⇔ ∃c ∈ N ∀x ∈ D f(x) ≤ g(x) + c

f =ct g ⇔ f ≤ct g ∧ g ≤ct f

⇔ ∃c ∈ N ∀x ∈ D |f(x)− g(x)| ≤ c

f <ct g ⇔ f ≤ct g ∧ ¬(g ≤ct f)
⇔ f ≤ct g ∧ ∀c ∈ N ∃x ∈ D g(x) > f(x) + c

As we shall consider N-valued partial functions with domain N, Z, 2∗,
N2,..., the following definition is convenient.

Definition 1.2. A basic set X is any non empty finite product of sets among
N,Z or the set 2∗ of finite binary words or the set Σ∗ of finite words in some
finite or countable alphabet Σ.

Let’s also introduce some notations for partial recursive functions.

Notation 1.3. We denote by Y X (resp. X → Y) the set of total (resp.
partial) functions from X to Y .
Let X,Y be basic sets. We denote by PRX→Y and RecX→Y (resp. PRA,X→Y
and RecA,X→Y) the family of partial and total recursive (resp. A-recursive)
functions X → Y. In case X = Y = N,we simply write PR,Rec and
PRA, RecA.

1.2 Kolmogorov complexity and representations of N, Z

Kolmogorov complexity K : N→ N maps an integer n onto the length of any
shortest binary program p ∈ 2∗ which outputs n. The invariance theorem
asserts that, up to an additive constant, K does not depend on the program
semantics p 7→ n , provided it is a universal partial recursive function.
As a straightforward corollary of the invariance theorem, K does not depend
(again up to a constant) on the representation of integers, i.e. whether
the program output n is really in N or is a word in some alphabet {1} or
{0, ..., k−1}, for some k ≥ 2, which gives the unary or base k representation
of n. A result which is easily extended to all partial recursive representations
of integers, cf. Thm.2.6.

In this paper, we show that this is no more the case with (suitably effectivized)
representations associated to classical set theoretical semantics of integers.
We shall particularly consider the following semantics which stress some role
of integers:

3

• integers as iterators (Church [4], 1933). Restricting to injective func-
tions, one can consider positive and negative iterations which is a
semantics for relative integers.

• integers as cardinals of sets (Russell [16] §IX, 1908, cf. [21] p.178),

• integers as cardinals of quotient sets, i.e. indexes of equivalence rela-
tions,

• relative integers as differences of integers. A notion also used for non
negative integers in order to measure how much bigger some set (resp.
iterator) is relative to some other one.

Programs are at the core of Kolmogorov theory. They do not work on ab-
stract entities but require formal representations of objects. Thus, we have
to define effectivizations of the above abstract set theoretical notions in or-
der to allow their elements to be computed by programs. To do so, we use
computable functions and functionals and recursively enumerable sets.

Effectivized representations of integers constitute particular instances of
self-enumerated systems (Def.3.1). This is a notion of family F of par-
tial functions from 2∗ to some fixed set D for which an invariance theorem
can be proved using straightforward adaptation of original Kolmogorov’s
proof (Thm.3.11). Which leads to a notion of Kolmogorov complexity
KD
F : D → N (Def.3.12). The ones considered in this paper are

KN
Church , KZ

Church , KZ
∆Church , KN

card , KZ
∆card , KN

index , KZ
∆index

associated to the systems obtained by effectivization of the Church, cardinal
and “quotient cardinal” representations of N and the passage to differences
of integers as outlined above.

The main result of this paper states that the above Kolmogorov complexities
coincide (up to an additive constant) with those obtained via oracles and
infinite computations (see §6) as introduced in [1], [2], and our paper [6].

Theorem 1.4 (Main result).

KN
Church =ct KZ

Church ¹N =ct KZ
∆Church ¹N =ct K

KN
card =ct Kmax KZ

∆card ¹N =ct K∅′

KN
index =ct K∅′

max KZ
∆index ¹N =ct K∅′′

Thm.1.4 gathers the contents of Thms. 7.5, 7.6, 8.9, 8.10, Cor.9.15 and
§9.10.
A preliminary “light” version of this result was presented in [5], 2002.

The strict ordering result K >ct Kmax >ct K∅′ (cf. Notations 1.1) proved
in [1, 6] and its obvious relativization (cf. Prop.6.9) yield the following
hierarchy theorem.

4

Theorem 1.5.

log >ct

KN
Church

=ct

KZ
Church ¹N

=ct

KZ
∆Church ¹N

>ct KN
card >ct KZ

∆card ¹N >ct KN
index >ct KZ

∆index ¹N

This hierarchy result for set theoretical representations somewhat reflects
the degrees of abstraction of the underlying semantics.

Though Church representation via iteration functionals can be considered
as somewhat complex, we see that, surprisingly, the associated Kolmogorov
complexities collapse to the simplest possible one.

Also, it turns out that, for cardinal and index representations, the passage
from N to Z, i.e. from KN

card to KZ
∆card and from KN

index to KZ
∆index does

add complexity. However, for Church iterators, the passage to Z does not
modify Kolmogorov complexity, let it be via the ∆ operation (for KZ

∆Church)
or restricting iterators to injective functions (for KZ

Church).

The results about the ∆card and ∆index classes are corollaries of those
about the card and index classes and of the following result (Thm.6.10)
which gives a simple normal form for functions computable relative to a
jump oracle, and is interesting on its own.

Theorem 1.6. Let A ⊆ N. A function G : 2∗ → Z is partial A′-recursive
if and only if there exist total A-recursive functions f, g : 2∗ × N→ N such
that, for all p,

G(p) = max{f(p, t) : t ∈ N} −max{g(p, t) : t ∈ N}

(in particular, G(p) is defined if and only if both max’s are finite).

1.3 Systems associated to representations of N, Z

The equalities and inequalities (up to a constant) in Theorems 1.4, 1.5 are,
in fact, corollaries of equalities and inequalities between families of functions
2∗ → N (namely, the associated self-enumerated systems, cf. §3.1) which are
interesting on their own. Consideration of such families allows to distinguish
the usual recursive representations (in base n ≥ 2 or in unary) from Church
representation though K =ct KChurch (cf. point 1 of Thm1.7).
The following result gathers Thms.7.5, 7.6, 8.5, 8.10, 9.14 and §9.10),

Theorem 1.7. Denote by X → Y the class of partial functions from X to
Y .
Let card : P (N) → N be the cardinal function defined on finite sets.
Let index : P (N2) → N be defined on equivalence relations with finitely many

5

classes and give the index (i.e. the number of equivalence classes).
Let Church : (N→ N)(N→N) → N be the functional such that

Church(Ψ) =
{

n if Ψ is the iterator f 7→ f (n)

undefined otherwise

1. A function F : 2∗ → N is of the form F = Church ◦ Φ where Φ : 2∗ →
(N→ N)(N→N) is a computable functional, if and only if F is the restriction
to a Π0

2 set of a partial recursive function.

2. A function F : 2∗ → N is of the form p 7→ card(WN
ϕ(p)) for some total

(resp. partial) recursive ϕ : 2∗ → N if and only if F is the max of a total
(resp. partial) recursive sequence of functions (cf. Def.6.1).

3 A function F : 2∗ → N is of the form p 7→ index (WN2

ϕ(p)) for some total
(resp. partial) recursive ϕ : 2∗ → N if and only if F is the max of a total
(resp. partial) ∅′-recursive sequence of functions and satisfies F−1(0) is Π0

1

(resp. Σ0
1 ∧Π0

1 with the Σ0
1 part containing domain(F)).

4. A function F : 2∗ → N is of the form p 7→ card(WN
ϕ1(p)) − card(WN

ϕ2(p))

(resp. p 7→ index (WN2

ϕ1(p))− index (WN2

ϕ2(p)
))) for some total recursive ϕ1, ϕ2 :

2∗ → N if and only if F is partial ∅′-recursive (resp. ∅′′-recursive).

1.4 Road map of the paper

§2 introduces abstract representations and their effectivizations.
§3 is devoted to the notion of self-enumerated system with its associated
Kolmogorov complexity. Simple operations on self-enumerated systems are
studied in §4. The self-enumerated system for the set of recursively enumer-
able subsets of N is defined in §5.
§6 recalls material from Becher & Chaitin & Daicz, 2001 [1] and our paper
[6], 2004, about some extensions of Kolmogorov complexity involving infi-
nite computations. This is to make the paper self-contained.
§7, 8, 9 develop the effectivizations of the set-theoretical semantics men-
tioned in §1.2 and prove all the mentioned theorems.

2 Abstract representations and effectivizations

2.1 Some arithmetical representations of N

Abstract entities such as numbers can be represented in many different ways.
In fact, each representation illuminates some particular role and/or prop-
erty, i.e. some possible semantics chosen in order to efficiently access special
operations or stress special properties of integers.

Usual arithmetical representations of N using words on a digit alphabet

6

can be looked at as (total) surjective (non necessarily injective) functions
R : C → N where C is some simple free algebra or a quotient of some free
algebra. Such representations are the “degree zero” of abstraction for repre-
sentations and, as is well-known, their associated Kolmogorov complexities
all coincide (Thm.2.6 below).

Example 2.1 (Base k representations).
1. Integers in unary representation correspond to elements of the free alge-
bra built up from one generator and one unary function, namely 0 and the
successor function x 7→ x + 1. The associated function R : 1∗ → N is simply
the length function.

2. The various base k (with k ≥ 2) representations of integers also involve
term algebras, not necessarily free. They differ by the set A ⊂ N of digits
they use but all are based on the usual interpretation R : A∗ → N such that
R(an . . . a1a0) =

∑
i=0,...,n aik

i. Which, written à la Hörner,

k(k(. . . k(kan + an−1) + an−2) . . .) + a1) + a0

is a composition of applications Sa0 ◦Sa1 ◦ . . .◦San(0) where Sa : x 7→ kx+a.
If a representation uses digits a ∈ A then it corresponds to the algebra
generated by 0 and the Sa’s where a ∈ A.

i. The k-adic representation uses digits 1, 2, . . . , k and corresponds to a
free algebra built up from one generator and k unary functions.

ii. The usual k-ary representation uses digits 0, 1, . . . , k − 1 and corre-
sponds to the quotient of a free algebra built up from one generator
and k unary functions, namely 0 and the Sa’s where a = 0, 2, . . . , k−1,
by the relation S0(0) = 0.

iii. Avizienis base k representation uses digits −k+1, . . . ,−1, 0, 1, . . . , k−1
(it is a much redundant representation used in computers to perform
additions without carry propagation) and corresponds to the quotient
of the free algebra built up from one generator and 2k − 1 unary
functions, namely 0 and the Sa’s where a = −k+1, . . . ,−1, 0, 1, . . . , k−
1, by the relations ∀x (S−k+i ◦Sj+1(x) = Si ◦Sj(x)) where −k < j <
k − 1 and 0 < i < k.

Somewhat exotic representations of integers can also be associated to deep
results in number theory.

Example 2.2.
1. R : N4 → N such that R(x, y, z, t) = x2 + y2 + z2 + t2 is a representation
based on Lagrange’s four squares theorem.

2. R : (Prime ∪ {0})7 → N such that R(x1, . . . , x7) = x1 + . . . + x7 is a
representation based on Schnirelman’s theorem (1931) in its last improved

7

version obtained by Ramaré, 1995 [13], which insures that every even number
is the sum of at most 6 prime numbers (hence every number is the sum of
at most 7 primes).

Such representations appear in the study of the expressional power of some
weak arithmetics. For instance, the representation as sums of 7 primes allows
for a very simple proof of the definability of multiplication with addition and
the divisibility predicate (a result valid in fact with successor and divisibility,
(Julia Robinson, 1948 [14])).

2.2 Abstract representations

Foundational questions, going back to Russell, [16] 1908, and Church, [4]
1933, lead to quite different representations of N : set theoretical represen-
tations involving abstract sets and functionals much more complex than the
integers they represent.

We shall consider the following simple and general notion.

Definition 2.3 (Abstract representations).
A representation of an infinite set E is a pair (C, R) where C is some (nec-
essarily infinite) set and R : C → E is a surjective partial function.

