Between Wqo and Bqo, the Space of Ideals of a Wqo

Yann Pequignot

Joint work with Raphaël Carroy

University of Lausanne

Paris VII

Winter School in Abstract Analysis Section Set Theory and Topology Hejnice, Czech Republic January 26 – February 2, 2013

Quasiorder

A quasiorder (qo) is a set Q together with a reflexive and transitive binary relation \leq . We write p < q for $p \leq q$ and $p \not\geq q$.

- **1** *Q* is **well founded** if it admits no infinite <-descending chain;
- **2** $A \subseteq Q$ is an **antichain** if $p \neq q \rightarrow p \not\leq q$ for all $p, q \in A$;
- **3** a sequence $(q_n)_{n\in\omega}$ is called
 - **good** if $\exists m, n \in \omega$ with m < n and $q_m \le q_n$;
 - **perfect** if $\forall m, n \in \omega$ $m \leq n$ implies $q_m \leq q_n$;
- 4 $D \subseteq Q$ is a **downset** if $q \in D$ and $p \le q$ implies $p \in D$. We write Down(Q) po of downsets of Q with inclusion.
- 5 for $S \subseteq Q$ we write $\downarrow S = \{p \in Q \mid \exists q \in S \ p \leq q\}$ for the **downward closure** of S.
- 6 give upset and downward closure the dual meanings.

Quasiorder

A **well quasiorder** (wqo) is a qo that satisfies one of the following equivalent conditions.

- Q is well founded and has no infinite antichain;
- 2 every sequence is good;
- every sequence admits a perfect subsequence;
- 4 every upset U admits a finite $F \subseteq Q$ such that $U = \uparrow F$;
- **5** (Down(Q), \subseteq) is well founded.

The main tool to show the equivalence is the classical:

Theorem (Ramsey)

Let $k \in \omega$ and let $[\omega]^k = P_0 \cup P_1$ be a partition of the set of sets of natural numbers with cardinality k. There exists an infinite $M \subseteq \omega$ such that

either
$$[M]^k \subseteq P_0$$
, or $[M]^k \subseteq P_1$.

Closure properties of wqo

Here are examples of wqo's:

- Finite qo's ;
- well ordered set, ordinals;
- any subset of a wqo;

- any quotient of a wqo;
- finite products of wqo's;
- finite unions of wqo's;

For s and t ordinal sequences in Q we define

$$s \leq_{dom} t$$
 iff there exists a strictly increasing map $h: |s| \to |t|$ s.t. $s_i \leq t_{h(i)}$ for all $i \in |s|$

Theorem

If Q wqo then the qo $(Q^{<\omega}, \leq_{dom})$ of finite sequences in Q is wqo.

Wqo's are stable under finite combination. But if Q is wqo

- Is Q^{ω} wqo?
- And $(Down(Q), \subseteq)$?

 \blacksquare and Q^{ON} ?

Wqo? Well, we want more

Remember Q is wqo iff $(Down(Q), \subseteq)$ is well founded.

Question:

What is a witness in Q that Down(Q) is **not** wqo?

- Let $(D_n)_{n \in \omega}$ is a bad (=not good) sequence in $(Down(Q), \subseteq)$.
- For all $m, n \in \omega$ and all m < n: $D_m \not\subseteq D_n$.
- For all $m \in \omega$ build a sequence $(q_{\{m,n\}})_{m < n}$ by choosing

$$q_{\{m,n\}} \in D_m$$
 and $q_{\{m,n\}} \not\in D_n$.

■ The sequence of sequences $(q_{\{m,n\}})_{m < n}$ satisfies

$$q_{\{m,n\}} \not\leq q_{\{n,l\}}$$
 for all $m < n < l$.

otherwise $q_{\{m,n\}} \leq q_{\{n,l\}} \in D_n$ implies $q_{\{m,n\}} \in D_n$.

Wqo? Well, we want more

Question:

What does ensure inside Q that Down(Q) is wqo?

