Duality and
 Equational theory of regular languages

Yann Pequignot

Supervisor: Jacques Duparc, Université de Lausanne, Switzerland. Co-supervisor: Jean-Éric Pin, LIAFA, University Paris-Diderot and CNRS, France.

Réunion FREC - May 2011
Île de Ré

Background

Formal languages, automata and monoids

- Finite set A, called an alphabet.
- Finite sequences on A, called words.
- Binary operation on words, called concatenation.

$$
a_{1} \cdots a_{n} \cdot b_{1} \cdots b_{n}=a_{1} \cdots a_{n} b_{1} \cdots b_{n}
$$

- Free monoid on $A: A^{*}$ all words on A.
- Subsets of A^{*}, called languages.
- A machine can specify a language.
- Finite state automaton: simplest model.

Background

Formal languages, automata and monoids

For any $L \subseteq A^{*}$, TFAE:

- L is recognised by a finite automaton

- L is recognised by a finite monoid $\quad(M, \cdot, e)$ there exists a surjective monoid morphism $\varphi: A^{*} \rightarrow M$ onto a finite monoid M and some $P \subseteq M$ such that for all $w \in A^{*}$

$$
w \in L \quad \text { if and only if } \varphi(w) \in P .
$$

- The syntactic congruence \sim_{L} defined by

$$
u \sim_{L} v \quad \text { iff } \quad \forall x, y \in A^{*} x u y \in L \leftrightarrow x v y \in L
$$

is of finite index.

$$
\operatorname{Rec}\left(A^{*}\right)=\left\{L \subseteq A^{*} \mid L \text { is recognisable }\right\}
$$

Eilenberg Theorem

Varieties of languages and finite monoids

A variety of languages is the association to each finite alphabet A of a

- Boolean subalgebra $\mathcal{V}\left(A^{*}\right)$ of $\operatorname{Rec}\left(A^{*}\right)$,
- closed under quotienting, $\forall L \in \mathcal{V}\left(A^{*}\right)$ and $\forall u \in A^{*}$
$u^{-1} L=\left\{w \in A^{*} \mid u w \in L\right\} \in \mathcal{V}\left(A^{*}\right)$,
$L u^{-1}=\left\{w \in A^{*} \mid w u \in L\right\} \in \mathcal{V}\left(A^{*}\right)$,
A variety of finite monoids is a class of finite monoids closed under
- submonoid,
- quotient monoid,
- finite direct products.
- closed under inverse image by morphisms.

Theorem (Eilenberg, 1976)
There is a bijective and order preserving correspondence between varieties of languages and varieties of finite monoids.

Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids closed under

- submonoid,
- quotient monoid,
- (not necessarily finite) direct products.

A monoid is commutative if $\forall x \forall y(x y=y x)$.
The commutative monoids form a variety, characterised by the equation $x y=y x$.

We can see $x y$ and $y x$ as words on the alphabet $A=\{x, y\}$.
A monoid M is commutative iff for all morphism $\varphi:\{x, y\}^{*} \rightarrow M$ we have $\varphi(x y)=\varphi(y x)$.

A monoid M satisfies the equation (u, v) if for all morphism $\varphi: A^{*} \rightarrow M$ we have $\varphi(u)=\varphi(v)$.

Birkhoff Theorem

A variety of monoids is a class of (not necessarily finite) monoids closed under

- submonoid,
- quotient monoid,
- (not necessarily finite) direct products.

An equation is a couple (u, v) of words on a finite alphabet A.
A monoid M satisfies the equation (u, v) if for all morphism $\varphi: A^{*} \rightarrow M$ we have $\varphi(u)=\varphi(v)$.

Theorem (Birkhoff, 1935)
A class of monoids is a variety if and only if it is definable by a set of equations.

Is there a similar characterisation for varieties of finite monoids?

Reiterman theorem

A profinite metric on $A^{*}, u, v \in A^{*}$:

$$
d(u, v)=2^{-\min \{|A| \mid A \text { distinguishes } u \text { and } v\}}
$$

where an automaton A distinguishes u and v if it accepts one of them and rejects the other.

Theorem

The completion $\left(\widehat{A^{*}}, \mathcal{T}, \cdot\right)$ is a compact zero dimensional monoid called the free profinite monoid on A.

Points in $\widehat{A^{*}}$ are Cauchy sequences of finite words, called profinite words. Example: $x^{\omega}=\lim _{n \rightarrow \infty} x^{n!}$.

Reiterman theorem

Define a profinite equation as a couple (u, v) of profinite words on a finite alphabet A.

