
Syntactical Truth Predicates

for Second Order Arithmetic
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Abstract

We introduce a notion of syntactical truth predicate (s.t.p.) for the second

order arithmetic PA2. An s.t.p. is a set T of closed formulas such that:

i) T (t = u) iff the closed first order terms t and u are convertible, i.e.

have the same value in the standard interpretation

ii) T (A → B) iff (T (A) ⇒ T (B))

iii) T (∀xA) iff (T (A[x ← t]) for any closed first order term t)

iv) T (∀XA) iff (T (A[X ← ∆]) for any closed set definition ∆ = {x|D(x)})
S.t.p.’s can be seen as a counterpart to Tarski’s notion of (model-theoretical)

validity and have main model properties. In particular, their existence is

equivalent to the existence of an ω-model of PA2, this fact being provable

in PA2 with arithmetical comprehension only.
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1 Introduction

The language of second order Peano arithmetic PA2 (cf. Simpson [27], Takeuti

[29] or Girard [12]) is that of a type theory with two types of objects: natural

numbers and sets of natural numbers, respectively denoted by the letters x, y, . . .

and X, Y, . . .. Atomic formulas are membership statements t ∈ X and equality

statements t = u where t, u are first order terms built from first order variables

via the function symbols 0, S, +, × (of course, many variants are possible).

Notation 1.1 Let A, D be formulas. We denote A[X ← λx.D] the formula

obtained by substituting D[x ← t] for every atomic subformula t ∈ X in A. (here

we use Church’s lambda notation for the propositional function x 7→ D(x)).

We call λx.D a set definition. When x is the sole variable possibly free in D we

say that λx.D is a closed set definition.

Clearly, A[X ← λx.D] corresponds to some normal form of an instantiation

of the formula A on the set of numbers x such that D(x) (the existence of which

asks for some comprehension axiom).

Tarski’s semantical truth predicate for the standard model (N, P (N)) of

second order arithmetic is a third order object T0 which is a set of pairs (F, ρ)
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of formulas and environments, i.e. assignments of integers and sets of integers

to first and second order variables. It can be defined by induction, the most

interesting cases being :

• T0(t ∈ X, ρ) ⇔ n ∈ ρ(X) where n is the value of the term t under ρ.

• T0(A → B, ρ) ⇔ (T0(A, ρ) ⇒ T0(B, ρ))

• T0(∀XA, ρ) ⇔ ∀S(T0(A, (X, S) :: ρ)) where (X, S) :: ρ is an ML-like

notation for the environment associating S to the variable X and ρ(Y ) to

any other variable Y .

For closed formulas the environment is irrelevant so one can simply write T0(A).

If A, B and ∀XC are closed we have

• T0(A → B) ⇔ (T0(A) ⇒ T0(B))

• T0(∀XC) ⇒ T0(C[X ← λx.D]) for any closed set definition λx.D(x).

Guided by the above observation, we introduce the concept of syntactical

truth predicate for second order arithmetic, which can be taken as a semantics

for PA2 formalizable in the language of PA2. This notion is also connected

with Dragalin’s semi-formal system for the theory of definable sets of natural

numbers (see [6, 7, 8]).

In the classical framework it is enough to consider universal first order and

second order quantifiers and the entailment connective →.

Definition 1.2 A syntactical truth predicate (s.t.p.) is a set T of closed for-

mulas of second order arithmetic such that

i) T (t = u) iff the closed terms t and u are convertible, i.e. have the same

value in the standard interpretation

ii) T (A → B) iff (T (A) ⇒ T (B))

iii) T (∀xA) iff (T (A[x ← t]) for any closed term t)

iv) T (∀XA) iff (T (A[X ← λx.D(x)]) for any closed set definition λx.D(x))
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Note 1.3 1. Since s.t.p.’s deal with closed formulas, no membership case

has to be considered in the previous definition.

2. In iv) A[X ← λx.D(x)] may be a bigger formula than ∀XA. Thus, s.t.p.’s

are intrinsically circular objects which can not be handled with recursive

constructions. Hence their existence is non-trivial.

3. The terminology syntactical truth predicates should be clear: here we in-

terpret the universal quantification ∀X by a quantification over definitions

of sets, i.e. over a piece of syntax.

4. Whereas Tarski’s semantical truth predicate is a third order object, syn-

tactical truth predicates remain at the second order.

5. If the language is augmented with the connectives ↔, ∨, ∧, ¬ and the

existential quantifier defined in the usual way (with ⊥ being 0 = 1 in the

definition of ¬) then every s.t.p. T satisfies the following derived clauses:

ii bis) T (A ∧B) iff (T (A) and T (B))

T (A ∨B) iff (T (A) or T (B))

T (A ↔ B) iff (T (A) ⇔ T (B))

T (¬A) iff (not T (A))

iii bis) T (∃xA) iff (T (A[x ← t]) for some closed term t)

iv bis) T (∃XA) iff (T (A[X ← λx.D(x)]) for some closed set definition

λx.D(x))

As for first order formulas a syntactical truth predicate is nothing but arith-

metical truth:

Lemma 1.4 Let T be a syntactical truth predicate. A closed first order formula

is in T if and only if it is true in the standard interpretation with base N.

Proof We prove in fact that for every first order formula F (x1, . . . , xn) with

free variables among x1, . . . , xn and for all closed terms t1, . . . , tn the formula

F (t1, . . . , tn) is in T iff it is true in the standard interpretation with base N.

The proof is a straightforward induction on F . 2
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The sequel of this paper is organized as follows.

In §2 we look at the status of Leibniz’s equality axiom and the induction axiom,

which happen to be equivalent with respect to s.t.p.’s. In §3, using Gödel’s

hierarchy of constructible sets, we prove in set theory the existence of an s.t.p.

(which is in fact Leibniz, i.e. satisfies Leibniz’s axiom). In §4 we recall the

syntax of second order logic L2 and second order arithmetic PA2. We also

introduce a second-order conservative extension PA1 of Peano arithmetic. In

§5 we show that s.t.p.’s (resp. Leibniz s.t.p.’s) are an appropriate semantics of

second order logic (resp. arithmetic), i.e that any closed provable formula is

true under any such truth predicate. This is shown in PA1. In §6 we show that

every Leibniz s.t.p. is the semantical truth predicate of some associated ω-model

of PA2. From a (non Leibniz) s.t.p. we construct a semantical truth predicate

of some ω-model of PA2. These results are also shown in PA1. Finally, in

§7, refining the existence proof done in ZF, we construct an s.t.p. from the

truth predicate of any ω-model of PA2. The construction is done in PA1. This

proves in PA1 the equivalence between the existence of an s.t.p. and that of

the semantical truth predicate of an ω-model of PA2. Also, a long Appendix

details some developments of the ramified analytical hierarchy within the formal

system PA2 necessary for the proof of the above last result.

All along the paper, provability in PA1 is refined to provability in (IΣ0
1, C∆0

1)-

PA1, (i.e. Σ0
1-induction plus ∆0

1-comprehension).

2 Equality and syntactical truth predicates

2.1 Leibniz syntactical truth predicates

Recall that the second order characterization of equality

∀x∀y(x = y ↔ ∀X(x ∈ X ↔ y ∈ X)))

is a formula equivalent (modulo some weak comprehension axioms) to the con-

junction of the axiom of equality ∀x x = x and Leibniz’s axiom

(Leibniz) ∀x∀y(x = y → ∀X(x ∈ X → y ∈ X))

(for the ← direction, use the set definition λz.(x = z)).
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Proposition 2.1 Let T be a syntactical truth predicate.

1. The following statements are equivalent

(a) T (∀x∀y(x = y → (A(x) → A(y)))) for every second order formula

A(x) in which x is the sole free variable.

(b) T (A(t)) ⇒ T (A(u)) for every second order formula A in which x is

the sole free variable and every closed terms t, u with the same value.

(c) T (∀xA) ⇔ (T (A[x ← Sn(0)]) for every n ∈N) for every second

order formula A in which x is the sole free variable.

(d) T (∀x∀y(x = y → ∀X(x ∈ X → y ∈ X)))

2. If A is a first order formula then statements (a),(b),(c) above are all true.

Proof 1) (a) ⇔ (b) and (a) ⇔ (d) come from clauses (iii) and (iv) in the

definition of s.t.p.’s.

(b) ⇒ (c) Since every closed term is equal to some Sn(0) we deduce (c) from

clause (iii) and (b).

(c)⇒ (b) Clauses (i),(ii) yield T (Sn(0) = Sm(0) → (A(Sm(0) ↔ A(Sn(0)))) for

every m,n ∈N. Applying (c) with formula (x = Sm(0) → (A(Sm(0) ↔ A(x)),

we get T (∀x(x = Sm(0) → (A(Sm(0) ↔ A(x))). Therefore, clause (iii) yields

T (A(Sm(0) ↔ A(t))) , i.e. T (A(Sm(0))) ⇔ T (A(t)) for every term t with value

m . Whence (b).

2) Apply Lemma 1.4 and use Point 1. 2

This leads to the following Definition:

Definition 2.2 A syntactical truth predicate is Leibniz if it contains Leibniz’s

axiom ∀x∀y(x = y → ∀X(x ∈ X → y ∈ X)).

Remark 2.3 1. Clearly, every s.t.p. satisfies the equality axiom ∀x x = x.

2. We shall see that Leibniz s.t.p.’s do exist. However, we do not know

whether there exist non Leibniz s.t.p.’s.
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3. In §7 we develop a complicate construction, formalizable in PA1, which

gives a Leibniz s.t.p. from any s.t.p. We know no direct simple such con-

struction: all simple attempts (using classical relativization techniques)

fail due to the circular character of clause (iv) in the definition of s.t.p.’s

which prevents any induction over formulas.

4. Clause (iii) for s.t.p.’s does depend on the language for first order terms.

In particular, suppose we reduce that language to 0 and the sole successor

function S. Second order quantifications over binary relations R allow to

define + and × from S as follows: x + y = z iff

∀R (((0, x) ∈ R ∧ (∀v∀w((v, w) ∈ R → (Sv, Sw) ∈ R))) → (y, z) ∈ R)

Similar for ×, using the above definition of +. If we extend in the obvious

way clause (iv) for s.t.p.’s to quantifications over binary relations then

every s.t.p. for that language is trivially Leibniz since clause (iii) then

coincides with condition (c) of the above Proposition.

2.2 Inductive syntactical truth predicates

The following result relates Leibniz’s axiom and the induction axiom

(Ind) ∀X(0 ∈ X ∧ ∀x(x ∈ X → Sx ∈ X)) → ∀x x ∈ X

with respect to syntactical truth predicates.

Lemma 2.4 An s.t.p. T is Leibniz if and only if it contains Ind.

Proof (⇒) Let A be a formula with at most one free variable x. We have

to show that if T (A[x ← 0]) and (T (A[x ← t]) ⇒ T (A[x ← S(t)]))) for every

closed term t then T (A[x ← u]) holds for any closed term u. But an easy

induction on n shows T (A[x ← Sn(0)]) for all n. Let p be the value of u, from

T (A[x ← Sp(0)]) we then get T (A[x ← u]) since T is Leibniz.

(⇐) Suppose T (Ind) and let H(x, y) be ∀X(x = y → (x ∈ X ↔ y ∈ X)).

