Embeddability on functions: Order and Chaos

Yann Pequignot (UCLA) joint with Raphaël Carroy and Zoltán Vidnyánszky

> SEALS March 3, 2018 Gainesville, FL

Ordering functions

- One way to understand objects consists of ordering them.
- For sets $A, B \subseteq \omega^{\omega}$, continuous reducibility (Wadge qo):

 $\begin{array}{rcl} A \leqslant_W B & \longleftrightarrow & \exists f : \omega^\omega \to \omega^\omega \text{ continuous such that} \\ & \forall x \in \omega^\omega (x \in A \leftrightarrow f(x) \in B). \end{array}$

For equivalence relations E, F on ω^{ω} , Borel reducibility:

$$E \leq_B F \quad \longleftrightarrow \quad \exists f : \omega^{\omega} \to \omega^{\omega} \text{ Borel such that}$$

 $\forall x, y \in \omega^{\omega} (x E y \leftrightarrow f(x) F f(y)).$

What about functions?

All spaces considered are Polish zero-dimensional spaces, denoted by variables X, Y, \dots

Continuous reducibility on functions

Definition (Hertling-Weihrauch, Carroy)

Say that $f : X \to Y$ reduces to $g : X' \to Y'$ if there are $\sigma : X \to X'$ continuous and $\tau : \operatorname{im}(g \circ \sigma) \to Y$ continuous such that $f = \tau \circ g \circ \sigma$.

Theorem (Carroy, 2012)

Continuous reducibility is a well-order on continuous functions with compact domains.

A *quasi-order* (qo) is a reflexive and transitive binary relation. A *well-quasi-order* (wqo) is a well-founded qo with no infinite antichain.

Conjecture (Carroy)

Continuous reducibility is a wqo on continuous functions.

Question: Is there any infinite antichain for continuous reducibility among Baire class 1 functions?

Topological embeddability on functions

Definition

Say that $f : X \to Y$ embeds into $g : X' \to Y'$ if there are embeddings $\sigma : X \to X'$ and $\tau : \operatorname{im} f \to Y'$ such that $\tau \circ f = g \circ \sigma$.

- Embeddability is finer than reducibility: $f \sqsubseteq g \rightarrow f \leqslant q$.
- The projection p : ω^ω × ω^ω → ω^ω is a maximum for continuous functions: f : X → Y is continuous iff f ⊑ p.
- The two discontinuous functions

$$egin{array}{cccc} d_0:\omega+1 \longrightarrow 2 & & d_1:\omega+1 \longrightarrow \omega \ & & \omega\longmapsto 0 & & & \omega\longmapsto 0 \ & & n\longmapsto 1 & & n\mapsto n+1 \end{array}$$

form a 2-element *basis* for discontinuous functions: $f : X \to Y$ is discontinuous iff $d_0 \sqsubseteq f$ or $d_1 \sqsubseteq f$.

Topological embeddability on functions, continued.

Theorem

The following classes admits a minimum under embeddability:

- **1** (Solecki, 98') The class of Baire class 1 functions that are not σ -continuous.
- **2** (Zapletal, 04') The Borel functions that are not σ -continuous.
- 3 (Carroy-Miller, 17') The class of Baire class 1 functions that are not F_{σ} -to-one.

Theorem (Carroy-Miller, 17')

The following classes admits a finite basis under embeddability:

- **1** The Borel functions that are not in the first Baire class.
- 2 The Borel functions that are not *σ*-continuous with closed witnesses.

Conjecture, $\alpha > 1$:

The Borel functions that are not Baire class α admit a finite basis.

Our main theorem: Order and Chaos

For X compact, C(X, Y) denotes the space of continuous functions $X \to Y$ with the topology of uniform convergence.

Proposition (Carroy, P., Vidnyánszky)

If X, Y are Polish and X is compact, then embeddability is an analytic quasi-order on C(X, Y).

An analytic qo Q on a Polish space Z is *analytic complete* if it Borel reduces every analytic qo on any Polish space.

Theorem (Carroy, P., Vidnyánszky)

Suppose that X, Y are Polish zero-dimensional and X is compact. Then exactly one of the following holds:

1 embeddability on C(X, Y) is an analytic complete quasi-order,

2 embeddability on C(X, Y) is a well-quasi-order.

Moreover 1 holds exactly when X has infinitely many non-isolated points and Y is not discrete. For instance for $C(2^{\omega}, 2^{\omega})$.

Chaos

Let \mathbb{G} denote the Polish space of (simple) graphs with vertex set \mathbb{N} . For $G, H \in \mathbb{G}$ let

 $G \leqslant_i H \quad \longleftrightarrow$ there is an injective homomorphism from G to H.

Theorem (Louveau-Rosendal)

The qo \leq_i on \mathbb{G} is an analytic complete quasi-order.

Theorem (Carroy, P., Vidnyánszky)

There is a continuous function $\mathbb{G} \to C(\omega^2 + 1, \omega + 1)$, $G \mapsto f^G$ that reduces \leq_i to \sqsubseteq :

$$G \leqslant_i H \quad \longleftrightarrow \quad f^G \sqsubseteq f^H.$$

So embeddability on $C(\omega^2 + 1, \omega + 1)$ is an analytic complete qo.

Order

We use the *better-quasi-orders* (bqo) introduced by Nash-Williams. We have: well-order \rightarrow better-quasi-order \rightarrow well-quasi-order. Let \mathbb{Q} be the space of rationals, (P, \leq_P) a quasi-order. Let $P^{\mathbb{Q}}$ be the set of maps $I : \mathbb{Q} \rightarrow P$ quasi-ordered by

 $l_0 \leqslant l_1 \quad \longleftrightarrow$ there is a topological embedding $\tau : \mathbb{Q} \to \mathbb{Q}$ such that $l_0(q) \leqslant_P l_1(\tau(q))$ for all $q \in \mathbb{Q}$.

Theorem (van Engelen-Miller-Steel)

If P is bqo, then $P^{\mathbb{Q}}$ is bqo.

Theorem (van Engelen-Miller-Steel, Carroy)

The Polish 0-dimensional spaces with embeddability are bqo.

Proposition (Carroy, P., Vidnyánszky)

The locally constant maps are bqo under embeddability.

On Baire class α functions

- Recall that the projection $p: \omega^{\omega} \times \omega^{\omega} \to \omega^{\omega}$ is a maximum for continuous functions for embeddability.
- So in particular, C(ω^ω, ω^ω) admits a maximum for embeddability.

In contrast,

Theorem (Carroy, P., Vidnyánszky)

Let X be uncountable and $|Y| \ge 2$. For every $\alpha \ge 1$, there exists no maximal Baire class α function : $X \to Y$ for embeddability.

Some references

Raphaël Carroy.

A quasi-order for continuous functions. Journal of Symbolic Logic, 78(2):633–648, 2013.

Raphaël Carroy, Yann Pequignot, and Zoltán Vidnyánszky. Embeddability on functions: Order and chaos. submitted, http://arxiv.org/abs/1802.08341, 2018.

Yann Pequignot.

Towards better: A motivated introduction to better-quasi-orders.

EMS Surveys in Mathematical Sciences, 4(2):185–218, 2017.

Fons van Engelen, Arnold W. Miller, and John Steel. Rigid Borel sets and better quasi-order theory. In *Logic and combinatorics (Arcata, Calif., 1985)*, volume 65 of *Contemp. Math.*, pages 199–222. Amer. Math. Soc., Providence, RI, 1987.