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A natural generalization of Cohen's set of forcing conditions (the t w ~  
valued functions with domain a finite subset of w) is the set of  two- 
valued functions with domain an element of an ideal J on ~.  The I~rob- 
lem treated in this paper is to determine when such forcing yields a ge- 
neric real of minimal degree of constructibility. 

A :;imple decomposition argument shows that the non-maximality of 
J implies the non-minimality of the generic real which is obtained. In 
§ 3 and 4 we look at the case J is maximal and we show that the mini- 
mality of the generic real depends on a combinatorial property of J. 

In fact the minimality result uses the notioa of T-ideal and the non- 
minhnality result that of selective ultraf'dter (a notion studied in Booth 
[ 1 ] ). These notions are generalized to 1:he case of non-maximal ideals 
and shown to be oquivalent in § 1. Ash ort study of them is also made 
in § 2 and in the appendix. 

Tt:e notion of ~ideal, without any hypothesis of maximality, is 'used 
in § 5 where we generalize Silver's set of forcing conditions (described 
in Mathias [ 3 ] p. 4). In fact Silver's forcing is related to the above in 
the following way: first force to get a m~,ximal ideal, which is shown to 
be a T-ideal, and then force with this ideal in the above manner. 

! would like to thank J.L. Krivine for simplifying many proofs in 
this work. 

* Received in final form Match 1, 1971. 
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§ 1. Combinatorics and ideals 

Th r oughou t  this paper  an ideal on co will mean  an ideal conta in ing  

the ideal o f  f inite subsets and a fil ter will mean  a fil ter con ta in ing  the 

filter o f  cofini te  subsets, We use for  t hem the letters J and F. 

J and F ~re said to  be dual  if  F is the set o f  c o m p l e m e n t s  o f  the sub- 

sets which  lie in J.  

We wri te  Seq(6o) for  the set o f  finite sequences  o f  integers, s , t  for  

the  conca tena t ion  o f  two sequences  s and t, !h(s) for  the length o f  s, and 
(n)  for the sequence  o f  length one  def ined by the integer  n. 

We pu t  on Seq(6o) the ex tens ion  ordering:  s is greater  than t if lh(s) 

is greater  than lh(t)  and the  restr ic t ion o f s  to lh(t)  is t. 

Defini t ion 1.1. i) A is a tree if A is a subset o f  Seq(6o) and any  prede- 
cessor o f  an e l emen t  of  A is in A. (So the e m p t y  sequence is in any tree.) 

ii) I f  s is in the  tree A the ramif ica t ion of  A at s is the set o f  integers 
n such tha t  s , ( n )  is in A. 

iii) A fun ztion H f rom 6o in to  6o is a branch o f  the tree A ff for  every 
k the seque ace (1t(0), ..., H ( k ) )  is in A, 

Defini t ion ~ .2. i) A is a a- t ree  i f  no ramif ica t ion o f  A is in J.  

ii) A is a ~trong J- t ree if no  finite in tersect ion of  ramific~tions o f  A is 

in J. 

iii) H is a J -b ranch  o f  the tree A if it is a b ranch  wi th  range no t  in J. 
iv) J is a T-ideal if every J- t ree  has a J-branch.  

v) J is a we~& T-ideal if every strong J- t ree has a J-branch.  

Any  T-ideal is a weak T-ideal. In case J is maximal  the two not ions  

coincide  since then  any J- t ree  is a s t rong J-tree.  

l~opos i t ion  1.3. The ideal o f  f in i te  subsets o f  a T-Meal. 

Proposi t ion  1.4. I f  J is a T-Meal (resp. a weak T-ideal) and i f  J'  is count-  

ably generated over J then J' is also a T-ideal (resp. a weak T-ideal). 

Proof.  Let  (x  n ), n in 6o, be a basis o f  J '  over J:  i.e. a subset  o f  co is in J '  

if and only  if  it is inc luded in the un ion  o f  an x n and an e l emen t  o f  J. 
We can suppose tha t  the X n are increasing. 



§ 1. Comb&atorics and Meals 365 

Let A' be a J'-tree; define A as follows: a sequence (n 0, ..o, n k)  is in 
A if aria only if it is a n A '  and ,for each/ ,  n / i s  not  in xj. Clearly A is a 
tree. A ramification e r a  is the difference of  a ramification o f  A '  with 
an x n , so it is not  in J and A is a J-tree. Let H be a J-branch of A; since 
its range has at most  n points in x n it is a J '-branch. Since A is included 
in A',  H is a J ' -branch o fA ' .  This shows that J '  is a T-ideal. 

Corollary 1.5. Every  countably  generated ideal is a T-ideal. 

Definition 1.6. A partit ion of w is a J-partition if  no fihite union of 
elements of the partit ion is in the dual F of J. 

Definition 1.7. J is se~.ective if for every J-partit ion there exists a subset 
of co which is not in J and meets each element of the partit ion at one 
point at most. Such a subset is called a selector for the given partition. 

Definition 1.8. J is p-point  if  for every Jpar t i t ion there exists a subset 
of w which is not in J and which meets each element of  the part i t ion 
at a finite number  of points. 

Proposition 1.9. J is p-point  i f  and  only  i f  f o r  every decreasing sequence  

(x n ), n in ~ ,  o f  subsets Gf ¢o which are no t  in J there exists a subset  x, 

no t  in J, such that  x - x  n is f~nite f o r  each n. 

Proof. It  suffices to consider the parti t ion defined by Y0 =: ~ - Xo and 

Yn÷l = xcz - Xn+l which is a J-partition. 

Proposition 1.10. 1f  J is a weak  T-ideal then J is a selectiee ideal. 

Proof. Let (x  n), n in ~ ,  be a J-partition. Define a tree A: s is in A i f  and 
only if s meets each x n at one point  at most. A is a strong J-tree, taking 
a J-branch of A we get a selector for the parti t ion which is not  in J. 

Definition 1.11. ? is inductive if  for every decreasing sequence ( x  n), n 
in 60, of subsets of 60 which are not  in J,  there exists a strictly increas- 
ing function H from o~ into 60, with range not  in J, such that  H ( n +  1 ) is 

in XH(n) for each n. 
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Proposition 1.12. I f  J is a selectiw; ideal then J is inductive. 

Proof. The following is a slight modification of  a proof  due to Kunen 
which gives the proposition in the case J is a maximal ideal (see Booth 
[1]).  

Let (x n ), n in 0~, be a decreasing sequence of subsets not  in J. 
As J is selective it is p-point and so (Prop. 1.9) there is an x, not in J,  

such that x - x n is finite for each n. Define a function g from ¢0 into o~: 
g(n)  is the greatest element o f x  - x  n. Thus if m is greater than g(n)  and 
if m is in x then m is in x n . 

Let gO(0) be 0 and gp+l (0) be g(gP(O)).  

I f a  and b are such that for an integer p a -<. gP(O) ~ gP+l(O) < b 

then b is i n x  p(o ), a nd ,  a s x  a contains xgpto), b is i n x  a. 

Consider the parti t ion of  ¢o defined by ¢o-x and the intersections of 
x with the intervals ]g2p(0), g2p+2 (0)].  It is a J-partition, take a selector 
not  in J and let ap be the point  of  it which is in ]g2p (0), g2p+2 (0)]. 

Put on the set o f a p ,  p in ¢0, the following equivalence relation: ap i~ 
equivalent to ap+ 1 if  the interval lap, ap+ l ] is included in the interval 
]g2p+l (0), g2p+3 (0)].  Clearly the equivalence classes have at most two 

elements. 
These equivalence classes d ~fine with the complement of  the set 

(ap : p in co} a J-partition. Take a selector not  in J and let H ( n )  be its 
n-th point which is in an eq,Avalence class. 

