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Background

Formal languages, automata and monoids

(]

Finite set A, called an alphabet.

Finite sequences on A, called words.
@ Binary operation on words, called concatenation.
ay---ap- by by =ay--apby--- b,

o Free monoid on A: A* all words on A.

Subsets of A*, called languages.

@ A machine can specify a language.

(]

Finite state automaton: simplest model.



Background

Formal languages, automata and monoids

For any L C A*, TFAE:

Q
.
@ L is recognised by a finite automaton

@ L is recognised by a finite monoid (M, -, e)
there exists a surjective monoid morphism

@ : A* — M onto a finite monoid M and some
P C M such that for all w € A*

w € L ifand only if o(w) € P.

@ The syntactic congruence ~; defined by
u~pv iff VYx,y € A" xuy € L+ xvy € L

is of finite index.

Rec(A*) = {L C A" | L is recognisable}



Eilenberg Theorem
Varieties of languages and finite monoids
A variety of languages is the

association to each finite
alphabet A of a

o Boolean subalgebra V(A") of A variety of finite monoids is

Rec(A*), a class of finite monoids closed
@ closed under quotienting, under

VL € V(A*) and VYu € A* @ submonoid,

vl ={we A |uw e L} € V(A), @ quotient monoid,

Lu™' ={we A" |wue L} €V(A), @ finite direct products.

@ closed under inverse image by
morphisms.

Theorem (Eilenberg, 1976)

There is a bijective and order preserving correspondence between
varieties of languages and varieties of finite monoids.




Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids
closed under

@ submonoid,
@ quotient monoid,

@ (not necessarily finite) direct products.

A monoid is commutative if VxVy(xy = yx).

The commutative monoids form a variety, characterised by the
equation xy = yx.

We can see xy and yx as words on the alphabet A = {x, y}.

A monoid M is commutative iff for all morphism ¢ : {x,y}* - M
we have p(xy) = p(yx).

A monoid M satisfies the equation (u, v) if for all morphism
©: A* = M we have p(u) = ¢(v).



Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids
closed under

@ submonoid,
@ quotient monoid,
@ (not necessarily finite) direct products.
An equation is a couple (u, v) of words on a finite alphabet A.

A monoid M satisfies the equation (u, v) if for all morphism
© : A* = M we have p(u) = ¢(v).

Theorem (Birkhoff, 1935)

A class of monoids is a variety if and only if it is definable by a set
of equations.

Is there a similar characterisation for varieties of finite monoids?



Reiterman theorem

A profinite metric on A*, u,v € A*:
C/(U V) — 0~ min{|A| | A distinguishes v and v}
V) =
where an automaton A distinguishes v and v if it accepts one of
them and rejects the other.

Theorem

The completion (ﬁ, T,-) is a compact zero dimensional monoid
called the free profinite monoid on A.

Points in A* are Cauchy sequences of finite words, called profinite
words. Example: x¥ = lim,_ x".



Reiterman theorem

Define a profinite equation as a couple (u, v) of profinite words
on a finite alphabet A.

A finite monoid M satisfies a profinite equation (u, v) if for all

continuous monoid morphism ¢ : A* — M we have @g(u) = @¢(v).

Theorem (Reiterman, 1982)

A class of finite monoids is a variety of finite monoids if and only if
it is definable by a set of profinite equations.




Eilenberg-Reiterman theorem

Varieties of
finite monoids
. ¥
Eilenberg . F‘Reiterman
Varieties of Sr(ca;;?n?c];
languages Extended Stone Duality P

equations



Stone duality

A Boolean algebra is a
structure (B, A\, V, {}C,O, 1) s.t.
A, V associative

A, V commutative

A, V distributive
absorption x V (x A y) = x

e © ¢ ¢ ¢

complementation
x A xt =0, xvxt=1
Examples:

o field of sets, P(E)

@ Rec(A%)

@ Boolean algebras of
recognisable languages

A Boolean space is a
topological space (X, T) s.t.
o HausdorfF: distinct points
are separated by
neighbourhoods

@ Compact: open covers
contains finite subcovers

o 0-dimensional: there is a
clopen basis.

Examples:
o finite discrete spaces
o Cantor space 2%

@ closed subspace of 2¢



Stone duality
Let (X,7T) be a Boolean space:

Clop(X) = {c € X | ¢ closed and open for T}
with the Boolean structure inherited from P(X).
Let (B, A, V, {}B,O, 1) be a Boolean algebra:
Ult(B) = {u C B | u ultrafilter of B}

is a Boolean space for the topology generated by
the sets of the form

{veUlt(B) | beu} beB.

