Duality and Equational theory of regular languages

Yann Pequignot

Supervisor: Jacques Duparc, Université de Lausanne, Switzerland. Co-supervisor: Jean-Éric Pin, LIAFA, University Paris-Diderot and CNRS, France.

> Réunion FREC — May 2011 Île de Ré

Background

Formal languages, automata and monoids

- Finite set A, called an **alphabet**.
- Finite sequences on *A*, called **words**.
- Binary operation on words, called concatenation.

$$a_1 \cdots a_n \cdot b_1 \cdots b_n = a_1 \cdots a_n b_1 \cdots b_n$$

- Free monoid on A: A* all words on A.
- Subsets of *A**, called **languages**.
- A machine can specify a language.
- Finite state automaton: simplest model.

Background

Formal languages, automata and monoids For any $L \subset A^*$, TFAE:

- L is recognised by a finite automaton
- L is recognised by a finite monoid (M, \cdot, e)

there exists a surjective monoid morphism $\varphi : A^* \to M$ onto a finite monoid M and some $P \subseteq M$ such that for all $w \in A^*$

 $w \in L$ if and only if $\varphi(w) \in P$.

• The syntactic congruence \sim_L defined by

$$u \sim_L v$$
 iff $\forall x, y \in A^* xuy \in L \leftrightarrow xvy \in L$

is of finite index.

 $\operatorname{Rec}(A^*) = \{L \subseteq A^* \mid L \text{ is recognisable}\}$

Eilenberg Theorem

Varieties of languages and finite monoids

- A **variety of languages** is the association to each finite alphabet *A* of a
 - Boolean subalgebra V(A*) of Rec(A*),
 - closed under quotienting, $\forall L \in \mathcal{V}(A^*)$ and $\forall u \in A^*$

$$u^{-1}L = \{w \in A^* \mid uw \in L\} \in \mathcal{V}(A^*),$$

$$Lu^{-1} = \{w \in A^* \mid wu \in L\} \in \mathcal{V}(A^*),$$

• closed under inverse image by morphisms.

Theorem (Eilenberg, 1976)

There is a bijective and order preserving correspondence between varieties of languages and varieties of finite monoids.

A variety of finite monoids is a class of finite monoids closed under

- submonoid,
- quotient monoid,
- finite direct products.

Birkhoff Theorem

A **variety of monoids** is a class of (not necessarily finite) monoids closed under

- submonoid,
- quotient monoid,
- (not necessarily finite) direct products.

A monoid is commutative if $\forall x \forall y (xy = yx)$.

The commutative monoids form a variety, characterised by the equation xy = yx.

We can see xy and yx as words on the alphabet $A = \{x, y\}$.

A monoid *M* is commutative iff for all morphism $\varphi : \{x, y\}^* \to M$ we have $\varphi(xy) = \varphi(yx)$.

A monoid *M* satisfies the equation (u, v) if for all morphism $\varphi : A^* \to M$ we have $\varphi(u) = \varphi(v)$.

Birkhoff Theorem

A **variety of monoids** is a class of (not necessarily finite) monoids closed under

- submonoid,
- quotient monoid,
- (not necessarily finite) direct products.

An equation is a couple (u, v) of words on a finite alphabet A.

A monoid *M* satisfies the equation (u, v) if for all morphism $\varphi : A^* \to M$ we have $\varphi(u) = \varphi(v)$.

Theorem (Birkhoff, 1935)

A class of monoids is a variety if and only if it is definable by a set of equations.

Is there a similar characterisation for varieties of finite monoids?

Reiterman theorem

A profinite metric on A^* , $u, v \in A^*$:

$$d(u,v) = 2^{-\min\{|A| \mid A \text{ distinguishes } u \text{ and } v\}}$$

where an automaton A distinguishes u and v if it accepts one of them and rejects the other.

Theorem

The completion $(\widehat{A^*}, \mathcal{T}, \cdot)$ is a compact zero dimensional monoid called the **free profinite monoid** on A.

Points in $\widehat{A^*}$ are Cauchy sequences of finite words, called **profinite** words. Example: $x^{\omega} = \lim_{n \to \infty} x^{n!}$.

