
Recursion and Topology on 2≤ω

for
Possibly Infinite Computations

Verónica Becher
Departamento de Computación, Universidad de Buenos Aires, Argentina

vbecher@dc.uba.ar

Serge Grigorieff LIAFA, Université Paris 7 & CNRS, 2 Pl. Jussieu 75251

Paris Cedex France

seg@liafa.jussieu.fr

Contents

1 Introduction 3
1.1 Mixing finite and infinite sequences 3
1.2 Topology and computability of subsets of 2≤ω 4
1.3 (Semi)computability of maps in 2≤ω 5
1.4 Relation with Computable Analysis and Type Two theory of

Effectivity . 6
1.5 Notations . 7

2 Around sets of words 7
2.1 Prefix free sets of words . 7
2.2 Checkable sets of words . 10
2.3 R.e. sets of words . 11

3 The topological space 2≤ω 12
3.1 The compact zero-dimensional topology on 2≤ω 13
3.2 Embeddings between 2ω and 2≤ω 14
3.3 Open sets, closed sets . 15
3.4 Clopen sets . 16
3.5 Stone and Pierce dualities . 18

3.5.1 Stone algebras of 2ω and 2≤ω 18
3.5.2 Pierce duality . 19

3.6 Other topologies on 2≤ω . 20
3.6.1 T0 topologies on 2∗ and 2≤ω 20
3.6.2 Redziejowski topology on 2≤ω 20

1

4 Computability over subsets of 2ω and 2≤ω 21
4.1 Computable subsets of 2ω and 2≤ω 21
4.2 The Arithmetical Hierarchy over 2≤ω 22
4.3 Logical characterization of the Arithmetical Hierarchy 24
4.4 Traces of the Arithmetical Hierarchy over 2≤ω 25
4.5 Checkable sets as clopen traces 26

5 (Semi)computability with possibly infinite computations 27
5.1 Possibly infinite computations and architectural decisions . . 27

5.1.1 Monotone Turing machines 27
5.1.2 Oracles . 29
5.1.3 Input delimitation . 29
5.1.4 When does a computation converge? 29

5.2 Computable and semicomputable maps into 2≤ω 30
5.3 Syntactical complexity of (semi)computable maps 32

6 Topological counterpart of (semi)computability 34
6.1 (Semi)computability and (lower semi)continuity 34
6.2 Lower semicontinuity and the weak topology 36
6.3 Continuity and weak topology on both the domain and range

spaces . 38

7 Tools for representation of maps 39
7.1 Bottom-up approach: the bar operator on maps 2∗ → 2∗ . . . 39
7.2 Bottom-up approach with maps 2∗ × N → 2∗ monotone in-

creasing with respect to N . 40
7.3 Tools for the top-down approach 41
7.4 Some lemmas about the bottom-up representation 42
7.5 Effectiveness and the bottom-up representation 43
7.6 Effectiveness of the top-down approach 46

8 Representation of (lower semi)continuous and (semi)computable
maps 49
8.1 Extending maps 2ω → 2≤ω to 2≤ω → 2≤ω 49
8.2 The representation theorem 51

9 Traces on 2∗ of continuous maps 2≤ω → 2≤ω 55
9.1 Checkable maps 2∗ → 2≤ω . 55
9.2 Simple checkability and monotonicity 56
9.3 Checkability and traces . 57

2

9.4 Recursive checkability and traces 59

10 Prospective Work 60

Abstract

In the context of possibly infinite computations yielding finite or
infinite (binary) outputs, the space 2≤ω = 2∗∪2ω appears to be one of
the most fundamental spaces in Computer Science. Though undercon-
sidered, next to 2ω, this space can be viewed (§3.5.2) as the simplest
compact space native to computer science.
In this paper we study some of its properties involving topology and
computability.
Though 2≤ω can be considered as a computable metric space in the
sense of computable analysis, a direct and self-contained study, based
on its peculiar properties related to words, is much illuminating.
It is well known that computability for maps 2ω → 2ω reduces to con-
tinuity with recursive modulus of continuity. With 2≤ω, things get
less simple. Maps 2ω → 2≤ω or 2≤ω → 2≤ω induced by input/output
behaviors of Turing machines on finite or infinite words – which we
call semicomputable maps – are not necessarily continuous but merely
lower semicontinuous with respect to the prefix partial ordering on
2≤ω. Continuity asks for a stronger notion of computability.
We prove for (semi)continuous and (semi)computable maps F : I → O
with I,O ∈ {2ω, 2≤ω} a detailed representation theorem (Thm.82) via
functions f : 2∗ → 2∗ following two approaches: bottom-up from f to
F and top-down from F to f .

1 Introduction

1.1 Mixing finite and infinite sequences

Infinite computations on a Turing machine yielding infinite outputs are con-
sidered in recursive analysis in order to get the notion of computable map
2ω → 2ω. However, as observed by Turing in his fundamental paper of 1936
[43], in general an infinite computation may yield either a finite or an infinite
output.

This leads to consider the space 2≤ω = 2∗ ∪ 2ω of all finite and infinite
binary sequences and maps with range in 2≤ω. In the context of possibly
infinite computations, this space is indeed a fundamental space in Computer
Science.

There is a natural zero-dimensional (i.e. with a topological basis of closed
open sets) compact topology on 2≤ω which induces the expected discrete and

3

Cantor topologies on the subspaces 2∗ and 2ω (cf. §3.1). Next to the Can-
tor space, 2≤ω is one of the simplest examples of compact zero-dimensional
space: its characterization via Pierce duality, 1972 [30] (cf. §3.5.2), involves
a 4 elements topological boolean algebra, whereas 2ω is associated to the
trivial 2 elements boolean algebra. As higher-order spaces built on discrete
spaces, such zero-dimensional compact spaces can be seen as native to com-
puter science. Which gives 2≤ω a prominent role next to 2ω.
Up to our knowledge, this topological space was not explicitly considered
up to the papers by Boasson & Nivat, [5] 1980, and Head, [18, 19] 1985-86,
in which it is studied in view of the representation of “adherences” in 2ω

of regular languages of finite words (i.e. languages recognizable by finite
automata). Staiger, [40, 41] 1987-1997, and Perrin & Pin, [29] 2003, also
consider this space in the same perspective of formal language theory. In
relation with Wadge games, Duparc, [10] 2001, also uses that space, viewed
as a subspace of the Baire space NN.

Redziejowski, [31] 1986, introduced another topology on 2≤ω to restrict con-
vergent sequences to monotonous ones (cf. §3.6.2).

In the perspective of higher order recursion, Weihrauch, [50] 1987 p. 328-
329, considered on 2≤ω a variant of the compact topology which is non
Hausdorff but merely T0 (cf. §3.6.1).

As is well-known, the X 7→ Xδ operation
Xδ = {α ∈ 2ω : {n : α¹n ∈ X} is infinite}

maps subsets of 2∗ onto the family of Gδ subsets of the Cantor space 2ω.
Building on that fact, Staiger, [41] 1997, proposed not to try to construct a
topology on 2≤ω but to consider, along with the Cantor topology on 2ω, the
topology on 2∗ such that X ⊆ 2∗ is open (resp. closed) if and only if so is
Xδ in 2ω. The associated Borel hierarchy on 2∗ collapses: Gδ sets are open
and Fσ sets are closed.

In this paper, we shall mainly stick to the natural zero-dimensional compact
topology on 2≤ω.

1.2 Topology and computability of subsets of 2≤ω

If for finite objects (integers, words,...) the notion of computable set is
“context-insensitive”, this is no more the case with infinite objects. Con-
sidering computability theory over the Cantor space 2ω or over {0, 1, 2}ω or
over the Baire space ωω changes the computability status of some sets. For
instance, 2ω is trivially computable as a subset of 2ω but not as a subset of

4

{0, 1, 2}ω nor ωω : one cannot check in finite time if an infinite word does
contain a letter different from 0, 1. This is merely a Π0

1 subset. In fact,
higher order “context-insensitivity” only starts at level Π0

1, a fact related to
the topological background of higher order computability.
This is to say that computability over 2≤ω does not reduce to computability
over 2∗ and over 2ω.

As is the case with the Cantor space 2ω, subsets of 2≤ω which are open
and closed are very simple and constitute the natural class of computable
subsets of 2≤ω (cf. §3.4, 4.1).
This class, which is here defined in a direct way, coincides with that obtained
from the general theory of representations of “computable” metric spaces,
cf. Kreitz & Weihrauch, [46] 1985, and Weihrauch, [49] 1993.
Contrary to a priori expectation, not every recursive subset of 2∗ is the trace
on 2∗ of a computable subset of 2≤ω. Worse, such traces form a very special
subfamily of rational (i.e. regular) sets of words, which we call checkable
sets (cf. §4.5).
As mentioned above, this is only from level Π0

1 of the effective Borel hierarchy
that reasonable expectation turns true (cf. §4.2–4.4).

1.3 (Semi)computability of maps in 2≤ω

With a fixed Turing machine, one can consider various types of finite or
possibly infinite computations, depending on whether infinite inputs and/or
infinite outputs are allowed. This has been thoroughly investigated in Wag-
ner, [44] 1976, Wagner & Staiger, [45] 1977, Staiger, [39, 42] 1986–1999, and
Engelfriet & Hoogeboom, [11] 1993.
In §5 we review types of possibly infinite computations adapted to 2≤ω and
introduce notions of semicomputability and computability for maps I → O
where I and O are 2ω or 2≤ω. We also determine the syntactical complexity
of such maps.

As recalled above, computable maps 2ω → 2ω are exactly input/output be-
haviours of Turing machines on infinite inputs which have infinite outputs.
Also, computable maps are continuous and every continuous map 2ω → 2ω

can be obtained as the extension to 2ω of some monotone increasing func-
tion 2∗ → 2∗ (cf. Thm.81). As concerns the space 2≤ω, things get less
simple. Maps 2ω → 2≤ω or 2≤ω → 2≤ω which correspond to input/output
behaviours of Turing machines on finite or infinite inputs – which we call
semicomputable maps – are not necessarily continuous but merely lower
semicontinuous with respect to the prefix partial ordering on 2≤ω. To get
continuity, one has to consider the stronger notion of computable map which

5

asks that the machine halts in case its output is finite. §6 is devoted to a
study of lower semicontinuity.

We prove for (semi)continuous and (semi)computable maps a detailed rep-
resentation theorem (Thm.82) via functions 2∗ → 2∗ satisfying pertinent
conditions. Prior to the proof of this theorem, we have to introduce (cf. §7)
some consequent material about top-down and bottom-up representation of
maps I → O (I,O ∈ {2ω, 2≤ω}) via maps 2∗ → 2∗. This material is also
interesting on its own (cf. §7.5, 7.6).

Whereas every map (resp. semicomputable map) 2∗ → 2∗ is trivially the
trace of a semicontinuous (resp. semicomputable) map 2≤ω → 2≤ω, traces of
continuous and computable maps 2≤ω → 2≤ω form very special classes which
can be viewed as the checkable versions of continuity and computability, cf.
§9.

1.4 Relation with Computable Analysis and Type Two the-
ory of Effectivity

As witnessed by the title of Turing’s foundational paper, [43] 1936, “On
computable numbers...”, computability on higher order structures like R
has been considered since the origin of computability theory. A consider-
able lot of work has been done on what is called Computable Analysis or
Type Two theory of Effectivity, cf. the CCA Net-Bibliography available on
the web [1], maintained by Vasco Brattka.
We already noticed that computability of higher order objects (such as sets
of infinite words) does depend on the context in which computability is con-
sidered.
Another fundamental problem related to computability on R or usual topo-
logical spaces is that it does depend on the chosen representation of elements.
For instance, as is well-known, a real can be represented via a Cauchy se-
quence of rationals, via its left or right Dedekind cut, via its binary expan-
sion or its Farey sequence. It turns out that all these approaches lead to
the same notion of computable real. However, they lead to different notions
of sequences of reals (Mostowski, [27] 1957). The “best” representations
are that with Cauchy sequences and that with Avizienis binary expansions
using digits −1, 0, 1.
Going to functions over reals or more complex objects like functionals asks
for much care. Among the main authors who dealt first with these problems,
let’s cite Grzegorczyk, [15, 16, 17] 1955-57, and Lacombe [22] 1955. Exten-
sions to general “computable structures” have been proposed by Lacombe

6

[23] 1957, Ershov [12] 1972, Weihrauch [46, 49] 1985-93, Kreitz & Weihrauch
[47]. Cf. Weihrauch’s books [50, 51] 1987–2000.
Computability of solutions of partial differential equations has been investi-
gated. Up to distributions, Zhong & Weihrauch [52] 2003.
A Kleene like (i.e. closure of a family of basic functions by some operators)
development of computability over reals has been introduced by Brattka [7].
Higher order complexity theory has also been developed, cf. Kreitz &
Weihrauch [48].

With 2ω and 2≤ω the representation problem just vanishes : a finite or in-
finite word is obviously to be represented by itself. This allows for a much
easier and entirely self-contained access to (semi)computable maps as done
in §5.2.

1.5 Notations

We denote N the set of natural numbers, and we work with the binary
alphabet {0, 1}. As usual, a string is a finite sequence of elements of {0, 1},
2∗ is the set of all strings and λ is the empty string.
2ω is the set of all infinite sequences of {0, 1}, i.e. the Cantor space,
2≤ω = 2∗ ∪ 2ω is the set of all finite or infinite sequences of {0, 1}.

For a ∈ 2∗, |a| denotes the length of a.
If a ∈ 2∗ and α ∈ 2ω we denote a ¹n the prefix of a with length min(n, |a|)
and α¹n the length n prefix of the infinite sequence α.

If f : 2∗ → 2∗ is a partial function then, as usual, we write f(p)↓ when
the function is defined, and f(p)↑ otherwise. To deal with program inputs
we consider a recursive bijection 〈. , . 〉 : 2∗ × 2∗ → 2∗, and we use the
convention

f(p, s1, s2, . . . , sn) = f(〈p, 〈s1, . . . 〈sn−1, sn〉 . . .〉〉).

2 Around sets of words

2.1 Prefix free sets of words

We recall some classical material around the prefix ordering on words.

We write a ¹ b if a is a prefix of b, and a ≺ b if a is a proper prefix of
b. We assume the recursive bijection string : N → 2∗ such that string(i)
is the i-th string in the length-lexicographic order over 2∗. Observe that
(i, k) 7→ string−1(string(i)¹k) and i 7→ |string(i)| are recursive.

7

Definition 1.
1. X ⊆ 2∗ is prefix-free if and only if no proper extension of an element of
the set belongs to the set, i.e.

∀a, b ∈ 2∗ (a ∈ X and b 6= λ ⇒ ab 6∈ X).
For example, the set {λ} is prefix-free and so is {0n1 : n ≥ 1}.
2. min(X) denotes the prefix-free set consisting of all minimal elements of
X with respect to the prefix-ordering ¹.

If X ⊆ 2∗ then X2ω denotes the open subset of 2ω whose elements have
an initial segment in X. For example, is s ∈ 2∗ is a particular string then
s2ω is the set of all sequences starting with s. The following proposition is
straightforward (point 2 is to be compared with Prop. 3).

Proposition 2. Let X,Y, Z ⊆ 2∗.
1. min(X) is the unique prefix-free set Y such that X2∗ = Y 2∗.
2. X2∗ = 2∗ if and only if λ ∈ X. Hence, {λ} is the unique prefix-free set
X satisfying the previous equation.
3. X2∗ ⊆ Y 2∗ if and only if X ⊆ Y 2∗.
4. Let X,Y be prefix-free. Then X2ω ⊆ Y 2ω if and only if ∃Z (Z is finite ∧
X2∗ ⊆ Z ∪ Y 2∗)

Proof. Points 1 to 3 are straightforward.
Point 4 ⇒. If X2∗ \ Y 2∗ were infinite then, by König’s lemma, it would
contain an infinite branch, hence there would be α ∈ 2ω with infinitely
many segments in X2∗ but not in Y 2∗. Therefore α would be in X2ω \Y 2ω,
a contradiction. Hence X2∗ \ Y 2∗ is finite, which means X2∗ ⊆ Z ∪ Y 2∗ for
some finite Z.
Point 4 ⇐. Observe that for n greater than the longest string in Z, we must
have X 2n ⊂ Y 2∗. Whence X2ω ⊆ Y 2ω.

A prefix-free set X ⊂ 2∗ is maximal if X ∪ {a} is no more prefix-free
whenever a 6∈ X.

If X ⊂ 2∗ is prefix-free and every sequence α ∈ 2ω has an initial segment in
X then X is maximal. The converse is not true: {1}∗0 is maximal prefix-free
but contains no prefix of the sequence 1ω. In fact, a simple application of
König’s Lemma proves that finiteness is required.

Proposition 3. Let X ⊆ 2∗ and u ∈ 2∗.
1. X2ω = 2ω (i.e. every infinite sequence has a prefix in X) if and only if
X contains a finite maximal prefix-free set Z.

2. If X is prefix-free then X2ω = 2ω if and only if X is finite and maximal

8

prefix-free.

3. s2ω ⊆ X2ω if and only if
- either s extends some element of X,
- or there exists some finite maximal prefix-free set Z such that sZ ⊆ X.

Proof. The ⇐ direction of Point 1 is easy. For the ⇒ direction, suppose
X ⊆ 2∗ contains no finite maximal prefix-free and define inductively an in-
finite sequence α such that for all n ∈ N the set

X(n) = {u ∈ 2∗ : α¹n u ∈ X}
contains no finite maximal prefix-free set. Equality X2ω = 2ω insures
α ∈ X2ω, hence there is an n such that α ¹ n ∈ X. Whence, λ ∈ X(n)

and the singleton set {λ} is a finite maximal prefix-free subset of X(n). A
contradiction.
Point 2 is a straightforward corollary of Point 1.
As for point 3, let Y = {u ∈ 2∗ : su ∈ X}. If s /∈ X2∗ then

s2ω ⊆ X2ω ⇔ Y 2ω = 2ω

⇔ ∃Z (Z ⊆ Y and Z is finite maximal prefix-free)
⇔ ∃Z (sZ ⊆ X and Z is finite maximal prefix-free)

Definition 4. If X ⊆ 2∗ we let

X̂ = {s ∈ 2∗ : ∃Z finite maximal prefix free s.t. sZ ⊆ X}

Proposition 5.

1. X ⊆ X̂ = ̂̂
X. For all x ∈ X̂ there exists n ∈ N such that x2n2∗ ⊆ X2∗.

In particular, X̂2ω = X2ω.