Remark 2.4.
1. Though R really operates on the sole subset domain(R), the underlying
set C is quite significant in the effectivization process which is necessary to
get some Kolmogorov complexity.
2. We shall consider representations with arbitrarily complex domains in
the Post hierarchy (cf. Prop.7.4, 8.3, 9.14). In fact, the sole cases in this
paper where R is a total function are the usual recursive representations.
3. Representations can also involve a proper class C. However, we shall
stick to the case C is a set.

2.3 Effectivizing representations: why?

Turning to a computer science (or recursion theoretic) point of view, there
are some objections to the consideration of abstract sets, functions and
functionals as we did in §2.2:

• We cannot apprehend abstract sets, functions and functionals but
solely programs to compute them (if they are computable in some
sense).

• Moreover, programs dealing with sets, functions and functionals have
to go through some intensional representation of these objects in order
to be able to compute with such objects.

8

To get effectiveness, we turn from set theory to computability theory. Ab-
stract sets, functions and functionals will be “effectivized” via recursively
enumerable sets, partial recursive functions or max of total or partial recur-
sive functions, and partial computable functionals.

2.4 Effectivizing of representations: how

A formal representation of an integer n is a finite object (in general a word)
which describes some characteristic property of n or of some abstract object
which characterizes n. To effectivize a representation R : C → E , we shall
process as follows:

1. Restrict the set C to a subfamily D of elements which, in some sense,
are computable or partial computable. Of course, we want the restric-
tion of R to D to be still surjective.

2. Consider a natural notion of computability 2∗ → D and the family of
such “computable” functions 2∗ → D.

3. The effectivizations of R : C → E are all functions R ◦ φ : 2∗ → E
where φ is a “computable” function 2∗ → D.

Remark 2.5. Whereas abstract representations are quite natural and con-
ceptually simple, their effectivizations R ◦ φ may be quite complex. In the
examples we shall consider, their domains involve levels 2 or 3 of the arith-
metical hierarchy (cf. Prop.7.4, 8.3). In particular, such representations are
not Turing reducible one to the other.

2.5 Partial recursive representations

We already mentioned in §2.1 that all usual arithmetic representations lead
to the same Kolmogorov complexity (up to an additive constant). The rea-
son for this fact is the following simple result which insures that point 3 of
the process described in §2.4 is trivial for for all partial recursive represen-
tations R.

Theorem 2.6. If C,E are basic sets and R : C → E is partial recursive
and surjective then

R ◦ PR2∗→C = PR2∗→E

Proof. Inclusion R ◦ PR2∗→C ⊆ PR2∗→E is trivial. For the other inclusion,
using the fact that R : C → E is surjective, we can define a total recursive
right inverse S : E → C of R such that, for x ∈ E, S(x) is the element of
R−1(x) which appears first in a recursive enumeration of the graph of R.
Using the trivial inclusion S ◦ PR2∗→E ⊆ PR2∗→C we get

PR2∗→E = R ◦ S ◦ PR2∗→E ⊆ R ◦ PR2∗→C

9

3 An abstract setting for Kolmogorov complexity:
self-enumerated systems

Effectivizations of abstract representations based on classical set theoretical
semantics of integers will be done in §7–9. In each case, the family of func-
tions 2∗ → N so obtained (cf. point 3 of §2.4) has a simple self-enumerability
property which suffices for a straightforward adaptation of the usual proof
of Kolmogorov invariance theorem.
We now introduce the underlying abstract setting for the definition of Kol-
mogorov complexity: self-enumerated systems. This setting allows to unify
the multiple variations of the invariance theorem, the proofs of which re-
peat, mutatis mutandis, the same classical proof due to Kolmogorov (cf. Li
& Vitanyi’s textbook [9] p.97).
This abstract setting also leads to a study of operations on self-enumerated
systems, for instance that presented in 5.

3.1 Self-enumerated systems

Some intuition for the next definition is given in Note 3.2 and Rk.3.3.

Definition 3.1 (Self-enumerated systems).
1. A self-enumerated system is a pair (D,F) where D is a set (the domain
of the system) and F is a family of partial functions 2∗ → D satisfying the
following conditions:

i. D =
⋃

F∈F
Range(F), i.e. every element of D appears in the range of

some function F ∈ F .

ii. If ϕ : 2∗ → 2∗ is a recursive total function and F ∈ F then F ◦ϕ ∈ F .

iii. There exists U ∈ F (called a universal function for F) and a total
recursive function compU : N× 2∗ → 2∗ such that

∀F ∈ F ∃e ∈ N ∀p ∈ 2∗ F (p) = U(compU (e, p))

In other words, letting Ue(p) = U(compU (e, p)), the sequence of func-
tions (Ue)e∈N is an enumeration of F .

2. (Full systems) (D,F) is a full system if condition ii holds for all partial
recursive functions ϕ.

3. (Good universal functions) A universal function U for F is good if
its associated comp function satisfies the condition

∀e ∃ce ∀p |compU (e, p)|) ≤ |p|+ ce

i.e. for all e, we have (p 7→ |compU (e, p)|) ≤ct |p| (cf. Notation 1.1).

10

Note 3.2 (Intuition).
1. The set 2∗ is seen as a family of programs to get elements of D. The
choice of binary programs is a fairness condition in view of the definition
of Kolmogorov complexity (cf. Def.3.12) based on the length of programs:
larger the alphabet, shorter the programs.

2. Each F ∈ F is seen as a programming language with programs in 2∗.
Special restrictions: no input, outputs are elements of D.

3. Denomination comp stands for “compiler” since it maps a program p
from “language” F (with code p) to its U -compiled form compU (e, p) in the
“language” U .

4. “Compilation” with a good universal function does not increase the
length of programs but for some additive constant which depends only on
the language, namely on the sole code e.

Remark 3.3. In view of the enumerability condition iii and since there is no
recursive enumeration of total recursive functions, one would a priori rather
require condition ii to be true for all partial recursive functions ϕ : 2∗ → 2∗,
i.e. consider the sole full systems.
However, there are interesting self-enumerated systems which are not full
systems. The simplest one is MaxRec, cf. Prop.6.2. Other examples we
shall deal with involve higher order domains consisting of infinite objects,
for instance the domain RE(N) of all recursively enumerable subsets of N,
cf. §5. The partial character of computability is already inherent to the
objects in the domain or to the particular notion of computability and an
enumeration theorem does hold for such a family F of total functions.

From conditions i and iii of Def.3.1, we immediately see that

Proposition 3.4. Let (D,F) be a self-enumerated system. Then D and F
are countable and any universal function for F is surjective.

3.2 Good universal functions always exist

Notation 3.5. Let γ : N × 2∗ → 2∗ be the recursive total injective map
such that γ(e, p) = 0e1p. Let δ1 : 2∗ → N, δ2 : 2∗ → 2∗ be the total
recursive maps such that (δ1, δ2)(γ(e, p)) = (e, p) and (δ1, δ2)(q) = (0, λ) if
q /∈ range(γ) (where λ is the empty word).

Proposition 3.6 (Existence of good universal functions). Every self-
enumerated system contains a universal function with γ as associated comp
function and which is therefore good universal.

Proof. Let U and compU be as in Def.3.1 and set

Uopt = U ◦ compU ◦ (δ1, δ2)

11

Since compU ◦ (δ1, δ2) : 2∗ → 2∗ is total recursive, condition ii of Def.3.1
insures that Uopt ∈ F . Now, we have

Uopt(γ(e, p)) = U(compU ((δ1, δ2)(γ(e, p)))) = U(compU (e, p))

so that Uopt is universal with γ as associated comp function.

3.3 Relativization of self-enumerated systems

Def.3.1 can be obviously relativized to any oracle A. However, contrary to
what can be a priori expected, this is no generalization but particularization.
The main reason is Prop.3.6: there always exists a universal function with
γ as associated comp function.

Definition 3.7. Let A ⊆ N. A self-enumerated A-system is a pair (D,F)
where F is a family of partial functions 2∗ → D satisfying condition i
of Def.3.1 and the variants of conditions ii and iii where recursiveness is
replaced by A-recursiveness.

Example 3.8. If X is a basic set then (X, PRA,2∗→X) is obviously a self-
enumerated A-system.

Proposition 3.9. Every self-enumerated A-system contains a universal
function with γ as associated comp function.
In particular, every such system is also a self-enumerated system. Thus,
(X, PRA,2∗→X) is a self-enumerated system.

Proof. Repeat the same easy argument used for Prop.3.6.

3.4 The Invariance Theorem

Definition 3.10. Let F : 2∗ → D be any partial function. The Kolmogorov
complexity KD

F : D → N ∪ {+∞} associated to F is the function defined as
follows (convention: min ∅ = +∞):

KD
F (x) = min{|p| : F (p) = x}

Thanks to Prop.3.6, the usual Invariance Theorem can be extended to
any self-enumerated system, which allows to define Kolmogorov complexity
for such a system.

Theorem 3.11 (Invariance Theorem, Kolmogorov, 1965 [7]).
Let (D,F) be a self-enumerated system.

1. When F varies in the family F , there is a least KD
F , up to an additive

constant (cf. Notation 1.1):

∃F ∈ F ∀G ∈ F KD
F ≤ct KD

G

Such F ’s are said to optimal in F .

2. Every good universal function for F is optimal.

12

Proof. It suffices to prove 2. The usual proof works. Consider a good
universal enumeration U of F . Let F ∈ F and let e be such that

U(compU (e, p)) = F (p) for all p ∈ 2∗

First, since U is surjective (Prop.3.4), all values of KD
U are finite. Thus,

KD
U (x) < KD

F (x) for x /∈ Range(F) (since then KD
F (x) = +∞).

For every x ∈ Range(F), let px be a smallest program such that F (px) = x,
i.e. KD

F (x) = |px|. Then x = F (px) = U(compU (e, px)) and, since U is
good,

KD
U (x) ≤ |compU (e, px)| ≤ |px|+ ce = KD

F (x) + ce

and therefore KD
U ≤ct KD

F .

As usual, Theorem 3.11 allows for an intrinsic definition of the Kol-
mogorov complexity associated to the self-enumerated system (D,F).

Definition 3.12 (Kolmogorov complexity of a self-enumerated sys-
tem). Let (D,F) be a self-enumerated system.
The Kolmogorov complexity KD

F : D → N is the function KD
U where U is

some fixed good universal enumeration in F .
Up to an additive constant, this definition is independent of the particular
choice of U .

The following straightforward result, based on Example 3.8, insures that
Def.3.12 is compatible with the usual Kolmogorov complexity and its rela-
tivizations.

Proposition 3.13. Let A ⊆ N and let D = X be a basic set. The Kol-
mogorov complexities KX

PR2∗→X and KX
PRA,2∗→X defined above are exactly the

usual Kolmogorov complexity KX : X→ N and its relativization KAX .

4 Some operations on self-enumerated systems

4.1 The composition lemma

The following easy fact is a convenient tool to effectivize representations (cf.
§2.3, 2.4). We shall also use it in §4.3 to go from systems with domain N to
ones with domain Z.

Lemma 4.1 (The composition lemma).
Let (D,F) be a self-enumerated system and ϕ : D → E be a surjective partial
function. Set ϕ ◦ F = {ϕ ◦ F : F ∈ F}.
1. (E, ϕ ◦ F) is also a self-enumerated system. Moreover, if U is universal
or good universal for F then so is ϕ ◦ U for ϕ ◦ F .

13

2. For every x ∈ E,

KE
ϕ◦F (x) =ct min{KD

F (y) : ϕ(y) = x}

In particular, KE
ϕ◦F ◦ϕ ≤ct KD

F and if ϕ : D → E is a total bijection from
D to E then KE

ϕ◦F ◦ ϕ =ct KD
F .

Proof. Point 1 is straightforward. As for point 2, let U : 2∗ → D be some
universal function for F and observe that, for x ∈ E,

KE
ϕ◦F (x) = min{|p| : p such that ϕ(U(p)) = x}

= min{min{|p| : p s.t. U(p) = y} : y s.t. ϕ(y) = x}
= min{KD

F (y) : y s.t. ϕ(y) = x}

In particular, taking x = ϕ(z), we get KE
ϕ◦F (ϕ(z)) ≤ct KD

F (z).
Finally, observe that if ϕ is bijective then z is the unique y such that ϕ(y) =
x, so that the above min reduces to KD

F (z).