Given the fact that T is an s.t.p. we have to show that T (∀x∀yH(x, y)). Since

T contains the induction axiom, we argue by induction on x and y.

• T (∀yH(0, y)) is shown by induction on y : T (H(0, 0)) trivially holds.
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T (H(0, S(u))) holds since T (0 = S(u)) means that 0 and S(u) have the

same value which is impossible.

• Assume that T (∀yH(t, y)) holds. We show by induction on y that

T (∀yH(S(t), y)) holds:

– T (H(S(t), 0)) holds since T (S(t) = 0) is impossible

– To prove T (H(S(t), S(u))) let D = λxA be a closed set definition.

Assume that T (S(t) = S(u)), we have to establish that T (A[x ←
S(t)] ⇔ T (A[x ← S(u)]. But since T is an s.t.p. S(t) and S(u) must

have the same value hence so do t and u. By induction hypothesis we

have T (H(t, u)), thus letting D′ = λxA[x ← S(x)] we can instantiate

H(t, u) on D′ and we get T (A[x ← S(t)] ⇔ T (A[x ← S(u)]. 2

3 Existence Theorem in ZF

We now prove an existence theorem as an application of Gödel’s hierarchy of

constructible sets ([13]).

Theorem 3.1 The existence of a Leibniz syntactical truth predicate is provable

in Zermelo-Fraenkel set theory.

Proof Let P(N)L be the set of constructible sets of natural numbers in the

sense of [13]. Let T be the restriction to closed formulas of Tarski’s semantical

truth predicate in the structure (N,P(N)L). We claim that T is a syntactical

truth predicate.

Clauses (i), (ii) and (iii) for s.t.p.’s are trivially satisfied. We prove clause (iv)

in its existential version (clearly equivalent in the presence of clause (ii)):

T (∃XA) iff (T (A[X ← λx.D(x)]) for some closed set definition D)

We first prove the ⇐ implication. Since L is a model of the comprehension

schema, there exists U ∈ P(N)L such that (N,P(N)L) |= ∀x(x ∈ U ↔ D(x)).

An easy induction over formulas F then shows that the semantical truth value

in (N,P(N)L) of F [X ← λx.D(x)] under environment ρ is that of F under
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environment (X,U) :: ρ. In particular, if (the closed formula) A[X ← λx.D(x)]

is in T , i.e. is true, then A is true under environment (X,U), so that the closed

formula ∃XA is true, i.e. is in T .

We now prove the ⇒ implication. It is established in [13], see also [1], that

there exists a well-ordering on P(N)L which is definable in (N,P(N)L) by a

second order formula. We will write Less(X,Y ) for such a formula. Let A(X)

be a formula with a second order variable X. If there exists in P(N)L a set

satisfying A then the least of such sets (in the sense of the well-order) is definable

in (N,P(N)L) by the following formula D(x) :

D(x) ⇔ ∃X(x ∈ X ∧A(X) ∧ ∀Y (A(Y ) → ¬Less(Y,X)))

Thus, the formula ∃XA(X) → A[X ← λx.D(x)] is in T . Applying clause (ii)

we get T (∃XA) ⇒ T (A[X ← λx.D(x)]). 2

Remark 3.2 Using generic models of set theory satisfying V 6= L in which

there are ∆1
3 well-orderings of the continuum (see [16, 17, 18, 28]), the above

construction leads to different syntactical truth predicates.

4 Second order logic and arithmetic

4.1 Syntax of second order logic in natural deduction

We follow Takeuti [29] (p.165-172, system KC) and Girard ([12], p.176-177),

for the presentation of L2 and PA2. The second order language for these

systems has already been introduced in §1. (Note: Set definitions introduced

in Notation 1.1 are called abstracts in [29], p.168, and abstraction terms in [12],

p.176).

Remark 4.1 Set definitions are not terms in the chosen syntax hence do not

appear in formulas: there is no formula t ∈ λx.B. In fact, substitution of set

definition involves implicit β-reduction: we avoid any would-be formula t ∈ λx.B

by immediately replacing it by its β-reduct B[x ← t].

As usual, a sequent is a pair (Γ, A), also denoted Γ ` A, where Γ is a finite set

of formulas and A is a formula. The intuitive meaning of Γ ` A is that A holds
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under the set Γ of hypotheses. We write ` A instead of ∅ ` A.

Definition 4.2 The axioms and inference rules of L2 are:

Γ ∪ {A} ` A (Assumption)

Γ ∪ {A} ` B

Γ ` A → B
(→ i) (→ e)

Γ ` A → B Γ ` A

Γ ` B

Γ ` A

Γ ` ∀xA
(∀1i) (∀1e)

Γ ` ∀xA

Γ ` A[x ← t]

Γ ` A

Γ ` ∀XA
(∀2i) (∀2i) (∀2e)

Γ ` ∀XA

Γ ` A[X ← λx.D]

Γ ` (¬¬A) → A (Classic)

Here ¬A stands for the intuitionistic negation A → (0 = 1). In these rules Γ

is any finite set of formulas, A,B,D are formulas, x,X are any first, second

order variables, t is a first order term. The left rules are introduction rules and

the right ones elimination rules. The ∀ introduction rules are subject to the

condition that the quantified variable is not free in a formula of Γ.

As usual, a proof is a finite sequence J1, . . . , Jn of sequents such that for any

1 ≤ i ≤ n there exists j1, . . . , jk < i such that Ji can be obtained by one of the

inference rules from Jj1 , . . . , Jjk
. A proof of a sequent J is a proof ending by J .

A sequent J is provable if there exists a proof of J . A formula A is provable if

the sequent ` A is provable.

Remark 4.3 Dual rules for ∃i are provable in L2. For instance, the ∀2 elimi-

nation rule is equivalent to the ∃2 introduction rule:

Γ ` A[X ← λx.D]
Γ ` ∃XA

(∃2i)

This rule is also equivalent to the second order comprehension schema (cf.[12],

p.177) ∀~y∀~Y ∃X ∀x(x ∈ X ↔ A(x, ~y, ~Y )) .

4.2 Second order arithmetic

Definition 4.4 1. Axioms and rules of PA2 are as follows:
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(a) All axioms and rules of L2.

(b) Axioms for Robinson’s first order elementary arithmetic (cf.[14] Def.

1.1 p.28 or [27], Def. I.2.4 i p.4).

(c) The axiom of equality ∀x x = x and Leibniz’s axiom

(Leibniz) ∀x∀y(x = y → ∀X(x ∈ X → y ∈ X))

(which imply ∀x∀y(x = y ↔ ∀X(x ∈ X ↔ y ∈ X)) , cf.§2.1).

(d) The axiom of induction, which is nothing but the definition of integers

in second order logic,

(Ind) ∀X(0 ∈ X ∧ ∀x(x ∈ X → Sx ∈ X)) → ∀x x ∈ X)

2. CΠ1
1-PA2 is obtained from PA2 by restricting the ∀2 elimination rule to

set definitions λx.A where A is a Π1
1 formula. This corresponds exactly to

restricting the comprehension schema to Π1
1 formulas.

Remark 4.5 It is easy to see that CΠ1
1-PA2 yields the comprehension schema

for boolean combinations of Π1
1 formulas. In particular, CΠ1

1-PA2 does coincide

with CΣ1
1-PA2 (cf.[27], Def.I.5.2, p.16).

We shall also consider arithmetical theories with second order variables which

are conservative extensions of usual first order arithmetical theories.

Definition 4.6 1. PA1 is obtained from PA2 by restricting the ∀2 elimina-

tion rule to set definitions λx.A where A is a formula with no second order

quantification (but which may contain second order free variables). This

corresponds to restricting the comprehension schema to such formulas.

2. (IΣ0
1, C∆0

1)-PA1 is obtained from PA2 as follows:

(a) the comprehension schema is restricted to ∆0
1-comprehension:

∀x(A(x) ↔ ¬B(x)) → ∃X ∀x(x ∈ X ↔ ∀xA(x)

where A,B run over Σ0
1, i.e. formulas of the form ∃~zC where C has

no second order quantification and only bounded first order quantifi-

cations. This can also be expressed as some ad hoc ∀2 elimination

rule.
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(b) the induction axiom is replaced by the Σ0
1-induction schema

(A(0) ∧ ∀x(A(x) → A(Sx))) → ∀xA(x)

where A runs over Σ0
1 formulas. (Observe that the induction axiom

is a particular instance of this schema: take A to be x ∈ X).

Note 4.7 PA1 and (IΣ0
1, C∆0

1)-PA1 are respectively denoted ACA0 and

RCA0 in papers about reverse mathematics, cf.[27].

Remark 4.8 1. PA1 (resp. (IΣ0
1, C∆0

1)-PA1) constitutes a conservative

extension of usual first order Peano arithmetic PA (resp. IΣ0
1-PA, i.e.

PA with the induction schema restricted to Σ0
1 formulas). Cf.[27], Rk.I.3.3

p.7 and I.7.6 p.25.

2. The Σ0
1-comprehension schema together with the induction axiom yield

the Σ0
1-induction schema. Thus,(IΣ0

1, C∆0
1)-PA1 is a restriction of PA1.

3. It is easy to deduce the comprehension schema for all formulas with no sec-

ond order quantification from the comprehension schema for Σ0
1 formulas

(cf.[27], Rk.I.7.7 p.25). Whence the restriction to ∆0
1-comprehension.

4. (IΣ0
1, C∆0

1)-PA1 coincides with (IΠ0
1, C∆0

1)-PA1 (cf.[27], Def.I.7.2, p.24).

5. In the context of ∆0
1 comprehension, the Σ0

1-induction schema is equivalent

to bounded Σ0
1-comprehension, i.e. ∀x ∃X ∀y(y ∈ X ↔ y < x ∧ A(y))

where A is Σ0
1 (cf.[27], Ex.II.3.13, p.72).

5 Soundness results for s.t.p.’s

Definition 5.1 1. A substitution is a function σ associating to each first

order variable x a term σ(x) and to each second order variable X a set

definition σ(X).

(a) We say σ is finite if σ(x) = x and σ(X) = λx.(x ∈ X) for all but

finitely many variables x, X.
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(b) We say σ is closed for a family of formulas F if all terms σ(x) and

all set definitions σ(X) are closed for the variables x,X occuring free

in some formula of F .

2. If σ is a substitution and A is a formula with variables among ~x =

x1, . . . , xn and ~X = X1, . . . , Xp, we let σ(A) be A[~x ← σ(~x), ~X ← σ( ~X)]

where σ(~x) stands for σ(x1), . . . , σ(xn) and similarly for σ( ~X).

Definition 5.2 Let σ be a substitution and t be a first order term.

• We define the substitution σ{x ← t} by the equations

σ{x ← t}(x) = t σ{x ← t}(y) = σ(y) for y 6= x σ{x ← t}(X) = σ(X)

• Similarly we define σ{X ← λx.D}.

• If x is a first order variable we let σx = σ{x ← x}.

Note 5.3 If σ is finite so are σ{x ← t}, σ{X ← λx.D}, σx.

When σ is closed for F , σx is no more closed in general.