A finite monoid M satisfies a profinite equation (u, v) if for all continuous monoid morphism $\widehat{\varphi}: \widehat{A^{*}} \rightarrow M$ we have $\widehat{\varphi}(u)=\widehat{\varphi}(v)$.

Theorem (Reiterman, 1982)
A class of finite monoids is a variety of finite monoids if and only if it is definable by a set of profinite equations.

Eilenberg-Reiterman theorem

Stone duality

A Boolean algebra is a structure $\left(B, \wedge, \vee,\{ \}^{\complement}, 0,1\right)$ s.t.

- \wedge, \vee associative
- \wedge, \vee commutative
- \wedge, \vee distributive
- absorption $x \vee(x \wedge y)=x$
- complementation $x \wedge x^{\complement}=0, x \vee x^{\complement}=1$

Examples:

- field of sets, $\mathcal{P}(E)$
- $\operatorname{Rec}\left(A^{*}\right)$
- Boolean algebras of recognisable languages

A Boolean space is a topological space (X, \mathcal{T}) s.t.

- Hausdorff: distinct points are separated by neighbourhoods
- Compact: open covers contains finite subcovers
- 0-dimensional: there is a clopen basis.
Examples:
- finite discrete spaces
- Cantor space 2^{ω}
- closed subspace of 2^{ω}

Stone duality

Let (X, \mathcal{T}) be a Boolean space:

$$
\operatorname{Clop}(X)=\{c \subseteq X \mid c \text { closed and open for } \mathcal{T}\}
$$

with the Boolean structure inherited from $\mathcal{P}(X)$.
Let $\left(B, \wedge, \vee,\{ \}^{\complement}, 0,1\right)$ be a Boolean algebra:

$$
\operatorname{Ult}(B)=\{u \subseteq B \mid u \text { ultrafilter of } B\}
$$

is a Boolean space for the topology generated by the sets of the form

$$
\{u \in \operatorname{Ult}(B) \mid b \in u\} \quad b \in B
$$

Theorem (Marshall H. Stone, 1936)
Every Boolean algebra is isomorphic to the algebra of clopen sets of a Boolean space. Furthermore

$$
\operatorname{Clop}(\operatorname{Ult}(B))=B \quad \text { and } \quad \operatorname{Ult}(\operatorname{Clop}(X))=X
$$

Stone duality and recognition

Examples

finite Boolean algebra
finite or cofinite subsets of ω

$$
\operatorname{Rec}\left(A^{*}\right)
$$

free $B A$ on ω
powerset of ω
finite discrete space one point compactification of ω

$$
\left(\widehat{A^{*}}, \mathcal{T}\right)
$$

Cantor space 2^{ω}
Stone-Čech compactification $\beta \omega$

Theorem (Almeida, Pippenger, 1997)
The underlying topological space of the free profinite monoid on a finite set A is dual to the Boolean algebra of recognisable languages on A.

Stone duality

$$
\begin{aligned}
\text { For } f: X & \longrightarrow Y \quad \text { continuous } \\
\text { define } \quad \operatorname{Clop}(f): \operatorname{Clop}(Y) & \longrightarrow \mathrm{Clop}(X) \text { by } \\
c & \longmapsto f^{-1}(c)
\end{aligned}
$$

For $h: A \longrightarrow B \quad$ Boolean morphism define $\operatorname{Ult}(h): \operatorname{Ult}(B) \longrightarrow \operatorname{Ult}(A)$ by $u \longmapsto h^{-1}(u)$

Theorem
$\operatorname{Clop}(f)$ is a Boolean morphism and $\operatorname{UIt}(h)$ is continuous.
Furthermore
h surjective iff $\operatorname{Ult}(h)$ injective
h injective iff $\mathrm{Ult}(h)$ surjective

Stone duality and recognition

Extended Stone duality

Can duality account for the product on the free profinite monoid $\left(\widehat{A^{*}}, \mathcal{T}, \cdot\right)$?

Consider supplementary operations on the $\operatorname{BA} \operatorname{Rec}\left(A^{*}\right)$.
The relevant operations are the left and right residuals by $M \in \operatorname{Rec}\left(A^{*}\right)$ are defined by

$$
\begin{aligned}
& N \longmapsto M \backslash N=\left\{u \in A^{*} \mid \text { for all } v \in M, v u \in N\right\} \\
& N \longmapsto N / M=\left\{u \in A^{*} \mid \text { for all } v \in M, u v \in N\right\}
\end{aligned}
$$

These operations are characterised by the property that for all $L, M, N \in \operatorname{Rec}\left(A^{*}\right)$

$$
L \subseteq N / M \quad \text { iff } \quad L \cdot M \subseteq N \quad \text { iff } \quad M \subseteq L \backslash N
$$

Extended Stone duality

A Boolean residuation algebra is a Boolean algebra B with two binary operations $\backslash, /: B \times B \rightarrow B$ s.t.

