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Background
Formal languages, automata and monoids

Finite set A, called an alphabet.

Finite sequences on A, called words.

Binary operation on words, called concatenation.

a1 · · · an · b1 · · · bn = a1 · · · anb1 · · · bn

Free monoid on A: A∗ all words on A.

Subsets of A∗, called languages.

A machine can specify a language.

Finite state automaton: simplest model.



Background
Formal languages, automata and monoids

For any L ⊆ A∗, TFAE:

L is recognised by a finite automaton

L is recognised by a finite monoid (M, ·, e)

there exists a surjective monoid morphism

ϕ : A∗ → M onto a finite monoid M and some

P ⊆ M such that for all w ∈ A∗

w ∈ L if and only if ϕ(w) ∈ P.

The syntactic congruence ∼L defined by

u ∼L v iff ∀x , y ∈ A∗ xuy ∈ L ↔ xvy ∈ L

is of finite index.

Rec(A∗) = {L ⊆ A∗ | L is recognisable}



Eilenberg Theorem
Varieties of languages and finite monoids

A variety of languages is the
association to each finite
alphabet A of a

Boolean subalgebra V(A∗) of

Rec(A∗),

closed under quotienting,

∀L ∈ V(A∗) and ∀u ∈ A
∗

u
−1

L = {w ∈ A
∗ | uw ∈ L} ∈ V(A∗),

Lu
−1 = {w ∈ A

∗ | wu ∈ L} ∈ V(A∗),

closed under inverse image by

morphisms.

A variety of finite monoids is
a class of finite monoids closed
under

submonoid,

quotient monoid,

finite direct products.

Theorem (Eilenberg, 1976)

There is a bijective and order preserving correspondence between

varieties of languages and varieties of finite monoids.



Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids
closed under

submonoid,

quotient monoid,

(not necessarily finite) direct products.

A monoid is commutative if ∀x∀y(xy = yx).

The commutative monoids form a variety, characterised by the
equation xy = yx .

We can see xy and yx as words on the alphabet A = {x , y}.

A monoid M is commutative iff for all morphism ϕ : {x , y}∗ → M

we have ϕ(xy) = ϕ(yx).

A monoid M satisfies the equation (u, v) if for all morphism
ϕ : A∗ → M we have ϕ(u) = ϕ(v).

Theorem (Birkhoff, 1935)



Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids
closed under

submonoid,

quotient monoid,

(not necessarily finite) direct products.

An equation is a couple (u, v) of words on a finite alphabet A.

A monoid M satisfies the equation (u, v) if for all morphism
ϕ : A∗ → M we have ϕ(u) = ϕ(v).

Theorem (Birkhoff, 1935)

A class of monoids is a variety if and only if it is definable by a set

of equations.

Is there a similar characterisation for varieties of finite monoids?



Reiterman theorem

A profinite metric on A∗, u, v ∈ A∗:

d(u, v) = 2− min{|A| | A distinguishes u and v}

where an automaton A distinguishes u and v if it accepts one of
them and rejects the other.

Theorem

The completion (Â∗, T , ·) is a compact zero dimensional monoid

called the free profinite monoid on A.

Points in Â∗ are Cauchy sequences of finite words, called profinite

words. Example: xω = limn→∞ xn!.



Reiterman theorem

Define a profinite equation as a couple (u, v) of profinite words
on a finite alphabet A.

A finite monoid M satisfies a profinite equation (u, v) if for all
continuous monoid morphism ϕ̂ : Â∗ → M we have ϕ̂(u) = ϕ̂(v).

Theorem (Reiterman, 1982)

A class of finite monoids is a variety of finite monoids if and only if

it is definable by a set of profinite equations.



Eilenberg-Reiterman theorem

Varieties of
finite monoids

Varieties of
languages

Eilenberg

Sets of
profinite
equations

Reiterman

Extended Stone Duality



Stone duality

A Boolean algebra is a
structure (B, ∧, ∨, {}!, 0, 1) s.t.

∧, ∨ associative

∧, ∨ commutative

∧, ∨ distributive

absorption x ∨ (x ∧ y) = x

complementation
x ∧ x! = 0, x ∨ x! = 1

Examples:

field of sets, P(E )

Rec(A∗)

Boolean algebras of
recognisable languages

A Boolean space is a
topological space (X , T ) s.t.

Hausdorff: distinct points
are separated by
neighbourhoods

Compact: open covers
contains finite subcovers

0-dimensional: there is a
clopen basis.

Examples:

finite discrete spaces

Cantor space 2ω

closed subspace of 2ω



Stone duality
Let (X , T ) be a Boolean space:

Clop(X ) = {c ⊆ X | c closed and open for T }

with the Boolean structure inherited from P(X ).

Let (B, ∧, ∨, {}!, 0, 1) be a Boolean algebra:

Ult(B) = {u ⊆ B | u ultrafilter of B}

is a Boolean space for the topology generated by
the sets of the form

{u ∈ Ult(B) | b ∈ u} b ∈ B.

Theorem (Marshall H. Stone, 1936)

Every Boolean algebra is isomorphic to the algebra of clopen sets

of a Boolean space. Furthermore

Clop(Ult(B)) = B and Ult(Clop(X )) = X .