4.2 Product of self-enumerated systems

We shall need a notion of product of self-enumerated systems.

Theorem 4.2. Let (D1,F1) and (D2,F2) be self-enumerated systems.
We identify a pair (F1, F2) ∈ F1×F2 with the function 2∗ → D1×D2 which
maps p to (F1(p), F2(p)).
Then (D1 ×D2,F1 ×F2) is also a self-enumerated system.
If (D1,F1) and (D2,F2) are full systems then so is (D1 ×D2,F1 ×F2).

Proof. Let c : 2∗×2∗ → 2∗ be the injective map such that c(p, q) = 0|p|1pq.
Let π1, π2 : 2∗ → 2∗ be such that (π1, π2)(c(p, q)) = (p, q) and (π1, π2)(r) =
(λ, λ) if r /∈ range(c). Clearly, c, π1, π2 are total recursive.
Condition ii in Def.3.1 is obvious.

Condition i. Let (d1, d2) ∈ D1 ×D2. Applying condition i to (D1,F1) and
to (D2,F2), we get F1 ∈ F1, F2 ∈ F2 and p1, p2 ∈ 2∗ such that d1 = F1(p1)
and d2 = F2(p2). Therefore (d1, d2) = (F1 ◦ π1, F2 ◦ π2)(c(p1, p2)). Observe
finally that (F1 ◦π1, F2 ◦π2) ∈ F1×F2 (condition ii for (D1,F1), (D2,F2)).

Condition iii. Let U1, U2 be universal for F1,F2 with comp1, comp2 : N ×
2∗ → 2∗ as associated comp functions. Set

U = (U1 ◦ π1, U2 ◦ π2) , comp(e, p) = c(comp1(σ1(e), p), comp2(σ2(e), p))

where σ : N2 → N is Cantor polynomial bijection and (σ1, σ2) = σ−1.
We show that U is universal for F1 × F2 with associated comp function.

14

For every (F1, F2) ∈ F1 × F2 there exist a, b ∈ 2∗ such that F1(p) =
U1(comp1(a, p)) and F2(p) = U2(comp2(b, p)). Therefore

(F1, F2)(p) = (U1(comp1(a, p)), U2(comp2(b, p)))
= (U1 ◦ π1, U2 ◦ π2)(c(comp1(a, p), comp2(b, p)))
= U(comp(σ(a, b), p))

which proves that U is universal for the product system F1 ×F2.

4.3 From domain N to domain Z : the ∆ operation

Definition 4.3 (The ∆ operation). Let diff : N2 → Z be the function
(m,n) 7→ m−n. If (N,F) is a self-enumerated system with domain N, using
notations from Lemma 4.1 and Thm.4.2, we let (Z, ∆F) be the system

(Z, diff ◦ (F × F))

As a direct corollary of Lemma 4.1 and Thm.4.2, we have

Proposition 4.4. If (N,F) is a self-enumerated system (resp. full system)
with domain N then so is (Z, ∆F).

The following propositions collect some easy facts about self-enumerated
systems with domain Z and their associated Kolmogorov complexities.

Proposition 4.5. Let (Z,G) be a self-enumerated system.

1. Let F = {G ¹ G−1(N) : G ∈ G}. Then (N,F) is also a self-enumerated
system and KN

F = KZ
G ¹N.

2. Denote by opp : Z → Z the function n 7→ −n. If G ◦ opp = G then
KZ
G =ct KZ

G ◦ opp.

Proof. 1. Conditions i-ii of Def.3.1 are obvious. As for iii, observe that if
U ∈ G is universal for G then U ¹U−1(N) is in F and is universal for F with
the same associated comp function. Now, KU�U−1(N) = KU ¹ N. Whence
KN
F = KZ

G ¹N.

2. Observe that if ϕ,F ∈ G and Kϕ ≤ct KF then Kϕ◦opp ≤ct KF◦opp.
Since G ◦ opp = G, we see that if ϕ is optimal then so is ϕ ◦ opp. Whence
Kϕ =ct Kϕ◦opp, and therefore KZ

G =ct KZ
G ◦ opp.

Proposition 4.6. Let A ⊆ N.

1. PRA,2∗→N = PRA,2∗→Z ∩ (N→ N) = {G¹G−1(N) : G ∈ PRA,2∗→Z}.
In particular, KA,Z ¹N =ct KA,N.

2. PRA,2∗→Z = PRA,2∗→Z ◦ opp = ∆PRA,2∗→N.
In particular, KA,Z =ct KA,Z ◦ opp.

15

5 Self-enumerated systems for r.e. sets

We now come to an example of self-enumerated systems of a somewhat
different kind, which will be used in the effectivization of set theoretical
representations of integers. We shall use the classical notion of acceptable
enumeration of the family RE(X) of recursively enumerable subsets of a
basic set X and Rogers’ theorem (cf. Odifreddi [12] p.219).

Theorem 5.1 (Rogers’ theorem). Let (W ′
e)e∈2∗ and (W ′′

e)e∈2∗ be two
acceptable enumerations of RE(X). Then there exists a recursive bijection
θ : N→ N such that W ′′

e = W ′
θ(e) for all e ∈ 2∗.

Rogers’ theorem allows to get a natural intrinsic notion of “partial com-
putable” map 2∗ → RE(X).

Notation 5.2. Let W = (We)e∈N be some fixed acceptable enumeration of
RE(X). If f : 2∗ → N is partial recursive then GW

f : 2∗ → RE(X) denotes
the function such that, for all p ∈ 2∗,

GW
f (p) =

{
Wf(p) if f(p) is defined
undefined otherwise

Proposition 5.3. The families of functions

PF
RE(X)
W = {GW

f : 2∗ → RE(X) : f ∈ PR2∗→N}
FRE(X)
W = {GW

f : 2∗ → RE(X) : f ∈ Rec2
∗→N}

do not depend on the considered acceptable enumeration of RE(X).
We shall therefore omit the subscript W in the sequel.

Proof. Applying Thm.5.1 to acceptable enumerations (W ′
e)e∈N and (W ′′

e)e∈N,
we get W ′′

f(p) = W ′
θ(f(p)) and W ′

f(p) = W ′
θ−1(f(p)). To conclude, observe that

θ ◦ f and θ−1 ◦ f are both total or partial recursive as is f .

We shall need the following proposition in order to prove that FRE(X) is
a self-enumerated system.

Proposition 5.4. There exists a total recursive function σ : N × 2∗ → N
such that, for any total function ρ : 2∗ → RE(X), the following conditions
are equivalent:

a. ρ is of the form p 7→ Wσ(e,p) for some e ∈ 2∗

b. ρ ∈ FRE(X)

c. For some g ∈ PR2∗→N, for all p, ρ(p) =
{

Wg(p) if g(p) is defined
∅ otherwise

.

16

Proof. Since a ⇒ b ⇒ c is trivial whatever be the total recursive function
σ, it remains to define σ such that c ⇒ a holds.
Let (ψe)e∈2∗ be an enumeration of partial recursive functions 2∗ → 2∗ The
parameter theorem insures that there exists a total recursive function s :
N× 2∗ → N such that Wψe(p) = Wσ(e,p). An equality also valid when ψe(p)
is undefined, in the sense that both sets are empty.
Let ρ, g be as in c. Let e be such that g = ψe. Then, Wg(p) = Wψe(p) =
Wσ(e,p) an equality valid also if g(p) is undefined, in the sense that all sets
are empty. This proves c ⇒ a.

We can now come to the notion of self-enumerated systems for r.e. sets.

Theorem 5.5 (Self-enumerated systems for r.e. sets).
(RE(X),FRE(X)) and (RE(X),PFRE(X)) are self-enumerated systems.

Proof. Conditions i, ii of Def.3.1 are obvious for both systems.
If U satisfies iii for PR2∗→N then GU (cf. Notation 5.2) satisfies iii for
PFRE(X) with the same associated comp function. Also, Prop.5.4 proves
that the function p 7→ WU(p) satisfies condition iii for FRE(X) with σ as
comp function.

6 Infinite computations

Chaitin, 1976 [3], and Solovay, 1977 [19], considered infinite computations
producing infinite objects (namely recursively enumerable sets) so as to de-
fine Kolmogorov complexity of such infinite objects.
Following the idea of possibly infinite computations leading to finite output
(i.e. remove the halting condition), Becher & Chaitin & Daicz, 2001 [1] (see
also [2], 2005) introduced a variant K∞ of Kolmogorov complexity.
In our paper [6], 2004, we introduced two variants Kmax, Kmin of Kol-
mogorov complexity and proved that K∞ = Kmax. These variants are
based on two self-enumerated systems, namely the classes of max and min
of partial recursive sequences of partial recursive functions.

6.1 Self-enumerated systems of max of partial recursive func-
tions

Notation 6.1. Let A ⊆ N. Let X be N or Z. If f : 2∗ ×N→ X, we denote
by max f : 2∗ → X the function such that (max f)(p) = max{f(p, t) : t ∈ N}
(with the convention that maxX is undefined if X is empty or infinite).
We define the families of functions

Max2∗→X
PRA = {max f : f ∈ PRA,2∗×N→X}

Max2∗→X
RecA = {max f : f ∈ RecA,2∗×N→X}

17

Proposition 6.2. Let A ⊆ N. Then

(N,Max2∗→N
PRA) , (Z,Max2∗→Z

PRA) , (N,Max2∗→N
RecA)

are self-enumerated systems.

Proof. First consider the no oracle case (i.e. A = ∅). Conditions i-ii in
Def.3.1 are trivial. The classical enumeration theorem easily extends to
Max2∗→X

PR (cf. [6], Thm.3.2), proving condition iii for (X,Max2∗→X
PR) where

X is N or Z.
It remains to show condition iii for Max2∗→N

Rec . We use the following straight-
forward fact:
Fact 6.3. If f ∈ PR2∗×N→N and

g(p, t) = max({0} ∪ {f(p, i) : i ≤ t ∧ f(p, i)converges in at most t steps})

then g ∈ Rec2
∗×N→N and max g is an extension of max f with value 0 on

domain(max g) \ domain(max f) (which is the set of n’s such that f(n, t) is
defined for no t).
Let U ∈ Max2∗→N

PR be universal for Max2∗→N
PR and let V be an extension

of U in Max2∗→N
Rec given by the above fact. If F ∈ Rec2

∗→N then it is in
PR2∗→N and there exists e such that F (p) = U(compU (e, p)) for all p ∈ 2∗.
Since V extends U and F is total, we also have F (p) = V (compU (e, p)).
Thus, V is universal for Max2∗→N

Rec with the same comp function.

Relativization to oracle A proves conditions iiA, iiiA, (cf. Def.3.7) for (X, Max2∗→X
PRA)

and (N,Max2∗→N
Rec). We conclude using Prop.3.9.

Remark 6.4. The system (Z,Max2∗→Z
RecA) is not self-enumerated. In fact, it

does not satisfy the invariance theorem (cf. [6], Thm.4.8).

6.2 Kolmogorov complexities Kmax, K
∅′
max, ...

We apply Def.3.12 to the self-enumerated systems considered in §6.1.

Definition 6.5 (Kolmogorov complexities). Let X be N or Z. We de-
note by KA,X

max : X→ N the Kolmogorov complexity of the self-enumerated
system (X,Max2∗→X

PRA).
In case X = N, we omit the superscript N. In case X = N and A = ∅ we
simply write Kmax.

Using Fact 6.3 and the fact that KN
G ≤ KN

F whenever F, G : 2∗ → N and
F is a restriction of G, it is not hard to prove the following result (cf. [6],
Prop.4.8).

18

Proposition 6.6. Let A ⊆ N. Then KA
max is also the Kolmogorov complex-

ity of the self-enumerated system (N,Max2∗→N
RecA). I.e.

