A Wadge hierarchy for second countable spaces Reducibility via relatively continuous relations

Yann Pequignot

Université de Lausanne

Université Paris Diderot

Séminaire général de logique Paris — 7 avril, 2014

(日)

Classify Definable subsets of topological spaces

X a 2^{nd} countable T_0 topological space:

A countable basis of open sets,

Two points which have same neighbourhoods are equal.

Borel sets are naturally classified according to their definition

$$\begin{split} \boldsymbol{\Sigma}_{1}^{0}(X) &= \{ O \subseteq X \mid X \text{ is open} \}, \\ \boldsymbol{\Sigma}_{2}^{0}(X) &= \{ \bigcup_{i \in \omega} B_{i} \mid B_{i} \text{ Boolean combination of open sets} \}, \\ \boldsymbol{\Pi}_{\alpha}^{0}(X) &= \{ A^{\complement} \mid A \in \boldsymbol{\Sigma}_{\alpha}^{0}(X) \}, \\ \boldsymbol{\Sigma}_{\alpha}^{0}(X) &= \{ \bigcup_{i \in \omega} P_{i} \mid P_{i} \in \bigcup_{\beta < \alpha} \boldsymbol{\Pi}_{\beta}^{0}(X) \}, \quad \text{for } \alpha > 2. \end{split}$$

All these classes are *pointclasses*, i.e. if $f: X \to X$ is continuous and $A \in \Gamma$ then $f^{-1}(A) \in \Gamma$.

Wadge reducibility

Let X be a topological space, $A, B \subseteq X$. A is Wadge reducible to B, or $A \leq_W B$, if there is a continuous function $f : X \to X$ that reduces A to B, i.e. such that $f^{-1}(B) = A$ or equivalently

$$\forall x \in X \quad (x \in A \iff f(x) \in B).$$

Bill Wadge

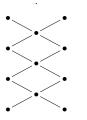
The idea is that the continuous function f reduces the *membership question* for A to the membership question for B.

- The identity on X is continous, and
- continuous functions compose, so

Wadge reducibility is a *quasiorder* on subsets of X that refines the Baire hierarchy. Pointclasses are simply initial segments of \leq_W .

Hierarchies?

On Polish 0-dimensional spaces, Wagde reducibility \leq_W yields a nice and well understood hierarchy, by results of Wadge, Martin, Monk, Louveau, Duparc and others.



Thanks to a game theoretic formulation of the reduction.

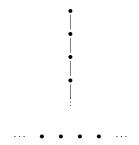
"The Wadge hierarchy is the ultimate analysis of $\mathcal{P}(\omega^{\omega})$ in terms of topological complexity..." Andretta and Louveau.

Applications to Computer Science: Duparc, Finkel, Ressayre...

And Automata Theory in particular: Perrin, Pin, Facchini...

Outside Polish 0-dimensional spaces

On non 0-dimensional spaces, the Wadge reducibility \leq_W yields no hierarchy in general, by results of Schlicht, Hertling, Ikegami, Tanaka, Grigorieff, Selivanov and others.



There can be very few continuous maps...

Recall that $D_2(\boldsymbol{\Sigma}_1^0) = \{ U \cap V^{\complement} \mid U, V \in \boldsymbol{\Sigma}_1^0 \}.$

Theorem (Ikegami, 2010)

The poset $(\mathcal{P}(\omega), \subseteq_{fin})$ embeds into $(D_2(\mathbf{\Sigma}_1^0(\mathbb{R})), \leq_W)$.

Notice that $(\mathcal{P}(\omega), \subseteq_{fin})$ contains descending chains and antichains of size \aleph_1 .

Theorem (Schlicht, 2012)

In every non 0-dimensional metric space, there exists a \leq_W -antichain of size 2^{\aleph_0} among the $D_2(\mathbf{\Sigma}_1^0)$.

