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Ordering functions

One way to understand objects consists of ordering them.
For sets A, B ⊆ ωω, continuous reducibility (Wadge qo):

A ⩽W B ←→ ∃f : ωω → ωω continuous such that
∀x ∈ ωω(

x ∈ A↔ f (x) ∈ B
)
.

For equivalence relations E , F on ωω, Borel reducibility:

E ⩽B F ←→ ∃f : ωω → ωω Borel such that
∀x , y ∈ ωω(

x E y ↔ f (x) F f (y)
)
.

What about functions?

All spaces considered are Polish zero-dimensional spaces, denoted
by variables X , Y ,...



Continuous reducibility on functions
Definition (Hertling-Weihrauch, Carroy)
Say that f : X → Y reduces to g : X ′ → Y ′ if
there are σ : X → X ′ continuous and
τ : im(g ◦ σ)→ Y continuous such that
f = τ ◦ g ◦ σ.

X ′ Y ′

X Y
f

g

σ τ⩽

Theorem (Carroy, 2012)
Continuous reducibility is a well-order on continuous functions with
compact domains.

A quasi-order (qo) is a reflexive and transitive binary relation.
A well-quasi-order (wqo) is a well-founded qo with no infinite antichain.

Conjecture (Carroy)
Continuous reducibility is a wqo on continuous functions.

Question: Is there any infinite antichain for continuous reducibility
among Baire class 1 functions?



Topological embeddability on functions

Definition
Say that f : X → Y embeds into g : X ′ → Y ′

if there are embeddings σ : X → X ′ and
τ : im f → Y ′ such that τ ◦ f = g ◦ σ.
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Embeddability is finer than reducibility: f ⊑ g → f ⩽ q.
The projection p : ωω × ωω → ωω is a maximum for
continuous functions: f : X → Y is continuous iff f ⊑ p.
The two discontinuous functions

d0 : ω + 1 −→ 2 d1 : ω + 1 −→ ω

ω 7−→ 0 ω 7−→ 0
n 7−→ 1 n 7−→ n + 1

form a 2-element basis for discontinuous functions:
f : X → Y is discontinuous iff d0 ⊑ f or d1 ⊑ f .



Topological embeddability on functions, continued.
Theorem
The following classes admits a minimum under embeddability:

1 (Solecki, 98’) The class of Baire class 1 functions that are not
σ-continuous.

2 (Zapletal, 04’) The Borel functions that are not σ-continuous.
3 (Carroy-Miller, 17’) The class of Baire class 1 functions that

are not Fσ-to-one.

Theorem (Carroy-Miller, 17’)
The following classes admits a finite basis under embeddability:

1 The Borel functions that are not in the first Baire class.
2 The Borel functions that are not σ-continuous with closed

witnesses.

Conjecture, α > 1:
The Borel functions that are not Baire class α admit a finite basis.



Our main theorem: Order and Chaos
For X compact, C(X , Y ) denotes the space of continuous
functions X → Y with the topology of uniform convergence.

Proposition (Carroy, P., Vidnyánszky)
If X , Y are Polish and X is compact, then embeddability is an
analytic quasi-order on C(X , Y ).

An analytic qo Q on a Polish space Z is analytic complete if it
Borel reduces every analytic qo on any Polish space.

Theorem (Carroy, P., Vidnyánszky)
Suppose that X , Y are Polish zero-dimensional and X is compact.
Then exactly one of the following holds:

1 embeddability on C(X , Y ) is an analytic complete quasi-order,
2 embeddability on C(X , Y ) is a well-quasi-order.

Moreover 1 holds exactly when X has infinitely many non-isolated
points and Y is not discrete. For instance for C(2ω, 2ω).



Chaos

Let G denote the Polish space of (simple) graphs with vertex set N.
For G , H ∈ G let

G ⩽i H ←→ there is an injective homomorphism from G to H.

Theorem (Louveau-Rosendal)
The qo ⩽i on G is an analytic complete quasi-order.

Theorem (Carroy, P., Vidnyánszky)
There is a continuous function G→ C(ω2 + 1, ω + 1), G 7→ f G

that reduces ⩽i to ⊑:

G ⩽i H ←→ f G ⊑ f H .

So embeddability on C(ω2 + 1, ω + 1) is an analytic complete qo.



Order
We use the better-quasi-orders (bqo) introduced by Nash-Williams.
We have: well-order→ better-quasi-order→ well-quasi-order.
Let Q be the space of rationals, (P,⩽P) a quasi-order.
Let PQ be the set of maps l : Q→ P quasi-ordered by

l0 ⩽ l1 ←→ there is a topological embedding τ : Q→ Q
such that l0(q) ⩽P l1(τ(q)) for all q ∈ Q.

Theorem (van Engelen-Miller-Steel)
If P is bqo, then PQ is bqo.

Theorem (van Engelen-Miller-Steel, Carroy)
The Polish 0-dimensional spaces with embeddability are bqo.

Proposition (Carroy, P., Vidnyánszky)
The locally constant maps are bqo under embeddability.



On Baire class α functions

Recall that the projection p : ωω × ωω → ωω is a maximum
for continuous functions for embeddability.
So in particular, C(ωω, ωω) admits a maximum for
embeddability.

In contrast,

Theorem (Carroy, P., Vidnyánszky)
Let X be uncountable and |Y | ⩾ 2. For every α ⩾ 1, there exists
no maximal Baire class α function : X → Y for embeddability.
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