KN
Max2∗→N

RecA
= KN

Max2∗→N
PRA

Remark 6.7. The above proposition has no analog with Z since Max2∗→Z
RecA

is not self-enumerated.

6.3 Max2∗→N
PR and the jump

The following proposition is easy.

Proposition 6.8. Let A ⊆ N and let X be N or Z. Then

Max2∗→X
PRA ⊂ PRA′,2∗→X

Proof. 1. Let f : 2∗ × N→ X be partial A-recursive. A partial A′-recursive
definition of (max f)(p) is as follows:

i. First, check whether there exists t such that f(p, t) is defined.
If the check is negative then (max f)(p) is undefined.

ii. If check i is positive then start successive steps of the following process.
- At step t, check whether f(p, t) is defined,
- if defined, compute its value and check whether there exists u > t
such that f(p, u) is greater than the maximum value computed up to
that step.

iii. If at some step the last check in ii is negative then halt and output the
maximum value computed up to now.

Clearly, oracle A′ allows for the checks in i and ii. Also, the above process
halts if and only if f(p, t) is defined for some t and {f(p, t) : t ∈ N} is
bounded, i.e. if and only if (max f)(p) is defined. In that case it outputs
exactly (max f)(p).

2. To see that the inclusion is strict, observe that the graph of any function
in Max2∗→X

PRA is Σ0,A
1 ∧Π0,A

1 since

y = (max f)(p) ⇔ ((∃t f(p, t) = y) ∧ ¬(∃u ∃z > y f(p, u) = z))

Whereas the graph of functions in PRA′,2∗→X can be Σ0,A′
1 and not ∆0,A′

1 ,
i.e. Σ0,A

2 and not ∆0,A
2 .

In the vein of Prop.6.8, let’s mention the following result, cf. [1] and [6].

Proposition 6.9. Let A ⊆ N.

1. KA and KA
max are recursive in A′.

2. KA >ct KA
max >ct KA′.

19

6.4 The ∆ operation on Max2∗→N
PR and the jump

The following variant of Prop.6.8 is a normal form for partial A′-recursive
Z-valued functions. We shall use it in §7-8.

Theorem 6.10. Let A ⊆ N. Then

PRA′,2∗→Z = ∆(Max2∗→N
PRA) = ∆(Max2∗→N

RecA)

I.e., every partial A′-recursive function is the difference of two functions in
Max

RecA (cf. Notation 6.1).

Before entering the proof of Thm.6.10, let’s recall two well-known facts
about oracular computation and approximation of the jump.

Lemma 6.11. Let (Bt)t∈N be a sequence of subsets of N which converges
pointwise to B ⊆ N, i.e.

∀n ∃tn ∀t ≥ tn Bt ∩ {0, 1, ..., n} = B ∩ {0, 1, ..., n}

Let X,Y be basic sets and let ψ : X → Y be a partial B-recursive function
computed by some oracle Turing machine M with oracle B. Let x ∈ X.
Then, ψ(x) is defined if and only if there exists tx such that

i. the computation of M on input x with oracle Btx halts in at most tx
steps,

ii. for all t ≥ tx the computation of M on input x with oracle Bt is step
by step exactly the same as that with oracle Btx (in particular, it asks
the same questions to the oracle, gets the same answers and halts at
the same computation step ≤ tx).

Lemma 6.12. Let A ⊆ N and let A′ ⊆ N be the jump of A. There ex-
ists a total A-recursive sequence (Approx(A′, t))t∈N of subsets of N which is
monotone increasing with respect to set inclusion and which has union A′.
In particular, this sequence converges pointwise to A′.

We can now prove Thm.6.10.

Proof of Thm.6.10. Using Prop.6.8, we get

∆(Max2∗→N
RecA) ⊆ ∆(Max2∗→N

PRA) ⊆ ∆(PRA′,2∗→N) = PRA′,2∗→Z

Thus, to get the wanted equalities, it suffices to prove inclusion

PRA′,2∗→N ⊆ ∆(Max2∗→N
RecA)

Let M be an oracle Turing machine with inputs in 2∗, which, with oracle
A′, computes the partial A′-recursive function ϕA′ : 2∗ → N.

20

To prove that ϕA′ is in ∆(Max2∗→N
RecA), we define total A-recursive functions

f, g : 2∗ × N → N which are (non strictly) monotone increasing and such
that ϕA′ = max f −max g.

The idea to get f, g is as follows. We consider A-recursive approximations of
oracle A′ (as given by Lemma 6.12) and use them as fake oracles. Function
f is obtained by letting M run with the fake oracles and restart its compu-
tation each time some better approximation of A′ shows the previous fake
oracle has given an incorrect answer. Function g collects all the outputs of
the computations which have been recognized as incorrect in the computing
process for f .

We now formally define f, g.
First, since we do not care about computation time and space, we can sup-
pose without loss of generality, that, at any step t, M asks to the oracle
about the integer t and writes down the oracle answer on the t-th cell of
some dedicated tape.
Consider t + 1 steps of the computation of M on input p with oracle
Approx(A′, t) (cf. Lemma 6.12). We denote by Cp,t+1 this limited com-
putation. We say that Cp,t+1 halts if M (with that fake oracle) halts in at
most t + 1 steps.
We denote by output(Cp,t) the current value (which is in Z) of the output
tape after step t. The A-recursive definition of f, g is as follows.

i. f(p, 0) = g(p, t) = 0

ii. Suppose Approx(A′, t+1)∩{0, ..., t} = Approx(A′, t)∩{0, ..., t}. Then,
up to the halting step of Cp,t or up to step t in case Cp,t does not halt,
both computations Cp,t, Cp,t+1 are stepwise identical.

(a) If Cp,t halts then so does Cp,t+1 at the same step. And both
computations have the same output.
In that case, we set f(p, t + 1) = f(p, t) , g(p, t + 1) = g(p, t).

(b) If Cp,t does not halt then let δt+1 = output(Cp,t+1)− output(Cp,t),
and set
f(p, t + 1) = f(p, t) + 1 + max(0, δt+1)
g(p, t + 1) = g(p, t) + 1 + max(0,−δt+1)

i.e. we add |δt+1| to f or g according to the sign of δt+1.

iii. Suppose Approx(A′, t+1)∩{0, ..., t} 6= Approx(A′, t)∩{0, ..., t}. Since
these approximations are monotone increasing, we necessarily have
Approx(A′, t) ∩ {0, ..., t} 6= A′ ∩ {0, ..., t + 1}.
Thus, the fake oracle in Cp,t has given answers which are not compatible
with A′. In that case, we set

f(p, t + 1) = f(p, t) + g(p, t) + 1 + max(0, output(Cp,t+1))
g(p, t + 1) = f(p, t) + g(p, t) + 1 + max(0,−output(Cp,t+1))

21

i.e. we uprise f, g to a common value (namely f(p, t)+g(p, t)) and then
add |output(Cp,t+1)| to f or g according to the sign of output(Cp,t+1).

From the above inductive definition, we see that, for each t > 0,

f(p, t)− g(p, t) = output(Cp,t)

Suppose ϕA′(p) is defined.
Applying Lemmas 6.11, 6.12, we see that there exist sp ≤ tp such that
- M, on input p, with oracle A′, halts in sp steps,
- Approx(A′, tp) ∩ {0, ..., tp} = A′ ∩ {0, ..., tp}.
Thus, for all t ≥ tp, fp,t = fp,tp and gp,t = gp,tp and fp,t − gp,t = ϕA′(p).

Suppose ϕA′(p) is not defined.
Observe that, each time the “fake” computation Cp,t with oracle Approx(A′, t)
does not halt or appears not to be the “right” one with oracle A′ (because
Approx(A′, t+1)∩{0, ..., t} differs from Approx(A′, t)∩{0, ..., t}), we strictly
increase both f, g (this is why we put +1 in the equations of iib and iii).
Applying Lemmas 6.11, 6.12, we see that, if ϕA′(p) is not defined then Cp,t
does not halt for infinitely many t’s, so that f(p, t) and g(p, t) increase in-
finitely often. Therefore, (max f)(p) and (max g)(p) are both undefined, and
so is their difference.

This proves that ϕA′ = max f−max g. Since the sequence (Approx(A′, t))t∈N
is A-recursive, so are f, g. Thus, max f,max g are in Max2∗→N

RecA and their
difference ϕA′ is in ∆(Max2∗→N

RecA). 2

7 Cardinal representations of N

7.1 Basic cardinal representation and its effectivizations

Among the conceptual representations of integers, the most basic one goes
back to Russell, [16] 1908 (cf. [21] p.178), and considers non negative integers
as equivalence classes of sets relative to cardinal comparison.

Definition 7.1 (Cardinal representation of N). Let card(Y) denote the
cardinal of Y , i.e. the number of its elements.
The cardinal representation of N relative to an infinite set X is the partial
function P (X) → N with domain P<ω(X) (the family of all finite subsets of
X) which maps Z to card(Z).

Definition 7.2 (Effectivizing the cardinal representation of N). We
effectivize the cardinal representation by replacing P (X) by RE(X) where
X is some basic set. Two kinds of self-enumerated systems can be naturally
associated (cf. §5 and Lemma 4.1):

(N, card ◦ FRE(X)) , (N, card ◦ PFRE(X))

22

Remark 7.3. One can also consider the total representation obtained by
restriction to the set P<ω(X) of all finite subsets of X. But this amounts to
a partial recursive representation and is relevant to §2.5.

7.2 Syntactical complexity of cardinal representations

The well-known Σ0
2 completeness of the set {n : Wn is finite} yields the

following result.

Proposition 7.4. The family {domain(ϕ) : ϕ ∈ card ◦ FRE(X)} is exactly
the family of Σ0

2 subsets of 2∗. Idem with card ◦ PFRE(X).

7.3 Characterization of the card self-enumerated systems

Theorem 7.5. For any basic set X,

1i. card ◦ FRE(X) = Max2∗→N
Rec

ii. card ◦ PFRE(X) = Max2∗→N
PR

2. KN
card◦FRE(X) =ct KN

card◦PF RE(X) =ct Kmax

We shall simply write KN
card for the Kolmogorov complexity of the card sys-

tems.

Proof. Point 2 is a direct corollary of Point 1 and Prop.6.6. Let’s prove
point 1.

1i. Inclusion ⊆. Let g : 2∗ → N be total recursive. We define a total
recursive function u : 2∗ × N→ N such that

(∗) {u(p, t) : t ∈ N} =
{ {0, ..., n} if Wg(p) contains exactly n points
N if Wg(p) is infinite

The definition is as follows. First, set u(p, 0) = 0 for all p. Consider a
recursive enumeration of Wg(p). If at step t, some new point is enumerated
then set u(p, t + 1) = u(p, t) + 1, else set u(p, t + 1) = u(p, t).
From (∗) we get card(Wp) = (max f)(p), so that p 7→ card(Wg(p)) is in
Max2∗→N

Rec .

1ii. Inclusion ⊆. Now g is partial recursive and we define u as above with
the extra condition that {u(p, t) : t ∈ N} = ∅ if g(p) is undefined.

1i. Inclusion ⊇. Let f : 2∗ × N → N be total recursive. The idea to prove
that max f : 2∗ → N is in card ◦ FRE(X) is quite simple. For every p, we
define an r.e. subset of X which collects some new elements each time f(p, t)
gets greater than max{f(p, t′) : t′ < t}.
Formally, let ψ : 2∗ × N→ N be the partial recursive function such that

ψ(p, t) =
{

0 if ∃u f(p, u) > t
undefined otherwise

23

Letting ψp(t) = ψ(p, t), we have

domain(ψp) =
{ {t : 0 ≤ t < (max f)(p)} if (max f)(p) is defined
N otherwise

The parameter property yields a recursive function g : 2∗ → N such that
Wg(p) = domain(ψp). Thus, card(Wg(p)) = card(domain(ψp)) = (max f)(p).
Which proves that max f is in card ◦ FRE(X).