Define a **profinite equation** as a couple (u, v) of profinite words on a finite alphabet A.

A finite monoid M satisfies a profinite equation (u, v) if for all continuous monoid morphism $\widehat{\varphi} : \widehat{A^*} \to M$ we have $\widehat{\varphi}(u) = \widehat{\varphi}(v)$.

Theorem (Reiterman, 1982)

A class of finite monoids is a variety of finite monoids if and only if it is definable by a set of profinite equations.

Eilenberg-Reiterman theorem

Stone duality

A Boolean algebra is a structure $(B, \land, \lor, \{\}^{\complement}, 0, 1)$ s.t.

- \land , \lor associative
- \land , \lor commutative
- \land , \lor distributive
- absorption $x \lor (x \land y) = x$
- complementation $x \wedge x^{\complement} = 0, \ x \vee x^{\complement} = 1$

Examples:

- field of sets, $\mathcal{P}(E)$
- Rec(A*)
- Boolean algebras of recognisable languages

A **Boolean space** is a topological space (X, \mathcal{T}) s.t.

- Hausdorff: distinct points are separated by neighbourhoods
- **Compact**: open covers contains finite subcovers
- **0-dimensional**: there is a clopen basis.

Examples:

- finite discrete spaces
- Cantor space 2^{ω}
- $\bullet\,$ closed subspace of 2^ω

Stone duality

Let (X, \mathcal{T}) be a Boolean space:

 $\mathsf{Clop}(X) = \{ c \subseteq X \mid c \text{ closed and open for } \mathcal{T} \}$

with the Boolean structure inherited from $\mathcal{P}(X)$.

Let
$$(B, \land, \lor, \{\}^{\complement}, 0, 1)$$
 be a Boolean algebra:
Ult $(B) = \{u \subseteq B \mid u \text{ ultrafilter of } B\}$

is a Boolean space for the topology generated by the sets of the form

$$\{u \in \mathsf{Ult}(B) \mid b \in u\} \quad b \in B.$$

Theorem (Marshall H. Stone, 1936)

Every Boolean algebra is isomorphic to the algebra of clopen sets of a Boolean space. Furthermore

Clop(Ult(B)) = B and Ult(Clop(X)) = X.

Stone duality and recognition Examples

Theorem (Almeida, Pippenger, 1997) The underlying topological space of the free profinite monoid on a finite set A is dual to the Boolean algebra of recognisable languages on A.

Stone duality

For $f : X \longrightarrow Y$ continuous define $\operatorname{Clop}(f) : \operatorname{Clop}(Y) \longrightarrow \operatorname{Clop}(X)$ by $c \longmapsto f^{-1}(c)$

For $h : A \longrightarrow B$ Boolean morphism define $Ult(h) : Ult(B) \longrightarrow Ult(A)$ by $u \longmapsto h^{-1}(u)$

Theorem

Clop(f) is a Boolean morphism and Ult(h) is continuous. Furthermore

h surjective iff Ult(h) injective
h injective iff Ult(h) surjective

Stone duality and recognition

 $B = \{L \in \operatorname{Rec}(A^*) \mid \qquad \xleftarrow{\text{Galois}}_{\text{connection}} E = \{(x, y) \in \widehat{A^*} \times \widehat{A^*} \mid \forall (x, y) \in E \ (L \in x \leftrightarrow L \in y)\} \forall L \in B \ (L \in x \leftrightarrow L \in y)\}$

A recognisable $L \subseteq A^*$ satisfies $x \leftrightarrow y$ if $L \in x \leftrightarrow y \in L$

Theorem (Gehrke, Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra iff it can be defined by profinite equations of the form $x \leftrightarrow y$.

Extended Stone duality

Can duality account for the product on the free profinite monoid $(\widehat{A^*}, \mathcal{T}, \cdot)$?

Consider supplementary operations on the BA $\text{Rec}(A^*)$.

