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To Lolita



Bien que les pieds de l’homme
n’occupent qu’un petit coin de la terre,
c’est par tout l’espace qu’il n’occupe pas
que l’homme peut marcher sur la terre immense.

Bien que l’intelligence de l’homme
ne pénètre qu’une parcelle de la vérité totale,
c’est par ce qu’elle ne pénètre pas
que l’homme peut comprendre ce qu’est le ciel.

— Tchouang-tseu
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1 Introduction
Mathematicians have imagined a myriad of objects, most of them infinite, and
inevitably followed by an infinite suite.

What does it mean to understand them? How does a mathematician venture
to make sense of these infinities he has imagined?

Perhaps, one attempt could be to organise them, to arrange them, to order
them. At first, the mathematician can try to achieve this in a relative sense
by comparing the objects according to some idea of complexity; this object
should be above that other one, those two should be side by side, etc. So the
graph theorist may consider the minor relation between graphs, the recursion
theorist may study the Turing reducibility between sets of natural numbers,
the descriptive set theorist can observe subsets of the Baire space through the
lens of the Wadge reducibility or equivalence relations through the prism of the
Borel reducibility, or the set theorist can organise ultrafilters according to the
Rudin-Keisler ordering.

This act of organising objects amounts to considering an instance of the
very general mathematical notion of a quasi-order (qo), namely a transitive
and reflexive relation.

As a means of classifying a family of objects, the following property of a
quasi-order is usually desired: a quasi-order is said to be well-founded if every
non-empty sub-family of objects admits a minimal element. This means that
there are minimal – or simplest – objects which we can display on a first
bookshelf, and then, amongst the remaining objects there are again simplest
objects which we can display on a second bookshelf above the previous one,
and so on and so forth – most probably into the transfinite.

However, as a matter of fact another concept has been ‘frequently discovered’
[Kru72] and proved even more relevant in diverse contexts: a well-quasi-order
(wqo) is a well-founded quasi-order which contains no infinite antichain. In-
tuitively a well-quasi-order provides a satisfactory notion of hierarchy: as a
well-founded quasi-order, it comes naturally equipped with an ordinal rank
and there are up to equivalence only finitely many elements of any given rank.
To prolong our metaphor, this means that, in addition, every bookshelf displays
only finitely many objects – up to equivalence.

The theory of wqos consists essentially of developing tools in order to show
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1 Introduction

that certain quasi-orders suspected to be wqo are indeed so. This theory exhib-
its a curious and interesting phenomenon: to prove that a certain quasi-order
is wqo, it may very well be easier to show that it enjoys a much stronger
property. This observation may be seen as a motivation for considering the
complicated but ingenious concept of better-quasi-order (bqo) invented by
Crispin St. J. A. Nash-Williams [Nas65]. The concept of bqo is weaker than
that of well-ordered set but it is stronger than that of wqo. In a sense, wqo is
defined by a single ‘condition’, while uncountably many ‘conditions’ are neces-
sary to characterise bqo. Still, as Joseph B. Kruskal [Kru72, p.302] observed
in 1972: ‘all “naturally occurring” wqo sets which are known are bqo’1.

The first contribution of this thesis is to the theory of wqo and bqo. The
main result is the proof of a conjecture made by Maurice Pouzet [Pou78] which
states that any wqo whose ideal completion remainder is bqo is actually bqo.
Our proof relies on new results with both a combinatorial and a topological
flavour concerning maps from a front into a compact metric space. We think
that these results are of independent interest and hope that they can be applied
in other situations where fronts and barriers are used, as in the theory of
Banach spaces for example.

Our second contribution is of a more applied nature and deals with topolo-
gical spaces. We define a quasi-order on the subsets of every second countable
𝑇0 topological space in a way that generalises the Wadge quasi-order on the
Baire space, while extending its nice properties to virtually all these topological
spaces.

Our starting point is the celebrated Wadge quasi-order – of reducibility by
continuous functions – on subsets of the Baire space. This quasi-order is de-
scribed by Alessandro Andretta and Alain Louveau [AL] as ‘the ultimate ana-
lysis of the subsets of the Baire space’. The fact that the extremely fine Wadge
quasi-order is wqo on Borel sets is doubtless among the most attractive of its
properties. The proof of this fact given by Tony Martin, building on previous
work by Leonard Monk, is an example of one of the main techniques of bqo
theory, namely the use of infinite games and determinacy. Moreover, as we
explain in this thesis, this property of the Wadge quasi-order follows from an
extension of the idea underlying the very definition of a bqo.

For other important topological spaces the quasi-order of reducibility by
continuous functions is however far less satisfactory. For example, the family
of Borel subsets of the real line is very far from being wqo under continuous
reducibility. While reducibility by discontinuous functions has been studied by

1The minor relations on finite graphs, proved to be wqo by Robertson and Seymour [RS04],
is to our knowledge the only naturally occurring wqo which is not yet known to be bqo.
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1 Introduction

some authors to remedy this situation, we propose instead to keep continuity
but to weaken the notion of function to that of relation. Using the notion of
admissible representation studied in Type-2 theory of effectivity, we define the
quasi-order of reducibility by relatively continuous relations. We show that this
quasi-order both refines the classical hierarchies of complexity and is wqo on
the Borel subsets of virtually every second countable 𝑇0 space.

1.1 From well to better
A quasi-order 𝑄 is a wqo if it contains no infinite descending chain nor infinite
antichain. However using Ramsey’s Theorem this is equivalent to the absence
of a so-called bad sequence, namely a sequence (𝑞𝑛)𝑛∈𝜔 such that 𝑚 < 𝑛 in 𝜔
implies 𝑞𝑚 ⩽̸ 𝑞𝑛 in 𝑄.

The concept of better-quasi-order was invented by Nash-Williams [Nas65].
Its definition relies on a generalisation of Ramsey’s Theorem to transfinite
dimension: the notion of front. It generalises the definition of wqo given above
in the sense that it does not only forbid bad sequences, but also bad sequences
of sequences, bad sequences of sequences of sequences and so on and so forth
in the transfinite. A front can be thought of as a convenient notion of index
sets for these sequences of … of sequences and we call any map from a front
into some set a super-sequence. A bqo is then a quasi-order which admits no
bad super-sequence.

One contribution of this thesis is to show that super-sequences deserve their
name since they share significant properties with usual sequences. A crucial
property for a sequence in the context of metric spaces is the Cauchy con-
dition. In order to generalise the notion of being Cauchy to super-sequences,
we observe that a sequence (𝑥𝑛)𝑛∈𝜔 in a metric space 𝒳 satisfies the Cauchy
condition if and only if the mapping 𝜔 → 𝒳, 𝑛 ↦ 𝑥𝑛 is uniformly continuous,
when 𝜔 is identified with a subspace of the Cantor space 2𝜔 via 𝑛 ↦ 0𝑛10𝜔.

As observed notably by Todorčević [AT05; Tod10], fronts can naturally be
seen as subsets of the Cantor space. Being a compact Hausdorff space, the
Cantor space admits a unique uniformity that is compatible with its topology.
Even though a front is a discrete topological subspace of 2𝜔, we observe that it
inherits a non-trivial uniformity from 2𝜔. Let us say that a super-sequence in a
metric space is Cauchy when it is uniformly continuous. We show the following
theorem, which generalises the usual sequential compactness for metric spaces.

Theorem 1.1 (with R. Carroy). Every super-sequence in a compact metric
space has a Cauchy sub-super-sequence.

3



1 Introduction

This combinatorial result should be compared with Erdös-Rado Theorem
[ER50] and Pudlak-Rödl Theorem [PR82] as a Ramsey theorem for partitions
into infinitely many classes. We also note also that this result subsumes Nash-
Williams’ Theorem.

Given a complete metric space 𝒳, every Cauchy sequence 𝑓 ∶ 𝜔 → 𝒳 con-
verges, and thus extends to a continuous map 𝑓 ∶ 𝜔 → 𝒳, where 𝜔 is the one
point compactification of 𝜔. The same is true about Cauchy super-sequences:
any uniformly continuous super-sequence 𝑓 ∶ 𝐹 → 𝒳 from a front 𝐹 into a
complete metric space 𝒳 continuously extends to the uniform completion 𝐹 of
𝐹 , which coincides with the topological closure of the front inside the Cantor
space, to yield a continuous map 𝑓 ∶ 𝐹 → 𝑋.

We also study the continuous extension of Cauchy super-sequences. In full
generality, we are concerned with continuous maps from the topological closure
of a front into some topological space.

Recall that a point 𝑥 in a topological space 𝒳 is called isolated if the singleton
{𝑥} is open in 𝒳, and limit otherwise. The following simple fact exhibits a
property of converging sequences that can always be achieved by going to a
subsequence: If (𝑥𝑛)𝑛∈𝜔 is a sequence converging in a topological space 𝒳 to
some point 𝑥, then there is a subsequence (𝑥𝑛)𝑛∈𝑁 such that

1. if 𝑥 is isolated, then (𝑥𝑛)𝑛∈𝑁 is constant equal to 𝑥;

2. if 𝑥 is limit, then
either 𝑥𝑛 is isolated for all 𝑛 ∈ 𝑁 ;
or 𝑥𝑛 is limit for all 𝑛 ∈ 𝑁 .

We generalise this fact to super-sequences by notably showing the following
result.

Theorem 1.2 (with R. Carroy). Let 𝑓 ∶ 𝐹 → 𝒳 be a continuous extension
of a super-sequence 𝑓 in a topological space 𝒳. Then there exists a sub-super-
sequence 𝑓 ′ ∶ 𝐹 ′ → 𝒳 of 𝑓 such that

either 𝑓 ′ ∶ 𝐹 ′ → 𝑋 is constant and equal to an isolated point;

or {𝑠 ∈ 𝐹 ′ ∣ 𝑓(𝑠) is limit} = 𝐺 for some front 𝐺.

We then apply these theorems to the theory of bqo. The main result is a
proof of a conjecture made by Pouzet [Pou78] in his thèse d’état. By an ideal
of a quasi-order 𝑄 we mean a downward closed and up-directed subset of 𝑄.
To every element 𝑞 ∈ 𝑄 corresponds the principal ideal ↓ 𝑞 = {𝑝 ∈ 𝑄 ∣ 𝑝 ⩽ 𝑞}.
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The ideal completion of 𝑄 is defined as the set of ideals of 𝑄 partially ordered
by inclusion, and it is denoted by Id(𝑄). Notice that 𝑄 embeds into Id(𝑄) via
the map 𝑒 ∶ 𝑞 ↦ ↓ 𝑞. We denote by Id*(𝑄) the set Id(𝑄)∖𝑒(𝑄) of non-principal
ideals of 𝑄, this is the remainder of the ideal completion of 𝑄.

The statement of the conjecture made by Pouzet [Pou78] is the following:

Theorem 1.3 (with R. Carroy). If 𝑄 is wqo and Id*(𝑄) is bqo, then 𝑄 is
bqo.

Pouzet and Sauer [PS06] advanced a proof of this statement, but their proof
contains a gap, as clearly revealed by Alberto Marcone and acknowledged by
Pouzet and Sauer. While the approach of Pouzet and Sauer [PS06] is purely
combinatorial, we follow a completely different line and make essential use of
the fact that the ideal completion of wqo admits a natural compact topology.

We view the importance of the ideal completion as the coincidence in the case
of a wqo of several notions of completions of a quasi-order. In fact, gathering
many results and facts which certainly belong to the folklore we obtain the
following:

Theorem 1.4. For a wqo 𝑃 the following completions coincide:

(i) the ideal completion Id(𝑃 ) equipped with the Lawson topology,

(ii) the Cauchy ideal completion of 𝑃 ,

(iii) the Nachbin order-compactification, or ordered Stone-Čech compactifica-
tion, of 𝑃 with the discrete topology.

The different properties of these three different completions combine to give
what we call the ideal space of a wqo. This enables us to show that Theorem 1.1
admits the following nice corollary in the context of wqo theory.

Theorem 1.5 (with R. Carroy). Every super-sequence 𝑓 ∶ 𝐹 → 𝑄 into a wqo
𝑄 admits a Cauchy sub-super-sequence 𝑓 ′ ∶ 𝐹 ′ → 𝑄, which therefore extends
to a continuous map 𝑓 ′ ∶ 𝐹 ′ → Id(𝑄) into the ideal space of 𝑄.