1ii. Inclusion ⊇. Now, f is partial recursive and we define ψ as above
with the extra condition that ψ(p) is undefined if f(p, t) is defined for
no t. Again, the parameter property yields a total recursive function g :
2∗ → N such that Wg(p) = domain(ψp). Let h be the restriction of g to
{p : ∃t f(p, t) is defined}. Then card(Wh(p)) = (max f)(p), which proves
that max f is in card ◦ PFREA(X).

7.4 Characterization of the ∆card system

We now look at the self-delimited system with domain Z obtained from
card ◦ FRE(X) by the operation ∆ introduced in §4.3.

Theorem 7.6. ∆(card ◦ FRE(X)) = ∆(card ◦ PFRE(X)) = PR∅′,2∗→Z.
Hence KZ

∆(card◦FRE(X)) =ct K∅′,Z.

We shall simply write write KZ
∆card and KN

∆card for the Kolmogorov com-
plexity of the ∆card system and its restriction to N.

Proof. The equalities about the self-enumerated systems is a direct corollary
of Thm.7.5 and Thm.6.10. The equalities about Kolmogorov complexities
are trivial corollaries of those about self-enumerated systems.

8 Index representations of N

8.1 Basic index representation and its effectivizations

A variant of the cardinal representation considers indexes of equivalence
relations. More precisely, it views an integer as an equivalence class of
equivalence relations relative to index comparison.

Definition 8.1 (Index representation). The index representation of N
relative to an infinite set X is the partial function indexX : P (X2) → N
with domain the family of equivalence relations on subsets of X which have
finite index, and which associates to such a relation its index.

Definition 8.2 (Effectivizing index representation of N). We effec-
tivize the index representation by replacing P (X2) by RE(X2) where X

24

is some basic set. Two kinds of self-enumerated systems can be naturally
associated (cf. §5 and Lemma 4.1):

(N, index ◦ FRE(X2)) , (N, index ◦ PFRE(X2))

8.2 Syntactical complexity of index representations

The following proposition gives the syntactical complexity of the above ef-
fectivizations of the index representations. It is a straightforward corollary
of Theorem 8.5 proved below.

Proposition 8.3. The family {domain(F) : F ∈ index ◦FRE(X)} is exactly
the family of Σ0

3 subsets of 2∗. Idem with index ◦ PFRE(X).

8.3 Characterization of the index self-enumerated systems

We now come to the characterization of the index self-enumerated families.
It turns out that these two families are almost equal to Max∅

′,2∗→N
Rec , almost

meaning here “up to an extra condition on the inverse image of 0”.

The following simple result illustrates the significance of Thm.8.5.

Proposition 8.4. Let F : 2∗ → N. The following table gives the syntactical
complexity of F−1(k) in case F is in the mentioned class.

F is in k = 0 k = 1 k ≥ 2
index ◦ FRE(X) Π0

1 Π0
2 Σ0

2 ∧Π0
2

index ◦ PFRE(X) (Σ0
1 ∧Π0

1)
sp Π0

2 Σ0
2 ∧Π0

2

Max∅
′,2∗→N

Rec Π0
2 Σ0

2 ∧Π0
2 Σ0

2 ∧Π0
2

where (Σ0
1∧Π0

1)
sp means that F−1(0) = A∩B and A is Σ0

1 and B is Π0
1 and

A ⊇ domain(F).
In case F ∈ Max∅

′,2∗→N
Rec and F−1(0) is Σ0

1 ∧Π0
1 then F−1(1) is Π0

2.

Proof. 1. Suppose F ∈ index ◦ FRE(X) and F (p) = index (WX2

f(p)) where
f : 2∗ → N is total recursive. Then

F (p) = 0 ⇔ Wf(p) = ∅
F (p) = 1 ⇔ Wf(p) is an equivalence relation

∧ ∃x (x, x) ∈ Wf(p)

∧ ∀x ∀y ({(x, x), (y, y)} ⊆ Wf(p) ⇒ (x, y) ∈ Wf(p))
F (p) = k ⇔ Wf(p) is an equivalence relation

∧ ∃x1...∃xk ((
∧

1≤i≤k

(xi, xi) ∈ Wf(p)) ∧
∧

1≤i<j≤k

(xi, xj) /∈ Wf(p))

∧ ∀x1...∀xk+1

∨

1≤i<j≤k+1

(xi, xj) ∈ Wf(p)

25

Observe that Wf(p) is an equivalence relation if and only if

∀x ∀y (((x, y) ∈ Wf(p) ⇒ {(x, x), (y, x)} ⊆ Wf(p))
∧ ∀x ∀y ∀z ({(x, y), (y, z)} ⊆ Wf(p) ⇒ (x, z) ∈ Wf(p)))

This gives the syntactical complexities of line 1 of the table.

2. If F ∈ index ◦ PFRE(X) then f is partial recursive and we have to add in
the above formulas the Σ0

1 condition expressing that f(p) is defined.

3. Suppose F ∈ Max∅
′,2∗→N

Rec and F (p) = max{f(p, t) : t ∈ N} where
f : 2∗ × N→ N is total recursive in ∅′, hence has ∆0

2 graph. Then

F (p) = 0 ⇔ ∀t f(p, t) = 0
F (p) = 1 ⇔ F (p) 6= 0 ∧ ∀t f(p, t) ≤ 1
F (p) = k ⇔ ∃t f(p, t) = k ∧ ∀t f(p, t) ≤ k

This proves line 3 of the table and the last assertion of the proposition.

Theorem 8.5. For any basic set X,

i. index ◦ FRE(X) = {F ∈ Max∅
′,2∗→N

Rec : F−1(0) is Π0
1}

ii. index ◦ PFRE(X) = {F ∈ Max∅
′,2∗→N

Rec : F−1(0) is Σ0
1 ∧Π0

1}
Proof. Proof of inclusions ⊆ in i–ii.
Using Prop.8.4, it suffices to prove that index ◦ PFRE(X2) ⊆ Max∅

′,2∗→N
Rec .

Let G ∈ index ◦ PFRE(X2) and let g : 2∗ → N be partial recursive such that

G(p) =





index(WX2

g(p)) if g(p) is defined and WX2

g(p) is an
equivalence relation with finite index

undefined otherwise

We define a total ∅′-recursive function u : 2∗ × N→ N such that

(∗) {u(p, t) : t ∈ N} =
{ {0, ..., n} if G(p) is defined and G(p) = n
N if G(p) is undefined

The definition is as follows. Since g is partial recursive and we look for
an ∅′-recursive definition of u(p, t), we can use oracle ∅′ to check if g(p) is
defined.
If g(p) is undefined then we let u(p, t) = t for all t. Which insures (∗).
Suppose now that g(p) is defined. First, set u(p, 0) = 0.
Consider a recursive enumeration of WX2

g(p). Let Rt be the set of pairs enu-
merated at steps < t and Dt be the set of x ∈ X which appear in pairs in Rt

(so that R0 and D0 are empty). Since at most one new pair is enumerated
at each step, the set Rt contains at most t pairs and Dt contains at most 2 t
points.
At step t + 1, use oracle ∅′ to check the following properties:

26

αt. For every x ∈ Dt+1 the pair (x, x) is in WX2

g(p).

βt. For every pair (x, y) ∈ Rt+1 the pair (y, x) is in WX2

g(p).

γt. For every pairs (x, y), (y, z) ∈ Rt+1 the pair (x, z) is in WX2

g(p).

δt. For every x ∈ Dt+1 there exists y ∈ Dt such that the pair (x, y) is in
WX2

g(p).

Since Rt+1, Dt+1 are finite, all these properties αt-δt are finite conjunctions
of Σ0

1 statements. Hence oracle ∅′ can decide them all.

Observe that if WX2

g(p) is an equivalence relation then answers to αt-γt are

positive for all t. And if WX2

g(p) is not an equivalence relation then, for some
π ∈ {α, β, γ}, answers to πt are negative for all t large enough .
Also, if WX2

g(p) is an equivalence relation then a new equivalence class is
witnessed each time δt is false. And every equivalence class is so witnessed.

Thus, in case g(p) is defined, we insure (∗) by letting

u(p, t + 1) =
{

u(p, t) if all answers to αt-δt are positive
u(p, t) + 1 otherwise

From (∗), we get G = maxu. Since u is total ∅′-recursive, this proves that
G is in Max∅

′,2∗→X
Rec .

Proof of inclusion ⊇ in i.
We reduce to the case X = N. Let F ∈ Max∅

′,2∗→N
PR be such that F−1(0) is

Π0
1.

Let f : 2∗×N→ N be total recursive in ∅′ such that F (p) = max{f(p, t) : t ∈
N}. With no loss of generality, we can suppose that f is monotone increasing
in its second argument t. Using Thm.6.10, there are total recursive g, h :
2∗ × N2 → N such that f(p, t) = (maxu∈N g(p, t, u)) − (maxu∈N h(p, t, u))
hence

(∗) F (p) = maxt∈Nf(p, t) = maxt∈N[(maxu∈Ng(p, t, u))−(maxu∈Nh(p, t, u))]

For t ≤ s, we consider the following approximations of f(p, t) :

f̃(p, t, s) = (maxu≤sg(p, t, u))− (maxu≤sh(p, t, u))

f̂(p, t, s) = max(0, maxi≤tf̃(p, i, s))

Clearly, f̂(p, t, s) is monotone increasing with respect to t and s.
Also, for every t there exists σt such that, for s ≥ σt, we have f(p, t) =
f̃(p, t, s), so that (since f is increasing in t), for s ≥ σ̂t = maxi≤t si, we have
f(p, t) = f̂(p, t, s) and F (p) = maxt∈N f̂(p, t, σ̂t).

To prove that F is in index ◦ FRE(N2), given p ∈ 2∗, we construct an r.e.
equivalence relation ρp on a subset of N by the following inductive process:

27

i. ρp =
⋃

t∈N ρp,s where ρp,s is a finite equivalence relation.
Also, ρp,s+1 contains ρp,s for all s.

ii. Preliminary phase (which may last forever) before the induction.
Let the Π0

1 set F−1(0) be of the form F−1(0) = {p : ∀t R(p, t)} where
R ⊆ 2∗ × N is a recursive relation. Let ζ = sup{s : ∀t ≤ s R(p, t)}.
If s ≤ ζ then ρp,s = ∅.
If s > ζ then ρp,s is a finite equivalence relation on N.
This insures that index (ρp) = 0 if and only if ζ = +∞ if and only if
F (p) = 0.

iii. Inductive invariant property.
If s > ζ then the finite equivalence relation ρp,s consists of one non
empty class Zs containing 0 and finitely many (maybe zero) singleton
classes of elements in a (possibly empty) set Ds. Also, Ds =

⋃
t≤s Ds

t

where Ds
0, ..., D

s
s are pairwise disjoint.

- Ds
t = ∅ if f̂(p, i) ≤ 1 for all i ≤ t,

- Ds
t has f̂(p, t, s)− 1 elements if t ≤ s is least such that f̂(p, t, s) ≥ 2,

- Ds
t has f̂(p, t, s)− f̂(p, t− 1, s) elements if f̂(p, t, s) ≥ 2 and t is not

least such.
Intuition. We would like to have the above equalities with the f(p, t)’s
for t ≤ s, since this would imply that index (ρp,t) = f(p, t). But we
can only deal with their approximations f̂(p, t, s).

iv. Initial steps of the induction (which may last forever).
Let ξ = sup{s : f̂(p, s, s) ≤ 1} and α = max(ζ + 1, ξ + 1).
For ζ < s ≤ α we let Zs = {0} and Ds = ∅. Also, Ds

t = ∅ for all t ≤ s.
Intuition. Since s > ζ, we know that F (p) 6= 0, so that we start filling
ρp by putting 0 in its domain. We wait until f(p, s) > 1 to start
putting other classes. Of course, as we cannot compute f we use its
approximation f̂ .

v. Inductive step. Suppose α is finite and let s > α. Then
Case ∀t ≤ s f̂(p, t, s + 1) = f̂(p, t, s). Then we set Zs+1 = Zs

and Ds+1
t = Ds

t for t ≤ s and we define Ds+1
s+1 ⊂ N as a set of

f̂(p, s+1, s+1)− f̂(p, s, s+1) integers which is disjoint from Zs ∪Ds
s

(hence from all the Ds+1
t ’s for t ≤ s).