2. X̂2∗ = X̂ ∪X2∗ = {s ∈ 2∗ : s2ω ⊆ X2ω}.
In particular,

i. X2ω ⊆ Y 2ω ⇔ X̂2∗ ⊆ Ŷ 2∗

ii. If X2∗ = X then X̂ = {s ∈ 2∗ : s2ω ⊆ X2ω}.
iii. If X2∗ = X and Y 2∗ = Y then X2ω ⊆ Y 2ω ⇔ X̂ ⊆ Ŷ .

3. If Y is prefix-free then X̂ = Ŷ if and only if Y =
⋃

s∈min(bX)
sZs where

the Zs’s are finite maximal prefix-free sets.
In particular, if X 6= ∅ then there are infinitely many prefix-free sets Y ⊂ 2∗

such that X2ω = Y 2ω.

9

4. The following conditions are equivalent:
- there exists a finite prefix-free set Y such that X2ω = Y 2ω,
- min(X̂) is finite.
- every prefix-free set Y such that X2ω = Y 2ω is finite.

Proof. Point 1 is straightforward. Points 2,3 are easy consequences of Prop.
3. Point 4 is a corollary of point 3.

2.2 Checkable sets of words

In this §we introduce a particular notion of regular set of words which
proves useful to characterize traces over 2∗ of computable subsets of 2≤ω

(cf. Prop.36) and of continuous maps on 2≤ω (cf. §9.1).

Definition 6 (Checkable sets).
1. Z ⊆ 2∗ is checkable if Z = X ∪ Y 2∗ for some finite sets X, Y ⊂ 2∗.

2. Let ~X be any finite product of spaces N and/or 2∗. A set Z ⊂ ~X × 2∗ is
checkable (resp. recursively checkable) relative to its last component if there
exist sets (resp. recursive sets) X,Y ⊂ ~X × 2∗ such that for all ~x ∈ ~X the
slices X~x, Y~x are finite and Z~x = X~x ∪ Y~x2∗.

3. Z is simply checkable (resp. simply recursively checkable) if it is check-
able (resp. recursively checkable) and closed by extension relative to its last
component, i.e. the X set in Point 1 is empty or the X~x’s sets in Point 2
are all empty.

Definition 7. For Z ⊆ 2∗ we set core(Z) = {s ∈ 2∗ : s2∗ ⊆ Z}.
Proposition 8. Let X,Y, Z ⊆ 2∗.
1. core(Z)2∗ = core(Z) ⊆ Z.

2. If X ⊆ 2∗ is finite, Y ⊆ 2∗ is prefix-free and X ∩ Y 2∗ = ∅ then s ∈
core(X ∪ Y 2∗) if and only if there exists Z finite maximal prefix free such
that sZ ⊆ Y 2∗ and ∀t ∀u ((s ¹ t ≺ u ∧ u ∈ sZ) ⇒ t ∈ X).

Proof. Point1 is straightforward. We prove point 2.
⇒. Suppose s ∈ core(X ∪ Y 2∗). Then s2∗ ⊆ X ∪ Y 2∗. Since X and Y are
disjoint, ∀q (q ∈ s2∗ \X) ⇔ (q ∈ Y 2∗ ∩ s2∗). Since X is finite, X contains
just finitely many extensions of s, and all the other extensions are in Y 2∗.
Then there exists a finite maximal prefix free set Z such that sZ ⊆ Y 2∗ and
∀t∀u((s ¹ t ≺ u ∧ u ∈ sZ) ⇒ t ∈ X).
⇐. Assume Z is finite maximal prefix free set such that sZ ⊆ Y 2∗ and

∀t∀u((s ¹ t ≺ u ∧ u ∈ sZ) ⇒ t ∈ X). Then, ∀t ∈ s2∗ \ sZ2∗ t ∈ X.
Thus, s2∗ ⊆ X ∪ Y 2∗, hence s ∈ core(X ∪ Y 2∗).

10

Example. In the next picture, we have c ∈ core(X ∪Y 2∗) for the following
reasons:

- Z = {e, f, g} is a finite maximal prefix free of c2∗ included in Y ,
- X contains all points of the “interval” [c, Z[(namely c, d),
- the father a of c cannot be in core(X ∪ Y 2∗) since b /∈ X ∪ Y .

a ∈ X
½

½
½

Z
Z

Zb /∈ X ∪ Y c ∈ X
½

½
½

Z
Z

Zd ∈ X e ∈ Y
½

½
½

Z
Z

Zf ∈ Y g ∈ Y

Proposition 9.
1. Z ⊆ 2∗ is checkable if and only if min(core(Z)) and Z \ core(Z) are
finite.

2. Every checkable set can be written Z = X ∪ Y 2∗ where
- X, Y are finite and X ∩ Y 2∗ = ∅,
- Y is prefix-free and Y 2∗ = core(Z).

Such a presentation is unique and is called the best presentation of Z.

Proof. 1) ⇐ Use equality Z = (Z \ core(Z)) ∪ min(core(Z)) (which holds
since core(Z) = min(core(Z))2∗).
⇒ If Z = X∪Y 2∗ with X, Y finite and X∩Y = ∅ then min(core(Z)) ⊆ X∪Y
is necessarily finite.
Since Y ⊆ core(Z) we see that Z \ core(Z) ⊆ Z \ Y 2∗ ⊆ X is also finite.

2) Point 1 shows that every checkable set can be so written. We prove that
such a presentation is unique. Prop.2 insures that if T = T2∗ then the sole
prefix-free set Y such that Y 2∗ = T is Y = min(T). Taking T = core(Z),
this shows that Y is uniquely determined. Now, condition X ∩ Y 2∗ = ∅
implies X = Z \ Y 2∗.

2.3 R.e. sets of words

The following result is the basis for a normal form of Σ0
1 subsets of the spaces

2ω and 2≤ω (Prop. 28).

Proposition 10.
1. If X ⊆ 2∗ is recursively enumerable (r.e.) then there exists a recursive

11

prefix-free set Y ⊂ 2∗ such that X2ω = Y 2ω (in general, for such a Y one
cannot take min(X) nor min(X̂) which may even be non r.e.).
Moreover, one can suppose Y ⊆ X and one can recursively go from an r.e.
code for X to r.e. codes for Y and 2∗ \ Y .

2. If X, Y ⊆ 2∗ are r.e. then there exist an r.e. set Z ⊆ 2∗ and a recursive
prefix-free set T ⊂ 2∗ such that X ∪ Y 2≤ω = Z ∪ T2≤ω.
Moreover, one can suppose T ⊆ Z and one can recursively go from r.e. codes
for X,Y to r.e. codes for Z, T and 2∗ \ T .

3. Points 1,2 hold in uniform versions. We state that for point 2.
If X, Y ⊆ Nk × 2∗ are r.e. then there exist an r.e. set Z ⊆ Nk × 2∗ and
a recursive set T ⊂ Nk × 2∗ such that T~n is prefix-free and X~n ∪ Y~n2≤ω =
Z~n ∪ T~n2≤ω for every ~n ∈ Nk.
Moreover, one can suppose T ⊆ Z and one can recursively go from r.e. codes
for X,Y to r.e. codes for Z, T and (Nk × 2∗) \ T .

Proof. 1) Let f be a partial recursive function with domain X. Let Xt be
the set of strings with length ≤ t on which f is defined and converges in at
most t computation steps. Set nt = t + maxv∈Xt |v| (the sum with t is in
order that nt tends to +∞) and

Yt = {u ∈ 2∗ : |u| = nt ∧ ∃v ∈ Xt v ¹ u ∧ ∀i < t ∀w ∈ Xi ¬(w ¹ u)}

Y =
⋃

t∈N
Yt

An easy induction shows that Xt2ω = (
⋃

i≤t Yi)2ω for all t, whence X2ω =
Y 2ω.
Also, the Yt’s are finite and prefix-free and their elements are pairwise in-
comparable, so that Y is also prefix-free.
Moreover, Y ⊆ X and Y is recursive since a string of length k is in Y if and
only if it is in Yt for some t ≤ k.
Finally, the passage from X to Y is clearly effective.

2) To get point 2, use point 1, let T ⊆ Y be recursive prefix-free such that
T2ω = Y 2ω and set Z = X ∪ Y 2∗ (or Z = X ∪ (Y \ T)2∗).

3) Point 3 is an easy extension of points 1,2.

3 The topological space 2≤ω

In this section we recall classical material from Head, [18, 19] 1985-86, and
Pierce [30] 1973.

12

First, we extend to 2≤ω the prefix partial order on 2∗.

Definition 11. For ξ, η ∈ 2≤ω, we let ξ ¹ η if and only if one of the
following three situations occurs:

1. ξ = η.
2. ξ, η ∈ 2∗ and ξ ¹ η.
3. ξ ∈ 2∗, η ∈ 2ω and η ¹ |ξ| = ξ.

3.1 The compact zero-dimensional topology on 2≤ω

We consider on 2ω the usual compact Cantor topology generated by the
countable family of basic open (and closed) sets s2ωwhere s varies over 2∗.
This topology can also be defined by the distance

d(ξ, η) = IF (ξ = η) THEN 0 ELSE 2−|ξ_η|

where ξ _ η denotes the longest common prefix to ξ, η.
The natural compact topology on 2≤ω (Boasson & Nivat, [5] 1980, Tom

Head [18, 19], Staiger, [40, 41], see also chap. 3 of Perrin & Pin, [29]) is very
similar to the Cantor topology on 2ω. The next definition and proposition
stress this similarity.

Definition 12.
We consider on 2≤ω the topology generated by the basic open singleton sets
{s} and the sets s2≤ω = {ξ ∈ 2≤ω : s ¹ ξ}, where s varies over 2∗.

Thus, a sequence (ξi)i∈N, ξi ∈ 2≤ω converges to η ∈ 2≤ω if and only if
∀n ∃m ∀p > m ξp ¹n = η ¹n

(Recall that if ξ ∈ 2∗ then ξ ¹n is the prefix of ξ with length min(n, |ξ|))).
Proposition 13.
1. With the above topology, 2≤ω is a compact space.
The basic open sets are also closed, so that 2≤ω is zero-dimensional.

2. The topology on 2≤ω can also be defined by the metrics
d(ξ, η) = IF (ξ = η) THEN 0 ELSE 2−|ξ_η|

where ξ _ η denotes the longest common prefix to ξ, η (cf. Def.11).

3. The induced topology on the subspace 2∗ is the discrete topology and that
on the subspace 2ω is the compact Cantor topology.

Proof. For sake of completeness, we recall a proof of this proposition.
1) The fact that the basic open sets are closed is straightforward. We show
that 2≤ω is compact, i.e. that any covering by basic open sets contains a
finite subcovering. Suppose

13

(
⋃

i∈I ui2≤ω) ∪ (
⋃

j∈J{vj}) = 2≤ω

The trace of this covering on 2ω induces a covering on 2ω :⋃
i∈I ui2ω = 2ω

Since 2ω is compact, there is a finite subset {i1, . . . , in} ⊆ I such that
{ui1 , . . . , uin} 2ω = 2ω. Hence (Prop. 3) {ui1 , . . . , uin} contains a maxi-
mal prefix-free set. In particular, every word is comparable to some ui for
the prefix ordering. Now, {ui1 , . . . , uin} 2≤ω contains all infinite sequences
and all finite extensions of ui1 , . . . , uin . So that the only remaining words
are the proper prefixes of {ui1 , . . . , uin}. Such prefixes are finitely many:

- some are among the vj ’s, say vj1 , . . . , vjp ,
- some belong to some uk2≤ω’s, say to uk12

≤ω, . . . , ukq2
≤ω,

Hence,
ui12

≤ω, . . . , uin2≤ω, vj1 , . . . , vjp , uk12
≤ω, . . . , ukq2

≤ω

constitute a finite subcovering.
2) Obvious.
3) The induced topology on 2∗ is clearly the discrete one. To see that the
induced topology on 2ω is the expected one, observe that

- the {s} ∩ 2ω ’s are empty,
- the s2≤ω ∩ 2ω ’s are exactly the basic open sets of the Cantor topol-

ogy.

Remark 14. 1. 2∗ is open and dense in the topological space 2≤ω, hence not
closed. So that 2ω is closed and not open in 2≤ω.
2. The family of basic open sets coincides with that of open balls and also
with that of closed balls: if α ∈ 2ω then
{ξ ∈ 2≤ω : d(α, ξ) < r} = (α¹n)2≤ω where n s.t. 2−n < r ≤ 2−n+1

{ξ ∈ 2≤ω : d(α, ξ) ≤ r} = (α¹n)2≤ω where n s.t. 2−n ≤ r < 2−n+1

Similar characterizations hold for balls centered in some p ∈ 2∗ with some
distorsion due to the fact that d(p, ξ) is either 0 (in case ξ = p) or ≥ 2−|p|.

3.2 Embeddings between 2ω and 2≤ω

As is well known, every compact zero-dimensional space is homeomorphic
to a closed subset of the Cantor space. Let’s explicit such an embedding for
2≤ω.

Proposition 15. Let ϕ : 2∗ → 2∗ be the morphism which adds a 1 right to
each letter of the alphabet, i.e. ϕ(0) = 01 , ϕ(1) = 11.
Let φ : 2≤ω → 2ω be defined as follows:

- φ(s) = ϕ(s)0ω for all s ∈ 2∗,
- φ(α) = limn→∞ ϕ(α¹n) for all α ∈ 2ω.

14

Then φ is a homeomorphism defined on 2≤ω with range the closed subset
{01, 11}ω ∪ {01, 11}<ω 0ω of 2ω.
Moreover, the graph and the range of φ are Π0

1 in 2ω.

Of course, 2ω is homeomorphically embedded in 2≤ω by mere inclusion.

3.3 Open sets, closed sets

Definition 16. If X ⊆ 2≤ω we let

∂<ω(X) = {p ∈ 2∗ : p 2∗ ⊆ X}
∂ω(X) = {p ∈ 2∗ : p 2ω ⊆ X}

∂≤ω(X) = {p ∈ 2∗ : p 2≤ω ⊆ X} = ∂<ω(X) ∩ ∂ω(X)

Proposition 17. Let X ⊆ 2≤ω. Then ∂<ω(X), ∂ω(X) and ∂≤ω(X) are
closed by extension, i.e. satisfy the equation Z = Z 2∗.

Using Prop.5 point 2, we see that the ̂ operator on subsets of 2∗ introduced
in Def. 4 is simply related to the above ∂ω operator on subsets of 2≤ω.

Proposition 18.
1. If X ⊆ 2∗ then ∂ω(X2ω) = X̂2∗.

2. If X ⊆ 2≤ω then ∂ω(X) = ∂̂ω(X).

The well-known characterization of open sets in the Cantor space extends
to the space 2≤ω via a straightforward application of Prop. 2, 5. We state
both characterizations in parallel.

Proposition 19.
1. Let X ⊆ 2ω. The following conditions are equivalent:

i. X is an open subset of the Cantor space

ii. X = X2ω for some X ⊆ 2∗

iii. X = Y 2ω for some prefix-free set Y ⊆ 2∗

iv. X = ∂ω(X)2ω = min(∂ω(X))2ω

2. Let X ⊆ 2≤ω. The following conditions are equivalent:

i. X is open in the topological space 2≤ω

ii. X = X ∪ Y 2≤ω for some X, Y ⊆ 2∗.

15

iii. X = Z ∪ T2≤ω for some Z, T ⊆ 2∗ where T is prefix-free.

iv. X = (X ∩ 2∗) ∪ ∂≤ω(X)2≤ω

= (X ∩ 2∗) ∪ min(∂≤ω(X))2≤ω

3. Moreover, one can recursively go from X to Y (resp. from X,Y to Z, T)
in the equivalences of point 1 (resp. 2).

Proof. Point 2. Observe that X2≤ω = min(X)2≤ω and min(X) is prefix-free.
Also, min(X) can be recursively obtained from X.

From the above characterization of open sets, going from X to T = {s :
s has no prefix in X}, we get characterizations of closed sets.

Proposition 20.
1. For X ⊆ 2ω, the following conditions are equivalent:

i. X is closed in the Cantor space

ii. There exists a tree T ⊆ 2∗ (i.e. a set of words closed by prefix) such
that X is the set of infinite branches of T , i.e.

X = {α ∈ 2ω : ∀n α¹n ∈ T}
One can also suppose T to be a pruned, i.e. every s ∈ T has arbitrarily
long extensions in T .

2. For X ⊆ 2≤ω, the following conditions are equivalent:

i. X is closed in the topological space 2≤ω

ii. There exist U ⊆ T ⊆ 2∗ such that T is a tree (i.e. is closed by prefix),
though not necessarily pruned, and

X = U ∪ {α ∈ 2ω : ∀n α¹n ∈ T}

3.4 Clopen sets

The well-known characterization of clopen sets in the Cantor space also
extends to the space 2≤ω. We again state both characterizations in parallel.

Proposition 21.
1. Let X ⊆ 2ω. The following conditions are equivalent:

i. X is clopen (open and closed) in the Cantor space

ii. X = X2ω for some finite set X ⊂ 2∗

16

iii. X = Y 2ω for some finite prefix-free set Y ⊆ 2∗

iv. X is open in 2ω and all prefix-free sets Y such that X = Y 2ω are finite

v. X is open in 2ω and min(∂ω(X)) is finite

2. Let X ⊆ 2≤ω. The following conditions are equivalent:

i. X is clopen (open and closed) in 2≤ω

ii. X = X ∪ Y 2≤ω for some finite sets X, Y ⊆ 2∗

iii. X = Z ∪ T2≤ω for some finite sets Z, T ⊆ 2∗ with T prefix-free

iv. X is open in 2≤ω and whenever X = Z ∪ T2≤ω with Z, T ⊆ 2∗ and T
prefix-free then T and Z \ T2∗ are finite

v. X is open in 2≤ω and the following sets are finite:
(X ∩ 2∗) \ (∂≤ω(X)2∗ and min(∂≤ω(X))

Proof. Point 2. i ⇒ iii. Suppose Z, T, U, V ⊆ 2∗ and X = Z ∪ T2≤ω and
X = U ∪V 2≤ω. We then have X = Z∪min(T)2≤ω and X = U ∪min(V)2≤ω

and min(T),min(V) are prefix-free. Therefore min(T)∪min(V) is prefix-free
and (min(T)∪min(V))2ω = 2ω, whence (Prop. 3) min(T)∪min(V) is finite
maximal prefix-free. In particular, min(T) is finite.
Also, since min(T)∪min(V) is finite maximal prefix-free, the set 2∗\(min(T)∪
min(V))2∗ is the set of strict prefixes of strings in min(T)∪min(V), hence it
is finite. In particular, Z \ (min(T)∪min(V))2∗ is finite. Since Z is disjoint
from min(V)2∗, we see that Z \ min(T)2∗ = Z \ (min(T) ∪ min(V))2∗ is
finite.

iii ⇒ v. Equality iii implies min(∂≤ω(X)) ⊆ Prefix(T). Since T is finite
so is Prefix(T) and min(∂≤ω(X)). Also, T ⊆ ∂≤ω(X) so that

(X ∩ 2∗) \ ∂≤ω(X) ⊆ (X ∩ 2∗) \ T ⊆ Z
Since Z is finite so is (X ∩ 2∗) \ ∂≤ω(X).

v ⇒ iv. Suppose X = Z ∪ T2≤ω with T prefix-free. We then have
X = Z ∪ T2≤ω = (X ∩ 2∗) \ ∂≤ω(X) ∪ min(∂≤ω(X))2≤ω

Traces on 2ω give the equality T2ω = min(∂≤ω(X))2ω. Since min(∂≤ω(X))
is finite so is T (Prop. 5, point 4).
Equality X = Z ∪ T2≤ω implies T ⊆ ∂≤ω(X). Hence

Z \ T2∗ ⊆ Z \ ∂≤ω(X)2∗ ⊆ (X ∩ 2∗) \ ∂≤ω(X)2∗

and since the rightmost set is finite, so is the leftmost.

iv ⇒ ii is trivial.