As between H ( n + l )  and H ( n )  there is all interval ]gP(0), gp+l (0)],  
H (n+ l )  is in xh~tn ). Hence H is the desired function. 

Proposition 1.13. f f  J is inductive and i f  (xs), s in Seq(6o), is a fami ly  o f  

subsets o f  t~ such that no f in i te  intersection o f  them is in J, there is a 

strictly increasing f unc t i on  H f r o m  ~ into ~ with range not  in r such 

that H ( n )  is in xHr n f o r  each n. 

Proof. By the finite intersection property we can suppose that if s and t 
are sequences such that lh(s) is less than lh(t) and st, p(s) is less than 
sup(t) (where sup denotes the greatest element of  a sequence) then x s 

is included in x r 
Let s n be the sequence of  length n + 1 with constant value n and let 

Yn be Xsn. Using the hypothesis that J is inductive, take a strictly in- 
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creasing function H from 6o into 6o, with range not  in J,  such that  
H(n + 1) is in YH(n) for each n. Note that we can suppose that H(0)  is 

in X~. ~" 
As (H(O), ..., H(n)  ~) has length n+  1 and its sup is H(n),  while Sg(n) 

has length H(n)+ 1 and its sup is H(n) ,  X(H(O ) ..... H(n)) contains XS~(n ) and 
so H(n + 1) is in xov(o ) ..... H(n))" Hence H(n)  is in XHr n for each n. 

Proposition 1.14. l f  J is an inductive ideal then J is a weak T-Meal. 

Proof. Let A be a strong J-tree. 
Let s be a finite sequence of  integers, if  s is in A we le~ x s be the ra- 

mification of A at s and if  s is not in A we let x s be 6o. 
We can apply 1.13 to the family (Xs), s in Seq(6o): take a funct ion H 

with range not  in J such that  H(n+ 1) is in xHr n for each n. We shaw 
inductively that H is a branch o fA .  I f H r k  is in A then H ( k )  is in the 
ramification of  A at Hrk  and so Hrk+ 1 is in A. 

As the range of H is not in J,  H is a J-branch o fA .  

Corollary 1.15. f f  J is an ideal then the fo:lowing are equivalent: 
i) J is a weak T-ideal 
ii) J is selective 
iii) J is inductive 

Recall the usual definition of a selective ultrafilter: an ultrat'dter F is 
selective if for every partit ion of  co by elemeI~ts of the dual J o f /~  there 
is a selector in F. 

Clearly the ultrafilter F is selective just  in case its dual is. 

Corollary 1.16. An ultrafilter F is selective i f  and only ~f it its dual is a 

T-ideal. 
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§ 2. Getting maximal T-ideals 

Consider on 2 °~ the equivalence relation of  equality except on a set 
in J. Let 2 °~ [J be the quotient  set. We put on it the orderhag induced by 
the reverse inclusion ordering on 2 ~ so that  it becomes a boolean alge- 
bra whose zero-element is the dual of  J. 

We say that  2 u/~r satisfies the condition of  decreasing sequences 
(written c.d.s.) if ev'~ry decreasing sequence of  non-zero elements has a 
non-zero lower bour~d. Such a lower bound is called a minorant.  

Definition 2.1, J satisfies the c.d.s, if 2 0~/J satisfies the c.d.s. We also 
say that J is c.d.s. 

Clearly J is c.d.s, if for every increasing sequence (x n ), n in ¢o, of 
subsets not in the dual F of J there i~ an x, not ia F~ such that x n - x  
is in J for each n. Passing to the complement we get: 

Proposition 2.2. J is c.d.s, i f  f o r  every decreasing sequence (x n ), n in o~, 
o f  subsets not  in J there is an x, no t  in J, such that x - x  n is in J f o r  
each n. 

Using Proposition 1.9 we get: 

Proposition 2.3. I f  J is p-point  then J is c.d.s. Hence any weak T-ideal 

is c.d.s. 

Remark: any maximal ideal is c.d.s. 

Proposition 2.4. J is c.d.s, i f  and only  i f  every ideal countahly  generated 
over J is included in an ideal one-generated over J. 

Let M be a transitive model of ZF. 
I f J  is an ideal in M we let c be the canonical surjection from 2 ̀ 0 onto 

2~ /J. 
If  G is 2 ~/J-generic over M (we make no difference, when writing, 

between the boolean algebra 2 ~ / J  and the set of forcing condit ions ob- 
tained by deleting the zero-element) we let J *  = c -1 (G). Clearly 

M t G ]  = M [ J * ] .  
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If x and y are disjoint subsets of  w, lying in M, with union ¢o, then 

exactly one of  them is in J exactly one of c(x)  and c ( y )  is in G a3 
they are complements in the boolean algebra 2 ̀ o/,!". 

I f J  is c.d.s, then 2 ̀ 0/,1 satisfies the c.d.s, and so every countable set 
in M[G] which is included in M is in M. Hence M and M[J*]  have the 

same subsets of  6o. Thus J *  is in M[J*]  a maximal ideal on ~o (extend- 

hag the ideal J). Also note that a countable subset of  G always has a mi- 

norant in G. 

Theorem 2.5. I f  J is a weak T-ideal then J* is a maximal T-ideal in 
M[J*]  which extends the ideal J. 

Proof. l f J  is a weak T-ideal t h e n J  is c.d.s. (Prop. 2.3~ and so J *  is a 
maximal ideal containing J. 

Let A be a J*-tree in M[J*]  ;as a countable set included in M, A is in 

M. I f s  is in A let x s be the ramificatio.1 of  A at s. A b~;ing a J-tree, for 
every s in A,  c ( w - x  s) is in G. The countable family cr.W-Xs),  s i nA ,  
of elements of  G is bounded below an element p = c(x) which is in G. 
The ideal J (p )  generated by J and x is proper and its dual contains each 
Xs, s in A. Let q = c(y)  be a minorant o f p  in 2`0 [J, and let J(q)  be the 
ideal generated by J and y.  J(q)  is one generated over J so (Prop. 1.4) 

it is a weak T-ideal. A has its ramifications in the dual of  J(p) ,  hence in 
the dual of  J (q)  and so it is a stror.g J(q)-tree. Let H be a J(q)-branch 

of A with range z. As z is not in J(q) there is a non-zero minorant  r of  

q and c ( ~ - z ) .  This condition r (weakly) forces "A has a J ,  branch," 
for if G' is generic and contains r then ~ - z  is in (J')* and so H is a 
(J ')*-branch ofA.  

Thus we have shown that the set of conditions which force '~A has a 
J*  branch" is dense below p. Asp  is in G this set meets G and so the 

sentence is true in M[G].  

Theorem2.5  gives a way to get maximal T-ideals extending a weak 

T-ideal. In the following we show that we can directly within M get 

maximal extensions of  a weak T-ideal which are T-ideals. 

Lemma 2.6. l f  J is a weak T-ideal and i f  thele is a maximal ideal one- 
generated over 3. this maximcl extension is a T-ideal. 
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Theorem 2.7. Assuming the continuum hypothesis (written CH), i f  J is 
a weak T-ideal with no maximal one-extension then there are 2 ~ 1 maxi- 
mal T-ideals extending J. 

Proof. Note that J is c.d.s, and so every ideal countably generated over 
J is included in a one-extension of J and hence is not maximal. 

Using CH we can put  well-orderings of  type ~ 1 on the power set of 
co and on the set of trees. Fixing such orderings we can speak of  " the  
first subset of  co such that ..." and of "tlae first tree such that ...". 

L e t f b e  a function from ~1 into 2, we are going to associate t o f a  
maximal T-ideal J * ( f )  extending J. J*( /3  will be the union of an increas- 
ing sequence of N 1 proper ideals, each being countably generated over jr. 