We have the following elementary lemma concerning substitutions:

Lemma 5.4 If σ is closed for A then σ(∀xA) = ∀x(σx(A)) and

(σx(A))[x ← t] = σ{x ← t}(A) and (σx(A))[x ← σ(t)] = σ(A[x ← t]).

Similar results hold for second order substitutions.

We can now state the main result of this section.

Theorem 5.5 (Soundness for L2) Let T be a syntactical truth predicate. We

let T (σ(∆)) mean that T (σ(F )) holds for any formula F in ∆.

1. If Γ ` A is provable in L2 then for any finite substitution σ closed for

Γ ∪ {A} we have T (σ(Γ)) ⇒ T (σ(A)).

2. If T is Leibniz then the same holds for sequents provable in PA2.

3. Points 1,2 are (formalizable and) provable in (IΣ0
1, C∆0

1)-PA1.

Proof We argue by induction on the proof of Γ ` A:
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• The case of the assumption axiom (Ass) is trivial.

• For the (→ i) rule assume that T (σ(Γ ∪ {A})) ⇒ T (σ(B)). Then

T (σ(Γ)) ⇒ (T (σ(A)) ⇒ T (σ(B))) i.e. (since T is a syntactical truth

predicate) T (σ(Γ)) ⇒ T (σ(A) → σ(B)) i.e. T (σ(Γ)) ⇒ T (σ(A → B)).

• For the (→ e) rule assume that T (σ(Γ)) ⇒ T (σ(A → B))) and T (σ(Γ)) ⇒
T (σ(A)). Then if T (σ(Γ)) holds we have T (σ(A → B))) i.e. T (σ(A) →
σ(B)) i.e. T (σ(A)) ⇒ T (σ(B)) and T (σ(A)) hence T (σ(B)).

• For the (∀1i) rule assume that T (σ(Γ)) ⇒ T (σ(A)) for any σ. Consider a

term t and a particular substitution σ and define σ′ = σ{x ← t}. We have

T (σ′(Γ)) ⇒ T (σ′(A)) i.e. T (σ(Γ)) ⇒ T (σ′(A)) (since x does not appear

in Γ) hence T (σ(Γ)) ⇒ T ((σx(A))[x ← t]) by Lemma 5.4. Thus we get

T (σ(Γ)) ⇒ T (∀x(σx(A))) i.e. T (σ(Γ)) ⇒ T (σ(∀xA)) by Lemma 5.4.

• For the (∀1e) rule assume that T (σ(Γ)) ⇒ T (σ(∀xA)). Then T (σ(Γ)) ⇒
T (∀xσx(A)) hence for any term t T (σ(Γ)) ⇒ T ((σx(A))[x ← σ(t)]) i.e.

T (σ(Γ)) ⇒ T (σ(A[x ← t])) by Lemma 5.4 since σ is closed.

• The (∀2i) and (∀2e) rules are treated in an essentially equivalent manner,

replacing first order terms t by set definitions.

• Eventually note that ¬¬(A) → A is true under T since T (¬A) is equivalent

to ¬T (A).

To prove Point 2, observe that first order axioms of PA2 are true in the standard

model, hence are true in every s.t.p. (cf.Lemma1.4). Lastly, Leibniz’s axiom

and the induction axiom are true for every Leibniz s.t.p.(cf.2.4).

Using some reasonable primitive recursive coding of finite substitutions and

proofs, we see that the above induction hypothesis is Π0
1. From 4.8 point 4, we

then get Point 3. 2

The following corollary will be strengthened in §6.10.

Theorem 5.6 Assume that there exists a syntactical truth predicate. Then

second order arithmetic PA2 is consistent.

Moreover, this is (formalizable and) provable in (IΣ0
1, C∆0

1)-PA1.
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Proof First, we prove that L2 is consistent. Assume that there exists a proof

of ` 0 = 1 then by Point 1 of the previous proposition one must have T (0 = 1),

a contradiction since 0 and 1 do not have the same value.

The same argument needs the existence of a Leibniz s.t.p. to get the consistency

of PA2. However, using a relativization technique, one can interpret PA2 in

L2 + Robinson’s axioms (see [12] p.177-180 ii-iii), so that the consistency of

PA2 reduces to that of L2 + Robinson. But Robinson’s axioms are true in the

standard model, hence are true in the s.t.p. T and we conclude as above. 2

6 Syntactical truth predicates and ω-models

6.1 Structures for the language of PA2 (within PA1)

A structure M for the language of second order arithmetic consists of a domain

M for individuals and a domain F for sets which is (or can be identified with) a

family of subsets of M . A priori, F is a third order object. Since we are working

within PA2, we want F to be coded by a second order object, which leads to

the following definitions.

Definition 6.1 1. Let M, U be sets. Using Cantor codes (cf.A.1), we let

U [n] = {x ∈ M |< n, x >∈ U} for n ∈N

Slices(U) = {U [n] | n ∈ N} ⊆ P (M)

2. A structure M for the language of second order arithmetic consists of

the following data: M = (M, Slices(U), 0M, SM, +M,×M, =M,∈) where

M,U are sets, 0M is an element of M , and =M is a binary relation over

M and SM (resp. +M,×M) is a unary (resp. binary) function over M .

3. We denote TruthM(A, ρ) the semantical truth predicate for the structure

M, where A is a formula and ρ is an environment, i.e. an assignment

of elements of the M-domains to individuals and sets to first and second

order variables occuring free in A.
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4. M is recursive in a set X if M,U and all the operations and relations of

M are recursive in X.

Using Gödel numbers of formulas, we can formalize in PA1 the notion of se-

mantical truth predicate for a structure M.

Definition 6.2 We denote Semantic(T,M) the first order formula (with free

second order variables) which expresses that T codes the semantical truth pred-

icate of the structure M, i.e. the set of Cantor codes (cf.A.1) <f, x, u> such

that f is the Gödel number of a second-order formula and x, u code assign-

ments in the M-domains for individuals and sets of the free first and second

order variables of f for which f is true in the structure M. (This is done via

the usual inductive conditions defining semantical truth and also arithmetical

translations of the adequate recursive operations on Gödel numbers).

The following Theorem is classical.

Theorem 6.3 1. (IΣ0
1, C∆0

1)-PA1 proves that there is at most one set T

such that Semantic(T,M). We (abusively) keep the notation TruthM

from Def. 6.1 for this unique set T when it does exist.

2. CΠ1
1-PA2 proves:

(a) TruthM does exist for every M.

(b) The relation z ∈ TruthM is definable by Σ1
1 and Π1

1 formulas.

Proof 1) Without loss of generality, we can suppose that the natural ordering

refines the subformula ordering on Gödel numbers. To prove Point 1 we show

by induction on n that two solutions T1, T2 coincide up to n. Observe that the

inductive conditions defining semantical truth are expressible as a Π0
1 formula.

Thus, this induction is formalizable in (IΣ0
1, C∆0

1)-PA1.

2) cf. Appendix, Application B.10.

Remark 6.4 1. For every n the restriction of TruthM to formulas with at

most n alternations of quantifiers (both first and second order ones) is

Σ0
Sup(1,n) definable with parameter M. Hence, its existence is provable in

PA1 (cf. [14] p.78-81 or [19] p.119-127).
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2. However, the existence of TruthM can not (in general) be proved in PA1.

3. Since TruthM consists of (Gödel numbers of) formulas and parameters in

the structure, we see that M is always recursive in TruthM.

We mention an easy but useful Proposition.

Proposition 6.5 1. TruthM is closed by the ∀2 elimination rule of L2 if

and only if it closed by the comprehension schema

∀~y∀~Y ∃X ∀x(x ∈ X ↔ φ(x, ~y, ~Y ))

where φ is any second order formula.

2. TruthM satisfies all axioms and is closed by all other rules of L2.

3. Points 1,2 are formalizable and provable in (IΣ0
1, C∆0

1)-PA1

+ ∃T Semantic(T,M)

Proof Point 1 is the model theoretical version of the equivalence mentioned

in Remark 4.3. Point 2 is easy.

6.2 The canonical model associated to an s.t.p.

To any s.t.p. T we shall associate a structure for which T is exactly the associ-

ated semantical truth predicate restricted to closed formulas.

Definition 6.6 Let T be a set of closed formulas of the language of second

order arithmetic.

1. To each closed set definition λx.D we associate a set of closed terms [[D]]T
called the semantics of λx.D relative to T , as follows:

t ∈ [[D]]T ⇔ T (A[x ← t]) for any closed term t.

2. We associate to T a structure of the language of second order arithmetic

MT = (CT ,Def(T ), 0T , ST , +T ,×T , =T ,∈) where

(a) CT is the set of closed terms, 0T is the term 0 and ST ,+T ,×T are

the obvious syntactical operations on CT ,
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(b) =T is the relation such that t =T u iff T (t = u),

(c) Def(T ) = Slices({(D, t) | t ∈ [[D]]T }), i.e. Def(T ) is the family of

subsets of CT of the form [[D]]T for closed set definitions λx.D.

Remark 6.7 It is clear that {(D, t) | t ∈ [[D]]T } is recursive in T . Thus,

MT is recursive in T and the whole construction of MT is formalizable within

(IΣ0
1, C∆0

1)-PA1.

Lemma 6.8 Let T be a syntactical truth predicate.

1. Let A be a formula with free variables among ~x = x1, . . . , xm, ~X =

X1, . . . , Xn. Let ~t = t1, . . . , tm, λz. ~D = λz.D1, . . . , λz.Dn be finite se-

quences of closed terms and closed set definitions. Then

T (A[~x ← ~t, ~X ← λz. ~D]) ⇔ TruthMT
(A, (~x,~t) :: ( ~X, [[ ~D]]T ))

In particular, T coincides with the restriction to closed formulas of

TruthMT
.

2. MT and TruthMT are recursive in T .

3. (IΣ0
1, C∆0

1)-PA1 proves the existence of TruthMT and the formalizations

of Points 1,2 (involving the Gödel number of A and codes for the assign-

ments of variables).

Proof We prove Point 1 by induction on A :

• The case where A is the atomic formula u = v is trivial.

• If A is the atomic formula u ∈ Xi then
TruthMT (A, (~x,~t) :: ( ~X, [[ ~D]]T )) ⇔ u[~x ← ~t] ∈ [[Di]]T

⇔ T (Di[z ← u[~x ← ~t]])

⇔ T ((u ∈ Xi)[~x ← ~t,Xi ← λz.Di])

⇔ T ((u ∈ Xi)[~x ← ~t, ~X ← λz. ~D])

• If A is B → C then the equivalence is clear by clause ii) in the definition

of syntactical truth predicates.
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• If A is the formula ∀yB then, applying the induction hypothesis and the

ordinary substitution lemma for TruthMT , we get

T (A[~x ← ~t, ~X ← λz. ~D]) ⇔ ∀u ∈ CT T (B[~x ← ~t, ~X ← λz. ~D][y ← u])

⇔ ∀u ∈ CT T (B[y ← u, ~x ← ~t, ~X ← λz. ~D])

⇔ ∀u ∈ CT TruthMT
(B, (y, u) :: (~x,~t) :: ( ~X, [[ ~D]]T ))

⇔ TruthMT
(∀yB, (~x,~t) :: ( ~X, [[ ~D]]T ))

• If A is the formula ∀Y B then applying the induction hypothesis (and de-

noting λz.D′ a closed set definition) we get

T (A[~x ← ~t, ~X ← λz. ~D]) ⇔ ∀D′ T (B[~x ← ~t, ~X ← λz. ~D][Y ← λz.D′]

⇔ ∀D′ T (B[~x ← ~t, ~X ← λz. ~D, Y ← λz.D′]

⇔ ∀D′ TruthMT
(B, (~x,~t) :: (Y, [[D′]]T ) :: ( ~X, [[ ~D]]T ))

⇔ ∀S ∈ Def(T ) TruthMT (B, (~x,~t) :: (Y, S) :: ( ~X, [[ ~D]]T ))

⇔ TruthMT (∀Y B, (~x,~t) :: ( ~X, [[ ~D]]T ))

Point 2 is trivial from Point 1. To get Point 3, use Remark 6.7 and observe that

the above proof can be formalized as an induction over a Π0
1 formula of the form

∀~t∀ ~D φ(T,~t, ~D, A). 2

6.3 From an s.t.p. to an ω-model of PA2

Proposition 6.9 Let T be a syntactical truth predicate. Then MT is a model

of L2 plus the axioms for Robinson’s first order elementary arithmetic.