17

ii ⇒ i. Let n = maxs∈X∪Y |s| and set
Y ′ =

⋃
y∈Y y{0, 1}n−|y| and X ′ = X ∪⋃

y∈Y y{0, 1}<n−|y|

Clearly,
- X ∪ Y 2≤ω = X ′ ∪ Y ′2≤ω,
- all strings in X ′ have length less than n,
- all strings in Y ′ have length exactly n,
- X ′, Y ′ are still finite.

Now,
2≤ω \ (X ′ ∪ Y ′2≤ω) = ({0, 1}<n \X ′) ∪ ({0, 1}n \ Y ′)2≤ω

is also open.

For the construction of the Arithmetical Hierarchy, one needs open sub-
sets of topological products Nk×2ω and Nk×2≤ω with the discrete topology
on N. The next Proposition gives the obvious reduction.

Proposition 22. Let E be any topological space. Consider on Nk × E the
product topology (relative to the discrete topology on N). A subset X ⊆
Nk ×E is open (resp. closed, resp. clopen) if and only if for all ~n ∈ Nk the
slice X~n = {e ∈ E : (~n, e) ∈ X} is open (resp. closed, resp. clopen) in E.

3.5 Stone and Pierce dualities

3.5.1 Stone algebras of 2ω and 2≤ω

Stone duality associates to any zero-dimensional topological (i.e. with a
basis of clopen sets) compact space S the boolean algebra of its clopen
subsets.

In particular, conditions 1.ii and 2.ii in Prop.21 show that the Stone al-
gebras of 2ω and 2≤ω are countable.
Clearly, the Stone algebra of 2ω has no atom. It is known that there is only
one countable atomless boolean algebra (up to isomorphism).
On the opposite, the Stone algebra of 2≤ω has countably many atoms: the
singleton clopen sets {s} for s ∈ 2∗. It is known that there are uncount-
ably many non isomorphic countable boolean algebras with countably many
atoms. In fact, the Cantor-Bendixson derivative process over 2≤ω stops after
exactly 1 step, but it is easy to design compact subsets of 2≤ω for which this
process is indexed by arbitrary countable ordinals.

Remark 23. These Stone algebras have simple presentations as inductive
limits of directed sequences of finite boolean algebras.
1. Denote Pn the boolean algebra of all sets of words of length n and
µn : Pn → Pn+1 the homomorphism X 7→ X0 ∪ X1. From Prop. 21, it is

18

easy to see that the Stone algebra of 2ω is isomorphic to the inductive limit
of the directed sequence (Pn, µn)n∈N.
2. Denote Qn the boolean algebra of all pairs of disjoint sets of words of
length n and νn : Qn → Qn+1 the homomorphism (X, Y) 7→ (X∪Y, Y 0∪Y 1).
From Prop. 21, it is easy to see that the Stone algebra of 2≤ω is isomorphic
to the inductive limit of the directed sequence (Qn, νn)n∈N.

3.5.2 Pierce duality

A variant of Stone duality, which is much adapted to the present context,
has been introduced by Richard S. Pierce, 1972 [30].
On any topological space S, one can consider the operations of adherence
(topological closure) Z 7→ Z and derivation (which deletes the isolated
points) Z 7→ ∂(Z). Any boolean algebra of subsets of S which is closed
by these two operations is called a topological boolean algebra.

The Pierce algebra Pierce(S) of a zero-dimensional compact space S is
defined as the smallest topological Boolean algebra of subsets of S, enriched
with the function X 7→ card(X) where card(X) is the cardinality of X
(which necessarily lies in N ∪ {ℵ0, 2ℵ0}).
Pierce ([30] Cor. 4.4 p. 12) proves that if Pierce(S1), P ierce(S2) are finite
then they are isomorphic if and only if S1,S2 are homeomorphic.
Clearly, in the present context,

• The Pierce algebra of the Cantor space has 2 elements: ∅, 2ω.

• The Pierce algebra of the space 2≤ω has 4 elements: ∅, 2≤ω, 2ω, 2∗

(the last two elements being obtained as ∂(2≤ω) and its complement
set).

As a simple application of Pierce duality, let’s mention the fact that 2≤ω is
homeomorphic to 2≤ω × 2≤ω (a result not as easy to obtain directly as its
analog with the Cantor space).

Remark 24. As is well-known, Stone duality gives a correspondence between
continuous maps S1 → S2 and homomorphisms Stone(S2) → Stone(S1).
Such a correspondence is no more possible with Pierce duality since it in-
volves finite algebras (so that there are only finitely many homomorphisms).
Pierce duality deals with the existence of homeomorphisms S1 → S2 and iso-
morphisms Pierce(S2) → Pierce(S1).

19

3.6 Other topologies on 2≤ω

3.6.1 T0 topologies on 2∗ and 2≤ω

We shall also refer in §6.2 and §6.3 to another compact (but not Hausdorff)
topology on 2≤ω which has as basic open sets the sole sets s2≤ω for s ∈ 2∗

(cf. Weihrauch [50], 1987, p.228-229). We shall call this topology the weak
topology on 2≤ω.
We shall also consider the analogous weak topology on 2∗ which has as basic
open sets the sets s2∗ for s ∈ 2∗. The trace on 2ω of the weak topology of 2≤ω

is the Cantor topology. Also, for every α ∈ 2ω, exactly the same sequences
of elements of 2≤ω converge towards α for the compact topology and for the
weak topology.

As concerns words, the trace on 2∗ of the weak topology of 2≤ω is the
weak topology on 2∗. Let’s observe that if s ∈ 2∗ then s has a smallest
weak neighborhood in 2≤ω (resp. 2∗) which is not {s} but s2≤ω (resp. s2∗).
Hence, s2≤ω (resp. s2∗) is the weak adherence of {s} in 2≤ω (resp. 2∗).
Thus, the weak topologies on 2≤ω and 2∗ are non Hausdorff. Nevertheless,
they are T0 (in the sense of Kolmogorov, cf. [21] p. 51 or [6] p. 135, exercise
2 for §1): for every pair of different points there exists an open set which
contains one of the points and does not contain the other one.

3.6.2 Redziejowski topology on 2≤ω

Redziejowski, 1986 [31], introduced another topology on 2≤ω such that a
sequence of words (si)i∈N converges to α ∈ 2ω if and only if for i large
enough the si’s are prefixes of α and the length of si tends to +∞ with i.
Thus, a sequence like (0i1)i∈N does not converge towards 0ω (contrary to
the case with the compact topology). The basic open sets of Redziejowski’s
topology are

Rα,n = {α} ∪ {α¹p : p ≥ n}
where α varies over 2ω and n over N. This topology is clearly stronger than
the one of Def. 12 since s2≤ω =

⋃
αºs Rα,|s|. Thus, 2∗ is strongly open and

2ω is strongly closed.
Though Hausdorff, Redziejowski’s topology is not metrizable. It induces

the discrete topology on both subspaces 2∗ and 2ω since
- {s} = Rs0ω ,|s| ∩Rs1ω ,|s| is open,
- {α} = Rα,n ∩ 2ω is relatively open in the subspace 2ω.

As a consequence, the associated Borel hierarchy collapses since every set
X ⊆ 2≤ω can be written X = (X ∩ 2∗) ∪ (X ∩ 2ω) which is the union of an
open set and a set relatively open in a closed set (i.e. the intersection of an

20

open set with a closed set), hence is Fσ and Gδ.

4 Computability over subsets of 2ω and 2≤ω

4.1 Computable subsets of 2ω and 2≤ω

This subsection can be considered as relevant from the general theory of rep-
resentations of “computable” metric spaces, cf. Kreitz & Weihrauch, [46]
1985, and Weihrauch, [49] 1993. However, we prefer to give a self-contained
equivalent direct approach for 2≤ω by elaborating from the classical com-
putability theory for 2ω.

The notion of computable (or recursive) subset of 2≤ω is defined in the same
way as that of computable subset of 2ω (cf. any text book, e.g. [32]) and
has an analogous characterization as clopen subsets.
Nevertheless, it is important to notice that computability over 2ω is not
induced by that over 2≤ω (nor by that over the Baire space ωω). In fact, 2ω

is not a computable subset of 2≤ω.
Again, we state both definitions and characterizations in parallel and

(in view of the construction of the Arithmetical Hierarchy) let them involve
some extra integer arguments.

Definition 25.
1. A set X ⊆ Nk × 2ω is computable if there exists some Turing machine
which, given any input (~n, α) ∈ Nk × 2ω, halts in finite time and accepts
(resp. rejects) if (~n, α) ∈ X (resp. (~n, α) /∈ X).

2. Idem for X ⊆ Nk × 2≤ω.

Proposition 26.
1. Let X ⊆ 2≤ω. The following conditions are equivalent:

i X is computable as a subset of 2≤ω

ii X is clopen in the compact space 2≤ω

iii X = X ∪ Y 2≤ω for some finite X, Y ⊂ 2∗

2. Let X ⊆ Nk × 2≤ω. The following conditions are equivalent:

i X is computable as a subset of Nk × 2≤ω

ii There exist recursive sets X, Y ⊂ Nk × 2∗ such that for all ~n ∈ Nk

- the slices X~n , Y~n are finite,

21

- X~n = X~n ∪ Y~n2≤ω

(in other words, X is clopen and there is a recursive representation of
the slices X~n as unions X~n ∪ Y~n2≤ω)

3. With obvious changes (forget X, X~n, only keep Y, Y~n and replace 2≤ω by
2ω), the same equivalences hold for the Cantor case, i.e. for X ⊆ 2ω or
X ⊆ Nk × 2ω.

Proof. 1) We prove only i ⇒ ii. The proof is an easy adaptation of the
classical one for the Cantor case. Consider a Turing machine which computes
the computable subset X of 2≤ω. It is clear that the machine reads only
a finite prefix of its input before it halts. A simple application of König’s
lemma gives a uniform bound: there exists M ∈ N such that, for every input
ξ ∈ 2≤ω, the machine reads at most M letters of ξ before halting.
In fact, if there were no such bound M then there would exist a sequence
(ξm)m∈N of elements of 2≤ω such that |ξm| ≥ m and the machine does read
the first m letters of ξm before halting. In particular, in case ξm is a finite
word, the machine halts before reading the end-marker attached to ξm as
a finite input. König’s lemma insures that there is a strictly monotonous
prefix increasing subsequence (ξkm)m∈N. Let ξ ∈ 2ω be the limit of this
subsequence. It is clear that on input ξ, the machine will read ξ entirely,
hence will not halt. A contradiction.

Now, given this uniform bound M , we see that
X = (X ∩ {0, 1}<M) ∪ (X ∩ {0, 1}M)2≤ω

which shows that X is clopen.

2) We prove only i ⇒ ii. Fix ~n ∈ Nk. Dovetailing over all computations on
input (~n, ξ) where ξ varies in 2≤ω, one can get a uniform bound M~n for the
number of letters of ξ read before the machine halts.
The function ~n 7→ M~n is clearly recursive and leads to the recursive family
(X~n, Y~n)~n∈Nk .

Remark 27. In particular, 2∗ and 2ω are not computable subsets of 2≤ω (cf.
Cor. 30). This corresponds to the fact that a machine cannot decide in
finite time whether its input is infinite.

4.2 The Arithmetical Hierarchy over 2≤ω

Starting from computable subsets of Nk × 2≤ω, the Arithmetical Hierarchy
over 2≤ω is obtained in the usual way as an effectivization of the finite levels
of the Borel hierarchy.

22

An easy application of point 2 of Prop. 10 allows to effectivize the normal
form of open sets stated in conditions i-iii of Prop. 19. This normal form
then propagates through successive finite levels of the Borel hierarchy.

Proposition 28. Let “T is rpf” mean that
- T is recursive prefix-free when T ⊆ 2∗,
- T is recursive and all slices T~n’s (for ~n ∈ Nk) are prefix-free in case

T ⊆ Nk × 2∗.
X denotes the complement of X in 2≤ω.
The correspondence between effective Borel sets and the Arithmetical Hier-
archy over 2≤ω is as follows

(open) : X is Σ0
1 ≡ X = X ∪ Y 2≤ω with X, Y r.e.
≡ X = Z ∪ T2≤ω with Z r.e. and T rpf

where X, Y, Z, T ⊆ 2∗

(closed) : X is Π0
1 ≡ X = X ∪ Y 2≤ω with X, Y r.e.
≡ X = Z ∪ T2≤ω with Z r.e., T rpf

where X,Y, Z, T ⊆ 2∗

(Fσ) : X is Σ0
2 ≡ X =

⋃
i∈NXi ∪ Yi2≤ω with X,Y r.e.

≡ X =
⋃

i∈N Zi ∪ Ti2≤ω with Z r.e., T rpf
where X,Y, Z, T ⊆ N× 2∗

(Gδ) : X is Π0
2 ≡ X =

⋂
i∈N(Xi ∪ Yi2≤ω) with X,Y r.e.

≡ X =
⋂

i∈N(Zi ∪ Ti2≤ω) with Z r.e., T rpf
where X, Y, Z, T ⊆ N× 2∗

(Gδσ) : X is Σ0
3 ≡ X =

⋃
i∈N

⋂
j∈NXi,j ∪ Yi,j2≤ω with X,Y r.e.

≡ X =
⋃

i∈N
⋂

j∈N Zi,j ∪ Ti,j2≤ω

with Z r.e., T rpf
where X, Y, Z, T ⊆ N2 × 2∗

(Fσδ) : X is Π0
3 ≡ X =

⋂
i∈N

⋃
j∈N (Xi,j ∪ Yi,j2≤ω) with X, Y r.e.

≡ X =
⋂

i∈N
⋃

j∈N (Zi,j ∪ Ti,j2≤ω)
with Z r.e., T rpf
where X, Y, Z, T ⊆ N2 × 2∗

. . .
Moreover, one can recursively go from X,Y to Z, T in the above equiva-
lences.

The usual characterization of recursive sets as ∆0
1 sets also holds.

23

Proposition 29. Computable subsets of 2≤ω are exactly the ∆0
1 subsets (i.e.

sets which are both Σ0
1 and Π0

1 in 2≤ω).
Moreover, there is a recursive process to go from (codes of) r.e. sets of
words X, Y, X ′, Y ′ to finite sets of words Z, T such that if X ∪ Y 2≤ω and
X ′ ∪ Y ′2≤ω are complementary subsets of 2≤ω then X ∪ Y 2≤ω = Z ∪ T2≤ω.

Proof. Let X = X ∪ Y 2≤ω and X = X ′ ∪ Y ′2≤ω where X,X ′, Y, Y ′ are r.e.
Using the last assertion of Prop. 28, one can recursively in X, Y, X ′, Y ′ get
r.e. sets U,U ′, and recursive prefix free sets V, V ′ such that X = U ∪ V 2≤ω

and X = U ′ ∪ V ′2≤ω. Then V ∪ V ′ is also prefix-free and (considering
traces on 2ω), we have (V ∪ V ′)2ω = 2ω. Therefore (Prop. 3) V ∪ V ′ is
finite maximal prefix-free. V, V ′ can be obtained from Y, Y ′ by the process
described in the proof of Prop.10, as the (finite) limit of Vt, V

′
t (where t ∈ N).

The property of maximal prefix-freeness allows to stop this process as soon
as Vt∪V ′

t becomes maximal prefix-free since necessarily we then have V = Vt

and V ′ = V ′
t .

Let n be the maximum length of words in the finite prefix-free set V ∪ V ′.
Let T be {0, 1}n∩V 2∗ and let Z be ({0, 1}<n∩V 2∗)∪(U ∩{0, 1}<n). Define
T ′, Z ′ similarly. Since T, T ′ ⊆ {0, 1}n and T ∪T ′ is maximal prefix-free, then
T, T ′ constitute a partition of {0, 1}n. Z, Z ′ ⊆ {0, 1}<n, so they are finite,
and are recursively obtainable from U,U ′, T, T ′. Therefore, we have
X = Z ∪ T2≤ω and X = Z ′ ∪ T ′2≤ω, where Z,Z ′, T, T ′ are finite.

Corollary 30. 2∗ and 2ω are respectively Σ0
1 and Π0

1 in 2≤ω (but none is
computable in 2≤ω).

4.3 Logical characterization of the Arithmetical Hierarchy

We now explicit a logical characterization of this Arithmetical Hierarchy.
Recall string : N → 2∗ denotes a recursive bijection such that all usual
associated functions (length, restriction,. . .) are recursive (cf. §2.1).

Proposition 31. If n ≥ 1 then X ⊆ (2≤ω)l×Nk is Σ0
n (resp. Π0

n) if and only
if it can be expressed via some formula Φ(~ξ,~i) which is obtained via some
Σ0

n (resp. Π0
n) prefix of quantifications over N from a boolean combination

of atomic arithmetical formulas (involving integers) and atomic formulas of
the form

string(i) = ξ , string(i) ¹ ξ

involving variables i varying over N and ξ varying over 2≤ω.

24

Remark 32. In Prop. 31 one can also take ξ ¹ n = string(i) as the sole
atomic relation (besides the purely arithmetical ones). In fact,

string(i) ¹ ξ ⇔ ξ ¹ |string(i)| = string(i)
n > |string(i)| ⇒ (ξ = string(i) ⇔ ξ ¹n = string(i))

4.4 Traces of the Arithmetical Hierarchy over 2≤ω

The Arithmetical Hierarchy over 2≤ω is related to those over 2∗ and 2ω.