We define the sequence by induction. J0 (f) is J. If a is limit then 
J~(f)  is the union of the J~(f), 3 less than a. Suppose J~(f)  is defined. 
Let A s ( f )  be the first tree with all ramifications in the dual of J a ( f )  
which has not been considered earlier in the construction of the se- 
quence. As Ja (f) is countably generated over J it is a weak T-ideal, so 
A being a strong J~(f)-tree has a J~(f)-branch. Let x , , (~  be the first sub- 
set of co which is the range of a J~ (f)-branch of A~(f). The ideal E,,(f)  
generated by Ja(.f) and w - x a ( f )  is not maximal since it is countably 
generated over J,  let Yo,(3") be the first subset of co which is neither in 
Ea( f )  nor its dual. Let za( f )  be Ya (f) if f (0 )  = 0 and co - xa (Y) if not. 
We define J~+l (f)  to be the ideal generated by Ea( f )  and z~(f). 

Show J * ( f )  is maximal. If it is not  ley y be the first sub~et of co which 
is neither in J* ( f )  not in its dual. For every a in 1~ 1 y is neither in E,~(f) 
nor its dual, so ya  (f) is before y in the well-ordering of type ~ 1 on the 
power set of  co, but  the ya(J0 are all different and uncountably many 
while the ranz of y is countable, hence a contradiction. 

Show J * ( f )  is a T-ideal. It it is not let A be the first J*(f) - t ree  with 
no J*(f)-branch.  A has its ramifications in the dual of J* ( f ) ,  as they are 
countably many there is an a less than ~ 1 such that they are in J~ (f). 
This implies that  the Aa, a </3 < ~1,  are before A in the well-ordering 
of type ~ 1 on the set of trees, but  the Aa are all different and uncount- 
ably many while A is of countable rank, hence a contradiction. 

I f f  and g are different functions from ~ 1 into 2, let a be the first or- 
dinal at which they differ. It is clear that  za( f )  is the complement of  
z~(g), so J*( /0  is different of J*(g).  

Hence the 2 ~1 maximal T-ideals extending J. 
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Remark: the hypothesis in 2.7 that no one-extension of J is maximal 
cannot be dropped (using the fact that the sum of two T-ideals is a T- 
ideal, it suffices to consider the sum of two maximal T-ideMs). 

As a countably generated ideal is not maximal we have the following 
theorem (see Booth [11 ): 

Corollary 2.8. Assuming CH, there are 2 sl maximal selective ideals ex- 
tending a counmbly generated ideal 
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{}3. Non-minimality results 

Let M be a transitive model of  ZF. 

Definition 3.1. A real g is minimal overM i f g  is not in M and every real 
f i n  M[g] is in M or  reconstructs g (i.e. g is in M[f ]  ). 

I f J  is an ideal on co belonging to M, let C(J) be the set of  two-valued 
functions defined on an element of J. We put  on C(J) the reverse inclusion 
ordering (thus p < q means p extends q), to obtain a collection of con- 
ditions. 

If G is C(J)-generic over M, G defines a real g: g(n) = 0 if and only if 
((n, 0)} is in G. As G is the set of restrictions o f g  to elements of  J it is 
clear that M[ G] = M[g] . 

Definition 3.2. A real associatec to a C(J)-generic over M is called a 
J-Cohen real over M. 

Note that since J contains the f'mite subsets of • a J-Cohen real over 
M is not in M. 

Proposition 3.3. I f  J is not maximal in M then a J-Cohen real o~.,er M is 
not minimal over M. 

Proof. Let x be non-measured by J, define C(J)(x) to be the set of ele- 
ments of C(J) whose domains are included in x. Then the C(J)°forcing 
is the forcing over the product of C(J)(x) by C ( J ) ( w - x )  and M[g] = 
M[gtx] [ g ~ w - x ] .  So by the previous remark and the fact tha~x and 
co -x  are both necessarily infinite, it follows that C(J)(x) and 
C ( J ) ( w - x )  are of  the same type as C(J). Hence M is properly included 

in M[gtx]  which is itself properly included in M[g]. 

Before stating a result in the case J is maximal, we recall a general re- 

sult on forcing (Krivine [2] ). 
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Definition 3.4. If C and D are ordered sets, an increasing function T 
from C into D is said to be normal if its range is dense in D and :for 
every/7 in C the image of  C/p (the minorants of  17 in C) by T is dense 
below T(p)  in D. 

Proposition 3.5. I f  G is C-generic over M and T is a normal funct ion 

from C into D, then the set sup(T(G)) o f  elements o l D  greater than an 

element o f  T(G)  is D-generic over M and G is T -1 (sup(T(G)))-generic 
over M[sup(T(G))] .  

On the two-valued functions on a set x we can define the equ:valence 
relation of equality modulo a finite set. We denote the set of  equivalence 
classes by 2 x/fin.  

AC' is the axiom asserting the existence of a set of representatives for 
2 ̀ 0/fin. 

Theorem 3.6. I f  M satisfies AC' and i f  J is a maximal ideal on ~o whose 
dual is not selective then a J-Cohen real over M is not  minimal over M. 

Proof. First note that given a set of representatives for 2`0/f~n we get 
one canonically for 2 x/ f in  if  x is an infinite subset of  co. If x i~, finite 
then 2 x/ f in  has one element and we can take the zero-function as a re- 
presentative. 

In M let (x n ), n in ~ ,  be a partition of ~ in elements of J such that  if  
x meets each x n in at most one point  then x is in J. 

By AC' and the preceding remark we can get a family (hi, n ) of repre- 
sentatives for the elements of  the union of  the 2 xn/fin, n in ~ .  

With this family we define a two-valued function L on the union of 
the 2 xn , n in ~o, as follows: L (h) = 0 if and only if, h being in 2 xn and 

hi, n being its representative, h differs from hi, n on a f'mite odd number 
of points. 

Let K be the maximal ideal det'med as follows: a subset u of  ~ is in 
K if the union of the x n , n in u, is in J. Define a funct ion T from C(J)  
into C(K): n is in the domain of  T(p)  i f  the domain o f p  contains x n 

and then T(p)(n)  = L ( p t x  n ) where p t x  means the restriction o f p  to x. 
T is clearly surjective and increasing. Let us show it  is a normal func- 
tion. If, in C(K), d is an extension of  T(p),  p in C(J), then for each n in 
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the domain of  d either n is in the domain of  T(p)  al~d so p is defined on 
the whole of  x n and hence for every extension q of p we have L(q rx n) = 

L(p rx n ) = d(n), or n is not  in the domai~ of  T(p)  aJnd so p is not  defin- 
ed on the whole o f x  n and there is an extension Pn o f p  t o x  n such that 

L(Pn tx n ) = d(n). Take q to be the union o f p  and t h e p  n , n in the do- 
main o f d  and not  in the domain of T(p); q is an extension of p, q is in 
C(J) by the definition of  K, and T(q) extends d. Thus T is normal. 

Now let g be J-Cohen over M, associated to the C(J)-generic G. Ap- 
plying 3.5 we see that  T(G) is C(K)-generic overM; ir.s associated real 
is f :  f (n )  = 0 if  and only i f L ( g l  x n ) = 0. T h u s f i s  a r e~  ir~ M[g] not in 
M. Moreover G is E-generic overM[Jq where E = T -~ (T(G)) is the set 
o f p  in C(J) such that  if the domain o f p  contains x n then L(pl  x n ) = 

/'(n). 
Let X be these t  o f p  in E that are incompatible with an element of 

G. Let us show that X is dense in E. Given p in E, by the hypothesis  on 
the partit ion (x n), n in w, there is an n such that  in x n at ~.~ast two 
points are not  in the domain of p, say a and b. Let q be the extension 
o f p  to the point  a such that  q(a) is different frorriL g(a). This q is always 
in E since q is aot  defined at b and so T(q) = T(p). 