Consider more general reductions

Reduction by continuous functions yield a nice hierarchy of subsets of Polish 0-dimensional spaces, but not in arbitrary spaces, so we may ask:

Is the continuous function the right notion of reduction to study topological complexity in a more general context?

Motto Ros, Schlicht and Selivanov have considered

Reducibility by *reasonably* discontinuous functions.

We propose to weaken the second fundamental concept at stake, namely the concept of function:

reducibility by relatively continuous relations.

Reductions

Fix sets X, Y, and subsets $A \subseteq X$, $B \subseteq Y$. A *reduction* of A to B is a function $f : X \to Y$ such that

$$\forall x \in X \ (x \in A \leftrightarrow f(x) \in B).$$

A total relation from X to Y is a relation $R \subseteq X \times Y$ with $\forall x \in X \exists y \in Y \ R(x, y)$, in symbols $R : X \rightrightarrows Y$.

Definition

A *reduction* of A to B is a total relation $R: X \rightrightarrows Y$ such that

$$\forall x \in X \ \forall y \in Y \ (R(x,y) \to (x \in A \leftrightarrow y \in B)),$$

or equivalently

$$\forall x \in X \ \left(x \in A \land R(x) \subseteq B\right) \lor \left(x \in A^{\complement} \land R(x) \subseteq B^{\complement}\right)$$

where $R(x) = \{y \in Y : R(x, y)\}.$

Reductions, basic properties

Basic Properties Let $A \subseteq X$, $B \subseteq Y$, $C \subseteq Z$, and $R : X \Rightarrow Y$, $T : Y \Rightarrow Z$: If R reduces A to B and T reduces B to C, then $T \circ R = \{(x, z) : \exists y \in Y \ R(x, y) \land T(y, z)\}$ reduces A to C.

Let \mathcal{R} be a class of total relations from X to X with

1 the identity on X belongs \mathcal{R} ,

2 \mathcal{R} is closed under composition.

For $A, B \subseteq X$,

A \mathcal{R} -reducible to $B \iff \exists R \in \mathcal{R} \ R$ reduces A to B

This defines a quasi-order $\leq_{\mathcal{R}}$ on subsets of X.

Reductions, basic properties

$$\forall x \in X \ \forall y \in Y \ (S(x,y) \to (x \in A \leftrightarrow y \in B)).$$

Basic Properties

Let $A \subseteq X$, $B \subseteq Y$, $R, S : X \Rightarrow Y$:

If $R \subseteq S$ and S reduces A to B, then R also reduces A to B.

Let \mathcal{R} be a class of total relations from X to X with

1 the identity on X belongs \mathcal{R} ,

2 \mathcal{R} is closed under composition.

Let $\overline{\mathcal{R}} = \{ S : X \rightrightarrows X : \exists R \in \mathcal{R} \mid R \subseteq S \}$, then for any $A, B \subseteq X$,

A \mathcal{R} -reducible to $B \iff A \overline{\mathcal{R}}$ -reducible to B

So as far as reducibility is concerned, we can always consider upward closed classes of total relations.

Admissible representations

Let $f, g :\subseteq \omega^{\omega} \to X$ be partial maps. Say f continuously reduces to $g, f \leq_C g$, if

> $\exists \text{ a continuous } r : \text{dom } f \to \text{dom } g$ $\forall \alpha \in \text{dom } f \quad f(\alpha) = g \circ r(\alpha).$

Proposition (Kreitz, Weihrauch, Schröder)

Let X be 2^{nd} countable T_0 . There exists a partial map $\rho :\subseteq \omega^{\omega} \to X$ such that

- ρ is continuous (and surjective),
- ρ is \leq_C -greatest among continuous partial functions, i.e. \forall continuous $f :\subseteq \omega^{\omega} \to X$, $f \leq_C \rho$.

Such a map is called an admissible representation of X.