Proposition 33. Denote Σ0
n(S) and Π0

n(S) the Σ0
n and Π0

n classes relative
to the space S (which is to be 2∗, 2ω or 2≤ω).

1. If n ≥ 2 then

X ⊆ 2≤ω is Σ0
n(2≤ω) ⇔ X ∩ 2∗ is Σ0

n(2∗) ∧ X ∩ 2ω is Σ0
n(2ω)

X ⊆ 2≤ω is Π0
n(2≤ω) ⇔ X ∩ 2∗ is Π0

n(2∗) ∧ X ∩ 2ω is Π0
n(2ω)

2. X ⊆ 2≤ω is Σ0
1(2

≤ω) ⇒ X ∩ 2∗ is Σ0
1(2

∗) ∧ X ∩ 2ω is Σ0
1(2

ω)
X ⊆ 2≤ω is Π0

1(2
≤ω) ⇒ X ∩ 2∗ is Π0

1(2
∗) ∧ X ∩ 2ω is Π0

1(2
ω)

3. X ⊆ 2∗ ⇒ (X is Σ0
1(2

∗) ⇔ X is Σ0
1(2

≤ω))
X ⊆ 2ω ⇒ (X is Π0

1(2
ω) ⇔ X is Π0

1(2
≤ω))

4. If X is Σ0
1(2

≤ω) then ∂ω(X) and ∂≤ω(X) are Σ0
1(2

∗).
Conversely, if X is open in 2≤ω and X ∩ 2∗ and ∂≤ω(X) are Σ0

1(2
∗) then X

is Σ0
1(2

≤ω).

Proof. 1) ⇒. Observe that 2∗ and 2ω are respectively Σ0
1(2

≤ω) and Π0
1(2

≤ω)
hence ∆0

n(2≤ω).

2) Suppose X is Σ0
1 in 2≤ω and let X = X ∪ Y 2≤ω where X, Y are r.e.

subsets of 2∗. Then X ∩ 2∗ = X ∪ Y 2∗ and X ∩ 2ω = Y 2ω. Since X, Y are
r.e., these sets are which are respectively Σ0

1(2
∗) and Σ0

1(2
ω).

Going to the complement, we get the case X is Π0
1(2

≤ω).

3) Case X ⊆ 2∗. Then both conditions X is Σ0
1(2

∗) and X is Σ0
1(2

≤ω) ex-
press that X is an r.e. set of words, hence they are equivalent.
Case X ⊆ 2ω. If X is Π0

1(2
ω) then 2ω \X = Y 2ω where Y ⊆ 2∗ is r.e. Thus,

2≤ω \ X = 2∗ ∪ Y 2ω is therefore Σ0
1(2

≤ω) so that X is Π0
1(2

≤ω).
If X is Π0

1(2
≤ω) then 2≤ω \ X = X ∪ Y 2≤ω where X,Y ⊆ 2∗ are r.e. Thus,

2ω \ X = Y 2ω is Σ0
1(2

ω) so that X is Π0
1(2

ω).

25

4) Using Prop. 3, we see that ∂ω(X), ∂≤ω(X) are Σ0
1 as follows:

p ∈ ∂ω(X) ⇔ p2ω ⊆ Y 2ω

⇔ p2ω = (p2∗ ∩ Y)2ω

⇔ 2ω = {q : pq ∈ Y }2ω

⇔ ∃Z (Z is finite maximal prefix-free ∧ ∀z ∈ Z pz ∈ Y)
p ∈ ∂≤ω(X) ⇔ (p2ω ⊆ Y 2ω) ∧ (p2∗ ⊆ (X ∪ Y 2∗))

⇔ ∃Z (Z is finite maximal prefix-free
∧ ∀z ∈ Z pz ∈ Y ∧ ∀z ∈ Z ∀u ≺ pz (p ¹ u ⇒ u ∈ X))

Conversely, since X is open, we have X = (X ∩ 2∗) ∪ ∂≤ω(X)(2≤ω).

Remark 34. Corollary 30 shows that Points 2 and 3 of the above result can-
not be improved. Though its traces on the spaces 2∗ and 2ω are computable
in the sense of these respective spaces, the set 2∗ (resp. 2ω) is not closed
(resp. not open) nor computable nor Π0

1 (resp. not Σ0
1) as a subset of the

space 2≤ω. It is solely open and Σ0
1 (resp. closed and Π0

1).

Remark 35. In general, the syntactical complexity of ∂<ω(X) involves an
extra ∀ quantifier:
i. Let X be the set of strings 0i1u such that Mi does not converge on any
input of length ≤ |u| in ≤ |u| steps. Then X is recursive but ∂<ω(X) is
strict Π0

1 since
Dom(Mi) = ∅ ⇔ 0i1 ∈ ∂<ω(X)

ii. Let X = {0i1u : Dom(Mi) has at least |u| elements}. Then X is r.e.
but ∂<ω(X) is strict Π0

2 since
Dom(Mi) is infinite ⇔ 0i1 ∈ ∂<ω(X)

This last example can easily be extended to get X ⊆ 2∗ which is Σ0
n and

such that ∂<ω(X) is Π0
n+1 and not Σ0

n.

4.5 Checkable sets as clopen traces

The characterization of clopen subsets of 2≤ω (cf. 21) motivates the following
Proposition. As can be expected, checkable (resp. recursively checkable) sets
are exactly the traces of clopen (resp. computable) sets.

Proposition 36 (Checkable sets as clopen traces).
1. Z ⊆ 2∗ is checkable if and only if Z = Z ∩ 2∗ for some clopen (hence
computable) Z ⊆ 2≤ω.

2. Let ~X be any finite product of spaces N and/or 2∗. A set Z ⊂ ~X × 2∗ is

26

checkable (resp. recursively checkable) relative to its last component if and
only if Z = Z ∩ (~X× 2∗) for some clopen (resp. computable) Z ⊆ ~X× 2≤ω.

Proof. Let X,Y be such that Z~x = X~x ∪ Y~x2∗ for all ~x ∈ ~X and define Z so
that Z~x = X~x ∪ Y~x2≤ω.

5 (Semi)computability with possibly infinite com-
putations

We concentrate now on the maps associated to the Input/Output behaviour
of Turing machines performing possibly infinite computations. We limit
ourselves to notions which will prove to be effective versions of continuity
and lower semicontinuity, cf. §6.
More related material can be found in Wagner, [44] 1976, Wagner & Staiger,
[45] 1977, Staiger, [39, 42] 1986–1999, and Engelfriet & Hoogeboom, [11]
1993.

5.1 Possibly infinite computations and architectural deci-
sions

A possibly infinite computation on a Turing machine is either a halting or
a non halting computation. The output may be finite or infinite, and the
input actually read by the machine may also be finite or infinite. In full
generality, this leads to consider 2∗ or 2ω or 2≤ω as the set of inputs, and
2≤ω as the set of outputs. Hence to represent the machine behaviour as
maps

2∗ → 2≤ω , 2ω → 2≤ω or 2≤ω → 2≤ω.
As is well known, in the case of halting computations different architec-

tures of Turing machines are irrelevant in terms of computability. Turing
machines, under any architecture whatsoever, compute exactly all partial
recursive functions. However, architectures do matter for non halting com-
putations.

5.1.1 Monotone Turing machines

Architectural decisions on the moving abilities of the output head and the
possibility of overwriting the output do affect the class of functions that
become computable via possibly infinite computations.
In all this paper, we shall consider solely monotone Turing machines. This
was indeed Turing’s original assumption [43], insuring that in the limit of

27

time the output of a non halting computation always converges, either to
a finite or an infinite sequence. A concept also reconsidered by Levin [24],
Schnorr [33, 34], see [25] p.276.

Definition 37. A Turing machine is monotone if its output tape is one-way
and write-only (hence no erasing nor overwriting is possible).
Thus, the sequence of symbols written on the output tape increases mono-
tonically with respect to the prefix ordering as the number of computation
steps grows.

Remark 38. An infinite sequence β ∈ 2ω is the output of a machine of this
type with input α ∈ 2ω if and only if β is a sequence recursive in α (i.e. β
is the characteristic function of a set that is recursive in α).

Thus, we shall consider Turing machines with the following architecture:

- A pre-given finite transition table determines the computation. The
computation may either lead to a halting state or may go on forever.

- The input and output tapes are infinite to the right and their heads
move only rightwards.

- The input (resp. output) tape can only be read (resp. written) by the
machine.

- The work tape is infinite in both directions and its head moves in both
directions.

- Work tapes can be read, written and erased.

- A computation starts with the heads of the input and output tapes in
their respective leftmost cells and the work tape being all blank.

- In order to properly deal with the case of an empty input, we suppose
that the input tape contains a first dummy cell which receives no
symbol and which is scanned by the head when the computation starts.

Remark 39. Let’s cite two alternative choices as concerns outputs.
1) Increasing overwriting.
The output head moves in both directions, but overwriting must be increas-
ing in the lexicographic order. For the output alphabet {0, 1} this means
that it is only possible that to overwrite 0s with 1s (that was a compulsory
condition in the time of punched cards). This condition also insures that in
the limit of time the output of a non halting computation converges, either

28

to finite or an infinite sequence. An infinite sequence β ∈ 2ω is the output of
a machine of this type with input α if and only if β is a strongly computably
enumerable sequence in α (i.e. β is the characteristic function of some set
recursively enumerable in α).
2) Arbitrary moves and overwriting. (Cf. Wagner, [44] 1976, Freund &
Staiger, [14] 1996).
The output head moves arbitrarily and it has complete freedom to overwrite
or erase symbols. In the limit of time the output of a non halting compu-
tation may not converge. If it converges, it results in either a finite or an
infinite sequence. Shoenfield’s limit lemma (cf. [35], [36] or [28] p.373) in-
sures that an infinite sequence β ∈ 2ω is the output of a machine of this type
with input α if and only if β is ∆0

2(α) (i.e. β is the characteristic function
of a set that is ∆0

2(α)).

5.1.2 Oracles

Turing machines can be equipped with an oracle A, adding to the previous
architecture an oracle tape which is infinite to the right and can only be read
by the machine. The i-th square of this oracle tape contains 1 if string(i) ∈
A, and 0 otherwise. All the material in the following sections go through
mutatis mutandis when oracles are considered.

5.1.3 Input delimitation

Another architectural decision is how to delimit the input. In this section,
we will assume the usual assumption on Turing machines which is to use
blank symbols to delimit a finite input.

5.1.4 When does a computation converge?

As we consider possibly infinite computations with monotone Turing ma-
chines, there is always a limit output so that there is no reason to discard
any computation. Thus, such machines compute total maps 2≤ω → 2≤ω or
(if we restrict the inputs to finite words or to infinite sequences) total maps
2∗ → 2≤ω or total maps 2ω → 2≤ω.

Remark 40.
One also naturally gets total maps in case the output head is allowed to
move in both directions but overwriting is constrained to be increasing rel-
ative to some ordering on the alphabet (architectural choice 1 in Remark
39).

29

However, if the output head is allowed to move and overwrite with no con-
straint (architectural choice 2 in Remark 39) then computations may suffer
of an infinite fluctuation of their output. So that such a machine necessarily
defines a partial function.
As said in §5.1.1, we shall not consider these architectures in this paper. In
§10 we review different sources of divergence. The study of the partial maps
corresponding to these computations are the subject of the forthcoming pa-
per [3].

5.2 Computable and semicomputable maps into 2≤ω

The following natural definition will also be supported by Cor.45 below.

Definition 41. Let I be among the sets 2∗, 2ω and 2≤ω (I stands for “input
set”) and let F : I → 2≤ω be a total map.
1. F is semicomputable if it is the Input/Output behaviour of some mono-
tone Turing machine with inputs in I and possibly infinite computations.

2. F is computable if it is the Input/Output behaviour of some Turing ma-
chine with inputs in I and possibly infinite computations which halts in case
the output is finite.

For instance, the map input 7→ run is semicomputable for any Turing ma-
chine M .

Remark 42.
1. It is easy to check that in the above definition of computable map, one
can require that the machine halts exactly when the output is finite and
completely written (delay the output of any letter until the next output
comes or until the machine halts).

2. It is clear that total computable maps 2∗ → 2∗ are exactly recursive ones.
However, as concerns semicomputability, infinite computations really add.
For instance, let ϕ : N2 → N be a universal partial recursive function and
define F : 2∗ → {λ, 0} as follows:

F (0n) = λ

F (0n1s) = if ϕn(n) is defined then 0 else λ

where λ is the empty word. Then F is neither recursive nor computable in
the sense of Def.41, but it is semicomputable.

The following result is trivial.

30

Proposition 43. For total maps F : I → 2ω semicomputability coincides
with computability.

In case I = 2ω or I = 2≤ω, the next proposition is an effectivized version
of the below Prop.55.

Proposition 44. Let F : I → 2≤ω be a total map where I is among the
sets 2∗, 2ω and 2≤ω. The following conditions are equivalent:

i. F is computable

ii. The relation {(s, ξ) | s ¹ F (ξ)} (resp. ≺) is computable in 2∗ × I
iii. F is semicomputable and the relation {(s, ξ) | s = F (ξ)} is computable

in 2∗ × I
iv. F is semicomputable and the relation {(i, ξ) | i ≤ |F (ξ)|}, (resp. <,

resp. =) is computable in N× I
Proof. i ⇒ ii¹. We can decide whether s ¹ F (ξ) as follows: go on the
computation on input ξ until the output gets incomparable or larger than s
or M halts (with an output shorter than s). The hypothesis that M halts
in case the output is finite insures that this process does stop.
ii¹ ⇒ ii≺. Observe that s ≺ η ⇔ (s ¹ η ∧ ¬(s0 ¹ η ∨ s1 ¹ η)
ii≺ ⇒ iii. Consider the monotone Turing machine M which behaves as
follows on input ξ :

u := λ
repeat

test u0 ≺ F (ξ) and u1 ≺ F (ξ)
if the first test is positive then output 0 and set u := u0
if the second test is positive then output 1 and set u := u1
if both are negative then halt

until halt

It is easy to see that M semicomputes F . To see that {(s, ξ) | s = F (ξ)} is
computable, observe that s = η ⇔ (s ≺ η0 ∧ ¬(s ≺ η))
iii ⇒ iv≤. Observe that i ≤ |η| ⇔ ∧

|u|<i u 6= η
iv≤ ⇒ iv< ⇒ iv=. Straightforward.
iv= ⇒ i. Consider a monotone Turing machine which semicomputes F . Let
M ′ be M modified so that

- at each step M ′ tests |s| = |F (ξ)| where s is the current output,
- M ′ halts if and when the test is positive.

Then M ′ computes F since it halts whenever F has finite value.

31

Using Prop.26, we get

Corollary 45.
1. A total map F : 2ω → 2≤ω is computable if and only if there exists a
recursive set Y ⊂ 2∗ × 2∗ such that, for every s ∈ 2∗,

- the slice Ys is finite (where Ys = {u ∈ 2∗ | (s, u) ∈ Y }),
- F−1(s2≤ω) = Ys2ω.

2. A total map F : 2≤ω → 2≤ω is computable if and only if there exist
recursive sets X,Y ⊂ (2∗)2 such that, for every s ∈ 2∗,

- the slices Xs, Ys are finite,
- F−1(s2≤ω) = Xs ∪ Ys2≤ω.

5.3 Syntactical complexity of (semi)computable maps

Proposition 46. Let F : I → 2≤ω be a total map where I is 2∗ or 2ω or
2≤ω. The following table gives the syntactical complexity of the predicates

|F (ξ)| < +∞ , |F (ξ)| ≥ i , |F (ξ)| = i , s ¹ F (ξ) , s = F (ξ)

as relations included in I, I × N and I × 2∗ (variables ξ, i, s respectively
varying in I , N , 2∗), in case F is semicomputable or computable.

F F (ξ) º s |F (ξ)| ≥ i F (ξ) = s |F (ξ)| = i F (ξ) ∈ 2∗

total comp. recursive recursive recursive recursive Σ0
1

total semicomp. Σ0
1 Σ0

1 Σ0
1 ∧Π0

1 Σ0
1 ∧Π0

1 Σ0
2

No result in the table can be improved.
In particular, the Σ0

1 ∧Π0
1 complexity cannot be replaced by Σ0

1 ∨Π0
1.

Proof. 1) Case F is total semicomputable. Let F be the Input/Output
behaviour of the Turing machine M and let KI(ξ, t, s) be the usual Kleene
predicate expressing that s ∈ 2∗ is the current output at time t ∈ N of the
computation of M on input ξ ∈ I. Using Def.25, observe that the predicate
KI(ξ, t, s) is recursive in the sense of the space I × N× 2∗.
The following easy equivalences prove the assertions in the table.

F (ξ) º s ⇔ ∃t KI(ξ, t, s)
|F (ξ)| ≥ i ⇔ ∃s ∃t (|s| = i ∧ KI(ξ, t, s))

F (ξ) < +∞ ⇔ ∃s ∃t ∀t′ > t KI(ξ, t′, s)
|F (ξ)| = i ⇔ (|F (ξ)| ≥ i ∧ ¬(|F (ξ)| ≥ i + 1))
F (ξ) = s ⇔ (s ¹ F (ξ) ∧ ¬(s0 ¹ F (ξ) ∨ s1 ¹ F (ξ)))

32

2) Case F is total computable. Use Prop.44.
3) Optimality. Case F (ξ) ∈ 2∗ , F (ξ) º s and |F (ξ)| ≥ i.
In case I = 2∗, we reduce these problems to classical complete problems. In
fact, consider a universal Turing machine M such that on input u ∈ 2∗,

1. M dovetails all computations of the partial recursive function ϕu :
N→ N (with code u) on inputs 0, 1, 2, ...

2. M outputs 1 each time (resp. the first time) it finds some new point
in the domain of ϕu.

Clearly, the output of M on input u is finite (resp. is 1) if and only if ϕu

has finite domain (resp. has non empty domain), which is known to be a Σ0
2

(resp. Σ0
1) complete problem.

In case I = 2ω, let F be the Input/Output behaviour of the machine M
which, at step t,

- reads the t-th letter of its input α ∈ 2ω,
- outputs a 1 if this letter is 1 (else it outputs nothing).

It is clear that F (α) is a finite word (resp. 1 ¹ F (α)) if and only if α has
finitely many 1’s (resp. at least one 1). Since it is well known that the set
of such α’s is not Gδ (resp. not closed), it cannot be Π0

2 (resp. Π0
1).