The relevant operations are the **left** and **right residuals** by $M \in \text{Rec}(A^*)$ are defined by

$$N \longmapsto M \setminus N = \{ u \in A^* \mid \text{for all } v \in M, vu \in N \}$$
$$N \longmapsto N/M = \{ u \in A^* \mid \text{for all } v \in M, uv \in N \}$$

These operations are characterised by the property that for all $L, M, N \in \text{Rec}(A^*)$

$$L \subseteq N/M$$
 iff $L \cdot M \subseteq N$ iff $M \subseteq L \setminus N$

Extended Stone duality

A **Boolean residuation algebra** is a Boolean algebra *B* with two binary operations $\backslash, / : B \times B \rightarrow B$ s.t.

• $(\bigvee_{\text{finite}} a_i) \setminus b = \bigwedge_{\text{finite}} (a_i \setminus b) \text{ and } b \setminus (\bigwedge_{\text{finite}} a_i) = \bigwedge_{\text{finite}} (b \setminus a_i)$

- $(\bigwedge_{\text{finite}} a_i)/b = \bigwedge_{\text{finite}} (a_i/b) \text{ and } b/(\bigwedge_{\text{finite}} a_i) = \bigvee_{\text{finite}} (b/a_i)$
- Galois property: $\forall a, b, c \in B$ $b \leq a \setminus c \leftrightarrow a \leq c/b$

For $x, y, z \in Ult(B)$ define the relation

 $\begin{array}{ll} (x,y) Rz & \text{iff} \quad \forall a,b \in B \ (b \in x \text{ and } a \notin z) \to b \backslash a \notin y \\ & \text{iff} \quad \forall a,b \in B \ (b \in y \text{ and } a \notin z) \to a/b \notin x \end{array}$

Not functional from $Ult(B) \times Ult(B) \rightarrow Ult(B)$ in general!

Extended Stone duality

Theorem (Gehrke, Grigorieff, Pin, 2008)

The dual space of the Boolean algebra of recognisable languages on A with residuals under extended Stone duality is the free profinite monoid on A.

Extended Stone duality and recognition

A variety of languages is the association to each finite alphabet *A* of a

- Boolean subalgebra V(A*) of Rec(A*),
- closed under quotienting, $\forall L \in \mathcal{V}(A^*)$ and $\forall u \in A^*$

$$u^{-1}L = \{w \in A^* \mid uw \in L\} \in \mathcal{V}(A^*),$$

$$Lu^{-1} = \{w \in A^* \mid wu \in L\} \in \mathcal{V}(A^*),$$

 closed under inverse image by morphisms.

Proposition

A Boolean algebra of recognisable languages is closed under quotienting iff it is a Boolean residuation ideal of $\text{Rec}(A^*)$.

A Boolean residuation ideal of $\operatorname{Rec}(A^*)$ is a Boolean subalgebra B of $\operatorname{Rec}(A^*)$ such that for all $L \in B$ and all $K \in \operatorname{Rec}(A^*)$

 $\frac{\mathbf{K} \setminus L \in \mathbf{B},}{L/\mathbf{K} \in \mathbf{B}}.$

Extended Stone duality and recognition

$$\begin{array}{ccc} (\operatorname{Rec}(A^*), \cap, \cup, \{\}^{\complement}, \emptyset, A^*, \backslash, /) & \xrightarrow{\operatorname{Extended}} & (\widehat{A^*}, \mathcal{T}, \cdot) \\ & \underset{ideal}{\operatorname{residuation}} & \xleftarrow{\operatorname{diality}} & \xrightarrow{\operatorname{Stone\ monoid}} \\ & (B, \cap, \cup, \{\}^{\complement}, \emptyset, A^*, \backslash, /) & (\widehat{A^*}/E, \cdot) \end{array}$$

Theorem (Dekkers, 2008)

The Boolean residuation ideals of recognisable languages correspond dually to the profinite monoid quotients of $\widehat{A^*}$.

Say
$$L \in \text{Rec}(A^*)$$
 satifies the equation of the form $x = y$,
 $(x, y) \in \widehat{A^*}$ if forall $u, v \in \widehat{A^*}$ it satisfies $uxv \leftrightarrow uyv$.

Theorem (Gehrke, Grigorieff, Pin, 2008)

A set of recognisable languages on A is a Boolean algebra closed under quotienting iff it can be defined by a set of profinite equations of the form x = y.