Proof From Theorem 5.5 and Lemma 1.4 we know that T satisfies L2 and

Robinson’s axioms. We conclude using Lemma 6.8. 2

We now prove the main Theorem of this section.

Theorem 6.10 Let T be a syntactical truth predicate.

1. There exists an ω-model M = (N, Slices(U), 0, S,+,×, =,∈) of PA2

(where S, +,× are the usual operations on N) such that U (hence M)

and TruthM are recursive in T .

2. If T is Leibniz then MT itself is (up to isomorphism) an ω-model of PA2.
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3. Points 1,2 are formalizable and provable in (IΣ0
1, C∆0

1)-PA1.

Proof We first prove Point 2. Theorem 5.5 insures that MT is a model of

PA2. Since T is Leibniz, the MT -equality relation on elements of CT is a

congruence with respect to the ∈-relation and the operations of MT so that we

can define a quotient model which satisfies exactly the same statements, hence

is a model of PA2. Observe that each equivalence class contains a unique term

of the form Sn(0). Thus, the quotient is (up to isomorphism) an ω-model.

We now prove Point 1. Theorem 5.5 insures that MT is a model of L2. We

shall use a classical relativization technique (cf.[12], p.180 (iii)). Consider the

following notions.

• X ⊆ CT is saturated if ((T (t = u) ∧ t ∈ X) ⇒ u ∈ X for all closed terms

t, u).

• Let ̂Def(T ) be the family of saturated sets in Def(T ).

All these notions are clearly definable in MT . Also, M̂T = (CT , ̂Def(T )) con-

stitutes a substructure of MT .

• By construction, all sets in ̂Def(T ) are saturated. Thus, M̂T satisfies

Leibniz’s axiom, whence also (via an easy induction on formulas) Leibniz’s

schema ∀x∀y(x = y → (φ(x) → φ(y)))

• Now, we prove that M̂T satisfies the comprehension schema. In fact,

let Z be a subset of CT definable in M̂T by a formula φ. Then Z is

also definable in MT by the formula obtained from φ by relativizing all

second order quantifiers to ̂Def(T ). Notice that we use here the fact that
̂Def(T ) is second order definable in MT . Since MT satisfies L2 hence

comprehension, we have Z ∈ Def(T ). Now, since M̂T satisfies Leibniz’s

schema and Z is definable over M̂T , Z is necessarily saturated. Using

Proposition 6.5, we conclude that M̂T satisfies L2.

• Let X ∈ ̂Def(T ) be such that (0 ∈ X) ∧ ∀x(x ∈ X → S(x) ∈ X). Then

every term Sn(0) is in X. Now, any closed term t is convertible to some
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Sn(0) and M̂T satisfies t =T Sn(0). Since X is saturated we see that t

has to be in X. This proves that the induction axiom is true in M̂T .

• Finally, Robinson’s axioms trivially hold.

This proves that M̂T is a model of PA2. Of course, we don’t have yet an ω-

model. However, the argument about quotient model used in the above proof

of Point 2 also works for M̂T . 2

Remark 6.11 The above argument to prove Leibniz’s axiom in M̂T is a model-

theoretic version of the proof that Leibniz s.t.p.’s are inductive (cf.Lemma 2.4).

7 The Equivalence Theorem

7.1 From an ω-model of PA2 to an s.t.p.

Theorem 7.1 (The Equivalence Theorem) (IΣ0
1, C∆0

1)-PA1 proves the

equivalence between the existence of a syntactical truth predicate and the ex-

istence of an ω-model of PA2 together with its semantical truth predicate.

The ⇒ direction of the equivalence comes from Theorem 6.10.

As for the other direction, which is the object of this section, we adapt the proof

of Theorem 3.1 within a second order arithmetical framework. The natural idea

is to replace Gödel’s constructible hierarchy by its arithmetical version: the

ramified analytical hierarchy (RAH).

The development of RAH within PA2 is rather long and technical and will

be treated in the Appendix.

7.2 The Ramified Analytical Hierarchy

In set theory, the RAH is defined by induction on ordinals as follows:

• RAH0 = ∅

• RAHα+1 is the family of subsets of N definable in (N, RAHα) by second

order formulas with parameters in RAHα
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• RAHλ is the union of the RAHα ’s, with α < λ, whenever λ is a limit

ordinal

• RAH is the union of all RAHα

An obvious cardinality argument shows that there exists α such that RAHα+1 =

RAHα , hence RAH = RAHα . The smallest such α is denoted β0 .

In relation with predicative analysis, this hierarchy was introduced by S.C.

Kleene (1959, [20]) up to the ordinal ωCK
1 and studied by S. Feferman (1961,1964

[9, 11]), K. Schütte (1965 [26]) for the levels ωω and Γ0 . The general construc-

tion was considered by P.J. Cohen (1963 [5]) who observed that the ordinal β0

is countable.

Leeds & Putnam (1974 [23]) proved that (after step ω) the very same hier-

archy is obtained if RAHα+1 is defined as the family of subsets of N definable

in (N, RAHα) by second order formulas without parameters. Boolos & Putnam

(1968 [3], p. 511, Thm 9) got the relation between RAH and the constructible

hierarchy: for α < β0 , RAHα = Lω+α

⋂
P (N) .

RAH is much related to β-models of PA2 introduced by Mostowski (1959

[24], see also [25]): models (M,F), with F⊆P (M), for which the notion of well-

ordering is absolute: if R∈F codes a total ordering such that every non empty

set X∈F has an R-smallest element then the same is true for X outside F . Up

to an isomorphism, the basis of such models is necessarily standard: M = N

(just apply the hypothesis to the natural ordering on M). Gandy & Putnam

(see Boyd & Hensel & Putnam, 1969 [4]) proved that

• (N, RAH) is the smallest β-model of PA2,

• β0 is the supremum of the ordinal types of well-orders in RAH .

For a detailed review and some proofs, see Apt & Marek (1974 [2]), Kreisel

(1968 [22], p.368).
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7.3 RAH and PA2

As reviewed above, RAH has been extensively studied in set theory and in re-

lation with β-models of PA2. As is the case with Gödel’s constructible universe

in set theory, the development of RAH within PA2, i.e. in a general model of

PA2 (which is not a β-model nor even an ω-model), leads to an inner model of

PA2 with a definable well-ordering on the family of sets, hence with a definable

choice function.

Definition 7.2 Let Θ(X, Y ) be a second order formula. We denote WOΘ the

schema consisting of the obvious formula insuring that Θ(X, Y ) defines a total

ordering on sets together with the schema of axioms insuring that Θ(X, Y ) is a

well-ordering, namely

∀~x ∀~U(∃XΦ(X,~x, ~U) → ∃X(Φ(X,~x, ~U) ∧ ∀Y (Φ(Y, ~x, ~U) → Θ(X, Y ))))

where Φ is any second order formula.

Proposition 7.3 PA2+ WOΘ proves the following schema of axioms

∀~x ∀~U(∃X(Φ(~x, ~U, X) → Φ(~x, ~U,X)[X ← λz.ρ(z, ~x, ~U)])

where Φ is any second order formula and ρ(z, ~x, ~U) is the formula

∃X(Φ(X,~x, ~U) ∧ ∀Y (Φ(Y, ~x, ~U) → Θ(X,Y )) ∧ z ∈ X)

or the dual formula ∀X(. . . → z ∈ X).

Definition 7.4 As usual, the relativization of a formula F to a formula Φ(X)

is the formula FΦ obtained by replacing in F second order quantifications ∀X . . .

and ∃X . . . by ∀X(Φ(X) → . . .) and ∃X(Φ(X) ∧ . . .).

Theorem 7.5 1. There are Σ1
2 formulas RAH(X) and ≤RAH(X, Y ) such

that PA2 proves the relativization to RAH(X) of every axiom of PA2

and of the schema of formulas WO≤RAH
.

2. Point 1 is formalizable and provable in (IΣ0
1, C∆0

1)−PA1.

The above theorem is folklore, as are its applications to the conservativeness of

(second order) choice axioms over PA1 and to the relative consistency of choice

schema over PA2. This last point appears in Apt & Marek (1974, cf.Theorem
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5.25) with no proof. Jakubovic (1981 [15]) avoids RAH and sketches in half a

page a development of the constructible universe in an interpretation of a part

of ZF set theory in PA2 (following Zbierski, 1971 [30]).

In the Appendix, we present to some extent the development of RAH in PA2:

• (Up to our knowledge) No reasonable direct development of RAH in PA2

has ever appeared in print. Only very recently, a detailed presentation

of the set theoretic constructible hierarchy coded within PA2 became

available in Simpson’s book (1999 [27]).

• Though there is no surprise and all expected results just go through, such

a development asks for some care (and more space than waving hands

arguments). In particular, to prove in PA2 that RAH is a β-model (i.e.

that well-orderings in the sense of RAH are true well-orderings, cf. Ap-

pendix, Proposition D.14) requires some work (whereas it is trivial in set

theory). This last result is needed to get the key relativization properties

of the definable well-ordering on RAH.

• Last but not least, in order to get Point 2 of Theorem 7.5 it is necessary

to check the details of such a development as is done in D.3.

7.4 Proof of the Equivalence Theorem

Only the ⇐ direction of the equivalence in Theorem 7.1 remains to be proved.

Consider an ω-model M of PA2 and its semantical truth predicate TruthM.

Apply Theorem 7.5 to get (recursively in M and TruthM) another ω-model

MRAH, together with its semantical truth predicate TruthMRAH , which satis-

fies PA2+ WOΘ. Then Proposition 7.3 allows to use the very same argument

developped in 3.1 to prove that TruthMRAH is indeed a syntactical truth pred-

icate. 2
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8 Conclusion

Among the questions raised by this paper let us mention the relation between

Dragalin’s semi-formal syntax [8] and the syntactical truth predicates proposed

here as a possible semantics.

Let us remark that a syntactical semantics of third order arithmetic can be

given in an analogous way, the treatment of third order quantification being

similar to the second order case. Notice however that such syntactical truth

predicates are still second order objects, whereas the semantical truth predicate

is a fourth order object. This remark immediately generalizes to any order.