As a matter of fact, the ideal space of a wqo is a scattered compact space
whose limit points are exactly the non principal ideals. Applying Theorem 1.2,
this allows us to prove that any bad super-sequence in a wqo 𝑄 yields a bad
super-sequence into the non principal ideals of 𝑄. Therefore proving Pouzet’s
conjecture.
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1 Introduction

1.2 A well-quasi-order on the subsets of a
topological space

The versatile concept of a topological space has proved valuable in various areas
of mathematics. In many cases of interest, the spaces are second countable, i.e.
their topology admits a countable base. While separable metrisable spaces are
of primary importance to Analysis [Kec95], topological spaces that do not
satisfy the Hausdorff separation property are central to Algebraic Geometry
[EH00] and to Computer Science [Gou13]. We consider without distinction
all second countable spaces which satisfy the weakest separation property 𝑇0,
namely every two points which have exactly the same neighbourhoods are
equal.

We are interested in finding a way to quasi-order the subsets of a topological
space according to their complexity. Among the properties of such a quasi-
ordering the following are arguably desired.

• It should agree with an a priori idea of topological complexity, in partic-
ular it should refine the classical hierarchies.

• It should be as fine as possible.

• It should be wqo or even bqo – at least on Borel subsets.

The very act of defining a topology on a set of objects consists in specifying
simple, easily observable properties: the open sets. We are then interested in
understanding the complexity of the other subsets relatively to the open sets.

Already at the turn of the twentieth century, the French analysts – Baire,
Borel and Lebesgue – stratified the Borel sets of a metric space into a transfinite
hierarchy: the Baire classes 𝚺0

𝛼, 𝚷0
𝛼 and 𝚫0

𝛼. These classes are well-known to
exhibit the following pattern:

𝚺0
1 𝚺0

2 𝚺0
𝛼

𝚫0
2 𝚫0

3 ⋯ 𝚫0
𝛼 𝚫0

𝛼+1 ⋯
𝚷0

1 𝚷0
2 𝚷0

𝛼

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

⊆
⊆

Borel sets are thus classified according to the complexity of their definition
from open sets along this transfinite ladder. This classification was further
refined by Hausdorff, and later by Kuratowski, by identifying what is now
called the difference hierarchies, consisting of the Hausdorff–Kuratowski classes
𝐷𝜉(𝚺0

𝛼). Since for every map 𝑓 ∶ 𝒳 → 𝒳, the preimage function 𝑓−1 ∶ 𝒫(𝒳) →
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1 Introduction

𝒫(𝒳) is a complete Boolean homomorphism, it directly follows from their
definition that the Borel classes and the Hausdorff–Kuratowski classes are
closed under continuous preimages2.

Wadge in his Ph.D. thesis [Wad82] was the first to investigate the quasi-order
of continuous reducibility on the subsets of the Baire space 𝜔𝜔: for 𝐴, 𝐵 ⊆
𝜔𝜔 we say that 𝐴 is Wadge reducible to 𝐵, 𝐴 ⩽W 𝐵, if and only if there
exists a continuous 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔 such that 𝑓−1(𝐵) = 𝐴. This quasi-order
called the Wadge quasi-order relates to the complexity of the subsets of the
Baire space in the sense that 𝐴 ⩽W 𝐵 if and only if one can continuously
reduce the membership problem for 𝐴 to the membership problem for 𝐵. This
quasi-order is remarkable. By considering suitable infinite games and using the
determinacy of these games, which follows from Borel determinacy, this quasi-
order turns out to be well-founded and to admit antichains of size at most 2 on
the Borel sets. As Andretta and Louveau [AL] describe in their introduction to
[KLS12]: ‘The Wadge hierarchy is the ultimate analysis of 𝒫(𝜔𝜔) in terms of
topological complexity’. While the Borel classes and the Hausdorff–Kuratowski
classes are closed under continuous preimages, and therefore represent initial
segments for ⩽W, there are in fact many more initial segments, so that the
Wadge qo refines greatly these classical hierarchies.

Of course the quasi-order of continuous reducibility can be defined in any
topological space 𝒳 in the obvious way, for 𝐴, 𝐵 ⊆ 𝒳 let 𝐴 ⩽W 𝐵 if and only
if there exists a continuous function 𝑓 ∶ 𝒳 → 𝒳 such that 𝐴 = 𝑓−1(𝐵). The
nice properties of the Wadge quasi-order extend easily to all zero-dimensional
Polish spaces, or even to all Luzin – or Borel absolute – zero-dimensional
spaces. The restriction to Luzin spaces and their Borel subsets comes from the
use of determinacy in the proof, but it can be weaken if one is willing to assume
the determinacy of a larger class of games. In particular assuming the Axiom
of Determinacy, the same holds for the quasi-order of continuous reducibility
on all subsets of any zero-dimensional second countable space.

However the restriction to zero-dimensional spaces is of a different nature. In
fact when the space is not zero-dimensional there may be very few continuous
functions, independently of any determinacy hypothesis. Hertling in his Ph.D.
thesis [Her96] shows that the qo of continuous reducibility of the Borel subsets
of the real line ℝ exhibits a more complicated pattern than in the case of
the Baire space. For example, Ikegami showed in his Ph.D. thesis [Ike10] (see
also [IST]) that the powerset 𝒫(𝜔) of 𝜔 partially ordered by inclusion modulo
finite – and hence any partial order of size ℵ1 – embeds in the qo of continuous

2i.e. for every 𝐴 ⊆ 𝒳 in the class and every continuous 𝑓 ∶ 𝒳 → 𝒳 the set 𝑓−1(𝐴) belongs
to the class.

7
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reducibility of Borel sets of the real line (cf. Subsection 5.6.1). In a more general
setting, Schlicht showed in [Sch] that in any non zero-dimensional metric space
there is an antichain for the qo of continuous reducibility of size continuum
consisting of Borel sets. Selivanov [Sel06, and references there] and also Becher
and Grigorieff [BG15] studied continuous reducibility in non Hausdorff spaces,
where the situation is in general much less satisfactory than in the case of the
Baire space.

In search for a useful notion of hierarchy outside Polish zero-dimensional
spaces, Motto Ros, Schlicht, and Selivanov [MSS15] consider reductions by
discontinuous functions. For example they obtain that the Borel subsets of the
real line are well-founded with antichains of size at most 2 when quasi-ordered
by reducibility via functions 𝑓 ∶ ℝ → ℝ such that for every 𝐴 ∈ 𝚺0

3(ℝ) we have
𝑓−1(𝐴) ∈ 𝚺0

3. They leave open the question whether 𝚺0
3 can be replaced by

𝚺0
2 in the above statement. Arguably one defect of this qo is that it does not

refine the low level Borel classes, nor does it respect the Hausdorff hierarchy
of the 𝚫0

2.
Instead of considering reduction by discontinuous functions, we propose to

keep continuity but to release the second concept at stake, namely that of func-
tion. In the abstract, our first remark is that total relations account perfectly
for the idea of reducibility and in fact generalise the framework of reductions
as functions.

The notion of continuity for relations that fits our purpose is called relat-
ive continuity. It relies on the simple and fundamental concept of admissible
representation of a topological space which is the starting point of the devel-
opment of computable analysis from the point of view of Type-2 theory of
effectivity [Wei00].

The basic idea is to represent the points of a topological space 𝒳 by means
of infinite sequences of natural numbers. Given such a representation of 𝒳, i.e.
a partial surjective function 𝜌 ∶⊆ 𝜔𝜔 → 𝒳, an 𝛼 ∈ 𝜔𝜔 is a name for a point
𝑥 ∈ 𝒳 when 𝜌(𝛼) = 𝑥. A function 𝑓 ∶ 𝒳 → 𝒳 is then said to be relatively
continuous (resp. computable) with respect to 𝜌 if the function 𝑓 is continuous
(or computable) in the 𝜌-names, i.e. there exists a continuous (resp. comput-
able) 𝐹 ∶ dom 𝜌 → dom 𝜌 such that 𝑓 ∘ 𝜌 = 𝜌 ∘ 𝐹 . Of course the notion of
relatively continuous function depends on the considered representation. How-
ever, for every second countable 𝑇0 space 𝒳 there exists – up to equivalence
– a greatest representation (cf. Theorem 5.17) among the continuous ones,
called an admissible representation of 𝒳. The importance of admissible rep-
resentations resides in the following fact (cf. Theorem 5.24): for an admissible
representation 𝜌 of 𝒳, a function 𝑓 ∶ 𝒳 → 𝒳 is relatively continuous with
respect to 𝜌 if and only if 𝑓 is continuous. Notice however that in general as

8



1 Introduction

long as the representation is not injective, many continuous transformations of
the names exist which do not induce a map on the space 𝒳. Indeed different
names 𝛼, 𝛽 of some point 𝑥 can be sent by a continuous function 𝐹 onto names
𝐹(𝛼), 𝐹(𝛽) representing different points, i.e. 𝜌(𝐹(𝛼)) ≠ 𝜌(𝐹(𝛽)). Such trans-
formations are called relatively continuous relations (cf. Definition 5.29) and
they were first investigated in a systematic manner by Brattka and Hertling
[BH94].

We propose to consider reducibility by total relatively continuous relations.
When we fix an admissible representation 𝜌 of a second countable 𝑇0 space
𝒳, it is natural to think of reductions by relatively continuous relations as
‘reductions in the names’: if 𝐴, 𝐵 ⊆ 𝒳, then 𝐴 reduces to 𝐵, in symbols
𝐴 ≼W 𝐵, if and only if there exists a continuous function 𝐹 from the names
to the names such that for every name 𝛼, 𝜌(𝛼) ∈ 𝐴 ↔ 𝜌(𝐹(𝛼)) ∈ 𝐵. In other
words, for every point 𝑥 and every name 𝛼 for 𝑥, 𝐹(𝛼) is the name of a point
that belongs to 𝐵 if and only if 𝑥 belongs to 𝐴.

We wish to mention that in 1981 Tang [Tan81] worked with an admissible
representation of the Scott domain 𝒫𝜔 and studied on this particular space
the exact same notion of reduction that we propose here in a more general
setting. But firstly, this study is antecedent to the introduction by Kreitz and
Weihrauch [KW85] of the concept of admissible representation and Tang does
not notice that his representation of 𝒫𝜔 is admissible. This remark is indeed
important since it allows one to see that his notion of reduction is actually
topological, namely it depends only on the topology of the space 𝒫𝜔. Secondly,
even though his paper is often cited, no author seem to notice his particular
approach to reducibility on 𝒫𝜔.

To confront the quasi-order ≼W of reducibility by relatively continuous re-
lations to our expectations, we show the following results.

Firstly, we show that reducibility by relatively continuous relations is a gen-
eralisation of Wadge reducibility outside zero-dimensional spaces.
Proposition 1.6. On every zero-dimensional space, the reducibility by relat-
ively continuous relations coincides with the continuous reducibility.

Notice however that using a result of Schlicht [Sch] we show that it differs
from the continuous reducibility in every separable metrisable space that is
not zero-dimensional.

Secondly, using a result by Saint Raymond [Sai07] extended by de Brecht
[deB13] we obtain that that reducibility by relatively continuous relations re-
fines the classical hierarchies of Borel and Hausdorff–Kuratowski.
Proposition 1.7. Let 𝒳 be a second countable 𝑇0 spaces and 𝐴 and 𝐵 be
subsets of 𝒳. For every 1 ⩽ 𝛼, 𝜉 < 𝜔1,

9
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(i) if 𝐵 ∈ 𝚺0
𝛼(𝒳) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝚺0

𝛼(𝒳),

(ii) if 𝐵 ∈ 𝐷𝜉(𝚺0
𝛼(𝒳)) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝐷𝜉(𝚺0

𝛼(𝒳)).

Finally, we show that the quasi-order ≼W is as well behaved on the Borel sets
of a very large class of second countable 𝑇0 spaces as the Wadge quasi-order is
on the Borel subsets of the Baire space. The use of Borel determinacy naturally
leads us to define the class of Borel representable spaces, which contains every
Borel subspace of the Scott domain 𝒫𝜔, and in particular every Borel subspace
of a Polish space.

Theorem 1.8. Let 𝒳 be a Borel representable space. Then the reducibility by
relatively continuous relations ≼W is well-founded on the Borel subsets of 𝒳.
Moreover the Wadge Lemma holds, namely for every Borel subset 𝐴 and 𝐵 of
𝒳

either 𝐴 ≼W 𝐵 or 𝐵 ≼W 𝐴∁.

As in the case of the Baire space, this structural result depends on the
determinacy of the games under consideration. In particular, under the Axiom
of Determinacy, the above theorem extends to all subsets of every second
countable 𝑇0 space.

1.3 Organisation of the thesis
Chapter 2: Sequences in sets and orders Several articles – notably [Mil85;
Kru72; Sim85; Lav71; Lav76; For03] – contains valuable introductory material
to the theory of better-quasi-orders. However, a book entitled ‘Introduction
to better-quasi-order theory’ is yet to be written. This chapter represents our
attempt to give the motivated introduction to the deep definition of Nash-
Williams we wished we had when we began studying the theory two years
before.