For the case I = 2≤ω, we can use the same machine M on inputs in
2≤ω. Since 2ω is a Π0

1 subset of 2≤ω and the trace on 2ω of the relation
|F (ξ)| < +∞ (resp. 1 ¹ F (ξ)) is not Π0

2 (resp. Π0
1) in 2ω, this relation

cannot be Π0
2 (resp. Π0

1) in 2≤ω (cf. Prop. 33).
4) Optimality. Case F (ξ) = s and |F (ξ)| = i. Consider Kolmogorov com-
plexity K : N→ N. As is well-known, K has a linear bound: K(x) ≤ x + c
for some constant c.
Observe that the function x 7→ x+ c−K(x) is semicomputable with respect
to unary representation of integers:

• dovetail over all computations of a universal function on length in-
creasing inputs in 2∗,

• if and when some computation on input p halts and outputs x (in
unary) then increase the current output to x− |p|

The relation y = K(x) is Σ0
1 ∧ Π0

1. It is proved in Ferbus & Grigorieff [13]
that it is not Σ0

1 ∨Π0
1. Since y = F (x) ⇔ x + c− y = K(x), we see that the

graph of F is Σ0
1 ∧Π0

1 and not Σ0
1 ∨Π0

1.

33

6 Topological counterpart of (semi)computability

In this section we assume total maps I → O, where I,O vary in 2∗, 2ω, 2≤ω.
The analysis of continuity and computability of partial maps will be treated
in [3].

As is well known, computable maps 2ω → 2ω are continuous. Indeed, for
maps 2ω → 2ω, computability is the effectivization of continuity.
Whereas there is a unique notion of computability for maps with values in 2ω

(cf. Remark 42 Point 1), when values in 2≤ω are allowed, there are two no-
tions: computability and semicomputability (cf. Def.41). Their topological
counterparts involve continuity and lower semicontinuity.

6.1 (Semi)computability and (lower semi)continuity

The classical notion of lower semicontinuity for real valued functions has an
analog for functions with values in 2≤ω with respect to the prefix ordering
on this space. It happens that this notion is the topological counterpart of
semicomputability, cf. Thm.51 below.

Definition 47. Let I be 2ω or 2≤ω. A total map F : I → 2≤ω is lower
semicontinuous at ξ ∈ I if for all n ∈ N there exists a neighborhood V of ξ
such that

∀η ∈ V F (η) º F (ξ)¹n

(recall that if F (ξ) is finite then F (ξ) ¹ n is the prefix of F (ξ) with length
min(n, |F (ξ)|)).
Example 48. 1. Let F : 2ω → 2∗ be defined as follows:

- F (0ω) = λ , F (0i1α) = 0i for every i ∈ N and α ∈ 2ω. Then F is
semicomputable and lower semicontinuous but not continuous at 0ω.
2. Let F : 2≤ω → 2≤ω be defined as follows:

- F (s) = |s| for s ∈ 2∗, F (α) = λ for every α ∈ 2ω.
Then F is everywhere lower semicontinuous and is semicomputable but is
discontinuous at every point of 2ω.
3. Let F : 2≤ω → 2≤ω be defined as follows

- F (0k) = 0ω , F (0k1ξ) = 1, F (0ω) = λ.
Then F is everywhere lower semicontinuous and is semicomputable:

- Read the input tape until it finds a blank or a 1.
- If it finds a blank then output infinitely many 0’s,
- If it finds a 1 then outputs 1 and halt.

34

Remark 49.
1. If F : 2≤ω → 2≤ω is continuous then limn→∞F (α ¹ n) = F (α) for all
α ∈ 2ω (i.e., F ¹2∗ = F ¹ 2ω with the notation in Def.60). But this is not
necessarily the case for lower semicontinuous maps 2≤ω → 2≤ω. For in-
stance, consider the map of Example 48, point 3:

0ω = F (0k) = limk→∞F (0k) 6= F (0ω)

2. Being continuous on a compact space, continuous maps are in fact uni-
formly continuous. However, there is no proper notion of uniform lower
semicontinuity. If for all n there is a uniform p such that

∀α, β ∈ 2ω β ¹p = α¹p ⇒ F (β) º F (α)¹n
then, exchanging the roles of α, β, we get

∀α, β ∈ 2ω β ¹p = α¹p ⇒ F (β)¹n = F (α)¹n
which is uniform continuity.

The next Proposition insures that lower semicontinuity differs from con-
tinuity at the sole points having finite image. In particular, the above defi-
nition would not be meaningful for maps 2ω → 2ω or 2≤ω → 2ω.

Proposition 50.
1. Any total map F : 2≤ω → 2ω or F : 2≤ω → 2≤ω is continuous at every
point which lies in the subset 2∗ of 2≤ω.

2. Let F : I → 2≤ω be a total map where I is 2ω or 2≤ω. If F is lower
semicontinuous at ξ and F (ξ) ∈ 2ω then F is continuous at ξ.

Proof. 1) Obvious since any singleton word is open in 2≤ω.
2) Observe that if F (ξ) is infinite then the condition F (η) º F (ξ) ¹ n is
equivalent to F (η)¹n = F (ξ)¹n which is the usual condition for continuity.

Theorem 51.
1. Every total semicomputable map F : I → 2≤ω (where I is 2ω or 2≤ω) is
lower semicontinuous.

2. Every total computable map F : I → O (where I,O are 2ω or 2≤ω) is
continuous.

Proof. Case ξ ∈ 2∗. Then {ξ} is a neighborhood of ξ and F is continuous
at ξ (cf. Prop.50).
Case ξ ∈ 2ω.
1) Let p be the length of the input which has been read when the last letter
of F (ξ)¹n is output. It is clear that ∀η Â (ξ ¹p) F (η) º F (ξ)¹n.
2) If F (ξ) ∈ 2ω then F (η) º F (ξ) ¹ n ⇒ F (η) ¹ n = F (ξ) ¹ n, which yields

35

continuity a ξ. If F (ξ) ∈ 2∗ then the machine halts at some step t and F is
constant on (ξ ¹ t)I hence continuous at ξ.

Remark 52. If a map 2≤ω → 2≤ω is semicontinuous (resp. semicomputable)
and length preserving then its is continuous (resp. computable).

The following results delimitate the interaction between topology and
computability.

Proposition 53. There exists a total continuous map F : 2ω → 2≤ω which
is semicomputable but not computable.

Proof. Define F as the following variation of Example 42:
- F (0ω) = 0ω

- F (0n1α) = IF ϕn(n) is defined THEN 0ω ELSE 0n

It is clear that F is sequentially continuous hence continuous. It is easy to
check that F is semicomputable:

Output 0 while the head reads 0.
After the first 1 has appeared there is no more output until the
computation of ϕn(n) halts.
If this happens then do not halt and output 0 forever.

However, F cannot be computable since F (0n1α) is finite if and only if ϕn(n)
is undefined, which is an undecidable problem.

Note 54. The missing hypothesis to get computability from continuity is
the recursive enumerability of the family of basic open sets on which F is
constant. Cf. Lemmas 76,. 78.

6.2 Lower semicontinuity and the weak topology

Lower semicontinuity can also be expressed as continuity with respect to the
weak topology on the range space 2≤ω (cf. §3.6.1). The next Proposition
sums up this characterization together with the related one for continuity.

Proposition 55.
1. Let F : I → O be a total map where I,O are 2ω or 2≤ω and let α ∈ 2ω∩I.
The following conditions are equivalent:

i. F is continuous on I (resp. at α) with respect to the compact topologies
on the domain and range spaces.

36

ii. For all s ∈ 2∗ the set F−1(sO) is clopen in I
(resp. for all n ∈ N the set F−1((F (α)¹n)O) is clopen in I).

2. Let F : I → 2≤ω be a total map where I is 2ω or 2≤ω and let α ∈ 2ω ∩I.
The following conditions are equivalent:

i. F is lower semicontinuous on I (resp. at α) with respect to the com-
pact topologies on the domain and range spaces.

ii. F is continuous on I (resp. at α) with respect to the compact topology
on the domain space and the weak topology on the range space 2≤ω.

iii. For all s ∈ 2∗ the set F−1(s2≤ω) is open in I
(resp. for all n ∈ N the set F−1((F (α)¹n)2≤ω) is open in I).

Proof. 1) i ⇒ ii. Observe that the basic open set s2≤ω is clopen in 2≤ω.
Since F is continuous, F−1(sO) is also clopen in I.
ii ⇒ i. Trivial if O = 2ω since all basic open sets are of the form sO. In
case O = 2≤ω, observe that the basic open set {s} of 2≤ω can be expressed
as a boolean combination

{s} = s2≤ω \ (s02≤ω ∪ s12≤ω)
so that its inverse image is a boolean combination of clopen sets, hence is
also clopen.
2) i ⇔ ii. Inequality F (β) º F (α) ¹n asserts that F (β) belongs to (F (α) ¹
n)2≤ω. Since these sets are exactly the weak basic neighborhoods of F (α),
we see that lower semicontinuity exactly expresses that the inverse images
of the weak neighborhoods of F (α) contain neighborhoods of α. Which is
continuity with respect to the weak topology on the range space 2≤ω.

Remark 56. In relation with Point 2 iii of Prop.55, observe that if F : I →
2≤ω is lower semicontinuous then

F−1({s}) = F−1(s2≤ω) \ (F−1(s02≤ω) ∪ F−1(s12≤ω))
is the difference of two open sets.

Finally, let’s mention the case when F has values in 2∗.

Proposition 57. Let F : I → 2≤ω be a total map where I is 2ω or 2≤ω.

1. If F is continuous and range(F) ⊆ 2∗ then range(F) is finite.

2. If F is lower semicontinuous and range(F) ⊆ 2∗ then min(range(F)) is
a finite prefix-free set.

37

Proof. 1) Observe that the range of F is compact (as is I) and 2∗ is a dis-
crete subspace of 2≤ω.
2) We know that any F−1(s2≤ω) is weak open hence open for the com-
pact topology on I. Now, range(F) ⊆ ⋃

s∈min(range(F)) s2≤ω so that the
F−1(s2≤ω), s ∈ min(range(F)) constitute a partition of I. By compactness,
such a partition is necessarily finite. Hence min(range(F)) is finite.

Remark 58. However, the range of a lower semicontinuous map may contain
infinite prefix-free sets. For instance, let F (0n) = F (0ω) = λ and F (0n1ξ) =
0n1 for all ξ ∈ 2≤ω.

6.3 Continuity and weak topology on both the domain and
range spaces

Prop.55 considers the weak topology on the range space. Endowing the
domain space with the weak topology leads to a completely different picture.

Proposition 59. We consider on 2∗ and 2≤ω the weak topologies, cf. §3.6.1.
1. f : 2∗ → 2≤ω is weak continuous if and only if it is monotone increasing.

2. F : 2≤ω → 2≤ω is weak continuous if and only if it is monotone increasing
and continuous with respect to the compact topology on 2≤ω.

Proof. 1 ⇒. Weak continuity of f at s ∈ 2∗ expresses that the inverse image
of any neighborhood of f(s) is a neighborhood of s. Since s has a smallest
weak neighborhood, namely s2∗, this amounts to the inclusion of f(s2∗) into
any neighborhood of f(s), i.e.

- if f(s) is finite then f(s2∗) ⊆ f(s)2≤ω,
- if f(s) is infinite then ∀n f(s2∗) ⊆ (f(s)¹n)2≤ω, hence f(s2∗) = {f(s)}.

Thus, f is monotone increasing.

1 ⇐ and 2 ⇐ are easy.

2 ⇒. Monotonicity is proved as in 1 ⇒. We prove continuity for the compact
topologies.
If F (ξ) ∈ 2ω then it has the same neighborhoods for the compact and weak
topologies. Their inverse images by F are neighborhoods of ξ for the weak
topology hence also for the compact one.
If F (α) ∈ 2∗ then F (α)2≤ω is the smallest weak neighborhood of F (α)
and weak continuity insures that there exists p such that (F ((α ¹ p)2≤ω) ⊆
F (α)2≤ω. Since F is monotonous, this means that F is constant with value
F (α) on (α ¹ p)2≤ω. Whence F is also continuous at α with respect to the
compact topologies.

38

7 Tools for representation of maps

Let I,O be 2ω or 2≤ω. In this section and the two next ones, we look at
diverse ways to represent maps F : I → O using maps f : 2∗ → 2∗ or maps
f : 2∗ → 2≤ω.
In the bottom-up approach, we go from f to F , whereas in the top-down
approach we get f from F .

7.1 Bottom-up approach: the bar operator on maps 2∗ → 2∗

Definition 60. Let f : 2∗ → 2∗ or f : 2∗ → 2≤ω. We denote f : 2ω → 2≤ω

the map such that, for all α ∈ 2ω,

f(α) = limn→∞f(α¹n) = sup({gcp({f(α¹p) : p ≥ n}) : n ∈ N})

where the sup is relative to the prefix ordering on 2≤ω (cf. §3) and gcp(X)
denotes the greatest common prefix of all elements of X .

In case f is monotone increasing with respect to the prefix ordering then
f(α) = supn∈N f(α¹n).

The next definition formalizes some notions about maps f : 2∗ → 2≤ω

which are related to continuity or computability of the associated f : 2ω →
2≤ω.

Definition 61. Let f : 2∗ → 2≤ω. We define
Open<ω(f) = {s ∈ 2∗ | f is constant on s2∗ with finite value}
Tree(f) = 2∗ \Open<ω(f)

Proposition 62. Let f : 2∗ → 2≤ω. Then Open<ω(f) is closed by exten-
sions while Tree(f) is a tree, i.e. is prefix closed.

Definition 63. Let f : 2∗ → 2≤ω (resp. f : 2∗ → N) and let T ⊆ 2∗ be a
tree, i.e. T is prefix closed.
We say that f is totally unbounded on T if f(α) ∈ 2ω for every infinite
branch α of T (i.e. ∀n α¹n ∈ T).

In case f is monotone increasing, this is equivalent to limn→∞ f(α¹n) ∈ 2ω

for every infinite branch α of T .

In case T = 2∗ (resp. T = Tree(f)), we simply say that f is totally un-
bounded (resp. totally unbounded on its tree).

39

Proposition 64. Let f : 2∗ → 2≤ω (resp. f : 2∗ → N) be monotone
increasing and let T ⊆ 2∗ be an infinite tree. Then f is totally unbounded
on T if and only if

limn→∞(min s∈T,|s|=n |f(s)|) = +∞
Proof. ⇐ is trivial. For the ⇒ direction, consider the tree Tk = {s ∈ T :
|f(s)| ≤ k}. Assuming f is totally unbounded on T , a direct application
of König’s Lemma and of the monotonicity of f shows that Tk is finite.
Whence the desired conclusion.

7.2 Bottom-up approach with maps 2∗ × N → 2∗ monotone
increasing with respect to N

Definition 65. Let ν : 2∗ × N → 2∗ be monotone increasing in the second
argument with respect to the prefix ordering. We let ν : 2∗ → 2≤ω be the
map such that if s ∈ 2∗ then

ν(s) = sup{ν(s, n) : n ∈ N}

where the sup is relative to the prefix ordering on 2≤ω.

Remark 66. The intuition behind maps ν is the Input/Output behaviour of
Turing machines such that

ν(u, t)= current output at time t on input u
(independently of whether or not u has been completely read). These func-
tions give a natural characterization of (semi)computable maps 2∗ → 2≤ω

(cf. Thm.82).

Fact 67. Every map F : 2∗ → 2≤ω is F = ν for some ν : 2∗ × N → 2∗

monotone increasing on N.

Proof. ⇒. Let ν(u, n) = F (u)¹n. ⇐. Obvious.

The next definition formalizes some notions about maps ν : 2∗×N→ 2∗

which are related to continuity or computability of ν : 2∗ → 2≤ω.

Definition 68. Let ν : 2∗ × N → 2∗ be monotone increasing in the second
argument with respect to the prefix ordering.
- Open(ν) = {(s, n) : s ∈ 2∗ and ∀m > n ν(s, n) = ν(s,m)}
- Tree(ν) = (2∗ × N) \Open(ν).

40

7.3 Tools for the top-down approach

We introduce some material that we will constantly use in §8.2. Maps ∂F
and ∂θF are the main tools for the representation theorem 82.

Definition 69.
We denote gcp(X) the greatest common prefix of a set X ⊆ 2≤ω.
Let F : I → 2≤ω, I = 2∗, 2ω, 2≤ω.

1. ∂F : 2∗ → 2≤ω denotes the map s 7→ gcp(F (sI)), i.e. ∂F (s) is the
longest ξ ∈ 2≤ω such that ∀η ∈ sI ξ ¹ F (η).

2. θ : 2∗ → N is totally unbounded if limn→∞(min|s|=n |θ(s)|) = ∞.

3. If θ : 2∗ → N be totally unbounded, we let ∂θF : 2∗ → 2∗ be the map such
that ∂θF (s) is the longest u ∈ 2∗ such that |u| ≤ θ(s) and u ¹ F (η) for all
η ∈ sI.
Remark 70. The total unboundedness of θ(s) in Point 3 is to insure that
∂θF has range in 2∗. The simplest example of such a θ is the length function.

The following proposition is easy.

Proposition 71. Let θ : 2∗ → N be totally unbounded.

1. Case F : 2∗ → 2≤ω. Then ∂F (resp. ∂θF) is the largest monotone
increasing map f : 2∗ → 2≤ω such that f ¹ F (resp. f ¹ F and |f | ≤ θ).
In particular, if F is monotone increasing then ∂F = F and ∂θF (s) = F (s)¹
θ(s).

2. Case F : 2ω → 2≤ω. Then ∂F (resp. ∂θF) is the largest monotone
increasing map f : 2∗ → 2≤ω such that f ¹ F (resp. f ¹ F and |f | ≤ θ)
where f is as in Def.60. Thus, ∂θF ¹ ∂F ¹ F .
Also, Open(∂θF) 2ω ⊆ Open(∂F) 2ω.

3. Case F : 2≤ω → 2≤ω.

∂F (s) = gcp({(∂(F ¹2∗))(s), (∂(F ¹2ω))(s)}
∂θF (s) = gcp({(∂θ(F ¹2∗))(s), (∂θ(F ¹2ω))(s)}

Thus, ∂F (resp. ∂θF) is the largest monotone increasing map f : 2∗ → 2≤ω

such that
f ¹ F ¹2∗ and f ¹ F ¹2ω (resp. and |f | ≤ θ)

41

7.4 Some lemmas about the bottom-up representation

The following lemmas will be used in the proof of the representation Theo-
rem 82.