Answer:

Consider sequences of higher dimension.

- A sequence of sequences is a map $f : [\omega]^2 \to Q$ from the pairs in ω .
- Say a sequence of sequences $f : [\omega]^2 \to Q$ is **good** if

there exists
$$m < n < l$$
 s.t. $f(\{m, n\}) \le f(\{n, l\})$.

Recall that: every sequence in Q is good $\leftrightarrow Q$ is wqo.

Proposition

Let Q be a qo. Every sequence of sequences in Q is good \leftrightarrow Down(Q) is wgo.

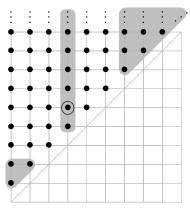
Richard Rado's Example

Question

Does there exist a wqo Q such that Down(Q) is not wqo?

Yes, there is! Richard Rado 1954

Let
$$R = ([\omega]^2, \sqsubseteq)$$
 with
$$\{m, n\} \sqsubseteq \{k, l\}$$
 iff
$$\begin{cases} m = k \text{ and } n \le l, \text{ or } m < n < k < l \end{cases}$$



Wqo? Well, we want better

We want to define a class of quasiorders such that

- Q is wqo
- Down(Q) is wqo
- Down(Down(Q)) is wqo
- Down $^k(Q)$ is wqo
- Down $^{\omega}(Q)$ is wqo
- Down $^{\alpha}(Q)$ is wgo

This is done by requiring that

- every sequence is good
- every sequence of sequences is good
- every sequence of sequences of sequences is good
- every sequence of sequences of sequences . . . is good
- every ????? is good

We need a transfinite notion of sequence of sequences... supersequences.

Wgo? Well, we want better

Crispin St J. Nash-Williams: There is a generalisation of the classical Ramsey theorem to the transfinite dimension!

A **barrier** is a family B of finite sets of natural numbers such that

- 1 $\bigcup B$ is infinite;
- 2 for all $s, t \in B$, $s \subseteq t$ implies s = t;
- **3** every infinite subset of $\bigcup B$ admits an initial segment in B.

Theorem (Nash-Williams, 1965)

Let B be a barrier and let $B = P_0 \cup P_1$ be a partition of B. Then there exists an infinite $M \subseteq \bigcup B$ such that

either
$$B|M \subseteq P_0$$
, or $B|M \subseteq P_1$.

where $B|M = \{s \in B \mid s \subset M\}$.

Wqo? Well, we want better

Crispin St J. Nash-Williams: Wqo? Well, we want better!

For finite set of natural numbers s and t let

$$s \lhd t$$
 iff there exists u s.t. $s \sqsubset u$ and $t = u \setminus \min u$

- A supersequence in Q is a map $f: B \rightarrow Q$ from a barrier B.
- A supersequence $f: B \to Q$ is **good** if there is $s, t \in B$ with $s \lhd t$ and $f(s) \leq f(t)$.

Definition (Nash-Williams, 1965)

A qo Q is a **better quasiorder** (bqo) if every supersequence in Q is good.

Cauchy sequences and uniform continuity

Fact

Let $(x_n)_{n\in\omega}$ be a sequence in 2^{ω} . The following conditions are equivalent:

- **1** $(x_n)_{n\in\omega}$ is Cauchy;
- **2** $\{n \in \omega \mid x_n \in C\}$ is finite or cofinite for all clopen C of 2^{ω} ;
- **3** the map $f: [\omega]^1 \to 2^\omega$, $n \mapsto x_n$ is uniformly continuous.

Where the barrier $[\omega]^1 = \{\{n\} \mid n \in \omega\}$ is equipped with the uniform structure (metric) inherited by 2^{ω} via the identification:

$$[\omega]^{<\infty} \longrightarrow 2^{\omega}$$

$$s = \{2, 4, 5\} \longmapsto x_s = 001011000 \cdots$$

Cauchy sequences and uniform continuity

Definition

Let $f: B \to X$ be a supersequence.