In Section 2.1 we prove a large number of characterisations of well-quasi-
orders, all of them are folklore except the one stated in Proposition 2.14 which
benefits from both an order-theoretical and a topological flavour.

We make our way towards the definition of better-quasi-orders in Section 2.2.
One of the difficulties we encountered when we began studying better-quasi-
order is due to the existence of two main different definitions – obviously equi-
valent to experts – and along with them two different communities, the graph
theorists and the descriptive set theorists, who only rarely cite each other in
their contributions to the theory. The link between the original approach of
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Nash-Williams (graph theoretic) with that of Simpson (descriptive set theor-
etic) is merely mentioned by Argyros and Todorčević [AT05] alone. We present
basic observations in order to remedy this situation in Subsection 2.2.3. Build-
ing on an idea due to Forster [For03], we introduce the definition of better-
quasi-order in a new way, using insight from one of the great contributions of
descriptive set theory to better-quasi-order theory, namely the use of games
and determinacy.

Finally in Section 2.3 we put the definition of better-quasi-order into per-
spective. This last section contains original material which have not yet been
published by the author.

Chapter 3: Sequences in spaces Building on the previous chapter, we study
super-sequences in metric spaces. After making some simple observations on
Cauchy sequences, we define Cauchy super-sequences in Section 3.1 and col-
lect some basic facts about the closure of a front inside 2𝜔. The main result
of this chapter is that any super-sequence into a compact metric space 𝒳 ad-
mits a Cauchy sub-super-sequence. This general result actually follows easily
from the particular case where 𝒳 is the Cantor space. Our reason to focus
on the Cantor space lies in the fact that uniform continuity admits of a nice
characterisation in the zero-dimensional setting as showed in Section 3.2. In
particular the uniform structure of a front 𝐹 essentially consists in a distin-
guished countable Boolean algebra of subsets of 𝐹 (a characterisation of which
is given in Proposition 3.20), that we call the blocks of the front.

In Section 3.3 we prove that any countable family of subsets of a front can be
turned into blocks by eventually going to a sub-front in Theorem 3.24. From
this combinatorial result we deduce that every super-sequence in 2𝜔 admits a
Cauchy super-sequence.

Of course, when 𝒳 is a complete metric space and 𝑓 ∶ 𝐹 → 𝒳 is a Cauchy
super-sequence, then 𝑓 extends to a continuous map ̄𝑓 ∶ 𝐹 → 𝒳, where 𝐹
is the topological closure of 𝐹 inside 2𝜔. We study continuous map from the
closure 𝐹 of a front into an arbitrary topological space in Section 3.4.

In particular we define a certain ‘normal form’ for the continuous functions
𝑓 ∶ 𝐹 → 𝒴 from the closure of a front 𝐹 into a topological space 𝒴 and we
prove that this normal form can always be achieved by a restriction to some
𝐻 where 𝐻 is a sub-front of 𝐹 .

Importantly, these results are applied in the next chapter to prove the con-
jecture suggested by Pouzet [Pou78].

While the exposition given in this chapter is new, the results are published in
an article [CP14] by the author and R. Carroy in Fundamenta Mathematicae.
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Chapter 4: The ideal space of a well-quasi-order The main result of this
chapter is the proof of a conjecture made by Pouzet [Pou78] which relates
the bqo character of a given wqo with the bqo character of the remainder
of the ideal completion of the wqo. Our approach relies on the fact that
the ideal completion of a wqo is actually a compactification. This can be
explained by the coincidence in the case of a wqo of the ideal completion with
two other important completions of a quasi-order, the properties of which
combine to yield what we call the ideal space of a wqo. We do not attempt
to be comprehensive on the tentacular topic of completions of partial orders.
Most of the results of Section 4.1 certainly belongs to the folklore but while
most authors focus mainly on lattice theoretic or domain theoretic aspects, we
concentrate on the wqo property.

In Subsection 4.1.2 we supply the definition of the so-called Cauchy ideal
completion of a partial order which is studied by Erné and Palko [EP98] with
a different approach. We give a characterisation of the partial orders in which
the Cauchy ideals coincide with the ideals. They are the partial orders which
enjoy the so-called property 𝑀 – well-known in domain theory. Notably the
two notions coincide in the case of a wqo, since every wqo trivially satisfies
property 𝑀 . Moreover for the partial orders with property 𝑀 , we show that
the ideal completion when equipped with the Lawson topology coincides with
the Cauchy ideal completion.

Next we present the Cauchy ideal completion of a partial order 𝑃 as the
Priestley dual of a certain lattice of subsets of 𝑃 . Following Bekkali, Pouzet,
and Zhani [BPZ07] we view this as a particular case of a duality result relating
the ‘taking of the topological closure’ with the ‘algebraic generation of a lattice’.
We also provide a new proof of this duality result. In particular, it turns out
that the Cauchy ideal completion of a wqo is the Priestley dual of the lattice of
downsets. This observation leads us in Subsection 4.1.4 to consider the profinite
completion of a partial order. This is also the Nachbin order-compactification
of the partial order considered with the discrete topology.

We see the coincidence of these various completions in the case of a wqo as
a sign of the importance of the space of ideals of a wqo.

We then utilise the results of Chapter 3 to prove Pouzet’s conjecture in
Section 4.2. A slightly different proof was published by the author and R.
Carroy [CP14].

We close this chapter by discussing some applications of Pouzet’s conjecture
in Section 4.3. We notably obtain as a corollary that an interval order is wqo
if and only if it is bqo, as observed by Pouzet and Sauer [PS06].
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Chapter 5: A Wadge Hierarchy for second countable spaces This chapter
is based on an article [Peq15] published by the author in Archive for Mathem-
atical Logic.

The fact that the Wadge quasi-order is well-founded on Borel subsets of 𝜔𝜔

relies on the determinacy of certain infinite games and this result is actually
best seen as an immediate corollary of a theorem on bqos obtained by van
Engelen, Miller, and Steel [vEMS87]. Elaborating on Chapter 2, we present in
Section 5.1 a slight generalisation of this theorem (cf Theorems 5.7 and 5.9) in
a way which makes it appear as an extension of the idea underlying the very
definition of bqo.

From these results, we get that the quasi-order of continuous reducibility on
the Borel subsets of any zero-dimensional Luzin3 space 𝒳 is a wqo – in fact
a bqo – which satisfies the Wadge Lemma, namely for every Borel 𝐴, 𝐵 ⊆ 𝒳
either 𝐴 ⩽W 𝐵 or 𝐵 ⩽W 𝒳 ∖ 𝐴. In particular antichains have size at most 2.

The main idea of this chapter is to generalise the Wadge quasi-order to a
large class of spaces while maintaining the nice properties it enjoys on the Borel
subsets of the Baire space. To do this we move from reductions by continuous
functions to reductions by ‘continuous’ relations. To begin with, we observe in
Section 5.2 that total relations account perfectly for the idea of reducibility in
the abstract and in fact generalise the framework of reductions as functions.

The notion of continuity for relations that fits our purpose is called relative
continuity. It relies on the concept of admissible representation of a topological
space. While this concept is fundamental to Type-2 Theory of Effectivity (see
the textbook by Weihrauch [Wei00]), we do not expect our reader to be familiar
with the simple and interesting underpinning of this approach to computable
analysis. We therefore review the basic definitions and provide proofs for his
convenience in Section 5.3. This Section ends with the definition of the quasi-
order ≼W of reducibility by relatively continuous relations.

We prove in Section 5.4 that the quasi-order ≼W refines the classical hier-
archies of Borel and Hausdorff–Kuratowski.

We define a general reduction game for represented spaces in Section 5.5
as a simple adaptation of the game we used in Section 5.1. This allows us
to show that the quasi-order ≼W satisfies the Wadge Lemma on Borel sub-
sets of Borel representable spaces. Also, moving from continuous functions to
relatively continuous relations we extend our version of the theorem by van
Engelen, Miller, and Steel [vEMS87] from Luzin zero-dimensional spaces to all
Borel representable spaces. This yields in particular that the reducibility by
relatively continuous relations is well-founded – in fact bqo – on the Borel

3Luzin spaces are also called Borel absolute spaces.
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subsets of every Borel representable space.
Finally in Section 5.6 we exemplify the difference between the continuous

reducibility and the reducibility by relatively continuous relations in two major
examples: the real line ℝ and the Scott domain 𝒫𝜔.
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2 Sequences in sets and orders
Sequences play an important rôle in both the theory of topological spaces and
the theory of orders. A sequence in a set 𝐸 is simply a map from the set 𝜔 of
natural numbers into 𝐸. A subsequence of a sequence 𝑓 ∶ 𝜔 → 𝐸 is a restriction
𝑓↾𝑋 ∶ 𝑋 → 𝐸 of 𝑓 to some infinite subset 𝑋 of 𝜔. In this chapter we focus on
sequences and their generalisation, super-sequences, in the context of sets and
ordered sets. This leads us from well-quasi-orders to better-quasi-orders.

2.1 Well-quasi-orders
A reflexive and transitive binary relation ⩽ on a set 𝑄 is called a quasi-order
(qo, also preorder). As it is customary, we henceforth make an abuse of ter-
minology and refer to the pair (𝑄, ⩽) simply as 𝑄 when there is no danger
of confusion. Moreover when it is necessary to prevent ambiguity we use a
subscript and write ⩽𝑄 for the binary relation of the quasi-order 𝑄.

The notion of quasi-order is certainly the most general mathematical concept
of ordering. Two elements 𝑝 and 𝑞 of a quasi-order 𝑄 are equivalent, in symbols
𝑝 ≡ 𝑞, if both 𝑝 ⩽ 𝑞 and 𝑞 ⩽ 𝑝 hold. It can very well happen that 𝑝 is equivalent
to 𝑞 while 𝑝 is not equal to 𝑞. This kind of situation naturally arises when one
considers for example the quasi-order of embeddability among a certain class
of structures. Examples of pairs of structures which mutually embed into each
other while being distinct, or even non isomorphic, abound in mathematics.

Every quasi-order possess an associated strict relation, denoted by <, defined
by 𝑝 < 𝑞 if and only if 𝑝 ⩽ 𝑞 and 𝑞 ⩽̸ 𝑝 – equivalently 𝑝 ⩽ 𝑞 and 𝑝 ≢ 𝑞. We
say two elements 𝑝 and 𝑞 are incomparable, when both 𝑝 ⩽̸ 𝑞 and 𝑞 ⩽̸ 𝑝 hold,
in symbols 𝑝 | 𝑞.

A map 𝑓 ∶ 𝑃 → 𝑄 between quasi-orders is order-preserving (also isotone)
if whenever 𝑝 ⩽𝑃 𝑝′ holds in 𝑃 we have 𝑓(𝑝) ⩽𝑄 𝑓(𝑝′) in 𝑄. An embedding
is a map 𝑓 ∶ 𝑃 → 𝑄 such that for every 𝑝 and 𝑝′ in 𝑃 , 𝑝 ⩽𝑃 𝑝′ if and
only if 𝑓(𝑝) ⩽𝑄 𝑓(𝑝′). Notice that an embedding is not necessarily injective.
An embedding 𝑓 ∶ 𝑃 → 𝑄 is called an equivalence1 provided it is essentially

1Viewing quasi-orders as categories in the obvious way, this notion of equivalence coincides
with the one used in category theory.
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surjective, i.e. for every 𝑞 ∈ 𝑄 there exists 𝑝 ∈ 𝑃 with 𝑞 ≡𝑄 𝑓(𝑝). We say that
two quasi-orders 𝑃 and 𝑄 are equivalent if there exists an equivalence from 𝑃
to 𝑄 – by the axiom of choice this is easily seen to be an equivalence relation
on the class of quasi-orders. Notice that every set 𝑋 quasi-ordered by the full
relation 𝑋 × 𝑋 is equivalent to the one point quasi-order. In contrast, by an
isomorphism 𝑓 from 𝑃 to 𝑄 we mean a bijective embedding 𝑓 ∶ 𝑃 → 𝑄. Of
course, a set 𝑋 quasi-ordered with the full relation 𝑋 × 𝑋 is never isomorphic
to 1 except when 𝑋 contains exactly one element.

In the sequel we study quasi-orders up to equivalence, namely only properties
of quasi-orders which are preserved by equivalence are considered.

A quasi-order 𝑄 is called a partial order (po, also poset) provided the re-
lation ⩽ is antisymmetric, i.e. 𝑝 ≡ 𝑝 implies 𝑝 = 𝑞 – equivalent elements are
equal. Notice that an embedding between partial orders is necessarily injective.
Moreover if 𝑃 and 𝑄 are partial orders and 𝑓 ∶ 𝑃 → 𝑄 is an equivalence, then
𝑓 is an isomorphism. We also note that in a partial order the associated strict
order can also be defined by 𝑝 < 𝑞 if and only if 𝑝 ⩽ 𝑞 and 𝑝 ≠ 𝑞.