Case ∃t ≤ s f̂(p, t, s + 1) 6= f̂(p, t, s). Let τ be the least such t. Then,
f̂(p, t, s + 1) = f̂(p, t, s) for t < τ . We let
- Zs+1 = Zs ∪⋃

τ≤t≤s Ds
t ,

- Ds+1
t = Ds

t for t < τ ,
- Ds+1

τ , ..., Ds+1
s+1 are new sets, pairwise disjoint and disjoint from Zs+1∪⋃

t≤τ Ds
t , which contain as many elements as required by iii.

Intuition. In the second case, we know that s < sτ so that we annihi-
late the singleton classes of the elements in the Ds

t ’s for τ ≤ t ≤ s by

28

aggregating them to the class of 0.
If s < σ̂t then there will be some s′ ≥ s for which we shall be in the
second case.
If s ≥ σ̂t then f(p, t) = f̃(p, t, s) = f̂(p, t, s) for all t ≤ s. Hence we
are necessarily in the first case.

For s ≥ σ̂t we have Ds
i = D bσt

i for all i ≤ t. Thus, for each t, the Ds
t

class gets constant for s big enough. Also, for s < σ̂t the class Ds
t gets

aggregated to the class of 0. This shows that the refinement ρp of the ρ′p,ss
is an equivalence relation. Also, due to equalities in iii, we have index (ρp) =
maxt∈N f(p, t) = F (p) (with value +∞ on the left in case F (p) is undefined).
Finally, the parameter theorem gives some total recursive γ : 2∗ → N such
that ρp = Wγ(p). Thus, F is in index ◦ FRE(X).

Proof of inclusion ⊇ in ii.
Now, F−1(0) is (Σ0

1 ∧ Π0
1)

sp, i.e. F−1(0) = A ∩ B where A is Σ0
1 and B is

Π0
1 and A ⊇ domain(F).

We add to the above construction of γ another phase before the preliminary
phase ii. In this phase, we wait for p to appear in A. If and when p appears
in A, we start the above construction of ρp with B in place of F−1(0).
Case p /∈ A. Then γ(p) is undefined. This is OK since the inclusion A ⊇
domain(F) insures that F (p) is undefined.
Case p ∈ A. Then γ(p) is defined. Since p ∈ A, we know that F (p) =
0 if and only if p ∈ B, hence the construction of ρp and γ is such that
index (ρp) = F (p) (with left member +∞ in case F (p) is undefined). This
proves that F is in index ◦ PFRE(X).

8.4 Adding 1 to a system or maximizing it with 1

In order to get the Kolmogorov complexity of index systems, and also to
characterize the ∆index systems, we need a simple auxiliary result.

Notation 8.6. If G is a family of functions 2∗ → N, we let

1 + G = {1 + f : f ∈ G} , max(1,G) = {max(1, f) : f ∈ G}

Proposition 8.7. 1.

max(1, index ◦ FRE(X)) = (2∗ → N \ {0}) ∩ (index ◦ FRE(X))
max(1, index ◦ PFRE(X)) = (2∗ → N \ {0}) ∩ (index ◦ PFRE(X))

max(1,Max∅
′,2∗→N

Rec) = (2∗ → N \ {0}) ∩ Max∅
′,2∗→N

Rec

1 + Max∅
′,2∗→N

Rec = (2∗ → N \ {0}) ∩ Max∅
′,2∗→N

Rec

2. The four systems max(1, index ◦ FRE(X)), max(1, index ◦ PFRE(X)),
max(1,Max∅

′,2∗→N
Rec) and 1 + Max∅

′,2∗→N
Rec coincide.

29

Proof. Let δ : N→ N be total recursive such that

Wδ(n) =
{ {(0, 0)} ∪ {(Eφ(n)(x), Eφ(n)(y)) : (x, y) ∈ Wn} if Wn 6= ∅
{(0, 0)} if Wn = ∅

where φ(n) is the integer i such that (i, i) appears first in the enumeration
of Wn, and Ei : N → N is the function such that Ei(i) = 0, Ei(0) = i and
Ei(x) = x for x /∈ {0, i}.
Observe that index (Wδ(n)) = max(1, index (Wn)).
Also, maxt∈Nmax(1, f(p, t)) = max(1, maxt∈Nf(p, t)). This proves point 1.
Point 2 is a straightforward corollary of Point 1 and Thm.8.5.

8.5 Kolmogorov complexity of the index systems

The following result is straightforward.

Proposition 8.8. Let (N,F) be a self-enumerated system with U as a good
universal function. Then (N\{0}, max(1,F)) (resp. (N\{0}, 1+F)) is also
a self-enumerated system with max(1, U) (resp. 1 + U) as a good universal
function. In particular,

KN
F ¹N \ {0} = K

N\{0}
max(1,F) = K

N\{0}
1+F

We can now get the Kolmogorov complexity of the index systems.

Theorem 8.9. KN
index◦FRE(X2)

=ct KN
index◦PF RE(X2)

=ct K∅′
max.

We shall write KN
index for the Kolmogorov complexity of the index systems.

Proof. Propositions 8.7 and 8.8 yield

KN
index◦FRE(X2) ¹N \ {0} =ct KN

index◦PF RE(X2) ¹N \ {0} =ct K∅′
max ¹N \ {0}

Increasing the constant in these =ct equalities to deal with the values at 0,
we get the equalities of the theorem.

8.6 Characterization of the ∆index self-enumerated systems

Theorem 8.10.
1. ∆(index ◦ FRE(X))) = ∆(index ◦ PFRE(X))) = PR∅′′,2∗→Z

2. KZ
∆(index◦FRE(X)) =ct KZ

∆(index◦PF RE(X)) =ct K∅′′,Z.

We shall simply write write KZ
∆index and KN

∆index for the Kolmogorov com-
plexity of the ∆index system and its restriction to N.

30

Proof. Point 2 is a direct corollary of Point 1. Let’s prove point 1.
Prop.8.7 and Thm.8.5 respectively insure the following inclusions:

∆(1 + Max∅
′,2∗→N

Rec) = ∆(max(1, index ◦ FRE(X2))) ⊆ ∆(index ◦ FRE(X2))

∆(index ◦ FRE(X2)) ⊆ ∆(index ◦ PFRE(X2)) ⊆ ∆(Max∅
′,2∗→N

Rec)

Since, trivially, ∆(1 + Max∅
′,2∗→N

Rec) = ∆(Max∅
′,2∗→N

Rec), we see that all these
systems are equal. We conclude with Thm.6.10.

9 Functional representations of N

9.1 Basic Church representation of N

First, let’s introduce some simple notions related to function iteration.

Definition 9.1 (Iteration).
1. Let IdX the identity function over X. If f : X → X is a partial function,
we inductively define for n ∈ N the n-th iterate f (n) : X → X of f as the
partial function such that f (0) = IdX and f (n+1) = f (n) ◦ f .

2. Let P be an infinite subset of X → X which is closed under composition.
We denote by It

(n)
P : P → P the total functional f 7→ f (n).

We denote by ItNP : N→ PP the total functional n 7→ It
(n)
P .

We can now come to Church’s functional representation of integers.

Definition 9.2 (Church representation of N).
1. (Church, 1933 [4]) If X is an infinite set, the Church representation of N
relative to X is the function

ChurchNX→X : (X → X)(X→X) → N

which is the unique left inverse of ItNX→X with domain Range(ItNX→X) =
{It

(n)
X→X : n ∈ N}, i.e. ChurchNX→X ◦ ItNX→X = IdN and

ChurchNX→X(F) =

{
n if F = It

(n)
X→X

undefined if ∀n ∈ N F 6= It
(n)
X→X

2. Let P be an infinite subset of X → X which is closed under composition
and such that ItNP is injective (which is obviously the case if P = X → X).
The Church representation of N relative to P is the function

ChurchNP : PP → N

which is defined as above with ItNP and It
(n)
P in place of ItNX→X and It

(n)
X→X .

31

9.2 General Church self-enumerated systems

As is well-known, there are several natural notions of computable function-
als. Hence several ways to effectivize (X → X)(X→X), cf. §9.5, 9.6, 9.7.
Nevertheless, we shall prove that all these effectivizations lead to the same
self-enumerated system, cf. Thm.9.14, and that this system satisfies the
conditions of Def.9.3 below.
Before entering the technicalities of effectivization of functionals, we take an
axiomatic approach to give the simple argument which proves that Church
semantics leads to the usual Kolmogorov complexity.

Definition 9.3 (Church self-enumerated systems). Let X be some
basic set, P ⊆ X → X and D ⊂ PP and F ⊆ 2∗ → D be such that

1. (D,F) is a full self-enumerated system (cf. Def.3.1),

2. P contains the successor function Suc : N → N and D contains all
functionals It

(n)
P for n ∈ N,

3. there exists a total recursive function f : N→ 2∗ and a function Φ ∈ F
such that ChurchNP ◦ Φ ◦ f = IdN,

4. if Φ ∈ F then p 7→ Φ(p)(Suc)(0) is a partial recursive function 2∗ → N.

Then we call (N,ChurchNP ◦ F) a Church self-enumerated system.

9.3 Kolmogorov complexity of general Church systems

Theorem 9.4. Denote by Restrict(PR2∗→N) the family of restrictions of
functions in PR2∗→N.
1. If (N,ChurchNP ◦ F) is a Church self-enumerated system then

PR2∗→N ⊆ ChurchNP ◦ F ⊆ Restrict(PR2∗→N)

2. KN
ChurchNP◦F

=ct K

Proof. First inclusion of 1. Let f, Φ be as in condition 3 of Def.9.3. Let
φ : 2∗ → N be any partial recursive function. Then

φ = IdN ◦ φ = (ChurchNP ◦ Φ ◦ f) ◦ φ = ChurchNP ◦ (Φ ◦ (f ◦ φ))

Now, since (D,F) is a full self-enumerated system and Φ ∈ F and f ◦ φ is
partial recursive, Φ ◦ (f ◦ φ) is also in F . Thus φ is in ChurchNP ◦ F .

Second inclusion of 1. Let Φ ∈ F and p ∈ 2∗. If (ChurchNP ◦ Φ)(p) is
defined and has value n ∈ N then Φ(p) = It

(n)
P . Since Suc ∈ P, we have

Φ(p)(Suc)(0) = It
(n)
P (Suc)(0) = n. Thus, when (ChurchNP ◦Φ)(p) is defined,

we have (ChurchNP ◦Φ)(p) = Φ(p)(Suc)(0). Which proves that ChurchNP ◦Φ

32

is a restriction of p→ Φ(p)(Suc)(0), which is partial recursive by condition
4 of Def.9.3.

2. The first inclusion of point 1 yields KN
ChurchNP◦F

≤ct K. Since Kg ≤ Kh

whenever g, h : 2∗ → N are such that h is a restriction of g, any optimal
function for PR2∗→N is optimal for Restrict(PR2∗→N). Thus, the second
inclusion yields K ≤ct KN

ChurchNP◦F
.

9.4 Kolmogorov complexity of the ∆ of general Church sys-
tems

Theorem 9.5. 1. If (N,ChurchNP ◦ F) is a Church self-enumerated system
then

PR2∗→Z ⊆ ∆ChurchNP ◦ F ⊆ Restrict(PR2∗→Z)

2. KZ
∆ChurchNP◦F

¹N =ct K

Proof. 1. Observe that ∆(PR2∗→N) = PR2∗→Z and ∆(Restrict(PR2∗→N)) =
Restrict(PR2∗→N) and apply Thm.9.4.
2. Argue as in point 2 of the proof of Thm.9.4.

9.5 Computable and effectively continuous functionals

This subsection and the next ones are devoted to the construction of Church
self-enumerated systems and to the characterization of these systems as re-
strictions of partial recursive functions to Π0

2 sets (cf. Thm.9.14). A result
which refines point 1 of Theorem 9.4.
First, we recall the two classical notions of partial computability for func-
tionals, cf. Odifreddi’s book [12] p.178, 188, 197.