Lemma 72. Let f : 2∗ → 2≤ω be monotone increasing such that f : 2ω →
2≤ω is continuous. Then f is necessarily totally unbounded on Tree(f).

Proof. If f were not totally unbounded on Tree(f) then there would exist
an infinite branch α of Tree(f) on which f is stationary:

- ∃i ∈ N ∃u ∈ 2∗ ∀j ≥ i f(α¹ i) = u

- ∀j α¹j ∈ Tree(f), whence ∀j ≥ i ∃ vj f((α¹j)vj) Â f(α¹j) = u.

Continuity of f at α insures that there exists j such that f((α ¹ j)β) = u
for all β ∈ 2ω. Taking β Â vj we get f((α ¹ j)β) º f((α ¹ j)vj) Â u,
contradiction.

Remark 73. The previous result is false if f is not monotonous. For instance,
let f be 0 on 0∗1 and 1 elsewhere. Then f is constant with finite value 1
hence continuous. Also, Tree(f) = 0∗ ∪ 0∗1 has an infinite branch, namely
0ω, on which f has finite value.

Lemma 74. Let f, g : 2∗ → 2≤ω.
1. If f = g then f and g coincide on Open<ω(f) ∩ Open<ω(g).

2. If f = g and f, g are totally unbounded on their trees then ̂Open<ω(f) =
̂Open<ω(g), i.e. Open<ω(f)2ω = Open<ω(g)2ω.

3. If f is monotone increasing and totally unbounded on Tree(f) and f ¹ g

then Open<ω(g) ⊆ ̂Open<ω(f), i.e. Open<ω(g)2ω ⊆ Open<ω(f)2ω.

Proof. 1) If s ∈ Open<ω(f) ∩Open<ω(g) then f and g are constant on s2ω

with respective values f(s) and g(s). Since f = g we get f(s) = g(s).

2) Using symmetry and the monotonicity and idempotence of the hat oper-
ation, we reduce to prove Open<ω(g) ⊆ ̂Open<ω(f).
Let s ∈ Open<ω(g) and suppose s is not in ̂Open<ω(f). Since Open<ω is
closed by extension, Prop.5 point 2 yields α ∈ 2ω such that s ≺ α and no
prefix of α is in Open<ω(f). Using the total unboundedness of f on Tree(f),
we get f(α) ∈ 2ω. But (by definition of Open<ω) g is constant on s2∗ with
finite value g(s) ∈ 2∗, so that f(α) = g(α) = g(s) cannot be in 2ω, contra-
diction.

42

3) Let s ∈ Open<ω(g) and suppose s is not in ̂Open<ω(f). As above we
get α ∈ 2ω such that s ≺ α and no prefix of α is in Open<ω(f). Using
the total unboundedness of f on Tree(f), we get f(α) ∈ 2ω. But f ¹ g
and g is constant with value g(s) on s2∗, so that f(α) ¹ s cannot be in 2ω,
contradiction.

7.5 Effectiveness and the bottom-up representation

Lemma 75.
1. Suppose

- f, g : 2∗ → 2≤ω are semicomputable,
- f is monotone increasing,
- f ¹ g.

Then f ∪ g : 2≤ω → 2≤ω is semicomputable.

2. If f : 2∗ → 2≤ω is monotone increasing and semicomputable then f :
2ω → 2≤ω is semicomputable.

Proof. 1) Let M1 and M2 be monotone Turing machines which semicompute
f and g. We define a monotone Turing machine M which, on input ξ ∈ 2≤ω,
behaves as follows:

i. Phase 1. M behaves according to the following program (assume the
reading head of M is initially in the first dummy cell).
s := λ;
a := λ
do while a 6= blank
s := sa
Read in a the next symbol from the input tape
Print the needed symbols to leave on the output tape the current
approximation of f(s) computed by M1 at time |s|.
end do

ii. Phase 2: a = blank. I.e. ξ ∈ 2∗. M starts emulating M2.
Since f ¹ g, this emulation of M2 can be faithful: M can ouput u ∈ 2∗

such that OutputM2(|ξ|, ξ) = OutputMi(|ξ|, ξ)u (where OutputMi(t, ξ)
is the current output of Mi at time t).

If ξ ∈ 2ω then M emulates the sole machine M1, so that it outputs f(α).
If ξ ∈ 2∗ then M eventually emulates M2, hence outputs g(ξ).
Thus, the Input/Output behaviour of M is f ∪ g.

43

2) Restricted to inputs in 2ω, the above machine M never enters Phase 2
and semicomputes f .

Lemma 76.
1. Suppose

- f, g : 2∗ → 2≤ω are computable,
- f is monotone increasing and totally unbounded on Tree(f),
- f ¹ g and f = g,
- Open<ω(g) is recursively enumerable.

Then f ∪ g : 2≤ω → 2≤ω is computable.

2. If f : 2∗ → 2≤ω is computable and Open<ω(f) is recursively enumerable
then f : 2ω → 2≤ω is computable.

Proof. 1) Suppose M1 and M2 halt when their output is finite. Let Ω : N→
2∗ be a recursive map with range Open<ω(g). We modify the machine M
introduced in the proof of Lemma 75 as follows:

If at some step of Phase 1 some prefix s of the part already read
of the input appears in the enumeration of Open<ω(g) by Ω then
M starts emulating M2 on input s.
(Since f ¹ g and g is constant on s2∗, the current output is a
prefix of g(s) so that there is no problem to perform this emula-
tion).

We show that M computes F .
Case ξ ∈ 2∗ and no prefix of ξ in Open<ω(g) appears during Phase 1.
M eventually enters Phase 2 and emulates M2, hence outputs g(ξ) = (f ∪
g)(ξ). In case g(ξ) ∈ 2∗, the emulation of M2 will halt, hence so will M .

Case ξ ∈ 2∗ and some prefix of ξ in Open<ω(g) appears during Phase 1.
Let s be this prefix. Then M emulates M2 on input s and output g(s). Since
s ∈ Open<ω(g) and s ¹ ξ we have g(s) = g(ξ) = (f ∪ g)(ξ).
In case g(s) ∈ 2∗, the emulation of M2 will halt, hence so will M .

Case ξ ∈ 2ω and some prefix of ξ is in Open<ω(g).
Such a prefix s necessarily appears during Phase 1, so that M outputs g(s).
Since f = g and s ∈ Open<ω(g), Lemma 74 insures that

- some prefix s′ º s of ξ is in Open<ω(f)
- f(s′) = g(s′).

Since f is constant on s′2∗ and g is constant on s2∗, we see that f(ξ) =
f(s′) = g(s). Thus, the output g(s) of M is equal to f(ξ) = (f ∪ g)(ξ).
In case g(s) ∈ 2∗, the emulation of M2 will halt, hence so will M .

44

Case ξ ∈ 2ω and no prefix of ξ is in Open<ω(g).
Then M emulates the sole machine M1, hence outputs f(ξ) = (f ∪ g)(ξ).
Using Lemma 74 point 2, we see that no prefix of ξ is in Open<ω(f). So all
are in Tree(f). Since f is totally unbounded on Tree(f), we have f(ξ) ∈ 2ω.
Thus, there is no demand to halt.

2) Applying point 1 with g = f , we see that f∪f : 2≤ω → 2≤ω is computable.
A fortiori, its restriction to 2ω, which is f , is computable.

The following result explains why we make no hypothesis on Open<ω(f)
in point 1 of the above lemma.

Proposition 77.
1. If f is monotone increasing and f ¹ g and f = g then

i. Open<ω(g) ⊆ ̂Open<ω(f) = ̂Open<ω(g)

ii. s ∈ Open<ω(f) if and only if there exists a finite maximal prefix-free
set Z such that sZ ⊆ Open<ω(g) and f, g are constant on sZ with
value f(s).

2. Suppose f is monotone increasing and f ¹ g and f = g and f, g are
computable. If Open<ω(g) is recursively enumerable then so is Open<ω(f).

Proof. 1i) Suppose s ∈ Open<ω(g). Then g is constant on s2∗ so that g
is constant on s2ω with value g(s). Thus, f is also constant on s2ω with
value g(s). Let Z be the set of shortest u’s such that f(su) = g(s). Then
Z is prefix-free and s2ω = sZ2ω. Applying Prop.3, we see that Z is finite
maximal prefix-free. Since f is monotone increasing, f is constant on sZ2∗.
Thus, s ∈ ̂Open<ω(f) (cf. Def.4).

To prove equality ̂Open<ω(f) = ̂Open<ω(g) it suffices to prove inclusion
Open<ω(f) ⊆ ̂Open<ω(g).
Suppose s ∈ Open<ω(f). Then, f is constant on s2ω with value f(s).
Hence so is g. Let Z be the set of u’s such that g is constant on su2∗ with
value f(s). Then Z2ω = 2ω. Applying Prop.3, we see that Z contains a
finite maximal prefix-free Z ′. This proves that sZ ′ ⊆ Open<ω(g) hence that
s ∈ ̂Open<ω(g).

1ii) We have just proved that if s ∈ Open<ω(f) then there exists a finite
maximal prefix-free Z ′ such that sZ ′ ⊆ Open<ω(g) and g is constant with
value f(s) on sZ ′. Since f is constant on s2∗, it is a fortiori constant on
sZ ′.

45

Conversely, suppose sZ ⊆ Open<ω(g) and Z is finite maximal prefix-free
and f, g are constant on sZ with value f(s). Monotonicity of f insures that
(*) f is constant on sPrefix(Z) with value f(s).
Since sZ ⊆ Open<ω(g), for all z ∈ Z g is constant on sz2∗. But g is also
constant on sZ with value f(s). Therefore,
(**) f is constant on sZ2∗ with value f(s).
Since Z is maximal prefix-free, grouping (*) and (**), we see that f is
constant on s2∗, i.e. s ∈ Open<ω(f).

2) Condition ii of Point 1 gives a definition of Open<ω(f) as an r.e. set if
Open<ω(g) is r.e.

Lemma 78. If F : 2≤ω → 2≤ω is computable then Open<ω(F ¹ 2∗) is
recursively enumerable.

Proof. Let M be a monotone Turing machine which computes F . Set
OpenM = {s ∈ 2∗ : M halts on input s and the input head

has never moved right to s}
OpenM is clearly recursively enumerable. Let’s prove
(*) OpenM ⊆ Open<ω(F ¹2∗) ⊆ ÔpenM

Left inclusion is straightforward. We prove the right one.
Let s ∈ Open<ω(F ¹2∗). If s were not in ÔpenM , then (using Prop.5) there
would be some α ∈ 2ω such that s ≺ α and α¹n /∈ X for all n. Since s ≺ α
we have F (α¹n) = F (s) for all n ≥ |s|. Since F is continuous (Thm.51), we
have F (α) = F (s) ∈ 2∗. Thus, M halts on input α at some time t and α¹ t
is necessarily in OpenM , a contradiction.

Prop.5, 3 and (*) lead to the following definition of Open<ω(F ¹ 2∗) as a
recursively enumerable set:

s ∈ Open<ω(F ¹2∗) ⇔ ∃Z (Z is a finite maximal prefix-free set
∧ sZ ⊂ OpenM ∧ ∀z ∈ Z ∀u ¹ z F (su) = F (s)).

7.6 Effectiveness of the top-down approach

The next theorem insures that the operator ∂ in the top-down approach is
effective for maps 2ω → 2≤ω or 2≤ω → 2≤ω but not for maps 2∗ → 2∗ or
2∗ → 2≤ω.

Theorem 79. Let θ : 2∗ → N be recursive.
1. Let F : I → 2≤ω be a total map where I is 2ω or 2≤ω. If F is computable

46

(resp. semicomputable) then ∂F and ∂θF are computable (resp. semicom-
putable).

2. The above result is false when I = 2∗. There exists some total recur-
sive F : 2∗ → {λ, 0} such that ∂F : 2∗ → {λ, 0} is not semicomputable via
possibly infinite computation (recall λ is the empty word).

Proof. We only consider ∂F for F : 2≤ω → 2≤ω. The proof for ∂θF and/or
F : 2ω → 2≤ω is quite similar (even simpler when F has domain 2ω).
1) Case F : 2≤ω → 2≤ω is semicomputable.
Let M be a monotone machine that semicomputes F : 2≤ω → 2≤ω.
Let s ∈ 2∗. For t ∈ N, we define Xt, Yt ⊆ {0, 1}≤t and ft : Xt → 2∗,
gt : Yt → 2∗ as follows:

i. We emulate t steps of the computations of M on all possible inputs in
s2≤ω. Clearly, at most t letters can be read on the input tape, so that
these emulations can be done with all possible finite inputs of length
≤ max(t, |s|) which are extensions of s.

ii. Put u in Xt if the input head of M has moved right to u (hence has
scanned the blank symbol which is an end marker for finite inputs)
during its first t computation steps on input u.
Clearly, Xt consists of words of length < t which are extensions of s.

iii. Put u in Yt if there exists v ∈ 2≤ω such that u is the prefix of v read
at time t during the computation of M on input v (and there has been
no attempt to move right to u).
Clearly, all computations of M on any input in u2≤ω have exactly the
same t first computation steps and Yt consists of words of length ≤ t
which are prefixes or extensions of s.

iv. Let ft(u), gt(u) be the current output of M at step t in the emulations
considered in ii-iii.

Clearly, t 7→ Xt, t 7→ Yt, t 7→ ft and t 7→ gt are recursive functions.
We now describe a monotone machine M ′ to semicompute ∂F : 2∗ → 2≤ω.

1. The computation of M ′ on input s ∈ 2∗ consists of finitely many or
infinitely many successive phases indexed by t = 0, 1, 2,

2. During phase t, M ′ computes Xt, Yt, ft, gt.

3. At the end of phase t, the current output of M ′ (on input s) is
OutputM

′
t (s) = gcp({ft(u) : u ∈ Xt} ∪ {gt(u) : u ∈ Yt})

where gcp is the greatest common prefix function.

47

The definition of Xt, Yt, ft, gt show that M ′ semicomputes ∂F .

2) Case F : 2≤ω → 2≤ω is computable.
Add the following halting condition to M ′ :

4. M ′ halts at the end of phase t if and only if one of the following
conditions hold:

(a) Let w = OutputM
′

t (s). There exist u0, u1 ∈ Xt ∪ Yt such that
w0 and w1 are prefixes of the current outputs of M at time t on
inputs u0, u1.

(b) At time t, the computation of M on some input u ∈ Xt∪Yt halts
with current output equal to OutputM

′
t (s).

Conditions (4a), (4b) imply that OutputM
′

t (s) = OutputM
′

t′ (s) for all t′ > t,
so that it is reasonable for M ′ to halt with its current output.
To prove that M ′ computes ∂F , it remains to show that if ∂F (s) is finite
then one of the conditions (4a), (4b) does hold at some time t.
But ∂F (s) is finite in only two cases:

i. There are ξ, η ∈ s2≤ω such that F (ξ) and F (η) are incompatible with
respect to the prefix ordering on 2≤ω.

ii. Some F (ξ)’s, ξ ∈ s2≤ω, is finite.

If i holds then there is some t such that the above condition (4a) holds.
Suppose ii holds but i does not hold, i.e. all F (η)’s, η ∈ s2≤ω, are compa-
rable but one of them is finite. Choose ξ ∈ s2≤ω such that F (ξ) is finite and
has minimum length. Thus, F (η) º F (ξ) for all η ∈ s2≤ω.

Claim. Denote OutputMt (η) the current output of M on input η ∈ 2≤ω at
time t. There exists t such that

∀η ∈ s2≤ω OutputMt (η) ≥ F (ξ)

Proof of claim. Suppose not and let (ηt)t∈N be such that OutputMt (ηt) ≺
F (ξ) for all t ∈ N. Restricting to some strictly increasing subsequence
(ti)i∈N, one can suppose that OutputMti (ηti) = w for all i ∈ N, where w is
some fixed strict prefix of F (ξ).
Using compactness of 2≤ω and again restricting to some subsequence, one
can suppose that (ηti)i∈N converges towards some ζ ∈ 2≤ω.
Case ζ ∈ 2∗. Then the sequence (ηti)i∈N is stationary: ∃i0 ∀i ≥ i0 ηti = ζ.
In which case, OutputMti (ζ) = w for all i ≥ i0, whence F (ζ) = w ≺ F (ξ),

48

contradicting the minimality of F (ξ).
Case ζ ∈ 2ω. For all t there exists ti >≥ t such that ηti º ζ ¹ t, whence ≥ t
such that ηti º ζ ¹ t, whence

OutputMt (ζ) = OutputMt (ζ ¹ t) = OutputMt (ηti) ¹ OutputMti (ηti) = w
Therefore F (ζ) = w ≺ F (ξ), again contradicting the minimality of F (ξ).

Let t be as in the claim. Then OutputM
′

t′ (s) ≥ F (ξ) for all t′ ≥ t. Since
M halts when it has finite output, there exists t1, such that M on input ξ
halts at time ≤ t1. Therefore, for t′ ≥ t, t1 we have OutputM

′
t′ (s) = F (ξ)

and condition (4b) holds.

3) Case F : 2∗ → 2≤ω.
Compactness of the domain space was crucial in the above proof and, in
fact, the result breaks down for maps with domain 2∗.
Let ϕ : N2 → N be some universal partial recursive function and define
F : 2∗ → 2∗ as follows (compare with the example of Remark 42):

F (0n) = 0
F (0n1s) = if ϕn(n) converges at time ≤ |s| then λ else 0

Then F is total recursive but

∂F (0n1) = if ϕn(n) is defined then λ else 0

and ∂F cannot be semicomputable via possibly infinite compuations: else,
the set of n’s such that ϕn(n) is not defined would be recursively enumerable
(as the set of n’s such that at some time the computation on input 0n1 has
current output 0), a contradiction.

8 Representation of (lower semi)continuous and
(semi)computable maps

8.1 Extending maps 2ω → 2≤ω to 2≤ω → 2≤ω

The partial operator introduced in the previous subsection gives an explicit
form of the instance of Tietze theorem concerning extensions to 2≤ω of
(semi)continuous maps 2ω → 2≤ω together with the (semi)computable ver-
sion.

Theorem 80. Let F : 2ω → 2≤ω be a total map. We denote F ∪ ∂F the
map 2≤ω → 2≤ω which extends both F and ∂F : 2∗ → 2≤ω.
If F is continuous (resp. lower semicontinuous, resp. computable, resp.
semicomputable) then so is F ∪ ∂F .