Importantly, every quasi-order 𝑄 admits up to isomorphism a unique equi-
valent partial order, its equivalent partial order, which can be obtained as the
quotient of 𝑄 by the equivalence relation 𝑝 ≡ 𝑞.

Even though most naturally occurring examples and constructions are only
quasi-orders, one can always think of the equivalent partial order. The study
of quasi-orders therefore really amounts to the study of partial orders.

2.1.1 Good versus bad sequences
We let 𝜔 = {0, 1, 2, …} be the set of natural numbers. We use the set theoretic
definitions 0 = ∅ and 𝑛 = {0, … , 𝑛−1}, so that the usual order on 𝜔 coincides
with the membership relation. The equality and the usual order on 𝜔 give rise
to the following distinguished types of sequences into a quasi-order.

Definitions 2.1. Let 𝑄 be a quasi-order.

(1) An infinite antichain is a map 𝑓 ∶ 𝜔 → 𝑄 such that for all 𝑚, 𝑛 ∈ 𝜔,
𝑚 ≠ 𝑛 implies 𝑓(𝑚) | 𝑓(𝑛).

(2) An infinite descending chain, or an infinite decreasing sequence in 𝑄, is a
map 𝑓 ∶ 𝜔 → 𝑄 such that for all 𝑚, 𝑛 ∈ 𝜔, 𝑚 < 𝑛 implies 𝑓(𝑚) > 𝑓(𝑛).

(3) A perfect sequence, is a map 𝑓 ∶ 𝜔 → 𝑄 such that for all 𝑚, 𝑛 ∈ 𝜔 the
relation 𝑚 ⩽ 𝑛 implies 𝑓(𝑚) ⩽ 𝑓(𝑛). In other words, 𝑓 is perfect if it is
order-preserving from (𝜔, ⩽) to (𝑄, ⩽).
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(4) A bad sequence is a map 𝑓 ∶ 𝜔 → 𝑄 such that for all 𝑚, 𝑛 ∈ 𝜔, 𝑚 < 𝑛
implies 𝑓(𝑚) ⩽̸ 𝑓(𝑛).

(5) A good sequence is a map 𝑓 ∶ 𝜔 → 𝑄 such that there exist 𝑚, 𝑛 ∈ 𝜔 with
𝑚 < 𝑛 and 𝑓(𝑚) ⩽ 𝑓(𝑛). Hence a sequence is good exactly when it is
not bad.

For any given set 𝑋, we denote by [𝑋]2 the set of pairs {𝑥, 𝑦} for distinct
𝑥, 𝑦 ∈ 𝑋. By Ramsey’s Theorem2 [Ram30] whenever [𝜔]2 is partitioned into
𝑃0 and 𝑃1 there exists an infinite subset 𝑋 of 𝜔 such that either [𝑋]2 ⊆ 𝑃0,
or [𝑋]2 ⊆ 𝑃1.

Proposition 2.2. For a quasi-order 𝑄, the following conditions are equivalent.

(W1) 𝑄 has no infinite descending chain and no infinite antichain;

(W2) there is no bad sequence in 𝑄;

(W3) every sequence in 𝑄 admits a perfect subsequence.

Proof. (W1)→(W2): By contraposition, suppose that 𝑓 ∶ 𝜔 → 𝑄 is a bad
sequence. Partition [𝜔]2 into 𝑃0 and 𝑃1 with

𝑃0 = {{𝑚, 𝑛} ∈ [𝜔]2 ∣ 𝑚 < 𝑛 and 𝑓(𝑚) ⩾̸ 𝑓(𝑛)}.

By Ramsey’s Theorem, there exists an infinite subset 𝑋 of integers with
either [𝑋]2 ⊆ 𝑃0, or [𝑋]2 ⊆ 𝑃1. In the first case 𝑓 ∶ 𝑋 → 𝑄 is an infinite
antichain and in the second case 𝑓 ∶ 𝑋 → 𝑄 is an infinite descending
chain.

(W2)→(W1): Notice that an infinite antichain and an infinite descending
chain are two examples of a bad sequence.

(W2)↔(W3): Let 𝑓 ∶ 𝜔 → 𝑄 be any sequence in 𝑄. We partition [𝜔]2 in 𝑃0
and 𝑃1 with

𝑃0 = {{𝑚, 𝑛} ∈ [𝜔]2 ∣ 𝑚 < 𝑛 and 𝑓(𝑚) ⩽̸ 𝑓(𝑛)}.

By Ramsey’s Theorem, there exists an infinite subset 𝑋 of integers such
that [𝑋]2 ⊆ 𝑃0 or [𝑋]2 ⊆ 𝑃1. The first case yields a bad subsequence.
The second case gives a perfect subsequence.

2Nash-Williams’ generalisation of Ramsey’s Theorem is stated and proved as Theorem 2.36.
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2 Sequences in sets and orders

Definition 2.3. A quasi-order 𝑄 is called a well-quasi-order (wqo) when one
of the equivalent conditions of the previous proposition is fulfilled. A quasi-
order with no infinite descending chain is said to be well-founded.

The notion of wqo is a frequently discovered concept, for an historical ac-
count of its early development we refer the reader to the excellent article by
Kruskal [Kru72].

Using Proposition 2.2 and the Ramsey’s Theorem for pairs, one easily proves
the following basic closure properties of the class of wqos.

Proposition 2.4.

(i) If (𝑄, ⩽𝑄) is wqo and 𝑃 ⊆ 𝑄, then (𝑃 , ⩽𝑃 ) is wqo, where 𝑝 ⩽𝑃 𝑝′ if
and only if 𝑝, 𝑝′ ∈ 𝑃 and 𝑝 ⩽𝑄 𝑝′.

(ii) If (𝑃 , ⩽𝑃 ) and (𝑄, ⩽𝑄) are wqo, then 𝑃 × 𝑄 quasi-ordered by

(𝑝, 𝑞) ⩽𝑃×𝑄 (𝑝′, 𝑞′) ⟷ 𝑝 ⩽𝑃 𝑝′ and 𝑞 ⩽𝑄 𝑞′

is wqo.

(iii) If (𝑃 , ⩽𝑃 ) is a partial order and (𝑄𝑝, ⩽𝑄𝑝
) is a quasi-order for every

𝑝 ∈ 𝑃 , the sum ∑𝑝∈𝑃 𝑄𝑝 of the 𝑄𝑝 along 𝑃 has underlying set the
disjoint union {(𝑝, 𝑞) ∣ 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄𝑝} and is quasi-ordered by

(𝑝, 𝑞) ⩽ (𝑝′, 𝑞′) ⟷ either 𝑝 = 𝑝′ and 𝑞 ⩽𝑄𝑝
𝑞′, or 𝑝 < 𝑝′.

If 𝑃 is wqo and each 𝑄𝑝 is wqo, then ∑𝑝∈𝑃 𝑄𝑝 is wqo.

(iv) If 𝑄 is wqo and there exists a map 𝑔 ∶ 𝑃 → 𝑄 such that for all 𝑝, 𝑝′ ∈ 𝑃
𝑔(𝑝) ⩽ 𝑔(𝑝′) → 𝑝 ⩽ 𝑝′, then 𝑃 is wqo.

(v) If 𝑃 is wqo and there is a surjective and monotone map ℎ ∶ 𝑃 → 𝑄,
then 𝑄 is wqo.

2.1.2 Subsets and downsets
Importantly, a wqo can be characterised in terms of its subsets.

Definitions 2.5. Let 𝑄 be a quasi-order.

18



2 Sequences in sets and orders

(1) A subset 𝐷 of 𝑄 is a downset, or an initial segment, if 𝑞 ∈ 𝐷 and 𝑝 ⩽ 𝑞
implies 𝑝 ∈ 𝐷. For any 𝑆 ⊆ 𝑄, we write ↓ 𝑆 for the downset generated
by 𝑆 in 𝑄, i.e. the set {𝑞 ∈ 𝑄 ∣ ∃𝑝 ∈ 𝑆 𝑞 ⩽ 𝑝}. We also write ↓ 𝑝 for
↓{𝑝}.
We denote by 𝒟(𝑄) the po of downsets of 𝑄 under inclusion.

(2) We give the dual meaning to upset, ↑ 𝑆 and ↑ 𝑞 respectively.

(3) An upset 𝑈 is said to to be finitely generated, or to admit a finite basis,
if there exists a finite 𝐹 ⊆ 𝑈 such that 𝑈 = ↑ 𝐹 . We say that 𝑄 has the
finite basis property if every upset of 𝑄 admits a finite basis.

(4) A downset 𝐷 ∈ 𝒟(𝑄) is said to be finitely bounded, if there exists a
finite set 𝐹 ⊆ 𝑄 with 𝐷 = 𝑄 ∖ ↑ 𝐹 . We let 𝒟fb(𝑄) be the set of finitely
bounded downsets partially ordered by inclusion.

(5) We turn the power-set of 𝑄, denoted 𝒫(𝑄), into a qo by letting 𝑋 ⩽ 𝑌
if and only if ∀𝑝 ∈ 𝑋 ∃𝑞 ∈ 𝑌 𝑝 ⩽ 𝑞, this is sometimes called the
domination quasi-order. We let 𝒫<ℵ1

(𝑄) be the the set of countable
subsets of 𝑄 with the quasi-order induced from 𝒫(𝑄). Since 𝑋 ⩽ 𝑌 if
and only if ↓ 𝑋 ⊆ ↓ 𝑌 , the equivalent partial order of 𝒫(𝑄) is 𝒟(𝑄) and
the quotient map is given by 𝑋 ↦ ↓ 𝑋.

The notion of well-quasi-order should be thought of as a generalisation of
the notion of well-ordering beyond linear orders. Recall that a po 𝑃 is a linear
order if for every 𝑝 and 𝑞 in 𝑃 , either 𝑝 ⩽ 𝑞 or 𝑞 ⩽ 𝑝. A well-ordering is
(traditionally, the associated strict relation < of) a partial order that is both
linearly ordered and well-founded.

Observe that a linearly ordered 𝑃 is well-founded if and only if the initial
segments of 𝑃 are well-founded under inclusion. Considering for example the
po (𝜔, =), one directly sees that a partial order 𝑃 can be well-founded while
the initial segments of 𝑃 (here 𝒫(𝜔)) are not well-founded under inclusion.
However a qo 𝑄 is wqo if and only if the initial segments of 𝑄 are well-founded
under inclusion.

Proposition 2.6. A quasi-order 𝑄 is a wqo if and only if one of the following
equivalent conditions is fulfilled:

(W4) 𝑄 has the finite basis property,

(W5) (𝒫(𝑄), ⩽) is well-founded,

(W6) (𝒫<ℵ1
(𝑄), ⩽) is well-founded,
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2 Sequences in sets and orders

(W7) (𝒟(𝑄), ⊆) is well-founded,

(W8) (𝒟fb(𝑄), ⊆) is well-founded.

Proof. (W2)→(W4): By contraposition, suppose 𝑆 ∈ 𝒰(𝑄) admits no finite
basis. Since ∅ = ↑ ∅, 𝑆 ≠ ∅. By dependent choice, we can show the
existence of a bad sequence 𝑓 ∶ 𝜔 → 𝑄. Choose 𝑓(0) ∈ 𝑆 and suppose
that 𝑓 is defined up to some 𝑛 > 0. Since ↑{𝑓(0), … 𝑓(𝑛)} ⊂ 𝑆 we can
choose some 𝑓(𝑛 + 1) inside 𝑆 ∖ ↑{𝑓(0), … 𝑓(𝑛)}.

(W4)→(W5): By contraposition, suppose that (𝑋𝑛)𝑛∈𝜔 is an infinite descend-
ing chain in 𝒫(𝑄). Then for each 𝑛 ∈ 𝜔 we choose 𝑞𝑛 ∈ ↓ 𝑋𝑛 ∖ ↓ 𝑋𝑛+1.
Then {𝑞𝑛 ∣ 𝑛 ∈ 𝜔} has no finite basis. Indeed for all 𝑛 ∈ 𝜔 we have
𝑞𝑛+1 ∉ ↑{𝑞𝑖 ∣ 𝑖 ⩽ 𝑛}, otherwise 𝑞𝑖 ⩽ 𝑞𝑛+1 ∈ ↓ 𝑋𝑛+1 ⊆ ↓ 𝑋𝑖+1 for some
𝑖 ⩽ 𝑛, a contradiction.

(W5)→(W6): Obvious.