A Some naive set theory in PA1

This long Appendix is devoted to the proof of Theorem 7.5.

Conventions Implicit extensions by definitions are systematically used.

Derivations in PA2 are presented in a more or less formal way, sometimes

mixing vernacular descriptions and formal statements. Some arguments and

assertions are also given model theoretic intuition.

A.1 Cantor pairing function and variations

We shall constantly code tuples, finite sequences and infinite eventually zero

sequences of integers by integers. We cite below the useful properties of such

codings. It is easy to explicit some recursive constructions and to define this

coding by first order formulas (which can be taken Σ0
1 or Π0

1) such that all basic

expected properties can be proved in PA (cf. [19] p105-108 or [27] p.65-69).

Let <x, y> = (x+y)(x+y+1)
2 + x denote Cantor bijection from N2 onto N.

1. Finite sequences with fixed length are coded via Cantor functions:

<x> = x , <x0, . . . , xk> = <<x0, . . . , xk−1>, xk>

For k = 2 we use the classical notations x = <π1(x), π2(x)>.

2. Finite sequences with variable lengthes are coded as follows: 0 codes the

empty sequence, 1 + <k − 1, <x0, . . . , xk−1>> codes (x0, . . . , xk−1).
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3. For infinite eventually zero sequences (useful for assignments of variables)

we use proj∞(k, x) = π2(π
(k)
1 (x)). In particular, the everywhere zero

sequence is coded by 0.

A.2 Relations in PA1

The following notions and notations take place in PA1, i.e. correspond to first

order formulas (with second order variables) such that PA1 proves all basic

expected properties.

1. Sets coding binary relations To a set α we associate the relation

rel(α) = {(i, j) | <i, j> ∈ α}
with Domain(α) = {x | ∃y(<x, y> ∈ α ∨<y, x> ∈ α)}

2. Total orderings Suppose rel(α) is a reflexive total ordering relation on

Domain(α). We shall write i ≤α j (resp. i <α j) in place of <i, j> ∈ α

(resp. <i, j> ∈ α ∧ i 6= j). Proper initial segments are denoted

α≤p = {i | <i, p> ∈ α} , α<p = {i | <i, p> ∈ α ∧ i 6= p}
Successor and limit orderings are defined in the usual way.

3. Lexicographic product and ω power of total orderings.

α⊗ β = {<<i,m>, <j, n>> | i <α j ∨ (i = j ∧m <β n}
αω = {<x, y> | ∀i(proj∞(i, x), proj∞(i, y) ∈ Domain(α))

∧∃i((proj∞(i, x) <α proj∞(i, y)) ∧ ∀j<i(proj∞(i, x) = proj∞(i, y)))}

A.3 Sets coding families of sets

With sets it is possible to code countable families of sets as slices of the binary

relations associated to sets, cf. Def.6.1. Such countable families will be sufficient

to develop RAH in PA2. In the sequel equality for sets X = Y is to be

interpreted as ∀x(x ∈ X ↔ x ∈ Y ).

Definition A.1 (Total orderings on families of sets in PA1) 1. Let

rel(ξ) be a total ordering relation and X be a set. We associate to ξ
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a relation

REL(ξ, X) = {<u, v> | ∃u′∃v′ (u′ ≤ξ v′ ∧X[u′] = X[u] ∧X[v′] = X[v])

∧∀w((X[w] = X[u] → u′ ≤ξ w) ∧ (X[w] = X[v] → v′ ≤ξ w))}
which is to be interpreted as follows:

• REL(ξ, X) is a total ordering relation with domain the family of sets

Y such that the set {u ∈ Domain(ξ) | X[u] = Y } is non empty and

has a ξ-smallest element,

• sets are compared via their ξ-smallest representatives.

Thus, X[u]≤sets
ξ,X X[v] is just <u, v> ∈ REL(ξ, X), whereas Y≤sets

ξ,X Z is

expressed by the formula

∃u∃v(Y = X[u] ∧ Z = X[v] ∧<u, v> ∈ REL(ξ, X))

This notion is particularly suited for the case ξ is a well-ordering.

2. We write ≤sets
ξ,X =≤sets

η,Y for the first order formulas expressing that these

orderings have the very same domain of sets and cöıncide on this domain.

3. INITSEGM(≤sets
ξ,X ,≤sets

η,Y ) is the first order formula expressing

• the inclusion of Domain(≤sets
ξ,X ) as an initial segment of

Domain(≤sets
η,Y ),

• and that ≤sets
ξ,X is the restriction of ≤sets

η,Y to Domain(≤sets
ξ,X ).

Proposition A.2 PA1 proves all basic expected properties about ≤sets
ξ,X .

Note A.3 Variables x, y,. . . will be used as 1st order variables representing

elements considered as themselves whereas variables u, v,. . . will be used as 1st

order variables for elements encoding subsets. Variables α, β,. . . will be used as

2d order variables representing relations whereas variables ξ, η,. . . will be used

as 2d order variables for sets encoding total orderings on subsets.
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B Well-orderings and induction in PA2

B.1 Well-orderings in PA2

Well-orderings are defined in the obvious way in second order arithmetic by a

Π1
1 formula. Observe that if M = (M,Slices(U), SM, +M,×M,=M,∈) is a

model of PA2 and rel(α) ∈ Slices(U) is a well-ordering (briefly written wo)

in the sense of M then rel(α) is a reflexive total ordering on Domain(α) such

that every non empty subset of Domain(α) lying in Slices(U) has an α-smallest

element. Of course, there can be subsets of Domain(α) outside Slices(U) with

no α-smallest element.

Usual results about well-orderings are provable in PA2 and even in CΠ1
1-PA2,

but not in PA1, proofs being trivial adaptations of the usual set theoretical

ones.

Proposition B.1 1. (Lexicographic product and ω power of orderings)

PA1 proves that if α and β are well-orderings so are α⊗ β and αω.

2. (Rigidity of well-orderings) PA1 proves that if φ, ψ code isomorphisms

from α onto β then φ = ψ.

3. (Comparing well-orderings) CΠ1
1-PA2 proves that for all well-orderings

α, β there exists a unique φ which is either an isomorphism from α to an

initial segment of β or from β to an initial segment of α.

4. (Longest well-ordered initial segments in total orderings) CΣ1
2-PA2 proves

that every total ordering δ contains a greatest initial segment of δ which

is well-ordered.

Remark B.2 Whereas there are canonical representatives for isomorphism

types of well-orderings in set theory, there are none in second order arithmetic.

B.2 Well-orderings on families of sets

Notation B.3 1. We write ≤sets
ξ,X is a well-ordering (cf. Def.A.1) for the

Π1
1 formula which expresses that this total ordering has domain Slices(X)
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and that there exists a smallest element in every non empty subset of

Slices(X) of the form Slices(Y ).

2. We denote EquivX the set {< u, v > | X[u] = X[v]}.

Proposition B.4 PA1 proves that if rel(ξ) is a well-ordering and the domain

of rel(ξ) meets every equivalence class of EquivX then ≤sets
ξ,X is a well-ordering

on Slices(X).

Remark B.5 Let Least(ξ, X) be the set of elements which are rel(ξ)-minimal

in their equivalence classes for EquivX and let φξ,X : Least(ξ, X) 7→ Slices(X)

be defined by φξ,X(u) = X[u]. Then PA1 proves that φξ,X is an isomorphism

between rel(ξ
⋂{<u, v> | u, v ∈ Least(ξ, X)}) and ≤sets

ξ,X .

B.3 Definition by induction on well-orderings in PA2

Definition by induction in second order arithmetic is essentially the same as in

set theory. The main difference is due to the fact that there are no canoni-

cal representatives for ordinals in second order arithmetic. Since we have not

included any form of the axiom of choice in PA2, some care is necessary to

get prenex formulas with second order quantifications ahead. A drastic way to

overcome this problem is to get as many first order formulas (with second order

parameters) as possible. This is the reason why, in the next Theorem, we in-

troduce simultaneously a code R(α) for the family of sets obtained at step α of

the induction and a code Z(α) for the sequence (R(α<i))i∈Domain(α) of families

of sets obtained at previous steps.

Along with the above notations T [i] and α≤p, we shall also use

Notation B.6 We denote T |W = {<u, v> ∈ T | j ∈ W}, so that

(T |Domain(α<i))[j] = if j <α i then T [j] else ∅.

Theorem B.7 (Definition by induction)

To every formula A(α, Z,R) (possibly with some other first order and second

order parameters) we associate the formula INDA(α,Z, R)

α is a total ordering of Domain(α) ∧A(α, Z,R)
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∧∀i ∈ Domain(α) A(α<i, Z|Domain(α<i), Z[i])

∧∀i /∈ Domain(α) Z[i] = ∅

1. Let FuncA be the formula ∀α∀Z∃!R A(α, Z, R). The following assertions

are provable in PA2+(rel(α) is a wo) +FuncA

• ∃!Z ∃!R INDA(α, Z, R)

We denote Z(α), R(α) the unique such Z, R associated to α.

• ∀i∈Domain(α)(Z(α<i) = Z(α)|Domain((α<i)∧R((α<i) = Z(α)[i])

2. If Φ is a formula we let InductiveA,Φ be

∀α∀Z∀R((A(α, Z,R) ∧ ∀m ∈ Domain(α)Φ(Z[m])) ⇒ Φ(R))

Then PA2+(rel(α) is awo) + FuncA + InductiveA,Φ proves Φ(R(α)).

3. Let Iso(I, α, β) be a first order formula which expresses that rel(α), rel(β)

are total orderings and I is an isomorphism between rel(α) and rel(β). If

Ψ is a formula we let IsoIndA,Ψ be the formula

∀α∀Z∀R ∀α′∀Z ′∀R′ ∀I((A(α,Z, R) ∧A(α′, Z ′, R)

∧Iso(I, α, α′) ∧ ∀m ∈ Domain(α)Ψ(Z[m], Z ′[I(m)])) ⇒ Ψ(R, R′))

Then PA2+(rel(α) and rel(β) are isomorphic wo) +FuncA + IsoIndA,Ψ

proves Ψ(R(α), R(β)).

4. If A is a first order formula (with free second order variables) then

(a) In all previous items, one can replace PA2 by CΠ1
1-PA2.

(b) There are Σ1
1 (resp. Π1

1) formulas

Φ(α,X), ϕ(α, x) Ψ(α,X), ψ(α, x)

such that CΠ1
1-PA2+(rel(α) is a wo) proves




∀X(Φ(α, X) ↔ X ∈ Slices(Z(α)))

∀z(ϕ(α, z) ↔ z ∈ Z(α))
(1)




∀X(Ψ(α,X) ↔ X ∈ Slices(R(α)))

∀z(ψ(α, z) ↔ z ∈ R(α))
(2)
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(c) Let Θ(X, ~p, ~P ) be a formula, where ~p, ~P are first order and second

order parameters. Let GoodΘ(β) be the formula

Θ(β, ~p, ~P ) ∧Θ(R(β), ~p, ~P ) ∧Θ(Z(β), ~p, ~P )

If second order quantifications in Φ, Φ′, Ψ, Ψ′ are relativized to

Θ(X, ~p, ~P ) then

i. equivalences (1),(2) with relativized formulas are provable in

CΠ1
1-PA2+rel(α) is a wo +GoodΘ(α)

+∀i ∈ Domain(α)GoodΘ(α<i)

ii. equivalences (1) with relativized formulas are provable in

CΠ1
1-PA2+rel(α) is a limit wo +∀i ∈ Domain(α)GoodΘ(α<i)

Proof 1) Let rel(α) be some fixed well-ordering and suppose INDA(α, Z, R)

and INDA(α, Z ′, R′). Using hypothesis FuncA and the very definition of

INDA, an easy induction over rel(α) shows ∀i ∈ Domain(α)Z[i] = Z ′[i] and

therefore R = R′. This gives the unicity statement in the first item.