Theorem (Marshall H. Stone, 1936)

Every Boolean algebra is isomorphic to the algebra of clopen sets
of a Boolean space. Furthermore

Clop(Ult(B)) = B and Ult(Clop(X)) = X.




Stone duality and recognition

Examples
clopen subsets
—
Boolean algebras Boolean spaces
—_) _—
. ultrafilters )
finite Boolean algebra finite discrete space
finite or cofinite subsets of w one point compactification of w
Rec(A*) (A%, T)
free BA on w Cantor space 2%
powerset of w Stone-Cech compactification Sw

Theorem (Almeida, Pippenger, 1997)

The underlying topological space of the free profinite monoid
on a finite set A is dual to the Boolean algebra of
recognisable languages on A.




Stone duality

For f:X — Y continuous
define  Clop(f) : Clop(Y) — Clop(X) by
cr— 7 Yc)

For h: A — B Boolean morphism
define  Ult(h) : Ult(B) — Ult(A) by

u—s h(v)

Theorem

Clop(f) is a Boolean morphism and Ult(h) is continuous.
Furthermore

h surjective iff Ult(h) injective
h injective iff Ult(h) surjective




Stone duality and recognition

Y clopen subsets

Boolean algebras Boolean spaces

ultrafilters > .
(Rec(A*),n, U, {}£,0, A% (A%, T)
(B,n, U, {}L, 0, A%) (A*/E, T/E)
B = {L € Rec(A") | Galis — E={(x,y) € A" x A" |

V(x,y) € E (LE x> L€ y)} comection ) B(Lex+ Ley)}
A recognisable L C A* satisfles x <> yif LeEx+ y e L

Theorem (Gehrke,Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra iff it can
be defined by profinite equations of the form x < y.




Extended Stone duality

Can duality account for the product on the free profinite monoid

(A*,T,-)?
Consider supplementary operations on the BA Rec(A*).

The relevant operations are the left and right residuals by
M € Rec(A*) are defined by

N+— M\N ={uec A" |forall ve M, vu e N}
N+— N/M={ueA*|forallve M, uve N}

These operations are characterised by the property that for all
L, M, N € Rec(A*)

LCN/M iff L-MCN iff MCL\N



Extended Stone duality

A Boolean residuation algebra is a Boolean algebra B with two
binary operations \,/ : B x B — B s.t.

° (\/finite af)\b = /\finite(ai\b) and b\(/\finite af) = /\finite(b\af)
° (/\finite af)/b = /\finite(ai/b) and b/(/\ﬁnite af) = Vfinite(b/af)

o Galois property: Va,b,c€ B b<a\c+a<c/b

Extended
duality
Boolean algebras S Boolean spaces
+ operations _— + relations

For x, y,z € Ult(B) define the relation

(x,y)Rz iff Vajpbe B(bexanda¢z)—b\ady
iff YaabeB(bcyandadz)—a/b¢x

Not functional from Ult(B) x Ult(B) — Ult(B) in general!



Extended Stone duality

Extended
Boolean algebras Boolean spaces
+ operations Stone ddality + relations
(Rec(A),n, U, {}F,0,4%,\, /) (A%, T, R)
\7/ (X,y)RZ iff X y=z

functional !

Theorem (Gehrke, Grigorieff, Pin, 2008)

The dual space of the Boolean algebra of recognisable languages
on A with residuals under extended Stone duality is
the free profinite monoid on A.




Extended Stone duality and recognition

A variety of languages is the

association to each finite alphabet

Aof a A Boolean residuation ideal of
Rec(A*) is a Boolean subalgebra

@ Boolean subalgebra V(A") of B of Rec(A*) such that

Rec(A"), o for all L € B and all K € Rec(A*)
@ closed under quotienting,

VL € V(A*) and Yu € A* K\LE B

u_lL:{WEA* |UWEL}€V(A*)7 L/KG B.

Lu'={we A" |wuel}eVA),

@ closed under inverse image by
morphisms.
Proposition

A Boolean algebra of recognisable languages is closed under
quotienting iff it is a Boolean residuation ideal of Rec(A*).




Extended Stone duality and recognition

(Rec(A*),ﬂ,U,{}E,(D,A*,\,/) Extended (ij’)

dyality
residuation Stone monoid
ideal — quotient
(vaaU7{}B7®7A*a\7/) (A*/E’)

Theorem (Dekkers, 2008)

The Boolean residuation ideals of recognisable languages
correspond dually to the profinite monoid quotients of A*.

Say L € Rec(A*) satifies the equation of the form x = y,
(x,y) € A* if forall u,v € A* it satisfies uxv <> uyv.

Theorem (Gehrke, Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra closed
under quotienting iff it can be defined by a set of profinite
equations of the form x = y.