X being dense in E, G can not be in M [ f l  for then X would be in 
M[f] (=M[TtG)])  and so would meet G which is impossible. H e n c e f  
does not  reconstract  g and this shows the non-minimality o f g  over M. 
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§4. Minimality results 

Let DC' be the axiom of dependent  choices restricted to sets of car- 
dinality less than that  of  the continuum. 

The purpose of this section is to prove the following theorem: 

Theorem 4.1. f f  M satisfies DC' and i f  J is a maximal T-ideal in M, then 
a J-Cohen real over M is minimal over M (see def. 3.1 and 3.2). 

The proof  is a direct one. We take a J-Cohen g associated to G, C(J)- 

generic over M, and a real f i n  M[g] and we show that either f is in M or 
f reconstructs g. 

Let f be a denotat ion for f in the forcing language. We make no dis- 
tinctic~n between an element x of M and its notation as ~m element of 

Mtg] . 

All the definitions that  follow make use o f /  and the forcing relation, 

so they take place in M. 

Definition 4.2. "?wo elements p and q of C(J) are sai~l to be f-compatible 
if for no integer n, p fo rce s f  (n) = a and q forces f (n)  = b where a and b 
are distinct elements of 2. 

Remark 4.3. Let p '  be a mimorant  o f p  and q '  one of q, i f p  and q are 
f ' - incompatible (i.e. not  7-compatible)  then so are p '  and q '. 

If n is an integer not in the domain of a condit ion p and if  a is in 2, 
we write (p, (n, a)) for the extension o f p  defined where p is and at n, 
where its value is a. 

Similarly i f s  is a finite sequence, with length k, of distinct integers 
not in the domain of p and if i is a two-valued sequence with the same 
length to, we write (p, (s, i)) for the extension o f p  defined where p is 
and at the integers occuring in s, witIa v a n e  i(n) at s(n). 

Def'mition 4.4. An integer n is 7- indifferznt  to a condit ion p (wri t ten 
n I p )  if  n is not  in the domain of p and for every extension q of p, ei- 
ther n is in the domain o f q  or (q, (n, 0)) and (q, (n, 1)) are f-compatible.  



376 S. Grigorieff, Combinatorics on ideal and forcing 

Roughly speaking, n is indifferent to p if below p n is of  no use to 
know the interpretation o f f .  

Remark 4.5. I f n  is not in the domain o f q  and q extends p and n I p  
then n l q .  

Let p be a condition, two disjoint cases are possible: 
either i) (3q<~p)(Vr<<.q)Vn n o t ( n l r )  
or ii) (Vq < p ) ( 3 r  ~< q) ~in(nlr )  

The following lemmas deal with the two cases. Their proofs will be 
given later. 

I.emma 4.6. f f  M satisfies DC', i f  J is a T-ideal and p satisfies i) then 
there is an extension q o f  p and a strictly increasing function H from w 
into 6o, with range the complement o f  the domain o f  q such that for 
every integer k and every two-valued sequence i with length k the two 
conditions (q, (Hrk, i), (H(k), 0 ) ) and  (q, (Htk,  i), (H(k),  1)) are f 4n- 
con~patible. 

Lemma 4.7. I f  M satisfies DC', i f  J is a T-ideal and p satisfies ii) then 
there is an extension q o f  p which decides f (n) for each integer n. 

Proposition 4.8. l f  q is as in Lemma 4.6 and q is in G then f reconstructs 
g, Le. g is in M[f] .  

Proof. Define a real g '  in M[ f ]  • on the domain o f q g '  is just q, and on 
the range of  H we define g '  by the following induction. 

Suppose g '  is defined on Ht  k (i.e. on the integers occuring in the 
sequence Ht k), then (q, (Htk,  g ' t fHtk) ) ,  (H(k), 0)) and 
(q, (Ht k, g ' t  (Ht k)), (H(k), 1)) speak differently about f (n )  for an in- 
teger n. Take the first such n and choose g'(H(k) such that 
(q, (H i' k, g '  t (HI' k)), (H(k),  g ' (H( !  )))) forces f ( n  ) = f(n). 

As q is in G and as the interpretation o f f  in M[G] is just f ,  se see in- 
ductively that ~(H(k), g'(H(k)))} is in G. Hence g' = g and so g is in 

M[f]. 
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Proposition 4.9. l f  q is as in Lemma 4.7 and q is in G then f is in M. 

The proof  of Theorem 4.1 is now easy. Let D be the set of  conditions 
q as in Lemmas 4.6 and 4.7. These lemmas just show that D is dense in 
C(J). As D is in M it meets G; applying the two preceding propositions 
we deduce tl~at f is in M or that f reconstructs g. 

We now turn to the proofs of Lemmas 4.6 and 4.7. 

Proposition 4.10. Let  s be a sequence o f  distinct integers all d i f ferent  
f rom the integer n and let p be a condit ion which has nei ther n nor the 

integers in s in its domain, l f  n is indif ferent  to no extension q o f  p then 

there'exists an extension q o f  p which has neither n nor the integers ins  
in its domain  and such that f o r  every two-valued sequence i wi th  the 

same length as s the two condit ions (q, (s, i), (n, 0)) and (q, (s, i), (n, i )) 
are f - incompat ible .  

Prc.of. Let i 0 . . . . .  i t be the different two-valued sequences with the same 
length as s. 

We define an increasing sequence qo, ..., qt of extensions of p, which 
have "neither n nor the integers o f s  in their domain, by the following in- 
duction. 

By tile hypothesis on n and p, n is not indifferent to the extension 
(p, (s, i 0)) of p, hence there is an extension q0 of p such that  
(q0, (s, i0), (n, 0)) and (q0, (s, i0), (n, 1)) are f - incompat ible ,  l fqu_ 1 is 
defined, then n is not indifferent to the extension (qu--l, (s, i u )) of p, so 
there is an extension qu of qu-1 such that  (qu, (s, i u), (n, 0)) and 
(qu, (s, i u ), (n, 1 )~; are f - incompat ible .  

Using remark 4 3  we see that qt is such that for every two-valued se- 
quence i with the :same length as s the two conditions (qt ,  (S, i), (n,  0))  
and (qt ,  (s, i), (n,  l)) are f--incompatible, t tence qt is the desired, q. 

Proof of l .emma 4.6. Let P0 be an extension of p such that  no exten- 
sion of p0 has an indifferent point  (such a Po exists by the hypothesis  
on p). 

We define by b!,duction a J-tree A and a decreasing function Q from 
A into C(J) such ihat  the integers of  any sequence s in A are all distinct 
and not  in the domain of ¢2(s). 
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The empty sequence is in A and its image by Q is P0" Let s be in A, 
we put s , (n)  in A if  n is different of  the integers in s and not  in the do- 
main of  Q(s). As Q(s) is an extension of  p0, it has no extension with an 
indifferent point. Applying 4.10 (with s, n and Q(s)) we see that  there 
exists an extension q of  Q(s) such that  for any two-valued sequence i, 
with the same length as s, the two conditions (q, (s, i), (n, 0)) and 
(q, (s, i), (n, 1)) are f '-incompatible. We take such a q as Q(s,(n)). 

One can see that  the construction of A can be clone assuming only 
DC'. 

It is clear that A is a J-tree. Use the hypothesis that J is a T-ideal to 
take a J-branch H of  A. 

The sequence Q(Htk) ,  k in w, is decreasing and for each k the inte- 
gers in Ht  k are not  in the domain of  Q(/-/t k). Hence if we let q '  be the 
union of  the Q(Htk) ,  k in ¢o, q' is a two-valued function whose domain 
is disjoint from the range of  H. As H is a J-branch its range is no t  in J 
and q '  is an element of  C(J). 