As for the existence, apply the comprehension schema to get

E = {i ∈ Domain(α) | ∃Zi ∃Ri INDA(α<i, Zi, Ri)}
We show that E = Domain(α).

• From the definition of INDA it is clear that if i ∈ E ∧ INDA(α<i, Zi, Ri)

then INDA(α<j , Zi|Domain(α<j), Zi[j]) for every j <α i. Thus, E is an

α-initial segment.

• If E were not the whole of Domain(α) there would exist an α-smallest

element m in Domain(α) \ E. We define Zm, Rm as follows:

Case 1 m is the first element of α In this case α<m = ∅. We set Zm = ∅
and let Rm be the unique set such that A(∅, ∅, Rm).

Case 2 m is α-limit We define Zm as follows.

Let j <α m. The very definition of E insures that all Zi[j], for i

such that j <α i <α m, have the same value, we let Zm be this

common value.

If j≥αm or j /∈ Domain(α) we let Zm = ∅.
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We also let Rm be such that A(α<m, Zm, Rm).

Case 3 m is α-successor of p. We let Zm, Rm be such that

∀i <α p Zm[i] = Zp[i] , Zm[p] = Rp and A(α<m, Zm, Rm).

Using hypothesis FuncA, it is clear that INDA(α<m, Zm, Rm) holds in

all three cases, whence m ∈ E , contradiction. This proves that E =

Domain(α).

Now, let Z be such that

• if j ∈ Domain(α) is not α-greatest then Z[j] is the common value of Zi[j]

for i such that j <α i

• if j ∈ Domain(α) is α-greatest then Z[j] = Rj

• if j /∈ Domain(α) then Z[j] = ∅.

Let R be such that A(α, Z,R). It is clear that INDA(α, Z, R), which proves

the existence assertion in item 1.

2)-3), 4) (c) are easy.

4) (a) Observe that E is defined by a Σ1
1 formula.

4) (b) Observe that x ∈ R(α) ⇔ ∃Z∃R(INDA(α, Z, R) ∧ x ∈ R)

⇔ ∀Z∀R(INDA(α, Z,R) → x ∈ R) 2

Theorem B.8 (Definition by simultaneous induction)

If A(α, Z1, R1, Z2, R2) is a formula (possibly with some other first order and

second order parameters) we let INDA(α, Z1, R1, Z2, R2) be the formula

rel(α) is a total ordering of Domain(α) ∧A(α, Z1, R1, Z2, R2)

∧∀i ∈ Domain(α)A(α<i, Z1|Domain(α<i), Z1[i], Z2|Domain(α<i), Z2[i])

∧∀i /∈ Domain(α)Z1[i] = Z2[i] = ∅
Obvious adaptations of all assertions in Theorem B.7 are valid.

As an easy application of Theorem B.7, we prove in CΠ1
1-PA2 the statement in

Point 2 of Theorem 6.3. First, we need some conventions about Gödel numbers.

Convention B.9 1. Without loss of generality, we can suppose that the

Gödel numbering of formulas is such that
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• 0 is the Gödel number of the formula x0 ∈ X0,

• every element is a Gödel number (for some second order formula),

• the natural ordering refines the subformula ordering. We denote

ωGodel the natural ordering when considered for Gödel numbers.

2. We denote GN(F ) the Gödel number of the formula F and GN→(f, g),

GN∀1(i, f) and GN∀2(i, f) the arithmetical operations on Gödel numbers

associated to the logical operations on formulas corresponding to implica-

tion and quantifications ∀xi,∀Xi.

Application B.10 (Proof of Theorem 6.3) We apply Theorem B.7 to the

well-ordering ωGodel and the obvious adequate first order formula A(α, Z,R), so

as to get ZM(ωGodel) such that

• ZM(ωGodel)[GN(t1 = t2)] =

{<x, u> | ∃z(V al(M, t1, x, z) ∧ V al(M, t2, x, z))}
where V al(M, t, x, z) is a first order formula insuring that z is the value

of the term t in M for the assignment of first order variables coded by

x (cf. [19] p.119-127 or [14] p.78; the expected properties of this formula

being provable in PA).

• ZM(ωGodel)[GN(t ∈ Xi)] =

{<u, x> | ∃z(V al(M, t, x, z) ∧ (z ∈ U [proj∞(i, u)])}

• ZM(ωGodel)[GN→(f, g)],

ZM(ωGodel)[GN∀1(i, f)],

ZM(ωGodel)[GN∀2(i, f)] are respectively

{z | z ∈ ZM(ωGodel)[f ] → z ∈ ZM(ωGodel)[f ])}
{<x, u> | ∀z <Subst∞(z, i, x), u> ∈ ZM(ωGodel)[f ]}
{<x, u> | ∀z <x, Subst∞(z, i, u)> ∈ ZM(ωGodel)[f ]}

where Subst∞(z, i, x) denotes the unique y such that

proj∞(i, y) = z ∧ ∀j(j 6= i ⇒ proj∞(j, y) = proj∞(j, x))

We get the desired truth predicate by rearrangement in Cantor coding:

TruthM = {<f, x, u> | <f, <x, u>> ∈ ZM(ωGodel)} 2
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C Extensions of ω-models

C.1 Extension by definitions of an ω-model

We shall now focus on the sole ω-structures.

Definition C.1 1. To every set U we associate an ω-structure

Ω(U) = (N, Slices(U), 0, S, +,×, =,∈)

and families of (codes of) definable relations over Ω(U) :

DefΣ0
∞(U) = {<f, m, u, x> | φ0(f,m, x) ∧ ∃y(Restr(x, y, f,m)

∧<f, y, u> ∈ TruthΩ(U))}
DefΣ1

∞(U) = {<f, m, u, x> | φ1(f,m, x) ∧ ∃y(Restr(x, y, f,m)

∧<f, y, u> ∈ TruthΩ(U))}
where TruthΩ(U)) is as in Def.6.2 and

• φ1(f, m, x) (resp. φ0) is a first order formula expressing that f is

the Gödel number of a formula (resp. with no second order quantifi-

cation) with free first order variables among x0, . . . , xm and that x

codes an m-sequence.

• Restr(x, y, f, m) is a first order formula expressing that y codes the

assignment obtained by restriction of the m-sequence x to the free

first order variables occuring in the formula with Gödel number f .

Intuition: The families of slices of these sets are the families of relations

(coded via Cantor functions for tuples) which are respectively second order

and first order definable in the model (N, Slices(U)), with second order

parameters in Slices(U).

2. Let τ be 1 or 2. We let TruePAτ

(U) be the Π0
1 formula expressing via

Gödel numbers that every axiom of PAτ is true in Ω(U). Otherwise said,

this formula expresses the validity of formulas obtained from axioms of

PA2 by restricting second order quantifications to Slices(U).

Proposition C.2 Let m be 0 or 1. The following are provable in CΠ1
1-PA2.
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1. Slices(U) ⊆ Slices(DefΣ0
∞(U))

2. Slices(U) = Slices(V ) → (Slices(DefΣm
∞(U)) = Slices(DefΣm

∞(V )))

3. The relation z ∈ DefΣm
∞(U) is definable by Σ1

1 and Π1
1 formulas.

4. TruePA1

(U) ⇔ (Slices(U) = Slices(DefΣ0
∞(U)))

TruePA2

(U) ⇔ (Slices(U) = Slices(DefΣ1
∞(U)))

5. ∀~z ∀u1 . . . ∀uk ∃p ∀x1 . . . ∀xl (<x0, . . . , xl>) ∈ DefΣm
∞(U)[p] ↔

(ΦSlices(U)(x0, . . . , xl, ~z, U [u1], . . . , U [uk])))

where Φ is any Σm
∞ formula and ΦSlices(U) is its relativization.

6. TruePA1

(DefΣ0
∞(U)) and TruePA1

(DefΣ1
∞(U)).

Proof 1) Trivial. 2) By induction on f we show that

∀m∀u∃v∃w ((DefΣm
∞(U))[<f, m, u>] = DefΣm

∞(V ))[<f,m, v>])

∧(DefΣm
∞(V ))[<f,m, u>] = DefΣm

∞(U))[<f, m,w>]))

We consider the sole case f = GN(xi ∈ Xj) and only treat the first equality. If

u assigns value p to variable Xj then

DefΣm
∞(U))[<f, m, u>] = {(x1, . . . , xm) | xi ∈ U [p]}

From Slices(U) = Slices(V ) we get q such that U [p] = V [q]. If v assigns value

q to Xj then DefΣm
∞(U)[<f, m, u>] = DefΣm

∞(V )[<f, m, v>].

3)-4) are easy. 5) Just set p = <GN(Φ(x0, . . . , xl), u> where u assigns values

u1, . . . , uk to the free second order variables of Φ.

6) If a set W ⊆N is definable in Ω(DefΣm
∞(U)) by a first order formula F with

parameters in Slices(DefΣm
∞(U)) then it is also definable in Ω(U) by a formula

with parameters in Slices(U) which is first order if m = 0 and second order if

m = 1 : just substitute in F each second order parameter by its definition in

Ω(U). Formalizing this argument with Gödel numbers we get

Slices(DefΣ0
∞(DefΣm

∞(U))) = Slices((DefΣm
∞(U))

whence Point 6 as an application of Point 4. 2

Proposition C.3 (Crucial relation with Def and Slices) The following

are provable in CΠ1
1-PA2 + TruePA1

(U).
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1. ∀p Slices(DefΣ1
∞(U [p])) ⊆ Slices(U)

2. (Commutation of DefΣ1
∞(. . .) and Slice(. . .))

∀p∃q DefΣ1
∞(U [p]) = (DefΣ1

∞(U))[q]

Proof 1) Observe that TruePA1

(U) insures closure properties of Slices(U)

under all arithmetical functions. Therefore, it suffices to prove that the sets

ZModelΩ(U [p])(ωGodel)[f ] constructed in the proof given in Application B.10 are

all in Slices(U). This is done by induction over Gödel numbers:

• If f = GN(xi ∈ Xj) then

ZΩ(U [p])(ωGodel)[f ] = {<u, x> | proj∞(i, x) ∈ (U [p])[proj∞(j, u)]}
= {<u, x> | ∃v∃y(<v, y> ∈ U [p]

∧proj∞(i, x) = y ∧ proj∞(j, u) = v)}
which gives a simple definition of (DefΣ1

∞(U [p])[<f,m, u>] from U [p], f ,

m, u. We conclude using closure properties of the family Slices(U).

• Other atomic cases and the induction steps are trivial applications of clo-

sure properties of Slices(U).