Definition 9.6 (Kleene partial computable functionals).
1. Let X,Y,S,T be some basic spaces and fix some suitable representations
of their elements by words. An (X→ Y)-oracle Turing machine with inputs
and outputs respectively in S,T is a Turing machine M which has a special
oracle tape and is allowed at certain states to ask an oracle f ∈ (X → Y)
what are the successive digits of the value of f(q) where q is the element of
X currently written on the oracle tape.
The functional ΦM : ((X → Y) × S) → T associated to M maps the pair
(f, s) on the output (when defined) computed by M when f is given as the
partial function oracle and s as the input.
If on input x and oracle f the computation asks the oracle its value on an
element on which f is undefined then M gets stuck, so that ΦM(f, x) is
undefined.

2. A functional Φ : ((X → Y) × S) → T is partial computable (also called
partial recursive) if Φ = ΦM for some M.

33

A functional obtained via curryfications from such a functional is also called
partial computable. We denote by PC τ the family of partial computable
functionals with type τ .

Definition 9.7 (Uspenskii (effectively) continuous functionals). De-
note by Fin(X → Y) the class of partial functions X → Y with finite do-
mains. Observe that, α, β ∈ Fin(X → Y) are compatible if and only if
α ∪ β ∈ Fin(X→ Y).

1. Let’s say that the relation R ⊆ Fin(X→ Y)× S× T is functional if

α ∪ β ∈ Fin(X→ Y) ∧ (α, s, t) ∈ R ∧ (β, s, t′) ∈ R ⇒ t = t′

To such a functional relation R can be associated a functional

ΦR : ((X→ Y)× S) → T

such that, for every f, s, t,

(†) Φ(f, s) = t ⇔ ∃u ⊆ f R(u, s, t)

2. (Uspenskii [20], Nerode [11]) A functional Φ : ((X→ Y)× S) → T is
continuous if it is of the form ΦR for some functional relation R.

Φ is effectively continuous if R is r.e. Effectively continuous functionals are
also called recursive operators (cf. Rogers [15], Odifreddi [12]).
A functional obtained via curryfications from such a functional is also called
effectively continuous. We denote by EffContτ the family of effectively con-
tinuous functionals with type τ .

Effective continuity is more general than partial computability (cf. [12]
p.188). However, restricted to total functions, both notions coincide.

Theorem 9.8. 1. (Uspenskii [20], Nerode [11]) Partial computable
functionals are effectively continuous.
2. (Sasso [17, 18]) There are effectively continuous functionals which are
not partial computable.
3. A functional Φ : (YX)× S→ T is the restriction of a partial computable
functional ((X → Y) × S) → T if and only if it is the restriction of an
effectively continuous functional.

9.6 Computability of functionals over PRX→Y

Using indexes, one can also consider computability for functionals operating
on the sole partial recursive functions.

Definition 9.9. Let (ϕX→Ye)e∈N be an acceptable enumeration of PRX→Y.
1. A functional Φ : PRX→Y × S → T is an effective functional on partial

34

recursive functions if there exists some partial recursive function f : N×S→
T such that, for all s ∈ S, e ∈ N,

Φ(ϕX→Ye , s) = f(e, s)

We denote by Eff PRX→Y×S→T the family of such functionals.

2. We denote by Eff PRX→Y×S1→PRS2→T the family of functionals obtained
by curryfication of the above class with S = S1 × S2.
An easy application of the parameter property shows that these functionals
are exactly those for which there exists some partial recursive function g :
N× S1 → N such that, for all s1 ∈ S1, e ∈ N,

Φ(ϕX→Ye , s1) = ϕS2→Tg(e,s1)

Note 9.10. 1. Thanks to Rogers’ theorem (cf. Thm.5.1), the above defini-
tion does not depend on the chosen acceptable enumerations.

2. The above functions f, g should have the following properties:

ϕX→Ye = ϕX→Ye′ ⇒ f(e, s) = f(e′, s)
ϕX→Ye = ϕX→Ye′ ⇒ ϕS2→Tg(e,s1) = ϕS2→Tg(e′,s1)

As shown by the following remarkable result, such functionals essentially
reduce to those of Def.9.7 (cf. Odifreddi’s book [12] p.206–208).

Theorem 9.11 (Uspenskii [20], Myhill & Shepherdson [10]).
The effective functionals PRX→Y → PRS→T are exactly the restrictions to
PRX→Y of effectively continuous functionals (X→ Y) → (S→ T).

9.7 Effectivizations of Church representation of N and their
characterization

Theorem 9.12. The following systems are full self-enumerated systems (cf.
notations from Def.9.6, 9.7, 9.9):

(PC τ ,PC 2∗→τ) , (EffContτ ,EffCont2
∗→τ) , (Eff τ

PR,Eff 2∗→τPR)

Proof. Case of PC τ and EffContτ . Points i and ii (for full systems) of
Def.3.1 are trivial. As for point iii, use the classical enumeration theorem
for partial computable (resp. effectively continuous) functionals.
Case of Eff τ

PR. Easy corollary of 9.11.

Definition 9.13 (Effectivizations of Church representation of N).
We effectivize the Church representation (cf. Def.9.2) by replacing (X →
X) → (X → X) by one of the following classes:

PC (X→X)→(X→X) , EffCont (X→X)→(X→X) , Eff PRX→X→PRX→X

35

where X is some basic set. This leads to three self-enumerated systems N :

S1 = (N , ChurchNX→X ◦ PC 2∗→((X→X)→(X→X)))
S2 = (N , ChurchNX→X ◦ EffCont2

∗→((X→X)→(X→X)))

S3 = (N , churchNPRX→X ◦ Eff 2∗→(PRX→X→PRX→X))

The following result greatly simplifies the landscape. Its proof requires
a lot of auxiliary results and is given in §9.9.

Theorem 9.14. 1. S1 = S2 = S3 = (N, PR2∗→N ¹ Π0
2) (i.e. the family

of restrictions to Π0
2 sets of partial recursive functions 2∗ → N). Moreover,

this system is a Church self-enumerated system (cf. Def.9.3).

2. ∆S1 = ∆S2 = ∆S3 = (Z, PR2∗→Z ¹Π0
2).

Thms. 9.4, 9.5 yield the following corollary of the above result.

Corollary 9.15. The Kolmogorov complexities KN
Church and KZ

∆Church ¹ N
associated to the systems S1,S2,S3 and ∆S1, ∆S2, ∆S3 both coincide with
the usual Kolmogorov complexity KN.

9.8 Auxiliary results for the proof of Thm.9.14

For the proof of Thm.9.14 (cf. §9.9), we need some convenient tools given
in the next propositions.

Proposition 9.16 (Iterators as effectively continuous functionals).
We denote by In the functional relation

In = {(α, x, α(n)(x)) : x ∈ X ∧ domain(α) = {α(i)(x) : i < n}}

Let R ⊂ Fin(X→ X)× X× X be functional. Then

ΦR = It
(n)
X→X ⇔ R ⊇ In

Proof. It is straightforward to see that In is functional and ΦIn = It
(n)
X→X.

⇐. Suppose R is functional and R ⊇ In. Let f : X→ X and x ∈ X. Clearly,
ΦR(f) extends ΦIn(f) = f (n).
Case 1: f (n)(x) is defined. Then ΦR(f)(x) = f (n)(x).
Case 2: f (n)(x) is undefined. Suppose ΦR(f)(x) were defined and ΦR(f)(x) =
y. By continuity, there would exist a finite restriction α of f such that
(α, x, y) ∈ R. Since f (n)(x) is undefined so is α(n)(x). Let i ≤ n be least such
that α(i)(x) is undefined. Choose distinct zi, ..., zn outside {y} ∪ range(α)
and let β be an extension of α such that β(j)(x) = zj for j = i, ..., n. Since
(α, x, y) ∈ R and α is a restriction of β, we have ΦR(β)(x) = y. Now,
β(n)(x) = zn 6= y hence ΦRe(β)(x) 6= β(n)(x). This contradicts Case 1.

36

⇒. Suppose domain(α) = {α(i)(x) : i < n}. We show that (α, x, α(n)(x)) ∈
R. Since ΦR(α)(x) = It

(n)
X→X(α)(x) = α(n)(x), there exists a restriction β

of α such that (β, x, α(n)(x)) ∈ R. Thus, β(n)(x) is defined and β(n)(x) =
α(n)(x)). Which implies that β extends α ¹ {α(i)(x) : i < n} which is α.
Thus, β = α. Hence (α, x, α(n)(x)) ∈ R.

The following simple result is quite convenient.

Proposition 9.17. Let n ∈ N and Φ ∈ (X → X)(X→X). If Φ(f) is a
restriction of f (n) for every f : X → X then either Φ = It

(n)
X→X or Φ is not

an iterator.

Proof. We reduce to the case X = N. Let Suc : N → N be the successor
function. Since Φ(Suc) is a restriction of Suc(n), either Φ(Suc)(0) is un-
defined or Φ(Suc)(0) = n. In both cases it is different from Suc(p)(0) for
any p 6= n. Which proves that Φ 6= It

(p)
N→N for every p 6= n. Hence the

proposition.

Proposition 9.18 (Going from Kleene functionals to effectively con-
tinuous ones respecting iterators).
1. Let (We)e∈N be an acceptable enumeration of r.e. subsets of Fin(X →
X)×X×X. There exists a total recursive function ξ : N→ N such that, for
all e,

a. Wξ(e) ⊆ We and Wξ(e) is functional (cf. Def.9.7, point 1),

b. Wξ(e) = We whenever We is functional.

2. There exists a partial recursive function λ : N → N such that if Re is
functional and ΦRe is an iterator then λ(e) is defined and ΦRe = It

(λ(e))
X→X .

(However, λ(e) may be defined even if Re is not functional or ΦRe is not an
iterator).

3. There exists a total recursive function θ : N→ N such that, for all e ∈ N,

a. if ΦRe is an iterator then the (X → X)-oracle Turing machine Mθ(e)

with code θ(e) (cf. Def.9.6) computes the functional ΦRe,

b. if ΦRe is not an iterator then neither is the functional computed by the
(X→ X)-oracle Turing machine Mθ(e) with code θ(e).

In other words, Church(ΦRe) = Church(ΦMθ(e)
)

Proof. 1. This is the classical fact underlying the enumeration theorem for
effectively continuous functionals. To get Wξ(e), enumerate We and retain a
triple (α, x, y) if and only if, together with the already retained ones, it does
not contradict functionality (cf. Odifreddi’s book [12] p.197).

2. We reduce to the case X = N. Suppose R is functional and ΦR = It
(n)
N→N.

37

Prop.9.16 insures that (Suc¹{0, ..., n− 1}, 0, n) ∈ R where Suc denotes the
successor function on N.
Also, for m 6= n, since Suc ¹ {0, ..., m − 1} and Suc ¹ {0, ..., n − 1} are
compatible and R is functional, R cannot contain (Suc¹{0, ...,m−1}, 0,m).
Thus, if ΦR = It

(n)
N→N then n is the unique integer such that R contains

(Suc¹{0, ..., n− 1}, 0, n).
This leads to the following definition of the wanted partial recursive λ : N→
N : enumerate Re, if and when some triple (Suc¹{0, ..., n−1}, 0, n) appears,
halt and output λ(e) = n.

3. Given a code e of a functional relation Re, we let θ be the total recursive
function such that θ(e) is a code for the oracle Turing machine M which
acts as follows on oracle f and input x :

i. First, M computes λ(e).

ii. If λ(e) is defined then, on input x and oracle f , M tries to compute
It

(λ(e))
X→X (f)(x) in the obvious way: ask the oracle the values of f (i)(x)

for i ≤ λ(e).

iii. If i and ii succeed, i.e. λ(e) and f (λ(e))(x) are both defined, then
M start enumerating Re until (f ¹ {f (i)(x) : i < λ(e)}, x, f (λ(e))(x))
appears.

iv. M halts and accepts if and only if i, ii and iii all succeed. In which
case M outputs f (λ(e))(x).

Case ΦRe is an iterator. Point 2 insures that λ(e) is defined and ΦRe =
It

(λ(e))
X→X . Prop.9.16 insures that iii succeeds. Thus, M computes exactly

It
(λ(e))
X→X , as does ΦRe .