Let q be an extension of  q' with domain just the complement of  the 
range of  H. Using Remark 4.3 and the fact that q extends Q(Htk)  for 
ever), k, i~t is clear that  for any two-valued sequence i, with length k, the 
two condiitions (q, (H~ k, i), (H(k), 0)) and (q, (Ht k, i), (H(k), 1)) are 
f- incompatible .  Hence q and H are,the desired ones. 

Proposition 4.11. Let s be a sequence o f  k distinct integers which are 
indifferent to a conditio~, p; then for every extension q o f  p and two- 
valued sequences i and i' with length k the two conditions (q, (s, i ) ) and  
(q, (s, i')) are f-compatible. 

Proof. We proceed by induction on k. The case k = 0 is clear. Suppose 
the property true for k, we show it is true for k+ 1. 

Suppose that,  for an integer n, (q, (s, i)) and (q, (s, i ' ))  decide f ( n ) ;  
we shall show that  they make the same decision. Let r be an extension 
o f q  which has not  the integers o f s  in its domain and such that  
(r, (stk,  irk), (s(k), i ' (k)))  decid0s f ( n ) .  As s(k) is indifferent to p and 
r extends p, s(k) is indifferent to r, and so (r, (s, i)) and 
(r, (s t k, i t k), (s (k), i ' (k)))  are f -compatible .  The two decide f (n), so 
they make the same decision. Now if  we put r and (s(k), i'(k)) together, 
we can apply the induction hypothesis on k to see that  (r, (s, i ' ) )  and 
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(r, (s tk ,  i rk) ,  (s(k); i ' (k)))  are f -compat ible .  The two decide f--(n), so 
they make the same decision. Hence (r, (s, i)) and (r, (s, i ')) decide f (n) 
in the same way, and so do (q, (s, i)) and (q, (s, i ')). This shows the in- 
duction step. 

Proposition 4.12. Let  s be a sequence o f  distinct integers indifferent to 
a condition p, and let q be an extension o f p  such that the integers ors  
are in the domain o f  q. f f  q '  is the condition obtained from q by delet- 
ing the integers ors  f rom the domain, then 

a) f f  q decides f (m) then q '  also decides f (m). 
b) I f  the integer n is indifferent to q then n is also indiffere~t to q'. 

Proof. a) As q '  extends p, the integers of s are indifferent to q '. 

Applying Prop. 4.11, we see that  every extension of q' is f -compat-  
ible with q, so every e~:tension of q' which decides f-(m) makes this de- 
cision as q does. Hence q' does decide f-(m), and this in the same direc- 

tion as q. 
b) To prove that n is indifferent to q ' ,  we show that  for every exten- 

sion r of q '  which has neither t~ nor the integers of s in its domain and 
",L!t for every two-valued sequence ~ wl,~ the same length as s, if  

(r, (s, i), (n, 0)) and (r, (s, i), (n, 1)) both dec ide r  (m), m any integer, 
they do it in the same direction. Let e' be an extension of (r, (~, q t s ) )  
which decides f-(m). As (r, (s, q t s ) )  ex~ends q, n is indk'ferent to r ' ;  ap- 
plying a) we can suppose that  n is m~t in the domain o f r ' .  Applying 
Prop. 4.11, we see that  r '  is f -compat ib le  with both  (r, (s, i), (n, 0)) and 
(r, (s, i), 0~, 1 ), so that these two conditions decide f (m) in the same 
direction. 

Proposition 4.13. Let p be such that it is dense below p to have an in- 
differeni point  (condit ion ii)). I ra  is a sequence o f  distinct integers in- 
different to p then, for  every integer m, the set o f  n which are indiffe- 
rent to an extension r o f  p, r deciding f (m) and the integers o f  s not  in 
the dor,~ain o f  r, is not  in J. 

Proof. Let q be an extcnsion o f p  dec id ingf  (m), using Prop. 4.12 we 
can suppose that  the integers of s are not  in the domain of q. We prove 
that the set X of  the integers n wNch are indifferent to an extension r 
of q, the integers o f s  not  in the domain of r, is not  in J. 
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Suppose not. Note that  the integers o f s  are in X. Let r be an exten- 
sion of q whose domain contains X, such an r exists since X is in J. 
Prop. 4.12 and the fact that  the integers of s are in the domain of r im- 
plies that no extension of r has an indifferent point, contradict~ng the 
hypothesis of  density below p. 

Proof of  Lemma 4.7. We define inductively a J-tree A and a decreasing 
function Q from A into C(J) such that  if  s is in A with length k the in- 
tegers o f s  are indifferent to Q(s)and Q(s) decides f-  up to k. 

The empty sequence is in A and its image by Q is the given condition 
p. I f s  is inA with length k, we put  s . ( n )  inA i f n  is indifferent to an 
extension r of  Q (s) which decides f ( k )  and which has not the integers 
o f s  in its domain, and we let Q(s,(n)) be such an r. 

One can show that  the construction of  A can be done assuming only 
DC'. 

Prop. 4.13 shows that  A is a J-tree. Use the hypothesis that J is a T- 
ideal to take a J-branch H of A. 

Let q be the union of  the Q(Hi'k), k in w. As the integers of Hrk are 
indifferent to Q(Htk), they are not in its domain, so the range of H is 
disjoint from the domain of  q. Thus q is in C(J), it extends p and for 
each k it dec ides f  (k). 

Hence the proof  of Theorem 4.1 is now complete. 

Remark 4.14. Theorem 4.1 can be strengthened. Let J be a maximal T- 
ideal in M and g a J-Cohen over M. If  f is in M[g] a function from co 
into M then either f is in M or f reconstructs g. 

Proof. Take X in M containing the range of f .  Replace in definition 4.2 
the condition "a, b in 2"  by "a, b in X".  The proof  works in the same 
way. 

Remark 4.15. The m nimality result implies the nonexistence of Cohen 
reals (J0-Cohen reals, ,vhere J0 is the ideal of finite subsets of co), hence 
the non-denumerabiliW of the continuum of M in M[g]. In particular i f  
M ~atisfies the cont inuum hypothesis then M and M[g] have the same 
cardinals. In this last case we can replace in the preceding remark the 
condition " f  is a function from t,_~ into M"  by " f  is a countable set in- 
cluded in M"  (provided that  M satisfies the axiom of  choice). 
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To prove this 1,.st s tatement let u be a bijeetion in M between an or- 
dinal and a set w~lich contains f ,  clearly M [ f ] =  M[u -1 (/3] ; if  a is the 
order type o f u  -1 (f)  we can form a bijection v from t~ o n t o f s u c h  that  
M[f]  =M[v] .  I~ M[g] a is countable as is f ;  i fM andM[g]  have the 
same cardinals a is also countable in M and there is a bijection t from co 
onto f such that  i¢i If] = M[t] .  Now it suffices to apply 4.14. 

Getting Theorems 4.1, 3.6, and 1.15 together ~ves: 

Theorem 4.16. I f  M is a model o f  ZFC then a J-Cohen real over M is 

minimal over M i f  and only i f  J is a maximal T-ideal. 
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§5. Generalized Silver's forcing 

In this section, it is understood t ha tM is a model of ZF + DC! 
Recall that i f J  is c.d.s. (Def. 2.1) then a set which is 2"/J-generic  

over M is the image by c (the canonical surjection from 2"  onto 2 °,/Jr) 
of a maximal ideal J*  extending J. Moreover a countable set in M [J* ] 
which is included in M is in M. 

In M[J*]  we can define C(J*). Let g be a J*-Cohen real over M[J* ]. 
Clearly a subset x of  co is in J*  if and only ig g t x is in M [J* ] ; but  g rx 
is in M [J* ] if  and only i f  it is in M, so J* is M-definable from g and 

hence M[J*]  [g] = M[g].  We say that g is obtained by double forcing 
from J over M. 