■ A sub-supersequence of f is a restriction of f to some barrier $B' \subseteq B$.

Remark: sub-supersequences of f are exactly the $f: B|N \to X$ for an infinite $N \subseteq \bigcup B$. Recall $B|N = \{s \in B \mid s \subset N\}$.

Definition

For a metric space X, say a supersequence $f:B\to X$ is **Cauchy** if it is uniformly continuous when B is equipped with the uniform structure (metric) induced by 2^ω .

Every sequence in 2^{ω} has a Cauchy (convergent) subsequence and

Theorem (Carroy R. and P.)

Every supersequence in 2^{ω} (i.e. in any 0-dim compact Polish space) has a Cauchy sub-supersequence.

Cauchy sequences and uniform continuity

A Cauchy $f:[\omega]^1 \to 2^\omega$ converges and thus extends uniquely to a continuous map

$$\overline{f}: \overline{[\omega]^1} \longrightarrow 2^{\omega}
\{n\} \longmapsto f(\{n\})
\emptyset = 0^{\omega} \longmapsto \lim_{n} f(\{n\}).$$

Similarly if $f:B\to 2^\omega$ is Cauchy (i.e. uniformly continuous) then it extends uniquely to a continuous

$$\overline{f}: \overline{B} \longrightarrow 2^{\omega}$$

Example

The closure of $[\omega]^2 = [\omega]^{\leq 2}$. A sequence of sequences $f: [\omega]^2 \to X$ in a complete metric space X is Cauchy iff

- for each n we have $f(\lbrace n, m \rbrace)_{n < m} \to \overline{f}(\lbrace n \rbrace)$, and
- $\overline{f}(\{n\})_{n\in\omega}\to f(\emptyset).$

The space of ideals of a wqo

A non empty subset I of a qo Q is an **ideal** if

- I is a downset;
- *I* is directed, i.e. for all $p, q \in I$ there is $r \in I$ with $p \le r$ and $q \le r$.

Let Idl(Q) be the po of ideals of Q under inclusion.

Let 2^Q be the generalised Cantor space of subsets of Q.

Any qo Q is naturally mapped into 2^Q via

$$Q \longrightarrow 2^Q$$

 $q \mapsto \downarrow q$.

We identify Q (the po quotient of Q) with its image in 2^Q .

Proposition (M. Pouzet and N. Sauer, 2005)

If Q is wgo then the closure of Q in 2^Q equals I(Q).

- \blacksquare I(Q) is compact;
- *I*(*Q*) is scattered;

• the set of isolated points of I(Q) equals Q.

Cauchy supersequence in a wqo

Theorem (Carroy R. and P.)

Every supersequence in 2^{ω} (i.e. in any 0-dim compact Polish space) has a Cauchy sub-supersequence.

makes essential use of the metrisability of 2^{ω} . However, since

Proposition

Let Q be wqo and $S \subseteq Idl(Q)$ be countable. Then \overline{S} is countable and metrisable.

the theorem applies to supersequences in a wqo:

Corollary (Carroy R. and P.)

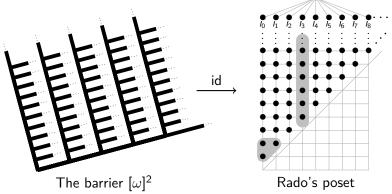
Every supersequence g in a wqo Q has a Cauchy sub-supersequence $f: B \to Q$. This Cauchy supersequence extends to a continuous

$$\overline{f}: \overline{B} \to \mathsf{Idl}(Q).$$

Back to Rado's example

The bad sequence of sequences in ${\mathcal R}$ given by the identity map on

the underlying sets is in fact Cauchy:



Its continuous extension restricts to a bad sequence in the non principal ideals:

$$[\omega]^1 \longrightarrow \mathsf{IdI}^*(Q)$$
$$\{n\} \longmapsto I_n$$

Continuous extensions of supersequences

A point x in a topological space \mathcal{X} is **isolated** if $\{x\}$ is open. A non isolated point is said to be **limit**.