Case ΦRe is not an iterator and λ(e) is undefined. Then M computes the
constant functional with value the nowhere defined function. Thus, M does
not compute an iterator.

Case ΦRe is not an iterator and λ(e) is defined. Then ΦRe 6= It
(λ(e))
X→X . Let

f : X → X and x be such that ΦRe(f)(x) 6= f (λ(e))(x), (i.e. either both
quantities are defined and distinct or one is defined while the other is not).
Subcase f (λ(e))(x) is defined. Then iii cannot succeed and ΦM(f) is unde-
fined. Hence ΦM(f)(x) 6= f (λ(e))(x). Which proves that ΦM 6= It

(λ(e))
X→X .

Since ΦM(f) is a restriction of f (λ(e)) for all f , Prop.9.17 insures that ΦM
is not an iterator.
Subcase f (λ(e))(x) is undefined (hence λ(e) ≥ 1). Then ΦRe(f)(x) is neces-
sarily defined. Let ΦRe(f)(x) = y and let α be a finite restriction of f such
that (α, x, y) ∈ Re. There exist i < λ(e) and α(α(i)(x)) is undefined. Let i
be the least such one. As in the proof of Prop.9.16 (⇐ direction), there is an

38

extension β of α such that β(λ(e))(x) is defined and β(λ(e))(x) 6= y. Since β
extends α and (α, x, y) ∈ Re, we have ΦRe(α)(x) = ΦRe(β)(x) 6= β(λ(e))(x).
Thus, with β in place of f , iii cannot succeed and ΦM(β)(x) is undefined.
In particular, ΦM(β) 6= β(λ(e)) hence ΦM 6= It

(λ(e))
X→X . Since ΦM(g) is always

a restriction of g(λ(e)), Prop.9.17 insures that ΦM is not an iterator.

We recall the following well-known result.

Proposition 9.19 (The Apply functional is computable).
Let Φ : 2∗ → EffCont (X→X)→(X→X) be effectively continuous and ϕ : X→ X
be partial recursive. Then the function g : 2∗ × X → X such that g(p, x) =
(Φ(p)(ϕ))(x) for all p ∈ 2∗ and x ∈ X, is partial recursive.

Proof. Let R ⊆ Y × Fin(X → X) × X × X be an r.e. set such that, for all
p, R(p) = {(α, x, y) : (p, α, x, y) ∈ R} is functional and Φ(p) = ΦR(e) . By
continuity, g(p, x) is defined and g(p, x) = y if and only if there exists some
finite restriction α of ϕ such that (α, x, y) ∈ R(p). Since we can effectively
enumerate R(p) and the family of finite restrictions of ϕ, we see that g is
indeed partial recursive.

We shall need the following examples of effectively continuous function-
als.

Proposition 9.20 (Iterators and Π0
2 domains). If ϕ : 2∗ → N is partial

recursive and S ⊆ 2∗ is Π0
2 then there exists an effectively continuous func-

tional Φ : 2∗ → (X→ X)X→X such that ChurchNX ◦ Φ = ϕ¹S, i.e. for all p,

(∗) p ∈ S ∩ domain(ϕ) ⇒ Φ(p) = It
(ϕ(p))
X→X

(∗∗) p /∈ S ∩ domain(ϕ) ⇒ Φ(p) is not an iterator

Proof. Let S = {p ∈ 2∗ : ∀u ∃v (p, u, v) ∈ σ} where σ is a recursive subset
of 2∗ × N2. Let

In = {(α, x, α(n)(x)) : α ∈ Fin(X→ X) ∧ domain(α) = {α(i)(x) : i < n}}
and let γ : N2 → ⋃

n∈N In be a total recursive function such that, for all n,
u 7→ γ(n, u) is a bijection N→ In. Set

Rp = {γ(ϕ(p), u) : ϕ(p) is defined ∧ ∀u′ ≤ u ∃v (p, u′, v) ∈ σ}
Case ϕ(p) is not defined. Then Rp = ∅ so that ΦRp is the constant functional
which maps any function to the nowhere defined function. In particular, ΦRp

is not an iterator.
Case ϕ(p) is defined. Clearly, Rp ⊆ Iϕ(p). Since Iϕ(p) is functional (cf.
Prop.9.16) so is Rp.
Subcase p ∈ S. Then Rp = Iϕ(p) so that ΦRp = It

(ϕ(n))
X→X (cf. Prop.9.16).

Subcase p /∈ S. Then Rp is finite so that ΦRp has finite range hence cannot
be an iterator.
Letting Φ(p) = ΦRe , this proves (∗) and (∗∗).

39

9.9 Proof of Thm.9.14 characterizing the Church representa-
tion systems

1. Inclusions S1 ⊆ S2 ⊆ S3. The first inclusion is a corollary of point 1 of
Thm.9.8. The second one is trivial.

2. Inclusion S3 ⊆ S2. Every element of S3 is of the form Church ◦ Ψ
where Ψ ∈ Eff 2∗→(PRX→X→PRX→X)). Thm.9.11 insures that there exists
Φ ∈ EffCont2

∗→((X→X)→(X→X))) such that, for all p ∈ 2∗, Ψ(p) is the re-
striction of Φ(p) to PRX→X → PRX→X. Now, Church ◦Ψ(p) = n if and only
if ∀f ∈ PRX→X Ψ(p)(f) = f (n) if and only if ∀f ∈ PRX→X Φ(p)(f) = f (n).
Since Fin(X→ X) ⊂ PRX→Y, continuity of Φ(p) implies that this last con-
dition is equivalent to ∀f Φ(p)(f) = f (n). Which means Church ◦Φ(p) = n.
Thus, Church ◦Ψ = Church ◦ Φ and is therefore in ∈ S2.

3. Inclusion S2 ⊆ S1. Every element of S2 is of the form Church ◦ΦR where
R ⊆ 2∗ × Fin(X → X) × X × X is an r.e. set such that Rp = {(α, x, y) :
(p, α, x, y) ∈ R} is functional for all p ∈ 2∗. Let h : 2∗ → N be a total recur-
sive function such that h(p) is an r.e. code for Rp. Prop.9.18, point 3, gives
a total recursive θ : N → N such that Church(ΦRp) = Church(ΦMθ(h(p))

).
Now, p 7→ ΦMθ(h(p))

is in PC 2∗→((X→X)→(X→X))). Thus Church ◦ ΦR ∈ S1.

4. S1 is a Church self-enumerated system. Condition 1 is exactly Thm.9.12.
Condition 2 is obvious. Condition 4 is an instance of Prop.9.19.
As for condition 3, consider an enumeration (Wn)n∈N of functional r.e. sub-
sets of Fin(X → X) × X2, a total recursive function g : N → N such
that ΦWg(n)

= It
(n)
X→X and a total recursive bijection f : N → 2∗ and

define Φ : 2∗ → (X → X)X→X as follows: Φ(p) = ΦWg(f−1(p))
. Then

ChurchNX ◦ Φ ◦ f = IdN.

5. Inclusion S2 ⊆ PR2∗→N ¹ Π0
2. Since S2 is a Church self-enumerated

system, Thm.9.4 insures that all functions in S2 are restrictions of par-
tial recursive functions. Let’s show that their domains are Π0

2. Let R ⊆
2∗ × Fin(X → X) × X × X be an r.e. set such that Rp is functional for all
p ∈ 2∗. Then

domain(ChurchNX ◦ ΦR) = {p : ΦRp is an iterator}
Now, an r.e. code for the functional relation Rp is given by a total recursive
function h : 2∗ → 2∗. Applying point 2 of Prop.9.18, the partial recursive
function λ ◦ h is such that if ΦRp is an iterator then ΦRp = It

(λ(h(p)))
X→X .

Thus, using Prop.9.16, ΦRp is an iterator if and only if λ(h(p)) is de-
fined and Rp ⊇ Iλ(h(p)). Which is a Σ0

1 ∧ Π0
2 hence Π0

2 condition. Thus,
domain(ChurchNX ◦ ΦR) is Π0

2.

6. Inclusion S2 ⊇ PR2∗→N ¹Π0
2. This is exactly Prop.9.20.

7. Equalities ∆S1 = ∆S2 = ∆S3 = (Z, PR2∗→Z ¹ Π0
2). Straightforward

corollary of the characterization of S1, S2, S3. 2

40

9.10 Functional representations of Z

Specific to Church representation, there is another approach for an exten-
sion to Z : positive and negative iterations of injective functions over some
infinite set X. Formally, I.e., letting X

1−1→ X denote the family of injective
functions, consider the Z-iterator functional

ItZX : Z→ (X 1−1→ X)X
1−1→ X

such that, for n ∈ N, ItZX(n)(f) = f (n) and ItZX(−n)(f) = ItZX(n)(f−1).
Effectivization can be done as in §9.7. All previous results, in particular
Thm.9.14 and Cor.9.15 go through the Z context.

References

[1] V. Becher, G. Chaitin, and S. Daicz. A highly random number. In C.S.
Calude, M.J. Dineen, and S. Sburlan, editors, Proceedings of the Third
Discrete Mathematics and Theoretical Computer Science Conference
(DMTCS’01), pages 55–68. Springer-Verlag, 2001.

[2] V. Becher and S. Figueira. Kolmogorov complexity for possibly infinite
computations. Journal of Logic, Language and Information, 14:133–
148, 2005.

[3] G. Chaitin. Information theoretic characterizations of infinite strings.
Theoret. Comput. Sci., 2:45–48, 1976. Available on Chaitin’s home
page.

[4] A. Church. A set of postulates for the foundation of logic (second
paper). Annals of Math., 34:839–864, 1933.

[5] M. Ferbus-Zanda and S. Grigorieff. Church, cardinal and ordinal repre-
sentations of integers and Kolmogorov complexity. In Denis Richard’s
60th birthday, 2002, Universit Clermont II, France, pages 1–16, 2002.

[6] M. Ferbus-Zanda and S. Grigorieff. Kolmogorov complexities
Kmax,Kmin on computable partialy ordered sets. 2005. Submitted.

[7] A.N. Kolmogorov. Three approaches to the quantitative definition of
information. Problems Inform. Transmission, 1(1):1–7, 1965. Reprinted
in [8], p.184–193.

[8] A.N. Kolmogorov. Selected works of A.N. Kolmogorov. Volume III:
Information theory and the theory of algorithms. Kluwer, 1993. A.N.
Shiryayev editor.

41

[9] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and
its applications. Springer, 1997 (2d edition).

[10] J. Myhill and J.C. Shepherdson. Effective operations on partial recur-
sive functions. Zeit. Math. Grund. Math., 1:310–317, 1955.

[11] A. Nerode. General topology and partial recursive functionals. In Talks
Cornell Summ. Inst. Symb. Log., pages 247–251. Cornell, 1957.

[12] P. Odifreddi. Classical Recursion Theory, volume 125. North-Holland,
1989.

[13] O. Ramaré. On Schnirelman’s constant. Annali dela Scuola Superiore
di Pisa, 21:645–705, 1995.

[14] J. Robinson. Definability and decision problems in arithmetic. Journal
of Symbolic Logic, 14:98–114, 1949.

[15] H. Rogers. Theory of recursive functions and effective computability.
McGraw-Hill, 1967.

[16] B. Russell. Mathematical logic as based on the theory of types. Amer.
J. Math., 30:222–262, 1908. Reprinted in [21] p.150-182.

[17] L.P. Sasso. Degrees of unsolvability of partial functions. Ph.D. Thesis,
Berkeley, 1975.

[18] L.P. Sasso. A survey of partial degrees. Journal of Symbolic Logic,
40:130–140, 1975.

[19] R.M. Solovay. On random R.E. sets. In A.I. Arruda and al., editors,
Non-classical Logics, Model theory and Computability, pages 283–307.
North-Holland, 1977.

[20] V.A Uspenskii. On enumeration operators. Dokl. Acad. Nauk, 103:773–
776, 1955.

[21] J. van Heijenoort. From Frege to Gdel. A source book in mathematical
logic, 1879-1931. Harvad University Press, 1967.

42