I f F  is the dual of  J, we let S(]) be the set of  two-valued functions 
defined on a subset of co which is not in F,  and we put on if~ the reverse 
inclusion ordering. 

If G is S(J)-generic over M, G defines a real g: g(n) = 0 if and only if 

{(n, 0)} is in G. As G is the set of restrictions o f g  which are in M, it is 
clear that M[ G] = M[g] . 

Definition 5.1. A real associated to an S(J)-generic over M is called a 
J-Silver real over .~/. 

Remark 5.2. I f J  is the ideal of finite subsets of  co, S(J) is Silver's set of  
forcing conditions which is described in Mathias [3] .  l f J  is maximal 
then C(J) = S(J) and the notions of J-Cohen and J-Silver reals coincide. 

Theorem 5.3. I f  J is c.d.s, the double forcing from J coincides with the 
J-Silver forcing; i.e. a J-Silver real over M can be obtained by double 
forcing ]'rom J over M and conversely. 

Proof. We define a function from S(J) into 2 ° , /J :  T(p) = c(domain(p)). 
T is clearly a normal function (def. 4.3). 

Le tg  be a J-Silver real overM associated to the S(J)-generic G. Ap- 
plying 3.5 we deduce that  T(G) is 2 ~/J-generic over M; let J*  be the 

maximal ideal associated to T(G), then M[ T(G)] = M[J* ] .  Moreover 
G is T -1 (T(G))-generic over M [ J* l ,  but  T -1 (T(G) is just  C(J*). Hence 
g is obtained by double forcing from J over M. 
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Conversely let g be a real obtained by double forcing: g is associated 
to G which is C(J*)-generic over M[J*] .  To show that g is a ./-Silver real 
we have to show that  G is S(J)-generic overM; i.e that G meets each 
dense subset D of  S(J)  which lies ha ?ei. As G is C(J*)-generic over 
M[J*] ,  it suffices to show that  the intersection of  D with C(J*) is dense 
in C(J*). Let p be an element of  C(J*). If Dip is the set of  minorants of  
p in D, D/p is dense betow p in S(J);  so T(D]p) is dense below T(p) in 
2 °~/J. As T(p) is in c(J*), T(D/p) meets c(J*);  hence there is a q in D/p 
whose domain is in J*. This shows that the intersection of  D with C(J*) 
is dense in C(J*). Thus g is a J-Silver real over M. 

Remark. Suppose that J is a c.d.s, ideal in M and that, in the double 
forcing, J* is a maximal T-ideal in M[J*] .  Then by Theorem 4.1, t.he 
real g obtained is minimal over M [J*l .  In the following theorem we 
verify that  g is in fact minimal over M. 

Theorem 5.4. Suppose that M satisfies DC' and ~'hat J is a c.d.s, ideal in 
M. f f  in the double forcing the extension J* of  J is a maximal T-ideal 
then the real g which is obtained is minimal over M. 

Proof. L e t f b e  a real in M[g] which is not  inM. Then fJs  not  i n M [ J * ] .  
Reasoning in M[J*] ,  Theorem 4.6 and the proof  of  4.1 show the exis- 
tence of  a condition p in G (the C(J*) -generic giving g) and an increas- 
ing injective function H from co into o~, with range the complement  of  
the domain of  p, such that for every integer k and every two-valued se- 
quence i with length k there are distinct a, b in 2 and an integer m such 
that (p, (Ht k, i), (H(k), 0)) fo rces f  (m) = a, and (p, (Ht k, i), (H(k), 1)) 
fo rces f  (m) = b. We will consider a, b, m as functions of  i. 

Note that p, H, a, b, m are all elements of  M since J is c.d.s. 
The denotat ion f o f f  in the forcing language in M [J* ] associated to 

C(J*) can be itself denoted in the forcing language in M associated to 
2 ~/J. Hence there is a sentence about M which means taat  c(x) forces 
(forcing on 2 °~/0") the sentence which denotes "p forces (forcing on 
C(J*) i nM[J* ]  ) f (m) = a". 

The relation between p and H is a countable conjunction of  relations 
true in M[J*] so forced by elements of  c(J*). 
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As J is c.d.s, there is an element of c(J*), say X, which forces simUlta- 
neously all these relations. So, for every two-valued sequence i with 
length k, X forces "(p,  (Ht k, i), (H(k), 0)) forces f--(m(i)) = a(i)'" and 
X forces "(p, (H~ k, i), (H(k), 1)) forces f--(m(i)) = b(i)". 

We define a real g '  i nM[f ]  • on the domain o f p  g'  is just p, ar_~ on 
the range o f H  g'  is defined by the following induction. 

Suppose g '  is defined on Ht  k, then (p, (Htk,  g' t (Htk)) ,  (H(k), 0)) 
and (p, (H~k, g' t (H~k)) ,(H(k) ,  1)) are forced by X to decide different- 
ly f-(m(g' t (Ht k))). Choose g'(H(k)) such that (p, (Ht k, g'  t (H tk)), 
(H(k), g'(H(k)))) ~z, forced by X to force f-(m(g' t (Htk)))  = 
f(m(g't(H~k))) .  

As X is in c(J*), what is forced by X is true in M[J*] .  Reasonning in 
M[J*] and using the fact that p is in G we see inductively that 
{(H(k), g'(H(k)))} is in G. Hence g = g '  and g is in M[f ] .  

Corollary 5.5. f f  J is a weak T-ideal then a J-Silver real over M is minimal 
over M. 

Proof. A weak T-ideal is c.d.s. (Prop. 2.3). Using Theorems 5.3 and 2.5, 
which says that J* is a T-ideal, we conclude with Theorem 5.4. 

Remark 5.6. The proof of 5.5 is very indirect. In case J is a T-ideal the 
proof of Theorem 4. ! works to show the minimality of a J-Silver real 
since in no place the hypothe:~is of maximality is needed. 
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{}6. Preservation and destruction of 6ol 

385 

In this section we show that  the forcing with C(J), J a maximal ideal 
on 6o, collapses 6oi, just  in case J is not p-point. 

Theorem 6.1. I f  the ground model M satisfies the continuum hypothesis 

(CH) and J is not  p-point then the forcing with C(J) collapses w I . 

Proof. As M satisfies CH there is a subset A of 6ol such that  
2 ° a n  M = 2 t° n Lo.,1 [A] 

The following lemma is easy: 

Lemma. I f  X is a coinfinite subset o f  t,~ and ira maps X into 2 then for  

each aE6o 1 there is a map b from c o - X  into 2 such that the union o f  a 

and b is in La+ 1 [A 1 - La [A ],  for  a greater than ~. 

Now let g be a J-Cohen real over M. 
Let (X n), n in 6o, be ~ partit ion of  6o by elements of J such that  i f X  
meets each X n on a finite set then X is in J. 
Define a f u n c t i o n f  from 6o into 6ol as follows: 
f (n )  = the least a such that  gr X n is in La [A ]. 
Let p be a condition, there is an n such that X n n dom(p)  is ccinfinite 
in X n (if not  6o-dom(,0) would be in J, contradicting the definit ion of 
C(J)). By the lemma, given any # in 6ol, there is an extension q o f p  
such that  q PX is in L.t÷ 1 [A ] - L. t [A ] for a ~ greater than/~. Hence q 
forces that  there is ar~ n on which f is greater than/3. 
A density argument shows t h a t f  is then cofinal to 6ol, hence the theo- 
rem. 