49

Proof. 1. Lower semicontinuity. Suppose F : 2ω → 2≤ω is lower semicon-
tinuous. Since every function is continuous at every point in 2∗, it suffices
to show that F ∪ ∂F is also lower semicontinuous at points α ∈ 2ω. The
lower semicontinuity of F at α insures

∀n ∃p ∀β Â α¹p F (β) º F (α)¹n
If s ∈ 2∗ and s º α¹p then

∂F (s) = gcp(F (s2ω)) º gcp(F ((α¹p)2ω)) º F (α)¹n
Thus, ∀ξ Â α ¹p (F ∪ ∂F)(ξ) º F (α) ¹n, which yields the lower semiconti-
nuity of F ∪ ∂F at α.

2. Continuity. Suppose F : 2ω → 2≤ω is continuous. We already know that
F ∪ ∂F is lower semicontinuous. Since every function is continuous at every
point in 2∗ and every lower semicontinuous function 2≤ω → 2≤ω is continu-
ous at every point with image in 2ω, it suffices to show that F ∪ ∂F is also
continuous at points α ∈ 2ω such that F (α) ∈ 2∗. In that case, continuity
of F at α insures

∃p ∀β Â α¹p F (β) = F (α)
If s ∈ 2∗ and s º α¹p then

∂F (s) = gcp(F (s2ω)) º gcp(F ((α¹p)2ω)) = F (α)
Thus, ∀ξ Â α¹p (F ∪ ∂F)(ξ) = F (α), which yields the continuity of F ∪ ∂F
at α.

3. Semicomputability. Suppose F is semicomputable, Thm.79 insures that
so is ∂F . Let M and ∂M be monotone Turing machines which semicompute
F and ∂F . Define a monotone machine M ′ such that, on input ξ ∈ 2≤ω,

1. M ′ emulates M and outputs as does M .

2. If ξ ∈ 2ω or if ξ ∈ 2∗ but the input head never moves right to ξ then
this emulation goes on with no restriction (and halts if and only if M
halts).

3. If ξ ∈ 2∗ and at some time t the input head moves right to ξ, then
M ′ stops the emulation of M and starts emulating ∂M and outputs
as does ∂M . This emulation of ∂M can be faithful because as long as
M does not move right to ξ then M and ∂M have exactly the same
behaviour.

Since ∂F (s) = gcp(s2ω), we see that, if ∂M is as defined in the proof of
Thm.79, then the current outputs of M and ∂M are identical when (and if)
point 3 applies. This shows that M ′ semicomputes F ∪ ∂F .

4. Computability. If F is computable then so is ∂F and we can suppose

50

that machines M and ∂M do halt when they have finite output. The same
is then true for M ′. Therefore F ∪ ∂F is computable.

8.2 The representation theorem

An elementary result relates continuous maps F : 2ω → 2ω to totally un-
bounded monotone increasing maps f : 2∗ → 2∗. Moreover, this result has
an effective version with F computable and f recursive. Cf. Kechris’ book
[20] Prop. 2.6 p.8, or Staiger [39] Prop. 1.6, 2.5 and [41] Thm. 1.1.

Theorem 81. Let F : 2ω → 2ω. Then F is continuous (resp. computable)
if and only if F = f for some (resp. recursive) monotone increasing and
totally unbounded map f : 2∗ → 2∗.

As we shall prove, this characterization extends in different ways:
- to maps 2ω → 2≤ω and 2≤ω → 2≤ω,
- to continuity and lower semicontinuity,
- to other ways of approximating maps.

And these extensions have effective versions with computable and semicom-
putable maps.

Theorem 82 (The representation theorem).
Let F : I → O be a total map where I,O are among 2∗, 2ω, 2≤ω.
The colums of Table 1 give equivalent conditions for F to be continuous or
lower semicontinuous or semicomputable or computable in different contexts
I,O (determined by rows).
Conventions:
- f denotes a monotone increasing map f : 2∗ → 2∗ or f : 2∗ → 2≤ω,
- ν denotes a map ν : 2∗ × N→ 2∗ monotone increasing wrt N,
- f, ν are as in Def.60, 65.
- θ : 2∗ → N is some recursive totally unbounded map.

Proof. 1. Assertions about F : 2∗ → 2≤ω. Straightforward.

2. If F : 2ω → 2ω is lower semicontinuous (resp. semicomputable) then F
is continuous (resp. computable).

Cf. Prop.50, point 2, and Prop.43.

3. If F : 2≤ω → 2≤ω is lower semicontinuous then F ¹2ω = ∂θF = ∂F .

Lower semicontinuity of F at α ∈ 2ω implies that for all n there exists p
such that

51

T
ab

le
1.

T
he

re
pr

es
en

ta
ti
on

th
eo

re
m

C
on

ve
nt

io
ns

:
f

:2
∗
→

2∗
is

m
on

ot
on

e
in

cr
ea

si
ng

ν
:2
∗
×
N
→

2∗
is

m
on

ot
.

in
cr

.
in

it
s

2d
ar

gu
m

en
t

F
lo

w
er

se
m

ic
on

ti
n
u
ou

s
co

n
ti

n
u
ou

s
se

m
ic

om
p
u
ta

b
le

co
m

p
u
ta

b
le

2∗
→

2≤
ω

A
lw

ay
s

tr
iv

ia
lly

tr
ue

w
it
h

di
sc

re
te

to
po

lo
gi

es
∃ν

re
cu

rs
iv

e
F

=
ν

∃ν
re

cu
rs

iv
e

F
=

ν
O

p
en

(ν
)

re
cu

rs
iv

e

lo
w

er
se

m
ic

on
t.

∃f
F

=
f

se
m

ic
om

pu
ta

bl
e

Id
em

co
nt

in
uo

us
2ω
→

2ω
⇔

f
to

ta
lly

un
bo

un
de

d
⇔

w
it

h

co
nt

in
uo

us
F

=
∂
F

=
∂

θ
F

co
m

pu
ta

bl
e

f
,

∂
F

,
∂

θ
F

w
he

n
R

a
n
g
e(

F
)
⊆

2ω
w

he
n

R
a
n
g
e(

F
)
⊆

2ω
co

m
pu

ta
bl

e

∃f
F

=
f

∃f
F

=
f

Id
em

se
m

ic
on

t.
w

it
h

Id
em

co
nt

in
uo

us
w

it
h

2ω
→

2≤
ω

f
to

ta
lly

un
bo

un
de

d
f

se
m

ic
om

pu
ta

bl
e

f
co

m
pu

ta
bl

e
an

d
on

it
s

tr
ee

O
p
en

<
ω
(f

)
r.

e.

F
=

∂
F

(r
es

p.
∂

θ
F

)
F

=
∂
F

(r
es

p.
∂

θ
F

)
Id

em
se

m
ic

on
t.

w
it

h
Id

em
co

nt
in

uo
us

w
it

h
∂
F

,∂
θ
F

to
t.

un
bd

d
∂
F

se
m

ic
om

pu
ta

bl
e

∂
F

co
m

pu
ta

bl
e

an
d

on
th

ei
r

tr
ee

s
(r

es
p.

∂
θ
F

se
m

ic
om

p)
O

p
en

<
ω
(∂

F
)

r.
e.

(r
es

p.
Id

em
w

it
h

∂
θ
F

)

∃f
¹

F
¹2
∗

F
¹2

ω
=

f
∃f

¹
F

¹2
∗

F
¹2

ω
=

f
Id

em
se

m
ic

on
t.

w
it
h

Id
em

co
nt

in
uo

us
w
it
h

F
¹2

ω
=

F
¹2
∗

f
,

F
¹2
∗

se
m

ic
om

p.
f
,

F
¹2
∗

co
m

pu
t.

f
to

ta
lly

un
bo

un
de

d
O

p
en

<
ω
(F

¹2
∗)

2≤
ω
→

2≤
ω

on
it

s
tr

ee
re

cu
rs

iv
el

y
en

um
er

ab
le

F
¹2

ω
=

∂
F

F
¹2

ω
=

F
¹2
∗

=
∂
F

Id
em

se
m

ic
on

t.
w
it
h

Id
em

co
nt

.
w
it
h

F
¹2
∗

(r
es

p.
F

¹2
ω

=
∂

θ
F

)
∂
F

to
t.

un
bd

d
on

it
s

tr
ee

F
¹2
∗ ,

∂
F

(r
es

p.
∂

θ
F

)
∂
F

(r
es

p.
∂

θ
F

)
co

m
pu

t.
(r

es
p.

Id
em

w
it

h
∂

θ
F

)
se

m
ic

om
pu

ta
bl

e
O

p
en

<
ω
(F

¹2
∗)

r.
e.

52

(*) ∀ξ ∈ 2≤ω (ξ º α¹p ⇒ F (ξ) º F (α)¹n)
Since θ is totally unbounded, up to some increase of p, one can suppose that
θ(α ¹ p) ≥ n. Thus, (*) yields ∂θF (α ¹ p) º F (α) ¹n. Since this is true for
all n, we get ∂θF (α) º F (α).
Also, ∂F (α) = limp→∞ ∂F (α¹p) = limp→∞ gcp(F ((α¹p)2≤ω)) ¹ F (α).
Since ∂θF ¹ ∂F , we get the equalities ∂θF (α) = ∂F (α) = F (α).

3bis. If F : 2ω → 2≤ω is lower semicontinuous then F = ∂θF = ∂F .

Apply Thm.80 and point 3 for G : 2≤ω → 2≤ω where G = F ∪ ∂F and
observe that ∂G = ∂F .

3ter. If F : 2ω → 2≤ω (resp. F : 2≤ω → 2≤ω) is semicomputable then so
are ∂θF and ∂F (resp. and also F ¹2∗).

Apply Thm.79. In case F : 2≤ω → 2≤ω, the semicomputability of F trivially
implies that of F ¹2∗.

4. If F : 2≤ω → 2≤ω is such that F ¹2ω = f for some monotone increasing
f : 2∗ → 2∗ such that f ¹ F ¹2∗ then F is lower semicontinuous.
Moreover, if f and F ¹2∗ are semicomputable then F is semicomputable.

Lower semicontinuity of F at points in 2∗ is trivial (Prop.50). As concerns
points α ∈ 2ω, equality F ¹2ω = f insures that for all n there exists p such
that F (α)¹n ¹ f(α¹p) and
(a) F (β) º F (α)¹n for all β ∈ 2ω such that β Â α¹p
Now, since f is monotonous, inequality f ¹ F ¹2∗ yields that for all s Â α¹p
we have f(α¹p) ¹ f(s) ¹ F (s), i.e.
(b) F (s) º F (α)¹n for all s ∈ 2∗ such that s Â α¹p
But (a+b) is exactly lower semicontinuity at α.

The assertion about semicomputability follows from Lemma 75.

4bis. If F : 2ω → 2≤ω is such that F = f for some monotone increasing
f : 2∗ → 2∗ then F is lower semicontinuous.
Moreover, if f is semicomputable then so is F .

Let G = F ∪ ∂F : 2≤ω → 2≤ω. Prop.71 insures that f ¹ ∂F . Since
∂G = ∂F we get f ¹ ∂G. Thus, we can apply point 4 to f and G. Lower
semicontinuity of G on 2≤ω implies that of F on 2ω.

In case f is semicomputable, apply Thm.79 and Lemma 75.

5. If F : 2ω → 2≤ω (resp. F : 2≤ω → 2≤ω) is such that F = ∂θF or F = ∂F

(resp. F ¹2ω = ∂θF or F ¹2ω = ∂F) then F is lower semicontinuous.
Moreover, if ∂F or ∂θF (resp. and F ¹2∗) is semicomputable then so is F .

53

Apply point 4 or 4bis to f = ∂θF (resp. f = ∂F).

6. If F : 2ω → 2≤ω (resp. F : 2≤ω → 2≤ω) is continuous then F = ∂θF =
∂F (resp. F ¹2ω = ∂θF = ∂F = F ¹2∗).

We first prove the case F : 2≤ω → 2≤ω. Point 3 insures equalities F ¹2ω =
∂θF = ∂F . Continuity directly yields F ¹2ω = F ¹2∗.
As for the case F : 2ω → 2≤ω, apply Thm.80 and the previous case for
G : 2≤ω → 2≤ω where G = F ∪ ∂F and observe that ∂G = ∂F .

6bis. If F : 2ω → 2ω (resp. F : 2ω → 2≤ω or F : 2≤ω → 2≤ω) is continuous
then ∂θF and ∂F are totally unbounded (resp. totally unbounded on their
trees).

Lemma 72 insures the unboundedness conditions. In case F : 2ω → 2ω,
observe that Treef(f) = 2∗.

6ter. If F : 2ω → 2≤ω or F : 2≤ω → 2≤ω is continuous then ∂θF and ∂F
are computable.
If F : 2≤ω → 2≤ω is continuous then F ¹2∗ is computable and Open<ω(F ¹2∗)
is recursively enumerable.

Apply Thm.79 and Lemma 78. In case F : 2≤ω → 2≤ω, computability of
F ¹2∗ is trivially implied by that of F .

7. If F : 2≤ω → 2≤ω is such that F ¹ 2ω = f = F ¹2∗ where f : 2∗ → 2∗ is
monotone increasing and f ¹ F ¹ 2∗ and f is totally unbounded on its tree
then F is continuous.
Moreover, if f and F ¹2∗ are computable and Open<ω(F ¹2∗) is recursively
enumerable then F is computable.

Using Prop.50 and point 4, we already have continuity at points in 2∗ and
at points in 2ω having image in 2ω. Thus, we reduce to prove continuity at
points α ∈ 2ω with image in 2∗.
Since F (α) = f(α) ∈ 2∗ and f is totally unbounded on Tree(f), there exists
p such that α¹p ∈ Open<ω(f). This means that
(*) F is constant with value f(α¹p) on (α¹p)2ω.
Also, equality f = F ¹2∗ and Lemma 74 show that

- there exists q ≥ p such that (α¹q) ∈ Open<ω(F ¹2∗),
- f and F ¹2∗ are constant and coincide on (α¹q)2∗.

Therefore
(**) F ¹2∗ is constant with value f(α¹p) on (α¹q)2∗.
Now, (*) and (**) show that F is constant with value f(α¹p)) on (α¹q)2≤ω,
hence F is continuous at α.

54

The assertion about computability follows from Lemma 76.

7bis. If F : 2ω → 2≤ω is such that F = f where f : 2∗ → 2∗ is monotone
increasing and f is totally unbounded on its tree then F is continuous.
Moreover, if f is computable and Open<ω(f) is r.e. then so is F .
Note: In case F = f : 2ω → 2ω then Open<ω(f) = ∅ is trivially r.e.

Apply point 7 for G : 2≤ω → 2≤ω where G = f ∪ f = F ∪ f . Continuity of
G on 2≤ω implies that of F on 2ω.
In case F : 2ω → 2ω observe that Tree(f) = 2∗.
The assertion about computability follows from Lemma 76.

8. If F : 2≤ω → 2≤ω is such that F ¹ 2ω = F ¹2∗ = ∂F and ∂F is totally
unbounded on its tree then F is continuous.
Moreover, if ∂F and F ¹2∗ are computable and Open<ω(F ¹2∗) is r.e. then
F is computable.

If F : 2ω → 2ω (resp. F : 2ω → 2≤ω) is such that F = ∂F and ∂F is totally
unbounded (resp. totally unbounded on its tree) then F is continuous.
Moreover, if ∂F is computable (resp. and Open<ω(∂F) is r.e) then F is
computable.

Idem with ∂θF in place of ∂F .

Apply point 7 or 7bis to f = ∂F (resp. f = ∂θF).

9 Traces on 2∗ of continuous maps 2≤ω → 2≤ω

9.1 Checkable maps 2∗ → 2≤ω

The topological notions of clopen subsets of 2≤ω (or ~X× 2∗ where ~X is any
finite product of spaces N and/or 2∗ with the discrete topology) and of con-
tinuous maps 2≤ω → 2≤ω have no topological counterparts in the discrete
space 2∗. Nevertheless, they have discrete natural counterparts: that of
checkable subset of 2∗ (or ~X × 2∗) (§2.2) and of checkable map 2∗ → 2≤ω,
which is obtained via traces and restrictions.

As a corollary of Thm.82 we obtain the following result which insures that
nothing new is got from the traces of lower semicontinuous and semicom-
putable maps 2≤ω → 2≤ω .

Proposition 83. Every (semicomputable) map φ : 2∗ → 2≤ω is the re-
striction to 2∗ of some lower semicontinuous (resp. semicomputable) map
F : 2≤ω → 2≤ω.

55

Proof. ⇒. Let F ¹2∗ = φ and F ¹2ω = ∂φ. Then ∂φ is monotone increasing
(Prop.71) and Thm. 82 insures that F is lower semicontinuous. Also, if F
is semicomputable so is ∂φ (cf. Thm.79).
⇐. Let φ = ∂θF where θ : 2∗ → N is recursive and totally unbounded (for
instance the length function).

Things are completely different with continuous and computable maps 2≤ω →
2≤ω. Their restrictions to 2∗ constitute new classes of maps 2∗ → 2≤ω, which
we name checkable maps and recursively checkable maps.
The following definition is motivated by the well known property of con-
tinuous maps mentioned in Prop.55, point 1, and its effectivized version
Prop.44.

Definition 84 (Checkable maps).
1. φ : 2∗ → 2≤ω is checkable (resp. recursively checkable) if the relation
{(s, u) ∈ 2∗ × 2∗ : s ¹ φ(u)} is checkable (resp. recursively checkable)
relative to its last component, i.e. if φ−1(s2≤ω) is checkable for all s ∈ 2∗.
In other words, φ is checkable (resp. recursively checkable) if there exist sets
(resp. recursive sets) X, Y ⊂ 2∗ × 2∗ such that for every s ∈ 2∗, the slices
Xs, Ys are finite and φ−1(s2≤ω) = Xs ∪ Ys2∗.

2. φ : 2∗ → 2≤ω is simply checkable (resp. simply recursively checkable) if
{(s, u) ∈ 2∗ × 2∗ : s ¹ φ(u)} is simply checkable (resp. simply recursively
checkable), i.e. if the X set in Point 1 is empty.

9.2 Simple checkability and monotonicity

Proposition 85. A map φ : 2∗ → 2≤ω is simply checkable if and only if it
is monotone increasing and checkable.

Proof. ⇒. Let φ be simply checkable, and let φ(u) ∈ s2≤ω for some u, s ∈ 2∗.
Then φ−1(s2≤ω) = Y 2∗, for some Y ⊆ 2∗. If φ(u) 6¹ φ(uv) then u ∈ Y 2∗

but uv 6∈ Y 2∗, which is impossible.
⇐. Since φ is checkable, we have φ−1(s2∗) = X ∪ Y 2∗. Since φ is monotone
increasing, we have φ−1(s2∗) = φ−1(s2∗)2∗. Therefore φ−1(s2∗) = (X∪Y)2∗

and φ is simply checkable.