2) First, recall

that ZΩ(U [p])((ωGodel)<f ) is the finite sequence (ZΩ(U [p])(ωGodel)[g])g<f . ¿From

item 1) an easy induction proves that, for every Gödel number f , there exists q

such that ZΩ(U [p])((ωGodel)<f ) = U [q].

Applying item 4 (b) in Theorem B.7 (and expliciting all parameters which

were omitted in the statement of this theorem), we get a second order for-

mula ψ(ωGodel, z, U [p]) which defines the relation z ∈ ZΩ(U [p])(ωGodel). Now,

in ψ we can eliminate the parameter ωGodel by replacing it by its first order

definition and some extra existential (or universal) second order quantification,

and get an equivalent formula ψ̂(z, U [p]) with the sole parameter U [p].

Since ωGodel is limit, we can apply item 4 (c) ii in Theorem B.7 which proves

that the definition of the relation z ∈ ZΩ(U [p])(ωGodel) relativizes to Slices(U).

Thus, letting u be such that proj∞(0, u) = p and r = <GN(ψ̂(x0, X0)), 1, u>,

we get ZΩ(U [p])(ωGodel) = (DefΣ1
∞(U))[r]. Now, TruthΣ1

∞(Ω(U [p])
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is obtained by rearrangement of ZΩ(U [p])(ωGodel) in Cantor coding

(cf. end of Application B.10), and we can use closure properties of

Slices(DefΣ1
∞(U)) (given by item 5 in Proposition C.2) to get s such that

TruthΣ1
∞(Ω(U [p])) = (DefΣ1

∞(U))[s]. Lastly, DefΣ1
∞(U [p]) is simply ob-

tained from TruthΣ1
∞(Ω(U [p])), so that we get q such that DefΣ1

∞(U [p]) =

(DefΣ1
∞(U))[q]. 2

C.2 Well-ordered models

We now consider well-orderings on ω-models as introduced in Definition A.1.

Proposition C.4 1. The following are provable in CΠ1
1-PA2:

(a) rel(ξ) is a wo → INITSEGM(≤sets
ξ,U ,≤sets

ωGodel⊗ω⊗ξω,DefΣ1∞ (U)
)

(b) rel(ξ) is a wo ∧Slices(U) = Slices(V )∧ ≤sets
ξ,U =≤sets

η,V

→≤sets

ωGodel⊗ω⊗ξω,DefΣ1∞ (U)
=≤sets

ωGodel⊗ω⊗ηω,DefΣ1∞ (V )

2. The following is provable in CΠ1
1-PA2 + TruePA1

(U) :

∀p ∃r (rel(ξ) is a wo ∧ξ ∈ Slices(U)

→ REL(ωGodel ⊗ ω ⊗ ξω, DefΣ1
∞(U [p]) = (DefΣ1

∞(U))[r])

Proof 1) The fact that Slices(U) is an initial segment is due to the definition

of the lexicographic product and to the equality:

U [u] = DefΣ1
∞(U))[<dx0 ∈ X0e, 0, u>]

= DefΣ1
∞(U))[<0, 0, u>]

(recall our choice GN(x0 ∈ X0) = 0, cf. Convention B.9). 2) Easy from the

closure properties insured by TruePA1

(U) and Proposition C.3. 2

D Ramified Analytical Hierarchy in PA2

D.1 Defining RAH in PA2

As a direct application of arithmetization of syntax and definition by induction

in PA2, we get the desired construction of the ramified analytical hierarchy.
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To handle limit cases, we first explicit a Definition and state an easy Propo-

sition.

Definition D.1 Let rel(α) be a total ordering. We say that (Z, ζ) is an α-chain

of total orderings if

• ∀i ∈ Domain(α)(≤sets
ζ[i],Z[i] is a total ordering with domain Slices(Z[i]))

• ∀i∀j(i ≤α j → INITSEGM(≤sets
ζ[i],Z[i],≤sets

ζ[j],Z[j]))

Proposition D.2 PA1 proves that for every limit total ordering rel(α) and

every α-chain (Z, ζ), there exists a unique pair (R, η) such that

• Domain(≤sets
η,R ) = Slices(R) =

⋃
i∈Domain(α) Slices(Z[i])

• ≤sets
η,R =

⋃
i∈Domain(α) ≤sets

ζ[i],Z[i]

• ∀i ∈ Domain(α)INITSEGM(≤sets
ζ[i],Z[i],≤sets

η,R )

We call (R, η) the chain-union of the α-chain (Z, ζ).

Theorem D.3 (Ramified Analytical Hierarchy in PA2) 1. There ex-

ists a first order formula (with second order free variables)

Hierarchy(α, R, η, Z, ζ)

such that the following are provable in CΠ1
1-PA2 +(rel(α) is a wo).

(a) ∃!R ∃!η ∃!Z ∃!ζ Hierarchy(α, R, η, Z, ζ)

We denote RAHα , λα, Seq-RAHα, Seq-λα the unique such R, η, Z,

ζ associated to α.

(b) ≤sets
λα,RAHα

is a wo with domain Slices(RAHα)

∧(Seq-RAHα, Seq-λα) is an α-chain of well-orderings

∧∀i ∈ Domain(α) (Seq-RAHα[i] = RAHα<i
∧ Seq-λα[i] = λα<i

)

∧∀i /∈ Domain(α) (Seq-RAHα[i] = Seq-λα[i] = ∅)
(c) i. rel(α) = ∅ → RAHα = λα = ∅

ii. rel(α) is a successor of the wo rel(β) →
(RAHα = DefΣ1

∞(RAHβ) ∧ λα = ωGodel ⊗ ω ⊗ λβ
ω)
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iii. rel(α) is a limit wo →
(RAHα, λα) is the chain-union of (Seq-RAHα, Seq-λα)

(d) rel(β) is a wo isomorphic to rel(α) →
Slices(RAHβ) = Slices(RAHα)∧ ≤sets

λβ ,RAHβ
=≤sets

λα,RAHα

(This is the key property to overcome the lack of canonical represen-

tatives for well-orderings.)

(e) rel(β) is a wo with smaller order type than rel(α) →
Slices(RAHβ) ⊆ Slices(RAHα)

∧INITSEGM(≤sets
λβ ,RAHβ

,≤sets
λα,RAHα

)

2. There are Σ1
1 (resp. Π1

1) formulas Ψ(α,X), ψ(α,X) such that

(a) CΠ1
1-PA2 +(rel(α) is a wo) proves

∀X(Ψ(α, X) ↔ X ∈ Slices(RAHα)) , ∀z(ψ(α, z) ↔ z ∈ RAHα)

(b) Let Θ(X, ~p, ~P ) be a formula, where ~p, ~P are first order and second

order parameters.

CΠ1
1-PA2 +(rel(α) is a limit wo) +∀i ∈ Domain(α)

(Θ(RAHα<i
, ~p, ~P ) ∧Θ(λα<i

, ~p, ~P )

∧Θ(Seq-RAHα<i
, ~p, ~P ) ∧Θ(Seq-λα<i

, ~p, ~P ))

proves

∀X(ΨΘ(α, X) ↔ X ∈ Slices(RAHα))

∀z(ψΘ(α, z) ↔ z ∈ RAHα)

where ΨΘ is Ψ with second order quantifications relativized to

Θ(X, ~p, ~P ).

Idem with λα.

3. If rel(α) 6= ∅ then TruePA1

(RAHα). In particular, Slices(RAHα) bene-

fits strong closure properties.

Proof 1) Just apply Theorem B.8 to the formula A(α, Z,R, σ, ρ) which ex-

presses that
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• rel(α) is a total ordering

• if rel(α) has a greatest element i and REL(σ[i], Z[i]) is a total ordering

on Slices(Z[i]) then R = DefΣ1
∞(Z[i]) and η = ωGodel ⊗ ω ⊗ σ[i]ω

• if rel(α) is limit and (Z, ζ) is an α-chain then (R, η) is its chain-union else

R = ∅.

2) Item (b) uses the fact that when α is limit we consider the chain-union, so

that a definition for Seq-RAHα induces one for RAHα.

3) is a direct application of item 4 of Proposition C.2 in case rel(α) is successor.

The limit case is easy. 2

D.2 Some properties of the RAH

Remark D.4 The definition of RAH given below may seem somewhat cum-

bersome since it does not use extensions by definitions valid in PA2 (but not

in PA1) such as the function α 7→ RAHα. The reason for such a choice is that

it allows to prove relativizations to domains (like RAH itself) for which we do

not yet know that they satisfy the axioms of PA2.

Definition D.5 We consider the following Σ1
2 formulas

• RAH(X) is ∃α∃R∃η∃Z∃ζ((rel(α) is a wo

∧Hierarchy(α,R, η, Z, ζ) ∧X ∈ Slices(R))

• X≤RAHY is ∃α∃R∃η∃Z∃ζ∃v((rel(α) is a wo

∧Hierarchy(α, R, η, Z, ζ) ∧X ≤sets
η,R Y )

Intuitive interpretation of these formulas in a model (M,F) of PA2:

• RAH ⊆ F is the union of all families Slices(RAHα) where α ∈ F is such

that rel(α) is a well-ordering,

• ≤RAH ⊆ RAH ×RAH is the union of all orderings ≤sets
λα,RAHα

.

Proposition D.6 The following are provable in CΠ1
1-PA2:
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1. ≤RAH is a total reflexive ordering relation on RAH

2. all formulas of the schema WO≤RAH
(i.e. ≤RAH is a well-ordering in the

sense of Definition7.2)

3. If rel(α) is a wo then Slices(RAHα) is an initial segment of RAH and

≤sets
λα,RAHα

is the restriction of ≤RAH to Slices(RAHα)

Proof 1) and 3) are easy from Theorem D.3. 2) is a direct consequence of 1).

2

Proposition D.7 CΠ1
1-PA2 proves RAHα /∈ Slices(RAHα).

Proof This is a version of Russell’s paradox. Consider the set X = {u |
<u, u> /∈ RAHα}. By closure properties of Slices(RAHα), cf.item 3 in Theo-

rem D.3) we have RAHα ∈ Slices(RAHα) ⇒ X ∈ Slices(RAHα). We get the

usual contradiction when considering the truth value of u ∈ RAHα[u]. 2

Definition D.8 If rel(α) is a wo we let α+1 denote any set such that rel(α+1)

is (up to isomorphism) a wo successor of rel(α).

We say that α is RAH-contributive if

Slices(RAHα+1) \ Slices(RAHα) 6= ∅

Proposition D.9 The following are provable in

CΠ1
1-PA2 +(α is an RAH-contributive wo)

1. If rel(β) is a well-ordering with smaller order type than rel(α) then β is

also RAH-contributive.

2. The order type of rel(α) is at most that of ≤sets
λα,RAHα

i.e. there ex-

ists an isomorphism from (Domain(α), rel(α)) onto an initial segment

of (Slices(RAHα),≤sets
λα,RAHα

).

3. RAHα, λα, Seq-RAHα, Seq-λα all belong to Slices(RAHα+1).

4. There exists α′ ∈ Slices(RAHα+1) such that rel(α) and rel(α′) are iso-

morphic.
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Proof 1) Let γ be a wo such that β, β + 1, α, α + 1 are isomorphic to initial

segments γ<m, γ<n, γ<p, γ<q. Suppose β were not RAH-contributive, so that

Slices(RAHγ<m) = Slices(RAHγ<n). An easy induction shows that

∀i ≥γ m Slices(RAHγ<i
) = Slices(RAHγ<m

)

whence γ<p is not RAH-contributive, i.e. α is not RAH-contributive. Contra-

diction.