- $\left(\bigvee_{\text {finite }} a_{i}\right) \backslash b=\bigwedge_{\text {finite }}\left(a_{i} \backslash b\right)$ and $b \backslash\left(\bigwedge_{\text {finite }} a_{i}\right)=\bigwedge_{\text {finite }}\left(b \backslash a_{i}\right)$
- $\left(\bigwedge_{\text {finite }} a_{i}\right) / b=\bigwedge_{\text {finite }}\left(a_{i} / b\right)$ and $b /\left(\bigwedge_{\text {finite }} a_{i}\right)=\bigvee_{\text {finite }}\left(b / a_{i}\right)$
- Galois property: $\forall a, b, c \in B \quad b \leq a \backslash c \leftrightarrow a \leq c / b$

Boolean algebras

+ operations

Boolean spaces + relations

For $x, y, z \in \operatorname{Ult}(B)$ define the relation

$$
\begin{aligned}
(x, y) R z & \text { iff } \\
& \text { iff } \quad \forall a, b \in B(b \in x \text { and } a \notin z) \rightarrow b \backslash a \notin y \\
& \forall b \in y \text { and } a \notin z) \rightarrow a / b \notin x
\end{aligned}
$$

Not functional from $\mathrm{Ult}(B) \times \mathrm{Ult}(B) \rightarrow \mathrm{Ult}(B)$ in general!

Extended Stone duality

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Boolean algebras } \\
+ \text { operations }
\end{array} & \begin{array}{c}
\text { Extended } \\
\text { Stone duality }
\end{array} & \begin{array}{c}
\text { Boolean spaces } \\
+ \text { relations }
\end{array} \\
\left(\operatorname{Rec}\left(A^{*}\right), \cap, \cup,\{ \}^{\complement}, \emptyset, A^{*}, \backslash, /\right) & \left(\widehat{A^{*}}, \mathcal{T}, R\right) \\
\backslash, l & (x, y) R z \text { iff } x \cdot y=z \\
\text { functional ! }
\end{array}
$$

Theorem (Gehrke, Grigorieff, Pin, 2008)
The dual space of the Boolean algebra of recognisable languages on A with residuals under extended Stone duality is the free profinite monoid on A.

Extended Stone duality and recognition

A variety of languages is the association to each finite alphabet A of a

- Boolean subalgebra $\mathcal{V}\left(A^{*}\right)$ of $\operatorname{Rec}\left(A^{*}\right)$,
- closed under quotienting, $\forall L \in \mathcal{V}\left(A^{*}\right)$ and $\forall u \in A^{*}$
$u^{-1} L=\left\{w \in A^{*} \mid u w \in L\right\} \in \mathcal{V}\left(A^{*}\right)$,
$L u^{-1}=\left\{w \in A^{*} \mid w u \in L\right\} \in \mathcal{V}\left(A^{*}\right)$,
A Boolean residuation ideal of $\operatorname{Rec}\left(A^{*}\right)$ is a Boolean subalgebra B of $\operatorname{Rec}\left(A^{*}\right)$ such that for all $L \in B$ and all $K \in \operatorname{Rec}\left(A^{*}\right)$

$$
\begin{aligned}
& K \backslash L \in B, \\
& L / K \in B .
\end{aligned}
$$

- closed under inverse image by morphisms.

Proposition

A Boolean algebra of recognisable languages is closed under quotienting iff it is a Boolean residuation ideal of $\operatorname{Rec}\left(A^{*}\right)$.

Extended Stone duality and recognition

Theorem (Dekkers, 2008)
The Boolean residuation ideals of recognisable languages correspond dually to the profinite monoid quotients of $\widehat{A^{*}}$.

Say $L \in \operatorname{Rec}\left(A^{*}\right)$ satifies the equation of the form $x=y$, $(x, y) \in \widehat{A^{*}}$ if forall $u, v \in \widehat{A^{*}}$ it satisfies $u x v \leftrightarrow u y v$.

Theorem (Gehrke, Grigorieff, Pin, 2008)
A set of recognisable languages on A is a Boolean algebra closed under quotienting iff it can be defined by a set of profinite equations of the form $x=y$.