Examples of admissible representations

 Let Q = {q_n | n ∈ ω}. A sequence (x_k)_{k∈ω} is said to be rapidly Cauchy if i < j → d(x_i, x_j) ≤ 2⁻ⁱ. The Cauchy representation σ_ℝ :⊆ ω^ω → ℝ is defined by

$$\sigma_{\mathbb{R}}(\alpha) = x \quad \longleftrightarrow \quad \begin{cases} (q_{\alpha(k)})_{k \in \omega} \text{ is rapidly Cauchy} \\ \text{and } \lim_{k \to \infty} q_{\alpha(k)} = x. \end{cases}$$

2 The enumeration representation of the Scott domain $\mathcal{P}(\omega)$ is the total function $\rho_{\text{En}}: \omega^{\omega} \to \mathcal{P}(\omega)$ defined by

$$\rho_{\mathsf{En}}(x) = \{n \mid \exists k \ x_k = n+1\}.$$

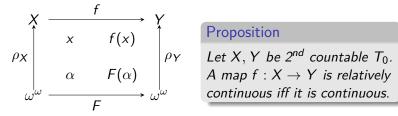
3 If $(V_n)_{n \in \omega}$ is a basis for X, then one can take $\rho :\subseteq \omega^{\omega} \to X$:

$$\rho(\alpha) = x \quad \longleftrightarrow \quad \{\alpha(k) : k \in \omega\} = \{n : x \in V_n\}.$$

Relatively continuous functions

Let X, Y be 2^{nd} countable T_0 spaces. A map $f: X \to Y$ is relatively continuous if for some (hence any) admissible representations ρ_X , ρ_Y there exists a continuous $F : \operatorname{dom} \rho_X \to \operatorname{dom} \rho_Y$ such that

 $\forall \alpha \in \operatorname{dom} \rho_X \quad f \circ \rho_X(\alpha) = \rho_Y \circ F(\alpha)$



Admissible representability and dimension

A space is 0-dimensional if it admits a basis of clopen sets.

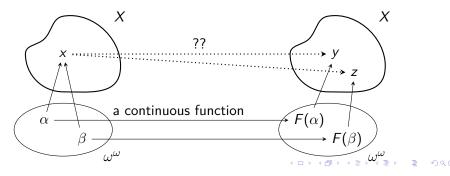
Theorem

Let X be a 2^{nd} countable T_0 space. The following are equivalent.

1 X is 0-dimensional.

2 X admits an injective admissible representation.

So in case X is not 0-dimensional, there is no injective admissible representation of X.



Relatively continuous relations

Definition (Brattka, Hertling, Weihrauch)

X, Y 2nd countable T_0 spaces. A total relation $R : X \Rightarrow Y$ is *relatively continuous* if for some (hence any) admissible representations ρ_X , ρ_Y there exists a continuous $F : \operatorname{dom} \rho_X \to \operatorname{dom} \rho_Y$ such that

 $\forall \alpha \in \operatorname{dom} \rho_X \quad R(\rho_X(\alpha), \rho_Y(F(\alpha)))$

Basic Properties

1 graphs of continuous functions are relatively continuous.

2 relatively continuous relations compose.

3 If $R, S : X \Rightarrow Y$, R relatively continuous and $R \subseteq S$, then S is also relatively continuous.

In a 0-dimensional space X, for $R: X \rightrightarrows X$:

R is relatively continuous \longleftrightarrow *R* admits a continuous uniformising function.

Reduction by relatively continuous relations

Definition

Let X be 2^{nd} countable T_0 , $A, B \subseteq X$. A *is reducible* to B, $A \preccurlyeq B$, if there exists a relatively continuous relation $R : X \rightrightarrows X$ that reduces A to B.

Basic Properties

- $1 \preccurlyeq is a quasiorder on subsets of X.$
- **2** If $A \leq_W B$, then $A \preccurlyeq B$.