If $x_n \to x$ in a topological space $\mathcal X$ there is $M \in [\omega]^\infty$ such that either x is isolated and for all $m \in M$ $x_m = x$; or x is limit and $\begin{cases} \text{either} & x_m \text{ is isolated for all } m \in M; \\ \text{or} & x_m \text{ is limit for all } m \in M. \end{cases}$

For a continuous extension $\overline{f}: \overline{B} \to \mathcal{X}$ of a supersequence $f: B \to \mathcal{X}$ let $\Lambda_{\overline{f}} = \{s \in \overline{B} \mid \overline{f}(s) \text{ is limit}\}$.

Theorem (Carroy R. and P.)

Let $\overline{f}: \overline{B} \to \mathcal{X}$ be a continuous extension of a supersequence f in a topological space \mathcal{X} . Then there exists a sub-supersequence $g: B' \to \mathcal{X}$ of f s.t.

either $\Lambda_{\overline{g}}$ is empty; or $\Lambda_{\overline{g}} = \overline{C}$ for some barrier C.

A new proof of a result on bqo

Let $\mathrm{Idl}^*(Q)$ denote the po of non principal ideals of Q under inclusion.

We have $IdI(Q) = IdI^*(Q) \cup Q$.

Theorem (M. Pouzet and N. Sauer, 2005)

Let Q be wgo. If $IdI^*(Q)$ is bgo, then Q is bgo.

We can give a new topological proof of this result.

The space of ideals of a wqo

Last ingredient for the proof

Let $(E_n)_n$ be a sequence in 2^Q .

$$\bigcap_{n\in\omega} E_n \subseteq \bigcup_{i\in\omega} \bigcap_{j\geq i} E_j \subseteq \bigcap_{i\in\omega} \bigcup_{j\geq i} E_j \subseteq \bigcup_{n\in\omega} E_n.$$

Recall : $E_n \to E$ in 2^Q iff $\bigcup_{i \in \omega} \bigcap_{j > i} E_j = \bigcap_{i \in \omega} \bigcup_{j > i} E_j = E$

The following trick we took in a proof by R. Rado (1954).

Lemma (Rado's trick)

Let Q be wqo. For all sequence $(D_n)_{n\in\omega}$ of downsets of Q there exists $M\in [\omega]^{\infty}$ s.t.

$$\bigcup_{i\in N}\bigcap_{i\in N/i}I_j=\bigcup_mI_m.$$

Corollary

Let $(I_n)_{n\in\omega}$ be a sequence in IdI(Q). Then there exists an infinite $N\subseteq\omega$ such that $(D_n)_{n\in\mathbb{N}}$ converges to $\bigcup_{n\in\mathbb{N}}I_n$ in 2^Q .

A new proof of a result on bqo

Theorem (M. Pouzet and N. Sauer, 2005)

Let Q be wqo. If $IdI^*(Q)$ is bqo, then Q is bqo.

Sketch of our proof.

- Let $f: B \rightarrow Q$ be a supersequence (to see: f is good);
- Go to a Cauchy sub-supersequence $g: B' \rightarrow Q$;
- Extend it continuously to $\overline{g} : \overline{B'} \to IdI(Q)$;
- lacksquare Go to a sub-supersequence indexed by B'' s.t.

$$\Lambda = \left\{ s \in \overline{B''} \mid f(s) \in \mathsf{IdI}^*(Q) \right\} = \begin{cases} \text{is either empty, or} \\ \overline{C} \text{ for some barrier } C. \end{cases}$$

three cases:

$$\Lambda = \emptyset$$
 Then f has a constant sub-supersequence.

$$\Lambda = \overline{C} = \{\emptyset\} \ \ Q \ \mathsf{wqo} \Rightarrow f \ \mathsf{is} \ \mathsf{good}.$$

$$\Lambda = \overline{C}$$
 is non trivial $Idl^*(Q)$ bqo $\Rightarrow f$ is good.