Though the previous result points a relation between monotonicity and
checkability, these notions are in no way equivalent.

Proposition 86.
There are monotone increasing maps φ : 2∗ → 2∗ that are not checkable and

56

checkable maps φ : 2∗ → 2∗ that are not monotone increasing.
Moreover, there are checkable maps φ : 2∗ → 2∗ which have prefix-free range
(hence are “nowhere monotone increasing”).

Proof. 1) Let φ(0i1s) = 1 and φ(0i) = 0. Then φ is monotone increasing
but φ−1(1) = 0<ω12∗ is not a checkable set.

2) Let φ(0i1s) = 0i and φ(0i) = 0i1. Then φ is not monotone increasing but
φ−1(0i2≤ω) = {0i} ∪ 0i12∗ and φ−1(0i12≤ω) = {0i} are checkable.

3) Consider the homomorphisms
- µ : 2∗ → 2∗ such that µ(0) = 00 and µ(1) = 11,
- ν : 2∗ → 2∗ such that ν(0) = 01 and ν(1) = 10,

and let φ : 2∗ → 2∗ be such that

φ(λ) = 01 , φ(s) = µ(s)ν(s) for all s 6= λ (λ is the empty word)

The range of φ is clearly prefix-free. Let’s see that φ is checkable.
In fact, observe that every s ∈ 2∗ can be written in one (and only one) of
the 16 following forms:

λ 0 1
µ(t) µ(t)0 µ(t)1
ν(u) ν(u)0 ν(u)1 ν(u)00w ν(u)11w

µ(t)ν(u) µ(t)ν(u)0 µ(t)ν(u)1 µ(t)ν(u)00w µ(t)ν(u)11w

where t, u 6= λ.
Also, for a = 0, 1 and t, u 6= λ, we have

φ−1(2∗) = 2∗ , φ−1(02∗) = 02∗ , φ−1(12∗) = 12∗ ,

φ−1(µ(t)2∗) = t2∗ ,

φ−1(µ(t)a2∗) = IF a ¹ t THEN {t} ∪ ta2∗ ELSE ta2∗ ,

φ−1(ν(u)v2∗) = ∅ for any v ∈ 2∗ ,

φ−1(µ(t)ν(u)2∗) = IF u ¹ t THEN {t} ELSE ∅
φ−1(µ(t)ν(u)a2∗) = IF ua ¹ t THEN {t} ELSE ∅
φ−1(µ(t)ν(u)00w2∗) = φ−1(µ(t)ν(u)11w2∗) = ∅ .

Therefore, φ is recursively checkable, though not simply checkable.

9.3 Checkability and traces

The following theorem characterizes traces of continuous maps. In particu-
lar, Point 1 is a functional analog of Prop.36.

57

Theorem 87. Let φ : 2∗ → 2≤ω. The following are equivalent:

i. φ is checkable.

ii. φ ∪ ∂φ : 2≤ω → 2≤ω is continuous.

iii. φ = F ¹2∗ for some continuous F : 2≤ω → 2≤ω.

iv. ∂φ is totally unbounded on its tree and φ = ∂φ.

Proof. i ⇒ ii. Set F = φ ∪ ∂φ.
For every s let Xs, Ys be finite sets such that φ−1(s2≤ω) = Xs ∪ Ys2∗.
Observe that F−1(s2≤ω) ∩ 2ω = Ys2ω. In fact, for every α ∈ 2ω,

α ∈ F−1(s2≤ω) ⇔ ∂φ(α) º s
⇔ ∃p (α¹p)2∗ ⊆ φ−1(s2≤ω) = Xs ∪ Ys2∗

⇔ ∃p (α¹p) ∈ Ys2∗

⇔ α ∈ Ys2ω

Thus,
F−1(s2≤ω) = φ−1(s2≤ω)∪ (F−1(s2≤ω)∩2ω) = Xs∪Ys2∗∪Ys2ω = Xs∪Ys2ω

is a clopen subset of 2≤ω.
Also, F−1(s) = F−1(s2≤ω) \ (F−1(s02≤ω) ∪ F−1(s12≤ω)) is a boolean com-
bination of clopen sets hence is also clopen.
This proves that F is continuous.

ii ⇒ iii is trivial.

iii ⇒ i. Assume F is continuous and φ = F ¹2∗. Then F−1(s2≤ω) is clopen
in 2≤ω hence φ−1(s2≤ω) = F−1(s2≤ω) ∩ 2∗ is checkable (cf. Prop.36).

i ⇒ iii. Assume φ−1(s2≤ω) = X∪Y 2∗ for some finite X,Y ⊂ 2∗ and suppose
(un)n∈N is such that limn→∞un ∈ 2ω and φ(un) º s. Then ∀n un ∈ X∪Y 2∗,
and for every n large enough un ∈ Y 2∗. Since Y is finite, then ∃y ∈ Y ∃m
such that ∀p ≥ m up Â y.

ii ⇔ iv. Observe that ∂φ = ∂(φ ∪ ∂φ) and apply Thm.82.

Remark 88. Equality φ = ∂φ in condition iv is necessary. For instance, let
φ be 0 on 0∗ and 1 elsewhere. Then ∂φ is constant with value λ so that
its tree is empty. Also, φ(0ω) = 0 whereas ∂φ(0ω) = λ, so that φ ∪ ∂φ is
dicontinuous at 0ω.

Corollary 89. A monotone increasing map φ : 2∗ → 2≤ω is totally un-
bounded on Tree(φ) if and only if φ is simply checkable.

Proof. Apply Prop.85 and Thm.87.

58

9.4 Recursive checkability and traces

Theorem 90. Let φ : 2∗ → 2≤ω. The following are equivalent:

i. φ is recursively checkable.

ii. φ ∪ ∂φ : 2≤ω → 2≤ω is computable.

iii. φ = F ¹2∗ for some computable F : 2≤ω → 2≤ω.

Proof. ii ⇒ iii ⇒ i is straightforward.
i ⇒ ii. First, notice that φ(u) is computable as follows:

Phase n. Test if u ∈ Xs ∪ Ys2∗ for all words s with length n.
IF the above check is true for s THEN let the current output be
s and go to Phase n + 1 ELSE halt.

Also, ∂φ(u) is computable in a similar way: replace the test u ∈ Xs ∪ Ys2∗

by the test u2∗ ⊆ Xs ∪ Ys2∗.
Finally, observe that Open<ω(φ) is recursively enumerable since

u ∈ Open<ω ⇔ ∃s ∀v φ(uv) = s

⇔ ∃s [(u2∗ ⊆ Xs ∪ Ys2∗) ∧ (u2∗ ∩ (Xs0 ∪ Ys02∗) = ∅)
∧(u2∗ ∩ (Xs1 ∪ Ys12∗) = ∅)]

To conclude, apply Thm.87.

We conclude the section with the following representation of recursively
checkable maps φ : 2∗ → 2≤ω via maps ν : 2∗ × N→ 2∗ (cf. §7.2).

Proposition 91. If φ : 2∗ → 2≤ω is recursively checkable. then φ = ν for
some ν : 2∗ × N→ 2∗ which is monotone increasing in N and such that for
each t ∈ N, the map s 7→ ν(s, t) is recursively checkable.

Proof. Observe that φ−1(s) = φ−1(s2≤ω)\(φ−1(s02≤ω)∪φ−1(s12≤ω)). Since
φ−1(s2≤ω) = Xs ∪ Ys2∗ is clopen, so is φ−1(s). And there exists finite sets
Zs, Ts such that φ−1(s) = Zs ∪ Ts2∗ and which are computable from Xs, Ys,
hence computable from s.
Let ν(u, t) = φ(u)¹ t. We write νt(s) for ν(s, t).
For each t ∈ N, if t ≥ |u| then ν−1

t (u) = Zu ∪ Tu2∗, else ν−1
t (u) = ∅. Thus,

ν−1
t (s2∗) =

⋃
u∈s2≥t−|s| ν−1

t (u). Since the set {u ∈ s2≥t−|s|} is finite and
{(s, u) : φ(u) º s} is recursive, νt is recursively checkable.

59

10 Prospective Work

The classical notion of Wadge reduction (cf. classical books such as Moschovakis
[26] or Kechris [20]) works for any polish spaces, in particular for the compact
spaces 2ω and 2≤ω. In a forthcoming paper [2] we study the effectivization
of Wadge theory for these particular spaces, where the effectivization of
continuous maps are the computable maps. Associated to lower semicontin-
uous maps into 2≤ω we introduce the notion of semiWadge reduction, and
its effectivization. All expected results of Wadge theory do hold except for
some perturbation at level 2 of the effective Borel hierarchy. This a priori
surprising phenomenon is special to the level n = 2 and related to the fact
that 2∗ as a subset of 2≤ω is not recursive but merely Σ0

1.
In the present paper we have studied continuity, lower semicontinuity,

and their effectivization, for total maps I → O for I and O varying on
2∗, 2ω, 2≤ω. Since we have considered possibly infinite computations on
monotone Turing machines, there is always a limit output so that there
is no reason to discard any computation. Thus, such machines compute
total maps. However, there are important cases in which partial maps arise.
One case is when some extra condition on computations on monotone ma-
chines is imposed. For example,
- one can ask that the computation does enter an accepting state at some
step, or
- ask that the computation never enters a rejecting state (at which the com-
putation stops but the output currently obtained should be ignored and the
input is discarded from the domain), or
- ask that a computation either halts in an accepting state or it goes on
forever and enters infinitely often some good state (a Büchi condition).
Some other cases of divergence originate in architectural decisions on Turing
machines. If the output head is allowed to move and overwrite with no con-
straints then the output may suffer of infinite fluctuation. Another source
of divergence appears when no blanks (or special symbol outside the input
alphabet) are used to delimit finite inputs, so the machine has to realize by
itself when to finish reading the input tape. If the machine tries to read
beyond the last symbol of the input then the computation diverges. The
maps corresponding to these computations have prefix-free domains. This
restriction has been independently introduced for maps 2∗ → 2∗ by Levin
[24] and Chaitin [8] for a notion of program-size complexity suitable for a
definition of randomness. Also Chaitin and Solovay [9, 37] have considered
possibly infinite computations, hence maps 2∗ → 2≤ω with prefix-free do-
mains. In a subsequent paper [3] we study continuity and computability of

60

partial maps in the spaces 2∗, 2ω, 2≤ω.
The above mentioned forthcoming papers together with the present work

give the background theory for the results on randomness we prove in [4],
where we give sufficient conditions on a given set O ⊂ 2≤ω such that the
probability that a universal monotone Turing machine gives an output in O
is random relative to the first jump of the halting problem.

Acknowledgments. We thank Max Dickmann for vivid discussions on
different topologies for the 2≤ω space and an anonymous referee for pointing
references related to computable analysis and the material in §5.

References

[1] Bibliography on Constructivity, Computability and Complex-
ity in Analysis. Maintained by Vasco Brattka, http://cca-
net.de/publications/bibliography.html.

[2] V. Becher & S. Grigorieff. Recursion and Topology on 2≤ω (II): Effective
Wadge Reductions. In preparation.

[3] V. Becher & S. Grigorieff. Recursion and Topology on 2≤ω (III): Partial
maps. In preparation.

[4] V. Becher & S. Grigorieff. ∅′-Random Reals and Outputs of Possibly
Infinite Computations. Submitted.

[5] L. Boasson & M. Nivat. Adherences of languages. J. Comput. System
Sci.. vol. 20, 285–309, 1980.

[6] N. Bourbaki. Topologie générale. Livre III, chap. 1, 4ème éd., Hermann,
1965. English translation available.

[7] V. Brattka. Recursive characterization of computable real-valued func-
tions and relations. Theoretical Computer Science, vol. 162, 45–77,
1996.

[8] G.J. Chaitin. A theory of program size formally identical to information
theory. J. ACM, vol.22, 329–340, 1975.
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/#PL

[9] G.J. Chaitin. Algorithmic entropy of sets. Computers & Mathematics
with Applications, vol.2, 233–245, 1976.
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/#PL

61

[10] J. Duparc. Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of
finite rank. J. Symbolic Logic, vol.66 n.1, 56–86, 2001.

[11] J. Engelfriet & H.J. Hoogeboom. X-automata on ω-words. Theoretical
Computer Science, vol. 110, 1–51, 1993.

[12] Y. Ershov. Computable functionals of finite type. Algebra and Logic,
vol. 11, n.4, 203–242, 1972.

[13] M. Ferbus-Zanda & S Grigorieff. Refinment of the “up to a constant”
ordering using constructive co-immunity. Application to the oracular
Min/Max hierarchy of Kolmogorov complexity. In preparation.

[14] R. Freund & L. Staiger. Numbers defined by Turing machines. Col-
legium Logicum, Annals of the Kurt Gödel Society, vol.2, 118–137,
1996.
http://www.informatik.uni-halle.de/˜staiger/

[15] A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae,
vol.42, 168–202, 1955.

[16] A. Grzegorczyk. On the definition of computable functionals. Funda-
menta Mathematicae, vol.42, 232–239, 1955.

[17] A. Grzegorczyk. On the definition of computable real continuous func-
tions. Fundamenta Mathematicae, vol.44, 61–71, 1957.

[18] T. Head. The adherences of languages as topological spaces. In Au-
tomata and Infinite Words. M.Nivat & D. Perrin editors, Lecture Notes
in Computer Science, vol. 192, 147–163, 1985.

[19] T. Head. The topological structure of adherence of regular languages.
RAIRO, Theoretical Informatics and Applications, vol.20, 31–41, 1986.

[20] A.S. Kechris. Classical Descriptive Set Theory. Springer, 1995.

[21] K. Kuratowski. Topology. vol. 1, Academic Press, 1966.

[22] D. Lacombe. Extension de la notion de fonction récursive aux fonctions
d’une ou plusieurs variables réelles I, II, III. Comptes Rendus Ac. Sc.
Paris., vol.240, 2478–2480, vol.241, 13–14 and 151–153, 1955.

[23] D. Lacombe. Quelques procédés de définition en topologie récursive.
In A.Heyting editor, Constructivity in Mathematics, 129–158, North-
Holland, 1958.

62

[24] L. Levin. On the notion of random sequence. Soviet Math. Dokl., vol.14,
n.5, 1413–1416, 1973.

[25] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and
its applications. Springer, Amsterdam, 1997 (2d edition).

[26] Y.N. Moschovakis. Descriptive Set Theory. North Holland, Amsterdam,
1980.

[27] A. Mostowski. On computable sequences. Fundamenta Mathematicae,
vol.44, 37–51, 1957.

[28] P.G. Odifreddi. Classical Recursion Theory. North Holland, Amster-
dam, Vol. 1, 1989.

[29] D. Perrin & J.E Pin. Infinite words. Academic Press, to appear, 2004.

[30] R.S. Pierce. Compact zero-dimensional metric spaces of finite type.
Memoirs of the Amer. Math. Soc., vol. 130, 1–64, 1972.

[31] R. Redziejowski. Infinite word languages and continuous mappings.
Theoretical Computer Science, vol. 43, 59–79, 1986.

[32] H. Rogers Jr. Theory of Recursive Functions and Effective Computabil-
ity. McGraw-Hill, 1967 (2d edition 1987)

[33] C.P. Schnorr. Process complexity and effective random tests. J. Com-
put. System Sci., vol. 7, 376–388, 1973.

[34] C.P. Schnorr. A survey of the theory of random sequences. In R.E. Butts
& J. Hintikka, editors, Basic Problems in Methodology and Linguistics,
193–210. D. Reidel, 1977.

[35] J.R. Shoenfield. On degrees of unsolvability. Annals of Mathematics,
vol. 69, 644–653, 1959.

[36] J.R. Shoenfield. Recursion theory, Lecture Notes in Logic, vol. 1, 1993,
reprinted 2001, A K Peters, Ltd.

[37] R.M. Solovay. On random r.e. sets. In A.I. Arruda, N.C.A. da Costa
& R. Chuaqui, editors, Non-Classical Logics, Model Theory and Com-
putability, 283–307. North-Holland Publishing Company, 1977.

[38] L. Staiger & K. Wagner. Rekursive Folgenmengen I. Zeitschrift f. math.
Logik und Grundlagen d. Math. vol. 24, 523–538, 1978.

63

[39] L. Staiger. Hierarchies of recursive ω-languages. J. Inform. Process.
Cybernetics, EIK 22, 5/6, 219–241, 1986.

[40] L. Staiger. Sequential mappings of ω-languages. J. Inform. Process.
Cybernetics, EIK 23, 8/9, 415–439, 1987.

[41] L. Staiger. ω-languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, vol. 3, 339–387. Springer-Verlag, 1997.
http://www.informatik.uni-halle.de/˜staiger/

[42] L. Staiger. On the power of reading the whole input tape. In
C.S. Calude and Gh. Pau, editors, Finite versus Infinite: contributions
to an eternal dilemma. Discrete Math. and Theoretical Comp. Sc..
Springer-Verlag, 335–348, 2000.
Preprint 99-15, 1999. http://www.informatik.uni-halle.de/˜staiger/

[43] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 2nd series, vol.42, 230–265, 1936. Correction, Ibid, 43:544–546,
1937.

[44] K. Wagner. Arithmetische Operatoren. Zeitschrift f. math. Logik und
Grundlagen d. Math., vol. 22, 553–570, 1976.

[45] K. Wagner & L. Staiger. Recursive ω-languages. FCT’77, Lecture Notes
in Comp. Sc., vol. 56, 532–537, 1977.

[46] K. Weihrauch & C. Kreitz. Theory of representations. Theoretical
Computer Science, vol. 38, 35–53, 1985.

[47] K. Weihrauch. Type 2 recursion theory. Theoretical Computer Science,
vol. 38, 17–33, 1985.

[48] K. Weihrauch & C. Kreitz. Type 2 computational complexity of func-
tions on Cantor space. Theoretical Computer Science, vol. 82, 1–18,
1991.

[49] K. Weihrauch. Computability on computable metric spaces. Theoretical
Computer Science, vol. 113, 191–210, 1993.

[50] K. Weihrauch. Computability. Springer, 1987.

[51] K. Weihrauch. Computable analysis. An introduction. Springer, 2000.

64

[52] N. Zhong & K. Weihrauch. Computability theory of generalized func-
tions. J. ACM, vol.50, n.4, 469–505, 2003. vol. 113, 191–210, 1993.

65