(W6)→(W2): By contraposition, if (𝑞𝑛)𝑛∈𝜔 is a bad sequence in 𝑄, then 𝑃𝑛 =
{𝑞𝑘 ∣ 𝑛 ⩽ 𝑘} is an infinite descending chain in 𝒫<ℵ1

(𝑄) since whenever
𝑚 < 𝑛 we have 𝑞𝑚 ∈ 𝑃𝑚 and 𝑞𝑚 ⩽̸ 𝑞𝑘 for every 𝑘 ⩾ 𝑛.

(W5)→(W7): By contraposition, notice that an infinite descending chain in
(𝒟(𝑄), ⊆) is also an infinite descending chain in (𝒫(𝑄), ⩽).

(W7)→(W8): Obvious.

(W8)→(W2): By contraposition, if 𝑓 ∶ 𝜔 → 𝑄 is a bad sequence, then 𝑛 ↦
𝐷𝑛 = 𝑄 ∖ ↑{𝑓(𝑖) ∣ 𝑖 ⩽ 𝑛} is an infinite descending chain in 𝒟fb(𝑄).

2.1.3 Regular sequences
A monotone decreasing sequence of ordinals is, by well-foundedness, eventu-
ally constant. The limit of such a sequence exists naturally, and is simply its
minimum.

In general the limit of a sequence (𝛼𝑖)𝑖∈𝜔 of ordinals may not exist, however
any sequence of ordinals admits a limit superior. Indeed, define the sequence
𝛽𝑖 = sup𝑗⩾𝑖 𝛼𝑗 = ⋃𝑗⩾𝑖 𝛼𝑗, then (𝛽𝑖)𝑖∈𝜔 is decreasing and hence admits a limit.

We say that (𝛼𝑖)𝑖∈𝜔 is regular if the limit superior and the supremum ⋃𝑖∈𝜔 𝛼𝑖
of (𝛼𝑖)𝑖∈𝜔 coincide. This is equivalent to saying that for every 𝑖 ∈ 𝜔 there exists
𝑗 > 𝑖 with 𝛼𝑖 ⩽ 𝛼𝑗. By induction one shows that this is in turn equivalent to
saying that for all 𝑖 ∈ 𝜔 the set {𝑗 ∈ 𝜔 ∣ 𝑖 < 𝑗 and 𝛼𝑖 ⩽ 𝛼𝑗} is infinite.
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2 Sequences in sets and orders

Notation 2.7. For 𝑛 ∈ 𝜔 and 𝑋 an infinite subset of 𝜔 let us denote by 𝑋/𝑛
the final segment of 𝑋 given by {𝑘 ∈ 𝑋 ∣ 𝑘 > 𝑛}.

We generalise the definition of regular sequences of ordinals to sequences in
quasi-orders as follows.

Definition 2.8. Let 𝑄 be a qo. A regular sequence is a map 𝑓 ∶ 𝜔 → 𝑄 such
that for all 𝑛 ∈ 𝜔 the set {𝑘 ∈ 𝜔/𝑛 ∣ 𝑓(𝑛) ⩽ 𝑓(𝑘)} is infinite.

Here is a characterisation of wqo in terms of regular sequences which ex-
hibits another property of well-orders shared by wqos.

Proposition 2.9. Let 𝑄 be a qo. Then 𝑄 is wqo if and only if one of the
following equivalent conditions holds:

(W9) Every sequence in 𝑄 admits a regular subsequence.

(W10) For every sequence 𝑓 ∶ 𝜔 → 𝑄 there exists 𝑛 ∈ 𝜔 such that the
restriction 𝑓 ∶ 𝜔/𝑛 → 𝑄 is regular.

Proof. (W7)→(W10): For 𝑓 ∶ 𝜔 → 𝑄 we let ̂𝑓 ∶ 𝜔 → 𝒟(𝑄) be defined by
̂𝑓(𝑛) = ↓{𝑓(𝑘) ∣ 𝑛 ⩽ 𝑘 < 𝜔}. Then clearly if 𝑚 < 𝑛 then ̂𝑓(𝑚) ⊇ ̂𝑓(𝑛).

The partial order 𝒟(𝑄) being well-founded by (W7), there exists 𝑛 ∈ 𝜔
such that for every 𝑚 > 𝑛 we have ̂𝑓(𝑛) = ̂𝑓(𝑚). This 𝑛 is as desired.
Indeed, if 𝑘 > 𝑛 then for every 𝑙 > 𝑘 we have 𝑓(𝑘) ∈ ̂𝑓(𝑘) = ̂𝑓(𝑙) and so
there exists 𝑗 ⩾ 𝑙 with 𝑓(𝑘) ⩽ 𝑓(𝑙).

(W10)→(W9): Obvious.

(W9)→(W2): By contraposition, if 𝑓 ∶ 𝜔 → 𝑄 is a bad sequence, then every
subsequence of 𝑓 is bad. Clearly a bad sequence 𝑓 ∶ 𝜔 → 𝑄 is not regular
since for every 𝑛 ∈ 𝜔 the set {𝑘 ∈ 𝜔/𝑛 ∣ 𝑓(𝑛) ⩽ 𝑓(𝑘)} is empty. Hence a
bad sequence admits no regular subsequence.

2.1.4 Sequences of subsets
In this subsection we give a new characterisation of wqos which enjoys both
a topological and an order-theoretical flavour.

So far, we have considered 𝒟(𝑄) as partially ordered set for inclusion. But
𝒟(𝑄) also admits a natural topology which turns it into a compact Hausdorff
0-dimensional space. Consider 𝑄 as a discrete topological space, and form the
product space 2𝑄, whose underlying set is identified with 𝒫(𝑄). This product
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space, sometimes called generalised Cantor space, admits as a basis the clopen
sets of the form

𝑁(𝐹, 𝐺) = {𝑋 ⊆ 𝑄 ∣ 𝐹 ⊆ 𝑋 and 𝑋 ∩ 𝐺 = ∅},

for finite subsets 𝐹, 𝐺 of 𝑄. For 𝑞 ∈ 𝑄, we write ⟨𝑞⟩ instead of 𝑁({𝑞}, ∅) for
the clopen set {𝑋 ⊆ 𝑄 ∣ 𝑞 ∈ 𝑋}. Note that ⟨𝑞⟩∁ = 𝑁(∅, {𝑞}).

Notice that 𝒟(𝑄) is an intersection of clopen sets,

𝒟(𝑄) = ⋂
𝑝⩽𝑞

⟨𝑞⟩∁ ∪ ⟨𝑝⟩,

hence 𝒟(𝑄) is closed in 2𝑄 and therefore compact.
Now recall that for every sequence (𝐸𝑛)𝑛∈𝜔 of subsets of 𝑄 we have the usual

relations
⋂
𝑛∈𝜔

𝐸𝑛 ⊆ ⋃
𝑖∈𝜔

⋂
𝑗⩾𝑖

𝐸𝑗 ⊆ ⋂
𝑖∈𝜔

⋃
𝑗⩾𝑖

𝐸𝑗 ⊆ ⋃
𝑛∈𝜔

𝐸𝑛. (2.1)

Moreover the convergence of sequences in 2𝑄 can be expressed by means of
a ‘lim inf = lim sup’ property.

Fact 2.10. A sequence (𝐸𝑛)𝑛∈𝜔 converges to 𝐸 in 2𝑄 if and only if

⋃
𝑖∈𝜔

⋂
𝑗⩾𝑖

𝐸𝑗 = ⋂
𝑖∈𝜔

⋃
𝑗⩾𝑖

𝐸𝑗 = 𝐸.

Proof. Suppose that 𝐸 = ⋃𝑖∈𝜔 ⋂𝑗⩾𝑖 𝐸𝑗 = ⋂𝑖∈𝜔 ⋃𝑗⩾𝑖 𝐸𝑗. We show that 𝐸𝑛 →
𝐸. Let 𝐹, 𝐺 be finite subsets of 𝑄 with 𝐸 ∈ 𝑁(𝐹 , 𝐺). Since 𝐸 = ⋃𝑖∈𝜔 ⋂𝑗⩾𝑖 𝐸𝑗
and 𝐹 finite, 𝐹 ⊆ 𝐸𝑗 for all sufficiently large 𝑗. Since 𝐸 = ⋂𝑖∈𝜔 ⋃𝑗⩾𝑖 𝐸𝑗 and
𝐺 is finite, 𝐺 ∩ 𝐸𝑗 = ∅ for all sufficiently large 𝑗. It follows that 𝐸𝑗 ∈ 𝑁(𝐹 , 𝐺)
for all sufficiently large 𝑗, whence (𝐸𝑛)𝑛 converges 𝐸.

Conversely, assume that 𝐸𝑛 converges to some 𝐸 in 2𝑄. If 𝑞 belongs to 𝐸 –
i.e. 𝐸 ∈ ⟨𝑞⟩ – then 𝑞 ∈ 𝐸𝑗 for all sufficiently large 𝑗 and thus 𝑞 ∈ ⋃𝑖∈𝜔 ⋂𝑗⩾𝑖 𝐸𝑗.
And if 𝑞 ∉ 𝐸, i.e. 𝐸 ∉ ⟨𝑞⟩, then 𝑞 ∉ 𝐸𝑗 for all sufficiently large 𝑗 and thus
𝑞 ∉ ⋂𝑖∈𝜔 ⋃𝑗⩾𝑖 𝐸𝑗. Therefore by (2.1) it follows that 𝐸 = ⋃𝑖∈𝜔 ⋂𝑗⩾𝑖 𝐸𝑗 =
⋂𝑖∈𝜔 ⋃𝑗⩾𝑖 𝐸𝑗.

Observe that if (𝑞𝑛)𝑛∈𝜔 is a perfect sequence in a qo 𝑄, then for every 𝑞 ∈ 𝑄
if 𝑞 ⩽ 𝑞𝑚 for some 𝑚, then 𝑞 ⩽ 𝑞𝑛 holds for all 𝑛 ⩾ 𝑚. Therefore by (2.1) we
have

⋃
𝑚∈𝜔

⋂
𝑛⩾𝑚

↓ 𝑞𝑛 = ⋃
𝑛∈𝜔

↓ 𝑞𝑛,
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2 Sequences in sets and orders

whence (↓ 𝑞𝑛)𝑛∈𝜔 converges to ↓{𝑞𝑛 ∣ 𝑛 ∈ 𝜔} in 2𝑄 by Fact 2.10. On the
contrary no bad sequence (𝑞𝑛)𝑛∈𝜔 converges towards ↓{𝑞𝑛 ∣ 𝑛 ∈ 𝜔}, since for
example 𝑞0 does not belong to ⋃𝑖∈𝜔 ⋂𝑗⩾𝑖 ↓ 𝑞𝑗. We have obtained the following:

Fact 2.11. Let 𝑄 be a qo.

(i) 𝑄 is wqo if and only if for every sequence (𝑞𝑛)𝑛∈𝜔 there exists 𝑁 ∈ [𝜔]∞
such that (↓ 𝑞𝑛)𝑛∈𝑁 converges to ↓{𝑞𝑛 ∣ 𝑛 ∈ 𝑁} in 𝒟(𝑄).

(ii) If 𝑄 is wqo and (↓ 𝑞𝑛)𝑛∈𝜔 converges to some 𝐷 in 𝒟(𝑄), then there is
some 𝑁 ∈ [𝜔]∞ such that 𝐷 = ↓{𝑞𝑛 ∣ 𝑛 ∈ 𝑁}.

Actually more is true, thanks to the following ingenious observation made
by Richard Rado in the body of a proof in [Rad54].

Lemma 2.12 (Rado’s trick). Let 𝑄 be a wqo and let (𝐷𝑛)𝑛∈𝜔 be a sequence
in 𝒟(𝑄). Then there exists an infinite subset 𝑁 of 𝜔 such that

⋃
𝑖∈𝑁

⋂
𝑗∈𝑁/𝑖

𝐷𝑗 = ⋃
𝑛∈𝑁

𝐷𝑛,

and so the subsequence (𝐷𝑗)𝑗∈𝑁 converges to ⋃𝑛∈𝑁 𝐷𝑛 in 𝒟(𝑄).

Proof. Towards a contradiction suppose that for all infinite 𝑁 ⊆ 𝜔 we have

⋃
𝑖∈𝑁

⋂
𝑗∈𝑁/𝑖

𝐷𝑗 ⊂ ⋃
𝑛∈𝑁

𝐷𝑛. (2.2)

We define an infinite descending chain (𝐸𝑖)𝑖∈𝜔 in 𝒟(𝑄). But to do so we
recursively define a sequence (𝑁𝑘)𝑘∈𝜔 of infinite subsets of 𝜔 and a sequence
(𝑞𝑘)𝑘∈𝜔 in 𝑄 such that

(a) 𝑁0 = 𝜔 and 𝑁𝑘 ⊇ 𝑁𝑘+1 for all 𝑘 ∈ 𝜔.