In order to prove the converse of the preceding theorem we need a 
combinatorial property of  p-point ideals. 

l f A  is any set, Seq(A) is the set of  finite sequences of elements of  A. 
We put  on Seq(A) the extension ordering, s . t ,  lh(s) and (a) denote the 
concat ;nation of  s and t, the length of s and the length-one sequence 
defined by a. Soj (6o) is the set of  finite subsets of  6o. 
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Definition 6.2. i) A is a p-tree i fA  is a non-empty subset of  Seq(Soj (o~)) 
and any predecessor of an element of  A is in A. 

ii) I f s  is in the p-tree A the ramification of  A at s is the set of  ele- 
ments a of So, (oJ) such that s,(a) is in A. 

iii) A function H from ~o into S,, (o~) is called a p-branch of A if for 
every k the sequence (H(0), ..., H(k))  is in A. 

Definition 6.3. i) A subset of  S~ (co) is called J-big if  there is an X not  
in J such that So, (X) is contained in it. 

ii) A is a strong J-p-tree if any finite intersection of ramifications of  
A is J-big. 

iii) H is a J-p-branch of A if it is a branch such that the union of its 
range is not  in J. 

iv) H is a weak p-T-ideal if  every strong J-p-tree has a J-p-branch. 

Proposition 6.4. J is p-point i f  and only i f  J & a weak p-T-Meal. 

The proof  of this proposition is analogous to that of  1.15, we have to 
use the notion of p-iaductive ideal: 

Definition. J is p-inductive if for every decreasing sequence (X n ), n in o~, 
of subsets of 6o not in J ,  there is a function H from ~ into So, (co) such 
that i) if m is less than n then the greatest element of H(m)  is less than 
that of H(n)  and the cardinal of  H(m)  is less than that of H(n).  

ii) the union of the range of H is not  in J 
iii) for each n, H(n + 1 ) is included in XsuptHtn) ). 

The analogs of 1.12 and 1. ! 3 and 1.14 hold, proving Prop. 6.4. 

Theorem 6.5. I f  J is a p-point maximal ideal then the forcing with C(J) 
does not collapse ~1.  

Proof. Let g be a J-Cohen real over M and f a function from o~ into o~ 1 
lying in M[g]. Let f b e  a denotation o f f  ha the forcing language. 

Let p be any condition, we construct by induction a p-tree A and a 

decreasing function Q from A into C(J) such that Q (0) = p and for 
every s in A the domain of Q(s) is disjoint of the union o f R  (s) where 
R (s) is the ramification of A at s. 
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I f a  is in Soj (co) and is disjoint of  the domain of p, we put  (a) in A. 
If  s is in A, s = (a0, ..., a n )~, and Q ((a o, ..., an_ i )) is defined, we let 
u o , ..., u t be the different functions from the union of  a o, ..., a n into 2. 
L e t  qo ,  ..., q t  be a decreasing sequence of  conditions extending 
Q((a  o , ..., an_ 1 )) such that  the domain of  qi is disjoint of  the un ion  of  
a O, . . . ,a  n and (qi,  ui) decides f ( n  - 1). We let Q(s)  be qt  and 
So~ ( c o - ( a  o u ... u a n u dom(Q(s)))) be the ramification of  A at s. 

We also define ce (s) to be the suprenum of the decisions of  the qi's. 
Clearly A is a J-p-tree. Let H be a J-p-branch o fA .  Let q be the union 
of the Q ( H t n ) ,  n in co, then q is a condition which extends p and forces 

f i s  bounded by a where a is the supremum of the a(S), s in .4. A density 
argument shows that f is bounded below co 1 , hence col is preserved. 

Remark. The above proof  shows that  if an ordinal has cofinality greater 
than co in M then it still has cofinality greater than co in M [ g ] .  Hence, if 
CH holds in M, cardinalities and cofinalities are preserved. 

Getting 4.16 and 6.5 together gives 

Theorem 6.6. S u p p o s e  M satisf ies CH and  J is a m a x f m a l  ideal  then  

i) J is n o t  p-poin t ,  C ( J )  col lapse cardinals 

ii) J is p-point  but  not  selective, we get a non-minimal real but  we do 
not collapse cardinals. 

iii) J is selective, we get a minimal real and cardinals are preserved. 

Remark. CH implies the existence of p-point ideal,; which are not  selec- 

tive. 
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Appendix 

The two properties of  weak T-ideal and T-ideal are the same for coun- 
tabl.y generated or maximal ideals. However they do not coincide: 

Proposition 1. T h e r e  is  a w e a k  T - i d e a l  w h i c h  & n o t  a T-ideal .  

Proof. Let x s ,  s in Seq(~),  be a family of disjoint subsets of  ¢o. 
We define a tree A by the following induction: i f s  is in A, we put 

s , ( m )  in A if and only i f m  is in x s. 

Let J be the ideal generated by the branches of  A and the finite sub- 
sets of  co. So an element  of  J is included, modulo a finite subset, in a 
finite union of branches o fA.  

As a branch of  A takes at most one point in an x s, we see that an 
element of  J meets an x s at a finite number of  points. Hence each infi- 
nite subset of an x s is not  in J, showing that J is proper and that A is a 
J-tree. 

As every branch of A is in J, J is not  a T-ideal. 
We now show that it is a selective ideal. 
Suppose not, let ( x  n ),  n in co, be a J-partition whose selectors are all 

inJ .  
Note that if a set is in J then there is an infinite selector which is dis- 

joint  from it and there is an infinite subset of  it which is included ha a 
branch of  A. 

Using these remarks it is easy to get a family ( H  n ), n in w, of  distinct 
branches of  A, each meeting infinitely many x n . 

Fix k, consider the sequences H n t k; if infinitely many of them are 
different than it is easy to get an infinite selector which takes one point 
to each of these branches, such a selector is not  in J, a contradiction; 
hence the H n t k ,  n in co, form a finite set. 

We define by induction a strictly increasing sequence of firi te se- 
quences s n with length k n , n in w, and a function f on ¢o such that 

Hf(n)  extends Sn_ 1 but not  s n and infinitely many of  the H p  extend, s n . 

Suppose all are def'med up to n. The l i p  which extends s n are intani- 
tely many and all different, so there is a k greater than l h ( s  n )  such that 
infinitely many of them, but not  all, have the same restriction to k. 

Choose sn+ 1 to be such a common extension and f ( n  + 1) such that 

H/in÷l) is in the "but  not  all". 
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As each H n meets infinitely many x m , m in to, it is easy to construct 
an infinite selector which takes one point exactly in each range of  Hi(n), 

this point beingHi(,~)(k) for a k greater than k n ; such a selector can not  
be in J, a contradiction. 

Definition 2. An ideal J is Ramsey if for every subset x not  in Y and 
every partition f of  the pairs of elements of x in two sets there exists an 
homogeneous subset of  x which is not  in J. 

]Proposition 3. I f  J is a w e a k  T-ideal tT-en J is Ramsey .  

Proof. We first assume that J is a T-ideal. The proof is just a generaliza- 
tion of the well-known Ramsey's theorem. 

Let x and f be as in Def. 2. 
We define a J-tree A inductively: ~ is in A and the ramification of A 

at ¢ isx.  I f s  is in A with length k+ 1, the ramification xsr k of  A at stic 
is not  in J;  choose a subset x s o f x s r  k such that x s is not  ir~ J and the 
pairs ( s (k ) ,  m} ,  m in x s, have the same image byf .  Put s , ( m )  in A if 
and only ifrn is in x s, so that x s is the ramification of A at s. 

Take a J-branch H of A. 
For each n, H ( n )  is such that the pairs (H(n) ,  H ( n + p ) } ,  p in to, have 

the same image by f, say i(n).  

The set of  H(n)  such that i (n)  = G and the set of H(n)  such that 
i (n)  = 1 define a partition of the range of H; one of these two sets~ at 
least, is not in J; it is the desired homogeneous set for f. 