2) As a particular successor for α we let Suc(α<r) be either α<s if s is the

α-successor of r or α if r is the α-greatest element. Consider the function f

defined for r ∈ Domain(α) as follows:

f(r) = the smallest integer i such that

RAHα[i] ∈ Slices(RAHSuc(α<r)) \ Slices(RAHα<r
)

Since Slices(RAHα<r ) is an initial segment of Slices(RAHSuc(α<r)) for ≤RAH ,

we see that f is a strictly increasing embedding from rel(α) into ≤sets
λα,RAHα

. We

conclude using Proposition B.1 item 3, which gives an embedding of the range

of f onto an initial segment.

3) It suffices to prove these properties for initial segments α = δ<n, n ∈
Domain(δ), of any wo rel(δ). Suppose that the desired properties are true

for all δ<p such that p <δ n, we prove that they are valid for δ<n.

We can suppose δ<n to be RAH-contributive, else there would be nothing to

prove. Applying item 1), all δ<p such that p <δ n are also RAH-contributive,

hence satisfy properties 3-4 according to the induction hypothesis.

Case n is the δ-smallest element, i.e. δ<n = ∅
Trivial, since RAH∅ = λ∅ = Seq-RAH∅ = Seq-λ∅ = ∅.

Case n is the δ-successor of m, hence RAHδ<n = DefΣ1
∞(RAHδ<m)

By induction hypothesis there are p, q such that

RAHδ<m = RAHδ<n [p] , Seq-RAHδ<m = RAHδ<n [r]

Using commutation of DefΣ1
∞ and Slice (cf.Proposition C.3), we get

RAHδ<n = DefΣ1
∞(RAHδ<m) = DefΣ1

∞(RAHδ<n [p])

= (DefΣ1
∞(RAHδ<n)[p′] = RAHSuc(δ<n)[p′]

∈ Slices(RAHSuc(δ<n))
If i 6= m then Seq-RAHδ<n [i] = Seq-RAHδ<m [i] = (RAHδ<n [r])[i].
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Also, Seq-RAHδ<n [m] = RAHδ<m = RAHδ<n [p]

Using closure properties of Slices(RAHδ<n) we can mix these two repre-

sentations and get r′ such that Seq-RAHδ<n = RAHδ<n [r′]. A fortiori,

we get r′′ such that Seq-RAHδ<n
= RAHSuc(δ<n)[r′′].

Idem with λδ<n and Seq-λδ<n .

Case n is limit

Using the fact that the RAHα’s are increasing, the induction hypothesis

shows that RAHδ<i
∈ Slices(RAHSuc(δ<n)) for i <α n. According to item

2 (b) in Theorem D.3, the Σ1
2 definitions of RAHδ<n

, Seq-RAHδ<n
, λδ<n

and Seq-λδ<n
relativize to RAHδ<n

. Consequently, these sets are all slices

of DefΣ1
∞(RAHδ<n) = RAHSuc(δ<n).

4) Item 2) shows that rel(α) can be imbedded onto an initial segment of

≤sets
λα,RAHα

. We conclude using item 3) and first order closure properties of

RAHα+1. 2

Proposition D.10 (Reflexion Property) The following are provable in

CΠ1
1-PA2.

1. ∀X(RAH(X) ⇒ ∃α(rel(α) is a wo ∧RAH(α) ∧X ∈ Slices(RAHα))

2. ∀P1 . . . ∀Pl ∃α ∀x1 . . . ∀xk(∃X(RAH(X) ∧ Φ(X, x1, . . . , xk, P1, . . . , Pl)

↔ (∃X(X ∈ Slices(RAHα) ∧ Φ(X, x1, . . . , xk, P1, . . . , Pl)))

Proof 1) Mere reformulation of the last item of the previous Proposition D.9.

2) If X is in RAH we consider γ such that

X ∈ Slices(RAHγ+1) and Slices(RAHγ), γ + 1 are in RAH .

We let Rank(X) be the <RAH smallest set β in RAH such that rel(δ) is iso-

morphic to rel(γ + 1). Let f(x1, . . . , xk, P1, . . . , Pl) be the <RAH smallest set

X in RAH such that Φ(X, x1, . . . , xk, P1, . . . , Pl) if there exists such a set and ∅
if there is none. Let ξ(x1, . . . , xk, P1, . . . , Pl) = Rank(f(x1, . . . , xk, P1, . . . , Pl)).

A convenient α is the ordinal sum of the ξ(x1, . . . , xk, P1, . . . , Pl) ’s , indexed

by the (x1, . . . , xk) ’s, ordered lexicographically. 2
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Proposition D.11 1. CΠ1
1-PA2 +(α is a non RAH-contributive wo)

proves

∀X(RAH(X) ↔ X ∈ Slices(RAHα))

2. CΠ1
1-PA2 + (there exists some non RAH-contributive wo) proves the

relativization to RAH of all axioms of PA2.

3. If k ≥ 1 and k ∈ N then CΠ1
k-PA2 + (every wo is RAH-contributive)

proves the relativization to RAH of all axioms of CΠ1
k-PA2.

Proof 1) Easy from (the contraposition of) item 1 in Proposition D.9.

2) If Slices(RAHα) = Slices(RAHα+1) then

Slices(RAHα) = Slices(DefΣ1
∞(RAHα))

and item 3 of Proposition C.2 implies TruePA2

(RAHα). Whence all axioms of

PA2 are valid in RAHα; we conclude using item 1.

3) Using the Rank function introduced in the proof of item 2 of the previous

Proposition, an easy induction up to k shows that CΠ1
k-PA2 proves a reflection

property for Σ1
k formulas: second order quantifiers can be bounded in the rela-

tivization to RAH of Σ1
k formulas, namely

ΦRAH(x1, . . . , xk) ↔ ∃δ(rel(δ) is a wo ∧ΦRAHδ(x1, . . . , xk))

for every Σ1
k formula Φ. Thus,

{<x1, . . . , xk> | ΦRAH(x1, . . . , xk)} = {<x1, . . . , xk> | ΦRAHδ (x1, . . . , xk)}
∈ Slices(RAHδ+1)

This yields the relativization to RAH of every instance of the second order

comprehension schema. 2

As a corollary of the above Proposition, we obtain

Theorem D.12 PA2 (resp. CΠ1
k-PA2) proves the relativization to RAH of

all axioms of PA2 (resp. CΠ1
k-PA2).

Proposition D.13 CΠ1
1-PA2 proves that RAH, RAHα are absolute for RAH:

1. ∀X(RAH(X) → RAHRAH(X))

2. ∀α((RAH(α) ∧ rel(α) is a wo) → ∀x(x ∈ RAHα ⇔ (x ∈ (RAHα)RAH))
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Proof 1) Using item 3 of Proposition D.9 and , we see that the following are

provable in CΠ1
1-PA2 +RAH(X) :

• ∃α(rel(α) is a wo ∧X ∈ Slices(RAHα))

• ∃α∃R∃η∃Z∃ρ(RAH(α) ∧RAH(R) ∧RAH(η) ∧RAH(Z) ∧RAH(ρ)

∧rel(α) is a wo ∧X ∈ Slices(R) ∧Hierarchy(α, R, η, Z, ρ))

which is exactly RAHRAH(X).

2) is similar. Observe that we can consider (RAHα)RAH since we now know

that RAH satisfies PA2. 2

Proposition D.14 CΠ1
1-PA2 proves that the notion of well-ordering is abso-

lute for RAH, i.e. RAH(α) → ((rel(α) is a wo) ↔ (rel(α) is a wo)RAH)

Proof Obviously, if rel(α) is a wo (a real one) lying in RAH then it is a wo

in the sense of RAH.

Conversely, suppose α in RAH is such that rel(α) is a wo in the sense of RAH.

Since we know that CΠ1
1-PA2 relativizes to RAH, we can consider the set

(RAHα)RAH which is in RAH.

Let rel(η) be a real wo in RAH such that α, (RAHα)RAH are all in

Slices(RAHη). Due to Proposition D.13, (RAHη)RAH = RAHη. Thus,

(RAHα)RAH ∈ Slices((RAHη)RAH), i.e. (RAHα ∈ Slices(RAHη))RAH . But

RAH satisfies PA2, hence Proposition D.7. Thus, rel(α) has smaller order type

than – i.e. is embeddable in – rel(η) in the sense of RAH. Such an embedding

is a real one. Since rel(η) is a real wo, so is rel(α). 2

Proposition D.15 CΠ1
1-PA2 proves that ≤RAH and λα are absolute for RAH:

1. (RAH(X) ∧RAH(Y )) → (X ≤RAH Y ↔ (X ≤RAH Y )RAH)

2. rel(α) is a wo → ∀z(z ∈ λα ↔ (z ∈ λα)RAH)

Proof 1) The following are provable in CΠ1
1-PA2 +RAH(X) + RAH(Y ).

• X ≤RAH Y ↔ ∃α(rel(α) is a wo ∧X ≤sets
λα,RAHα

Y )
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• X ≤RAH Y ↔ ∃α∃R∃η∃Z∃ρ(rel(α) is a wo ∧X ≤sets
η,R Y

∧RAH(α) ∧RAH(R) ∧RAH(η) ∧RAH(Z) ∧RAH(ρ))

which is exactly X ≤RAH Y ↔ (X ≤RAH Y )RAH (due to the absoluteness of

well-ordering).

2) As in Proposition D.13. 2

As a corollary of the above Proposition, we obtain

Theorem D.16 CΠ1
1-PA2 proves the relativizations to RAH of the formulas

of the schema WO(≤RAH)RAH (see Definition7.2).

D.3 RAH in PA2 formalized in PA1

The next Theorem internalizes previous results in PA1.

Theorem D.17 All Theorems and Propositions in subsections B.3 to D.2 are

formalizable and provable in (IΣ0
1, C∆0

1)−PA1.

Proof Clearly, if PA2 proves F then primitive recursive arithmetic, a fortiori

(IΣ0
1, C∆0

1)−PA1, proves the usual arithmetical formula (involving the Gödel

number of F ) which expresses that PA2 proves F . What is to be checked is

that the same holds for schemas of formulas. There are 3 cases to consider.

Case Point 2 of Proposition D.6

Easy, since the schema WO≤RAH is proved directly: if there exists X

in RAH such that Φ(X, ~U) then there exists such X in some RAHα.

The ≤RAH -smallest such X is then the ≤sets
λα,RAHα

-smallest such X in

Slices(RAHα). So, we only apply some comprehension axiom to get a

set, the ≤sets
λα,RAHα

-smallest element of which is the desired one.

Case Proposition D.10, Point 2. Idem as above.

Case Proposition D.11, Points 2,3

Point 2 is trivial since we did get TruePA2

(RAHα), hence an arithmetized

result. Point 3 is proved by induction. The induction formula F (k) is

Π0
1 (∀φ(φ is an axiom of CΠ1

k-PA2→ (φRAH is provable in . . .) hence the

induction goes through arithmetization in (IΣ0
1, C∆0

1)−PA1. 2
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