(b) 𝑞𝑘 ∈ ⋃𝑗∈𝑁𝑘
𝐷𝑗 and 𝑞𝑘 ∉ ⋃𝑗∈𝑁𝑘+1

𝐷𝑗.

Suppose we have defined 𝑁0, … , 𝑁𝑘 and 𝑞0, … 𝑞𝑘. By (2.2) we have

⋃
𝑛∈𝑁𝑘

𝐷𝑛 ⊈ ⋃
𝑖∈𝑁𝑘

⋂
𝑗∈𝑁𝑘/𝑖

𝐷𝑗,

so we can let 𝑛0 ∈ 𝑁𝑘 and 𝑞𝑘 ∈ 𝐷𝑛0
be such that 𝑞𝑘 ∉ ⋃𝑖∈𝑁𝑘

⋂𝑗∈𝑁𝑘/𝑖 𝐷𝑗.
Then for all 𝑖 in 𝑁𝑘 let 𝑗𝑖 ∈ 𝑁𝑘/𝑖 be minimal such that 𝑞𝑘 ∉ 𝐷𝑗𝑖

. Setting
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𝑛1 = 𝑗𝑛0
and 𝑛𝑖+1 = 𝑗𝑛𝑖

, we obtain an infinite set 𝑁𝑘+1 = {𝑛0, 𝑛1, 𝑛2, …}
which satisfies

𝑞𝑘 ∈ 𝐷𝑛0
⊆ ⋃

𝑗∈𝑁𝑘

𝐷𝑗 and 𝑞𝑘 ∉ ⋃
𝑗∈𝑁𝑘+1

𝐷𝑗.

Now we define 𝐸𝑘 = ⋃𝑗∈𝑁𝑘
𝐷𝑗. The sequence (𝐸𝑘)𝑘∈𝜔 is an infinite descend-

ing chain in 𝒟(𝑄), contradicting the fact that 𝑄 is wqo.
For the second statement, observe that if 𝑁 is an infinite subset of 𝜔 satis-

fying the statement of the lemma, then by (2.1) we have

⋃
𝑖∈𝑁

⋂
𝑗∈𝑁/𝑖

𝐷𝑗 = ⋂
𝑖∈𝑁

⋃
𝑗∈𝑁/𝑖

𝐷𝑗 = ⋃
𝑛∈𝑁

𝐷𝑛,

and so by Fact 2.10 we get that (𝐷𝑗)𝑗∈𝑁 converges to ⋃𝑛∈𝑁 𝐷𝑛 in 𝒟(𝑄).
Hence if 𝑄 is wqo, then every sequence in 𝒟(𝑄) admits a subsequence which

converges to its union. Of course the converse also holds.
Lemma 2.13. If (𝐷𝑛)𝑛∈𝜔 is an infinite descending chain in 𝒟(𝑄), then there
is no infinite subset 𝑁 of 𝜔 such that ⋃𝑛∈𝑁 𝐷𝑛 = ⋃𝑖∈𝑁 ⋂𝑗∈𝑁/𝑖 𝐷𝑗.

Proof. Since any subsequence of an infinite descending chain is again an infinite
descending chain, it is enough to show that if (𝐷𝑛)𝑛∈𝜔 is an infinite descending
chain in 𝒟(𝑄) then ⋃𝑛∈𝜔 𝐷𝑛 ⊈ ⋃𝑖∈𝜔 ⋂𝑗∈𝜔/𝑖 𝐷𝑗. Pick any 𝑞 ∈ 𝐷0 ∖ 𝐷1. Then
since 𝐷𝑗 ⊆ 𝐷1 for all 𝑗 ⩾ 1 and 𝐷1 is a down set, we get 𝑞 ∉ 𝐷𝑗 for all 𝑗 ⩾ 1.
It follows that 𝑞 ∉ ⋃𝑖∈𝜔 ⋂𝑗∈𝜔/𝑖 𝐷𝑗.

This leads to our last characterisation of wqo:
Proposition 2.14. Let 𝑄 be a qo. Then 𝑄 is wqo if and only if
(W11) Every sequence (𝐷𝑛)𝑛∈𝜔 in 𝒟(𝑄) admits a subsequence (𝐷𝑛)𝑛∈𝑁

which converges to ⋃𝑛∈𝑁 𝐷𝑛.

2.2 Better-quasi-orders
2.2.1 Towards better
As we have seen in Proposition 2.6 a quasi-order is wqo if and only if 𝒫(𝑄) is
well-founded if and only if 𝒟(𝑄) is well founded. The first example of a wqo
whose powerset contains an infinite antichain was identified by Richard Rado.
This wqo is the starting point of the journey towards the stronger notion of
a better-quasi-order and it will stand as a crucial example in this thesis.
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(0, 3) (1, 3) (2, 3)

𝐷3

⋱

Figure 2.1: Rado’s poset ℜ.

Example 2.15 ([Rad54]). Rado’s partial order ℜ is the set [𝜔]2, of pairs of
natural numbers, partially ordered by (cf. Figure 2.1):

{𝑚, 𝑛} ⩽ {𝑚′, 𝑛′} ⟷ {𝑚 = 𝑚′ and 𝑛 ⩽ 𝑛′, or
𝑛 < 𝑚′.

where by convention a pair {𝑚, 𝑛} of natural numbers is always assumed to
be written in increasing order (𝑚 < 𝑛).

The po ℜ is wqo. To see this, consider any map 𝑓 ∶ 𝜔 → [𝜔]2 and let
𝑓(𝑛) = {𝑓0(𝑛), 𝑓1(𝑛)} for all 𝑛 ∈ 𝜔. Now if 𝑓0 is unbounded, then there exists
𝑛 > 0 with 𝑓1(0) < 𝑓0(𝑛) and so 𝑓(0) ⩽ 𝑓(𝑛) in ℜ by the second clause. If 𝑓0 is
bounded, let us assume by going to a subsequence if necessary, that 𝑓1 ∶ 𝜔 → 𝜔
is perfect. Then there exist 𝑚 and 𝑛 with 𝑚 < 𝑛 and 𝑓0(𝑚) = 𝑓0(𝑛) and we
have 𝑓1(𝑚) ⩽ 𝑓1(𝑛), so 𝑓(𝑚) ⩽ 𝑓(𝑛) in ℜ by the first clause. In both case we
find that 𝑓 is good, so ℜ is wqo.

However the map 𝑛 ↦ 𝐷𝑛 = ↓{{𝑛, 𝑙} ∣ 𝑛 < 𝑙} is a bad sequence (in fact an
infinite antichain) inside 𝒟(ℜ). Indeed whenever 𝑚 < 𝑛 we have {𝑚, 𝑛} ∈ 𝐷𝑚
while {𝑚, 𝑛} ∉ 𝐷𝑛, and so 𝐷𝑚 ⊈ 𝐷𝑛.

One natural question is now: What witnesses in a given quasi-order 𝑄 the
fact that 𝒫(𝑄) is not wqo? It cannot always be a bad sequence, that is what
the existence of Rado’s poset tells us. But then what is it?
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To see this suppose that (𝑃𝑛)𝑛∈𝜔 is a bad sequence in 𝒫(𝑄). Fix some
𝑚 ∈ 𝜔. Then whenever 𝑚 < 𝑛 we have 𝑃𝑚 ⊈ ↓ 𝑃𝑛 and we can choose a
witness 𝑞 ∈ 𝑃𝑚 ∖ ↓ 𝑃𝑛. But of course in general there is no single 𝑞 ∈ 𝑃𝑚
that witnesses 𝑃𝑚 ⊈ ↓ 𝑃𝑛 for all 𝑛 > 𝑚. So we are forced to pick a sequence
𝑓𝑚 ∶ 𝜔/𝑚 → 𝑄, 𝑛 ↦ 𝑞𝑛

𝑚 of witnesses:

𝑞𝑛
𝑚 ∈ 𝑃𝑚 and 𝑞𝑛

𝑚 ∉ ↓ 𝑃𝑛, 𝑛 ∈ 𝜔/𝑚.

Bringing together all the sequences 𝑓0, 𝑓1, …, we obtain a sequence of sequences,
naturally indexed by the set [𝜔]2 of pairs of natural numbers,

𝑓 ∶ [𝜔]2 ⟶ 𝑄
{𝑚, 𝑛} ⟼ 𝑓𝑚(𝑛) = 𝑞𝑛

𝑚.

By our choices this sequence of sequences satisfies the following condition:

∀𝑚, 𝑛, 𝑙 ∈ 𝜔 𝑚 < 𝑛 < 𝑙 → 𝑞𝑛
𝑚 ⩽̸ 𝑞𝑙

𝑛.

Indeed, suppose towards a contradiction that for 𝑚 < 𝑛 < 𝑙 we have 𝑞𝑛
𝑚 ⩽ 𝑞𝑙

𝑛.
Since 𝑞𝑙

𝑛 ∈ 𝑃𝑛 we would have 𝑞𝑛
𝑚 ∈ ↓ 𝑃𝑛, but we chose 𝑞𝑛

𝑚 such that 𝑞𝑛
𝑚 ∉ ↓ 𝑃𝑛.

Let us say that a sequence of sequences 𝑓 ∶ [𝜔]2 → 𝑄 is bad if for every
𝑚, 𝑛, 𝑙 ∈ 𝜔, 𝑚 < 𝑛 < 𝑙 implies 𝑓({𝑚, 𝑛}) ⩽̸ 𝑓({𝑛, 𝑙}). We have come to the
following.

Proposition 2.16. Let 𝑄 be a qo. Then 𝒫(𝑄) is wqo if and only if there is
no bad sequence of sequences into 𝑄.

Proof. As we have seen in the preceding discussion, if 𝒫(𝑄) is not wqo then
from a bad sequence in 𝒫(𝑄) we can make choices in order to define a bad
sequences of sequences in 𝑄.

Conversely, if 𝑓 ∶ [𝜔]2 → 𝑄 is a bad sequence of sequences, then for each
𝑚 ∈ 𝜔 we can consider the set 𝑃𝑚 = {𝑓({𝑚, 𝑛}) ∣ 𝑛 ∈ 𝜔/𝑚} consisting in
the image of the 𝑚th sequence. Then the sequence 𝑚 ↦ 𝑃𝑚 in 𝒫(𝑄) is a bad
sequence. Indeed every time 𝑚 < 𝑛 we have 𝑓({𝑚, 𝑛}) ∈ 𝑃𝑚 while 𝑓({𝑚, 𝑛}) ∉
↓ 𝑃𝑛, since otherwise there would exist 𝑙 > 𝑛 with 𝑓({𝑚, 𝑛}) ⩽ 𝑓({𝑛, 𝑙}), a
contradiction with the fact that 𝑓 is a bad sequence of sequences.

One should notice that from the previous proof we actually get that 𝒫(𝑄)
is wqo if and only if 𝒫<ℵ1

(𝑄) is wqo. Notice also that in the case of Rado’s
partial order ℜ the fact that 𝒫(ℜ) is not wqo is witnessed by the bad sequence
𝑓 ∶ [𝜔]2 → ℜ, {𝑚, 𝑛} ↦ {𝑚, 𝑛} which is simply the identity on the underlying
sets, since every time 𝑚 < 𝑛 < 𝑙 then {𝑚, 𝑛} ⩽̸ {𝑛, 𝑙} in ℜ. In fact, Rado’s
partial order is in a sense universal as established by Richard Laver [Lav76]:
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Theorem 2.17. If 𝑄 is wqo but 𝒫(𝑄) is not wqo, then ℜ embeds into 𝑄.

Proof. Let 𝑓 ∶ [𝜔]2 → 𝑄 be a bad sequence of sequences. Partitioning the
triples {𝑖, 𝑗, 𝑘}, 𝑖 < 𝑗 < 𝑘, into two sets depending on whether or not 𝑓({𝑖, 𝑗}) ⩽
𝑓({𝑖, 𝑘}), we get by Ramsey’s Theorem an infinite set 𝑁 ⊆ 𝜔 whose triples
are all contained into one of the classes. If for every {𝑖, 𝑗, 𝑘} ⊆ 𝑁 we have
𝑓({𝑖, 𝑗}) ⩽̸ 𝑓({𝑖, 𝑘}) then for any 𝑖 ∈ 𝑁 the sequence 𝑓({𝑖, 𝑗})𝑗∈𝑁/𝑖 is a bad
sequence in 𝑄. Since 𝑄 is wqo, the other possibility must hold.