Stone duality and recognition
Examples

Boolean algebras
ultrafilters

Boolean spaces

clopen subsets

finite Boolean algebra finite discrete space

finite or cofinite subsets of ω one point compactification of ω

Rec(A∗) (Â∗, T )

free BA on ω Cantor space 2ω

powerset of ω Stone-Čech compactification βω

Theorem (Almeida, Pippenger, 1997)

The underlying topological space of the free profinite monoid

on a finite set A is dual to the Boolean algebra of

recognisable languages on A.



Stone duality

For f : X −→ Y continuous

define Clop(f ) : Clop(Y ) −→ Clop(X ) by

c *−→ f −1(c)

For h : A −→ B Boolean morphism

define Ult(h) : Ult(B) −→ Ult(A) by

u *−→ h−1(u)

Theorem

Clop(f ) is a Boolean morphism and Ult(h) is continuous.

Furthermore

h surjective iff Ult(h) injective

h injective iff Ult(h) surjective



Stone duality and recognition

Boolean algebras
ultrafilters

Boolean spaces

clopen subsets

(Rec(A∗), ∩, ∪, {}!, ∅, A∗) (Â∗, T )

(B, ∩, ∪, {}!, ∅, A∗) (Â∗/E , T /E )

B = {L ∈ Rec(A∗) |
∀(x , y) ∈ E (L ∈ x ↔ L ∈ y)}

Galois

connection
E = {(x , y) ∈ Â∗ × Â∗ |

∀L ∈ B (L ∈ x ↔ L ∈ y)}

A recognisable L ⊆ A∗ satisfies x ↔ y if L ∈ x ↔ y ∈ L

Theorem (Gehrke,Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra iff it can

be defined by profinite equations of the form x ↔ y.



Extended Stone duality

Can duality account for the product on the free profinite monoid
(Â∗, T , ·)?

Consider supplementary operations on the BA Rec(A∗).

The relevant operations are the left and right residuals by
M ∈ Rec(A∗) are defined by

N *−→ M\N = {u ∈ A∗ | for all v ∈ M, vu ∈ N}

N *−→ N/M = {u ∈ A∗ | for all v ∈ M, uv ∈ N}

These operations are characterised by the property that for all
L, M, N ∈ Rec(A∗)

L ⊆ N/M iff L · M ⊆ N iff M ⊆ L\N



Extended Stone duality

A Boolean residuation algebra is a Boolean algebra B with two
binary operations \, / : B × B → B s.t.

(
∨

finite ai)\b =
∧

finite(ai\b) and b\(
∧

finite ai) =
∧

finite(b\ai)

(
∧

finite ai)/b =
∧

finite(ai/b) and b/(
∧

finite ai) =
∨

finite(b/ai)

Galois property: ∀a, b, c ∈ B b ≤ a\c ↔ a ≤ c/b

Boolean algebras
+ operations

Extended
duality

Boolean spaces
+ relations

For x , y , z ∈ Ult(B) define the relation

(x , y)Rz iff ∀a, b ∈ B (b ∈ x and a /∈ z) → b\a /∈ y

iff ∀a, b ∈ B (b ∈ y and a /∈ z) → a/b /∈ x

Not functional from Ult(B) × Ult(B) → Ult(B) in general!



Extended Stone duality

Boolean algebras
+ operations Stone duality

Extended
Boolean spaces

+ relations

(Rec(A∗), ∩, ∪, {}!, ∅, A∗, \, /) (Â∗, T , R)

\, / (x , y)Rz iff x · y = z

functional !

Theorem (Gehrke, Grigorieff, Pin, 2008)

The dual space of the Boolean algebra of recognisable languages

on A with residuals under extended Stone duality is

the free profinite monoid on A.



Extended Stone duality and recognition
A variety of languages is the
association to each finite alphabet
A of a

Boolean subalgebra V(A∗) of

Rec(A∗),

closed under quotienting,
∀L ∈ V(A∗) and ∀u ∈ A

∗

u
−1

L = {w ∈ A
∗ | uw ∈ L} ∈ V(A∗),

Lu
−1 = {w ∈ A

∗ | wu ∈ L} ∈ V(A∗),

closed under inverse image by

morphisms.

A Boolean residuation ideal of
Rec(A∗) is a Boolean subalgebra
B of Rec(A∗) such that
for all L ∈ B and all K ∈ Rec(A∗)

K\L ∈ B,

L/K ∈ B.

Proposition

A Boolean algebra of recognisable languages is closed under

quotienting iff it is a Boolean residuation ideal of Rec(A∗).



Extended Stone duality and recognition

(Rec(A∗), ∩, ∪, {}!, ∅, A∗, \, /) (Â∗, T , ·)

Stone monoid
quotient

Extended
duality

(B, ∩, ∪, {}!, ∅, A∗, \, /)

residuation
ideal

(Â∗/E , ·)

Theorem (Dekkers, 2008)

The Boolean residuation ideals of recognisable languages

correspond dually to the profinite monoid quotients of Â∗.

Say L ∈ Rec(A∗) satifies the equation of the form x = y ,
(x , y) ∈ Â∗ if forall u, v ∈ Â∗ it satisfies uxv ↔ uyv .

Theorem (Gehrke, Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra closed

under quotienting iff it can be defined by a set of profinite

equations of the form x = y.