3 For any admissible representation ρ of X, A ≼ B iff there exists F : dom ρ → dom ρ continuous such that

$$\forall \alpha \in \operatorname{dom} \rho \quad (\rho(\alpha) \in A \quad \longleftrightarrow \quad \rho(F(\alpha)) \in B).$$

If X is 0-dimensional: $A \leq_W B \leftrightarrow A \preccurlyeq B$, that is Wadge reducibility = reducibility by relativ. cont. relations.

Baire classes again

A result due to Saint Raymond gives

Theorem

Let X be a 2nd countable T₀ space, $\rho :\subseteq \omega^{\omega} \to X$ an admissible representation of X. For any countable $\alpha > 0$ and $A \subseteq X$

$$A \in \mathbf{\Sigma}^{\mathbf{0}}_{\alpha}(X) \quad \longleftrightarrow \quad \rho^{-1}(A) \in \mathbf{\Sigma}^{\mathbf{0}}_{\alpha}(\operatorname{\mathsf{dom}} \rho).$$

de Brecht showed that this also holds for Hausdorff-Kuratowski difference classes.

Corollary

Let X be 2^{nd} countable T_0 and Γ be $\Sigma^0_{\alpha}(X)$ or $\Pi^0_{\alpha}(X)$. Then $B \in \Gamma$ and $A \preccurlyeq B$ imply $A \in \Gamma$.

The Baire classes are not only initial segments for \leq_W but for \preccurlyeq too.

A game for the reduction

Let X be a 2nd countable T_0 , $\rho :\subseteq \omega^{\omega} \to X$ an admissible representation of X, and $A, B \subseteq X$.

We define a perfect information two players game $G^{\rho}(A, B)$ as follows

Player II wins if either $\alpha \notin \operatorname{dom} \rho$, or if $\alpha \in \operatorname{dom} \rho$, $\beta \in \operatorname{dom} \rho$ and

$$\rho(\alpha) \in A \quad \longleftrightarrow \quad \rho(\beta) \in B.$$

Proposition

- If Player II has a winning strategy, then $A \preccurlyeq B$.
- If Player I has a winning strategy, then $B \preccurlyeq A^{\complement}$.

Borel representable spaces

Definition

A 2nd countable T_0 space X is called *Borel representable space* if there exists an admissible representation ρ of X whose domain is Borel (in ω^{ω}).

Borel representable spaces include

- every Borel subspace of any Polish space,
 - i.e. every Borel subspace of $[0,1]^{\omega}$.
- every Borel subspace of any quasi-Polish space,

i.e. every Borel subspace of $\mathcal{P}(\omega)$ with the Scott topology.

Most (all?) properties of Wadge reducibility on 0-dim Polish spaces extends to arbitrary Borel representable spaces via the reducibility by relatively continuous relations.

The nice picture regained

Using Determinacy of Borel games (Martin) and the exact same proof as in the case of the Wadge reducibility on the Baire space, we obtain:

Theorem

Let X be Borel representable.

 For every Borel sets A, B ⊆ X, either A ≼ B or B ≼ A^C (so antichains have size at most 2).

イロト 不得 トイヨト イヨト 二日

2 \preccurlyeq is well founded on Borel sets.

References

Vasco Brattka and Peter Hertling. Continuity and computability of relations. Fernuniv., Fachbereich Informatik, 1994.

Matthew de Brecht.

Quasi-polish spaces. Annals of Pure and Applied Logic, 2012.

Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors. *Wadge Degrees and Projective Ordinals*, volume 37 of *Lecture Notes in Logic*. Cambridge University Press, 2012.

Luca Motto Ros, Philipp Schlicht, and Victor Selivanov. Wadge-like reducibilities on arbitrary quasi-polish spaces. *arXiv preprint arXiv:1204.5338*, 2012.

Adrian Tang.

Wadge reducibility and hausdorff difference hierarchy in $P\omega$.

In Continuous Lattices, pages 360-371. Springer, 1981.

Klaus Weihrauch.

Computable analysis: an introduction. Springer, 2000.