Then partition the quadruples {𝑖, 𝑗, 𝑘, 𝑙} in 𝑁 into two sets according to
whether or not 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}). Again there exists an infinite subset 𝑀 of
𝑁 whose quadruples are all contained into one of the classes. If all quadruples
{𝑖, 𝑗, 𝑘, 𝑙} in 𝑀 satisfy 𝑓({𝑖, 𝑗}) ⩽̸ 𝑓({𝑘, 𝑙}), then for any sequence ({𝑖𝑘, 𝑗𝑘})𝑘∈𝜔
of pairs in 𝑀 with 𝑗𝑘 < 𝑖𝑘+1 the sequence 𝑓({𝑖𝑘, 𝑗𝑘})𝑘∈𝜔 is bad in 𝑄. Since 𝑄
is wqo, it must be the other possibility that holds.

Let 𝑋 = 𝑀 ∖ {min 𝑀}, then {𝑓({𝑖, 𝑗}) ∣ {𝑖, 𝑗} ∈ [𝑋]2} is isomorphic to
ℜ. By the properties of 𝑀 , we have {𝑖, 𝑗} ⩽ {𝑘, 𝑙} in ℜ implies 𝑓({𝑖, 𝑗}) ⩽
𝑓({𝑘, 𝑙}). We show that 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}) implies {𝑖, 𝑗} ⩽ {𝑘, 𝑙} in ℜ.
Suppose {𝑖, 𝑗} ⩽̸ {𝑘, 𝑙} in ℜ, namely 𝑘 ⩽ 𝑗 and either 𝑖 ≠ 𝑘, or 𝑙 < 𝑗. If 𝑙 < 𝑗
and 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}) then for any 𝑛 ∈ 𝑋/𝑗 we have 𝑓({𝑘, 𝑙}) ⩽ 𝑓({𝑗, 𝑛})
and thus 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑗, 𝑛}) a contradiction since 𝑓 is bad. Suppose now
that 𝑘 ⩽ 𝑗 and 𝑖 ≠ 𝑘. If 𝑖 < 𝑘 and 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}), then 𝑓({𝑖, 𝑘}) ⩽
𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}), a contradiction. Finally if 𝑘 < 𝑖 and 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙})
then for 𝑚 = min 𝑀 we have 𝑓({𝑚, 𝑘}) ⩽ 𝑓({𝑖, 𝑗}) ⩽ 𝑓({𝑘, 𝑙}), again a
contradiction.

From a heuristic viewpoint, a better-quasi-order is a well quasi-order 𝑄 such
that 𝒫(𝑄) is wqo, 𝒫(𝒫(𝑄)) is wqo, 𝒫(𝒫(𝒫(𝑄))) is wqo, so on and so forth,
into the transfinite. This idea will be made precise in Subsection 2.2.4, but we
can already see that it cannot serve as a convenient definition3. As the above
discussion suggests, a better-quasi-order is going to be a qo 𝑄, with no bad
sequence, with no bad sequence of sequences, no bad sequence of sequences
of sequences, so on and so forth, into the transfinite. To do so we need a
convenient notion of ‘index set’ for a sequence of sequences of … of sequences,
in short a super-sequence. We now turn to the study of this fundamental notion
defined by Nash-Williams.

3The reader who remains unconvinced can try to prove that the partial order (2, =) satisfies
this property.
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2.2.2 Super-sequences
Let us first introduce some useful notations. Given an infinite subset 𝑋 of
𝜔 and a natural number 𝑘, we denote by [𝑋]𝑘 the set of subsets of 𝑋 of
cardinality 𝑘, and by [𝑋]<∞ the set ⋃𝑘∈𝜔[𝑋]𝑘 of finite subsets of 𝑋. When we
write an element 𝑠 ∈ [𝑋]𝑘 as {𝑛0, … , 𝑛𝑘−1} we always assume it is written in
increasing order 𝑛0 < 𝑛1 < … < 𝑛𝑘−1 for the usual order on 𝜔. The cardinality
of 𝑠 ∈ [𝜔]<∞ is denoted by |𝑠|. We write [𝑋]∞ for the set of infinite subsets of
𝑋.

For any 𝑋 ∈ [𝜔]∞ and any 𝑠 ∈ [𝜔]<∞, we let 𝑋/𝑠 = {𝑘 ∈ 𝑋 ∣ max 𝑠 < 𝑘}
and we write 𝑋/𝑛 for 𝑋/{𝑛}, as we have already done.

Index sets for super-sequences

Intuitively super-sequences are sequences of sequences … of sequences. In order
to deal properly with this idea we need a convenient notion of index sets.
Those will be families of finite sets of natural numbers called fronts. They
were defined by Nash-Williams [Nas65]. As the presence of an ellipsis in the
expression ‘sequences of sequences of … of sequences’ suggests, the notion of
front admits an inductive definition. To formulate such a definition it is useful
to identify the degenerate case of a super-sequence, the level zero of the notion
of sequence of … of sequences, namely a function 𝑓 ∶ 1 → 𝐸 which singles out
a point of a set 𝐸. The index set for these degenerate sequences is the family
{∅} called the trivial front. New fronts are then built up from old ones using
the following operation.

Definition 2.18. If 𝑋 ∈ [𝜔]∞ and 𝐹(𝑛) ⊆ [𝑋/𝑛]<∞ for every 𝑛 ∈ 𝑋, we let

seq
𝑛∈𝑋

𝐹(𝑛) = {{𝑛} ∪ 𝑠 ∣ 𝑛 ∈ 𝑋 and 𝑠 ∈ 𝐹(𝑛)}.

Definition 2.19 (Front, inductive definition). A family 𝐹 for 𝑋 ∈ [𝜔]∞ is a
front on 𝑋 if it belongs to the smallest set of families of finite sets of natural
numbers such that

(1) for all 𝑋 ∈ [𝜔]∞, the family {∅} is a front on 𝑋,

(2) if 𝑋 ∈ [𝜔]∞ and if 𝐹(𝑛) is a front on 𝑋/𝑛 for all 𝑛 ∈ 𝑋, then

𝐹 = seq
𝑛∈𝑋

𝐹(𝑛)

is a front on 𝑋.
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Remark 2.20. In the literature, fronts are sometimes called blocks or thin blocks.
Since in Section 3.2 and Chapter 3 we have another use for the term block, we
follow the terminology of Todorčević [Tod10].
Examples 2.21. We have already seen example of fronts. Indeed for every 𝑋 ∈
[𝜔]∞ and every 𝑛 ∈ 𝜔 the family [𝑋]𝑛 is a front on 𝑋, where [𝑋]0 = {∅} is
the trivial front. For a new example, consider for every 𝑛 ∈ 𝜔 the front [𝜔/𝑛]𝑛
and build

𝒮 = seq
𝑛∈𝜔

[𝜔/𝑛]𝑛 = {𝑠 ∈ [𝜔]<∞ ∣ 1 + min 𝑠 = |𝑠|}.

The front 𝒮 is traditionally called the Schreier barrier.

trivial front

⋯

front [𝜔]1

⋯

front [𝜔]2

⋯

Schreier barrier 𝒮

⋯

Figure 2.2: Pictures of fronts

We defined fronts to make the following:

Definition 2.22. A super-sequence in a set 𝐸 is a map 𝑓 ∶ 𝐹 → 𝐸 from a
front into 𝐸.

Notice that if 𝐹 is a non trivial front on 𝑋, we can recover the unique
sequence 𝐹(𝑛), 𝑛 ∈ 𝑋, of fronts from which it is constructed.
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Definition 2.23. For any family 𝐹 ⊆ [𝜔]<∞ and 𝑛 ∈ 𝜔 we define the ray of
𝐹 at 𝑛 to be the family

𝐹𝑛 = {𝑠 ∈ [𝜔/𝑛]<∞ ∣ {𝑛} ∪ 𝑠 ∈ 𝐹}.

Then every non trivial front 𝐹 on 𝑋 is built up from its rays 𝐹𝑛, 𝑛 ∈ 𝑋, in
the sense that:

𝐹 = seq
𝑛∈𝑋

𝐹𝑛.

Notice that, according to our definition, the trivial front {∅} is a front on 𝑋
for every 𝑋 ∈ [𝜔]∞. Except for this degenerate example, if a family 𝐹 ⊆ [𝑋]<∞

is a front on 𝑋, then necessarily 𝑋 is equal to ⋃ 𝐹 , the set-theoretic union of
the family 𝐹 . For this reason we will sometimes say that 𝐹 is a front, without
reference to any infinite subset 𝑋 of 𝜔. Moreover when 𝐹 is not trivial, we
refer to the unique 𝑋 for which 𝐹 is a front on 𝑋, namely ⋃ 𝐹 , as the base of
𝐹 .

Importantly, the notion of a front also admits an explicit definition to which
we now turn. It makes essential use of the following binary relation.

Definition 2.24. For subsets 𝑢, 𝑣 of 𝜔, we write 𝑢 ⊑ 𝑣 when 𝑢 is an initial
segment of 𝑣, i.e. when 𝑢 = 𝑣 or when there exists 𝑛 ∈ 𝑣 such that 𝑢 = {𝑘 ∈
𝑣 ∣ 𝑘 < 𝑛}. As usual, we write 𝑢 ⊏ 𝑣 for 𝑢 ⊑ 𝑣 and 𝑢 ≠ 𝑣.

Definition 2.25 (Front, explicit definition). A family 𝐹 ⊆ [𝜔]<∞ is a front
on 𝑋 ∈ [𝜔]∞ if

(1) either 𝐹 = {∅}, or ⋃ 𝐹 = 𝑋,

(2) for all 𝑠, 𝑡 ∈ 𝐹 𝑠 ⊑ 𝑡 implies 𝑠 = 𝑡,

(3) (Density) for all 𝑋′ ∈ [𝑋]∞ there is an 𝑠 ∈ 𝐹 such that 𝑠 ⊏ 𝑋′.

Merely for the purpose of showing that our two definitions coincide, and only
until this is achieved, let us refer to a front according to the explicit definition
as a fronte. Notice that the family {∅} is a fronte, the trivial fronte. Notice also
that if 𝐹 is a non trivial fronte then necessarily ∅ ∉ 𝐹 .

Our first step towards proving the equivalence of our two definitions of fronts
is the following easy observation.

Lemma 2.26. Let 𝐹 be a non trivial fronte on 𝑋 ∈ [𝜔]∞. Then for every
𝑛 ∈ 𝑋, the ray 𝐹𝑛 is a fronte on 𝑋/𝑛. Moreover 𝐹 = seq𝑛∈𝑋 𝐹𝑛.
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Proof. Let 𝑛 ∈ 𝑋. For every 𝑌 ∈ [𝑋/𝑛]∞ there exists 𝑠 ∈ 𝐹 with 𝑠 ⊏ {𝑛}∪𝑌 .
Since 𝐹 is non trivial, 𝑠 ≠ ∅ and so 𝑛 ∈ 𝑠. Therefore 𝑠′ = 𝑠 ∖ {𝑛} ∈ 𝐹𝑛 with
𝑠′ ⊏ 𝑌 , and 𝐹𝑛 satisfies (3). Now if 𝐹𝑛 is not trivial and 𝑘 ∈ 𝑋/𝑛, there is
𝑠 ∈ 𝐹𝑛 with 𝑠 ⊏ {𝑘}∪𝑋/𝑘 and necessarily 𝑘 ∈ 𝑠 ⊆ ⋃ 𝐹𝑛. Hence ⋃ 𝐹𝑛 = 𝑋/𝑛,
so condition (1) is met. To see (2), let 𝑠, 𝑡 ∈ 𝐹𝑛 with 𝑠 ⊑ 𝑡. Then for 𝑠′ = {𝑛}∪𝑠
and 𝑡′ = {𝑛}∪𝑡 we have 𝑠′, 𝑡′ ∈ 𝐹 and 𝑠′ ⊑ 𝑡′, so 𝑠′ = 𝑡′ and 𝑠 = 𝑡, as desired.
The last statement is obvious.

Our next step consists in assigning a rank to every fronte. To do so, we first
recall some classical notions about sequences and trees.

Notations 2.27. For a non empty set 𝐴, we write 𝐴𝑛 for the set of sequences
𝑠 ∶ 𝑛 → 𝐴. Let 𝐴<𝜔 be the set ⋃𝑛∈𝜔 𝐴𝑛 of finite sequences in 𝐴. We write 𝐴𝜔

for the set of infinite sequences 𝑥 ∶ 𝜔 → 𝐴 in 𝐴. Let 𝑢 ∈ 𝐴<𝜔, 𝑥 ∈ 𝐴<𝜔 ∪ 𝐴𝜔.

(1) |𝑥| ∈ 𝜔 + 1 denotes the length of 𝑥.

(2) For 𝑛 ⩽ |𝑥|, 𝑥↾𝑛 is the initial segment, or prefix, of 𝑥 of length 𝑛.