To prove the proposition with the hypothesis of  weak T.-ideal we 
have to replace A by a strong J-tree. 

To do this we first note that there exists a well-ordering of Seq(to) of  
order type to which extends the non-linear inclusion ordering. The iso- 
morphism s from to onto Seq(to) which is deduced from this well-order- 
ing is constructed by blocks as follows; the first block is just  formed of 
the empty sequence; if the n first blocks give s(0), ..., s ( k )  then the 
n+ 1 - s t  block is s ( 0 ) . ( m 0 ) ,  ..., s ( k ) , ( m k )  where m i is the first integer 
such that s ( i ) . ( m  i) is different from s(0), ..., s (k) .  

We now define indvctively A and a decreasing sequence (x (n)), n in 
to, of  subsets of  to which are not  in J. 

The empty sequence s(0) is in A and x(0)  is x. I f s (n )  does not  extend 
an s(k) ,  k <  n, then we do not  put  s(n)  in A and we let x ( n )  be x ( n -  1). 
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I f s (n )  extends~an s(k), k < n, there is a k, k < n, and an m such that  
s (n) = s (k) • (m), we put  s (n) in A if  and only if m is in x (k). As x ( n -  1 ) 
is not in J there is a subset y of  it which is not  in J such that  all the 
pairs (rn, p}, p in y,  have the same image by f,  we take such a subset as 
x(n) .  

Clearly i f s (n )  is in A, the ramification of A at s(n)  is x(n) ,  hence A 
is a strong J-tree. Taking a J-branch, we end the proof  as above. 

Detinition 4. A strong J-partit ion is a J-partition which has at most one 
element not in J. 

DelTmition 5. J is a weak selective ideal if  for every strong J-parti t ion 
there is a selector not in J. 

Proposition 6. I f  J is Ramsey then it is a weak selective ideal 

Proof. Let (x~.), n in o~, be a strong J-partition. Suppose that jus t  x 0 is 
not in J. On the complement of x 0 , which is not  in J since we have a J- 
partition, we define a two-valued function on the pairs: f ( ( m ,  n}) = 0 if 
and only if m and n are in the same element of the partition. Clearly an 
homogeneous set is included in an element of  the partition or is a selec- 
tor. As we have a strong J-partition, an homogeneous set which is not  in 
J is a selector. Hence the proposition. 

Lemma 7. J is c.d.s, if  and only if  for every J-partit ion there is a set 
which is not  in J and meets each element of the partition on a set in J. 

Proposition 8. J is selective i f  and only i f  it is c.d.s, and weak selective. 

Proof. Use Prop. 2.3 to show one implication; transform a J-partit ion 
into a strong one, using Lemma 7, to show the other implication. 

Propositian 9. There is a Ramsey ideal which is not  c.d.s. 

Proof. Let  (x n ), n in w,  be a parti t ion of  6o in disjoint infinite sets. Let 

J be the set of subsets of  t~ which meet each x n at a finite number  of 
points. 
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I f x  is not in J then x meets an x n on an infinite set. If f is a two- 
partition of  the pairs of  x ,  applying the Ramsey's theorem, there is a~ 
infinite homogeneous set included in the intersection o f x  and x n. Such 
a set is not  in J. Hence J is a Ramsey ideal. Obviously J is not  c.d.s. 

Proposition 10. There  is a c.d.s, ideal wh ich  is n o t  w e a k  selective.  

Proof. Let (x  n),  n in co, be a partition of co in disjoint infinite subsets. 
Let J be the set of  subsets of  co which havean  infinite intersection with 

only a finite number of  x n . 
Clearly J is an ideal which is not  weak selective since (x  n ), n in co, is 

a strong J-Fartition. In fact it is not  weak p-point. 
Now show that J is c.d.s. Let (Xp), p in w, be a J-partition. If the 

union of  the Xp which are in J is not  in J then this t~nion is the desired 
set of  Lemma 7. So we supposo that no Xp is in J. Thus each Xp meets 
infinitely many x n on an infinite set, it is then easy ~o get a set whose 
intersections with the Xp are infinite s~bsets of  different x n . Such a set 
is not  ha J and meets the Xp on sets in J, hence it is the desired one. 

Definition 11. J is a very weak T-ideal if for every x not in J there is a 
J-bra~.ch for every tree whose ramifications differ from x on a set in J. 

Definition 12. J is weak inductive if for every decreasing sequence (x n ), 
n in co, of subsets of  co which are not in J and such that x n -x,~+ 1 is in 
J for each n, there exists a strictly increasing function H from co into co, 

with range not in J, such that H ( n  + 1) is in Xncn) for each n. 

Definition 13. J is weak Ramsey if for every x not in J and every parti- 
tion f of the pairs of elements of  x into two sets, such that for each n in 
x either the set of  m in x such that f({n, m}) = 0 is in J or the set o f m  
in x such that f ( (n ,  m}) = 1 is in J, there is a homogeneous subset o f x  

which is not  in J. 

Proposition 14. I f  J is an ideal then  the  f o l l o w i n g  are equ iva len t :  

i) J is w e a k  select ive  

ii) J is w e a k  induc t i ve  

iii) J is a very  w e a k  T-ideal 

iv) J is w e a k  R a m s e y  
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Proof. To show that i), ii), iii) are equivalent it suffices to repeat' the 
proofs of  Prop. 1.10, 1.12, 1.13 and 1.14. 

The proof that i/i) implies iv) is just that given in Prop. 3 for T-ideals. 
It is obvious that iv) implies ii). 

Proposition 1 5. There  is a w e a k  select ive  ideal  wh ich  is n o t  R a m s e y .  

Proof .  Let (xs), s in Seq(2) (the two-valued finite sequences), be a fam- 

ily of infinite subsets of  6o such that x 0 is 6o and xs,(0 ) and xs,(1 ) are 
disjoint with union x s for each s in Seq(2). 

Define J as follows: x is in J if and only if the set o f s  such that the 
intersection o f x  and x s is finite is dense in Seq(2) (w.r . t the  inclusion 
ordering). Clearly J is a proper ideal and the x s are not  in J. 

L e t y  n be the union of  the Xs,(O), s with length n. 
Define a partition f of  the pairs of integers: f ( { n ,  n +p}) = 0 if and 

only if  n +p is in Yn" 

A homogeneous set f o r f  is included or disjoint, modulo a finite set, 
of  infinitely many Y n ,  hence it is in J. So J is not  Ramsey. 

We now show that it is weak selective. Let (Xi ) ,  i in 60, be a strong 
J-partition. If  each X: is in J then each x s meets infinitely many X i 

since it is not  in J, so it is easy to get a selector x which meets each x s, 

such an x has in fact an infinite intersection with each x s hence it is not  
in J. Note that if a set y is not  in J then there is an s such that for every 
extension t o f s  the intersection o f y  and x t is infinite, hence for every 
extension t o f s  the irttersection o f y  and x t is not  in J. So if we consider 
a strong partition ( X  i) whose only element not in J is Xc, there is an s 
such that for every extension t of s the intersection o f 6 o - X  0 and x t is 
not  in J and so meets infinitely many X i, hence a selector which meets 
each x t ,  t extending s, hence which has an infinite intersection with each 
x t, t extending s, and so is not  in J. Thus J is weak selective. 

Corollary 
i) 

impl ies  ii) 

16. The  f o l l o w i n g  impl ica t ions  can n o t  be reversed: 

J is a T-ideal 

J is a w e a k  T-ideal 

J is se lec t ive  

J is i nduc t i ve  

J is R a m s e y  a n d  c.d.s. 

J is w e a k  select ive  a n d  c.d.s. 
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implies iii) J is Ramsey 
implies iv) J is a very weak T-ideal 

J is weak selective 
J is weak inductive 
J is weak Ramsey. 

393 
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