(3) We write 𝑢 ⊑ 𝑥 if there exists 𝑛 ⩽ |𝑥| with 𝑢 = 𝑥↾𝑛. We write 𝑢 ⊏ 𝑥 if
𝑢 ⊑ 𝑥 and 𝑢 ≠ 𝑥.

(4) We write 𝑢 ⌢ 𝑥 for the concatenation operation.

Identifying any finite subset of 𝜔 with its increasing enumeration with respect
to the usual order on 𝜔, we view any fronte as a subset of 𝜔<𝜔. Notice that
under this identification, our previous definition of ⊑ for subsets of 𝜔 coincides
with the one for sequences.

Definitions 2.28. (1) A tree 𝑇 on a set 𝐴 is a subset of 𝐴<𝜔 that is closed
under prefixes, i.e. 𝑢 ⊑ 𝑣 and 𝑣 ∈ 𝑇 implies 𝑢 ∈ 𝑇 .

(2) A tree 𝑇 on 𝐴 is called well-founded if 𝑇 has no infinite branch, i.e.
if there is no infinite sequence 𝑥 ∈ 𝐴𝜔 such that 𝑥↾𝑛 ∈ 𝑇 holds for all
𝑛 ∈ 𝜔. In other words, a tree 𝑇 is well-founded if (𝑇 , ⊒) is a well-founded
partial order.

(3) When 𝑇 is a non-empty well-founded tree we can define a strictly de-
creasing function 𝜌𝑇 from 𝑇 to the ordinals by transfinite recursion on
the well-founded relation ⊐:

𝜌𝑇 (𝑡) = sup{𝜌𝑇 (𝑠) + 1 ∣ 𝑡 ⊏ 𝑠 ∈ 𝑇 } for all 𝑡 ∈ 𝑇 .
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It is easily shown to be equivalent to

𝜌𝑇 (𝑡) = sup{𝜌𝑇 (𝑡 ⌢ (𝑎)) + 1 ∣ 𝑎 ∈ 𝐴 and 𝑡 ⌢ (𝑎) ∈ 𝑇 } for all 𝑡 ∈ 𝑇 .

The rank of the non-empty well-founded tree 𝑇 is the ordinal 𝜌𝑇 (∅).
For any fronte 𝐹 , we let 𝑇 (𝐹) be the smallest tree on 𝜔 containing 𝐹 , i.e.

𝑇 (𝐹) = {𝑠 ∈ 𝜔<𝜔 ∣ ∃𝑡 ∈ 𝐹 𝑠 ⊑ 𝑡}.

The following is a direct consequence of the explicit definition of a front.

Lemma 2.29. For every fronte 𝐹 , the tree 𝑇 (𝐹) is well-founded.

Proof. If 𝑥 is an infinite branch of 𝑇 (𝐹), then 𝑥 enumerates an infinite subset
𝑋 of ⋃ 𝐹 such that for every 𝑢 ⊏ 𝑋 there exists 𝑡 ∈ 𝐹 with 𝑢 ⊑ 𝑡. Since 𝐹
is a fronte there exists a (unique) 𝑠 ∈ 𝐹 with 𝑠 ⊏ 𝑋. But for 𝑛 = min 𝑋/𝑠,
𝑢 = 𝑠 ∪ {𝑛} and there is 𝑡 ∈ 𝐹 with 𝑢 ⊑ 𝑡. But then 𝐹 ∋ 𝑠 ⊏ 𝑢 ⊑ 𝑡 ∈ 𝐹
contradicting the explicit definition of a front.

Definition 2.30. Let 𝐹 be a fronte. The rank of 𝐹 , denoted by rk 𝐹 , is the
rank of the tree 𝑇 (𝐹).
Example 2.31. Notice that the family {∅} is the only fronte of null rank, and for
all positive integer 𝑛, the front [𝜔]𝑛 has rank 𝑛. Moreover the Schreier barrier
𝒮 has rank 𝜔.

We now observe that the rank of 𝐹 is closely related to the rank of its rays
𝐹𝑛, 𝑛 ∈ 𝑋. Let 𝐹 be a non trivial fronte on 𝑋 ∈ [𝜔]∞ and recall that by
Lemma 2.26, the ray 𝐹𝑛 is a fronte on 𝑋/𝑛 for every 𝑛 ∈ 𝑋. Now notice that
the tree 𝑇 (𝐹𝑛) of the fronte 𝐹𝑛 is naturally isomorphic to the subset

{𝑠 ∈ 𝑇 (𝐹) ∣ {𝑛} ⊑ 𝑠}

of 𝑇 (𝐹). The rank of the fronte 𝐹 is therefore related to the ranks of its rays
through the following formula:

rk 𝐹 = sup{rk(𝐹𝑛) + 1 ∣ 𝑛 ∈ 𝑋}.

In particular, rk 𝐹𝑛 < rk 𝐹 for all 𝑛 ∈ 𝑋.
This simple remark allows one to prove results on frontes by induction on

the rank by applying the induction hypothesis to the rays, as it was first done
by Pudlák and Rödl [PR82]. It also allows us to prove that the two definitions
of a front that we gave actually coincide.
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Lemma 2.32. The explicit definition and the inductive definition of a front
coincide.

Proof. Inductive → Explicit: The family {∅} is the trivial fronte. Now let 𝑋 ∈
[𝜔]∞ and suppose that 𝐹𝑛 is a fronte on 𝑋/𝑛 for all 𝑛 ∈ 𝑋. We need to see
that 𝐹 = seq𝑛∈𝑋 𝐹𝑛 is a fronte on 𝑋. Clearly ⋃ 𝐹 = 𝑋. If 𝑠, 𝑡 ∈ 𝐹 and
𝑠 ⊑ 𝑡, then min 𝑠 = min 𝑡 and so for 𝑠′ = 𝑠∖{min 𝑠} and 𝑡′ = 𝑡∖{min 𝑡}
we have 𝑠′, 𝑡′ ∈ 𝐹𝑛 and 𝑠′ ⊑ 𝑡′, hence 𝑠′ = 𝑡′ and 𝑠 = 𝑡. Finally, if
𝑌 ∈ [𝑋]∞ with 𝑛 = min 𝑌 , then there exists 𝑠′ ∈ 𝐹𝑛 with 𝑠′ ⊏ 𝑌 ∖ {𝑛}
and so 𝑠 = {𝑛} ∪ 𝑠′ ∈ 𝐹 and 𝑠 ⊏ 𝑌 . So 𝐹 is a fronte, as desired.

Explicit → Inductive: We show that every fronte 𝐹 satisfies the inductive
definition of a front by induction on the rank of 𝐹 . If rk 𝐹 = 0, then
𝐹 = {∅} is a front according to the inductive definition. Now suppose 𝐹
is a front according to the explicit definition with rk 𝐹 > 0. In particular
⋃ 𝐹 = 𝑋 for some 𝑋 ∈ [𝜔]∞ . By Lemma 2.26, 𝐹𝑛 is a fronte for every
𝑛 ∈ 𝑋, and as rk 𝐹𝑛 < rk 𝐹 for every 𝑛 ∈ 𝑋, it follows that 𝐹𝑛 is a front
according to the inductive definition, by induction hypothesis. Finally
as 𝐹 = seq𝑛∈𝑋 𝐹𝑛, we get that 𝐹 is a front according to the inductive
definition.

Finally notice that the rank of a front naturally arise from the inductive
definition. Let 𝔉0 be the set containing only the trivial front. Then for any
countable ordinal 𝛼, let 𝐹 ∈ 𝔉𝛼 if 𝐹 ∈ ⋃𝛽<𝛼 𝔉𝛽 or 𝐹 = seq𝑛∈𝑋 𝐹𝑛 where
𝑋 ∈ [𝜔]∞ and each 𝐹𝑛 is a front on 𝑋/𝑛 which belongs to some 𝔉𝛽𝑛

for some
𝛽𝑛 < 𝛼. Then clearly the set of all fronts is equal ⋃𝛼<𝜔1

𝔉𝛼. Now it should be
clear that for every front 𝐹 the smallest 𝛼 < 𝜔1 for which 𝐹 ∈ 𝔉𝛼 is rk 𝐹 , the
rank of 𝐹 .

Sub-front and sub-super-sequences

When dealing with arbitrary super-sequences we will be particularly interested
in extracting sub-super-sequences which enjoy further properties.

Definition 2.33. A sub-super-sequence of a super-sequence 𝑓 ∶ 𝐹 → 𝐸 is a
restriction 𝑓↾𝐺 ∶ 𝐺 → 𝐸 to some front 𝐺 included in 𝐹 .

The following important operation allows us to understand the sub-fronts
of a given front, i.e. sub-families of a front which are themselves fronts. For a
family 𝐹 ⊆ 𝒫(𝜔) and some 𝑋 ∈ [𝜔]∞, we define the sub-family

𝐹|𝑋 ∶= {𝑠 ∈ 𝐹 ∣ 𝑠 ⊆ 𝑋}.
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Proposition 2.34. Let 𝐹 be a front on 𝑋. Then a family 𝐹 ′ ⊆ 𝐹 is a front
if and only if there exists 𝑌 ∈ [𝑋]∞ such that 𝐹|𝑌 = 𝐹 ′.

Proof. The claim is obvious if 𝐹 is trivial so suppose 𝐹 is non-trivial.

→ Let 𝐹 ′ ⊆ 𝐹 be a front on 𝑌 . Since 𝐹 ′ is not trivial either, 𝑌 = ⋃ 𝐹 ′ ⊆
⋃ 𝐹 = 𝑋. Now if 𝑠 ∈ 𝐹 ′ then clearly 𝑠 ∈ 𝐹 |𝑌 . Conversely if 𝑠 ∈ 𝐹 |𝑌
then there exists a unique 𝑡 ∈ 𝐹 ′ with 𝑡 ⊏ 𝑠 ∪ 𝑌 /𝑠 and so either 𝑠 ⊑ 𝑡
or 𝑡 ⊑ 𝑠. Since 𝐹 is a front and 𝑠, 𝑡 ∈ 𝐹 , necessarily 𝑠 = 𝑡 and so 𝑠 ∈ 𝐹 ′.
Therefore 𝐹 ′ = 𝐹|𝑌 .

← If 𝑌 ∈ [𝑋]∞ then the family 𝐹|𝑌 is a front on 𝑌 . Clearly 𝐹|𝑌 satisfies
(2). If 𝑍 ∈ [𝑌 ]∞ then since 𝑌 ⊆ 𝑋, then 𝑍 ∈ [𝑋]∞ and so there exists
𝑠 ∈ 𝐹 with 𝑠 ⊏ 𝑍. But then 𝑠 ⊆ 𝑍 ⊆ 𝑌 , so in fact 𝑠 ∈ 𝐹 |𝑌 and
therefore 𝐹|𝑌 satisfies (3). For (1), notice that ⋃ 𝐹|𝑌 ⊆ 𝑌 by definition
and that if 𝑛 ∈ 𝑌 , then as we have already seen there exists 𝑠 ∈ 𝐹 |𝑌
with 𝑠 ⊏ {𝑛} ∪ 𝑌 /𝑛, so 𝑛 ∈ 𝑠 and 𝑛 ∈ ⋃ 𝐹|𝑌 .

Observe that the operation of restriction commutes with the taking of rays.

Fact 2.35. Let 𝐹 ⊆ 𝒫(𝜔) and 𝑋 ∈ [𝜔]∞. For every 𝑛 ∈ 𝑋 we have

𝐹𝑛|𝑋 = (𝐹 |𝑋)𝑛.

Notice also the following simple important fact. If 𝐹 ′ is a sub-front of a front
𝐹 , then the tree 𝑇 (𝐹 ′) is included in the tree 𝑇 (𝐹) and so rk 𝐹 ′ ⩽ rk 𝐹 .

Throughout this thesis we extensively make use of the following fundamental
theorem by Nash-Williams: Any time we partition a front into finitely many
pieces, at least one of the pieces must contain a front.

Theorem 2.36 (Nash-Williams). Let 𝐹 be a front. For any subset 𝑆 of 𝐹
there exists a front 𝐹 ′ ⊆ 𝐹 such that either 𝐹 ′ ⊆ 𝑆 or 𝐹 ′ ∩ 𝑆 = ∅.

We now prove this theorem to give a simple example of a proof by induction
on the rank of a front, a technique we make use of on several occasions in
Chapter 3.

Proof. The claim is obvious for the trivial front whose only subsets are the
empty set and the whole trivial front. So suppose that the claim holds for
every front of rank smaller than 𝛼. Let 𝐹 be a front on 𝑋 with rk 𝐹 = 𝛼
and 𝑆 ⊆ 𝐹 . For every 𝑛 ∈ 𝑋 let 𝑆𝑛 be the subset of the ray 𝐹𝑛 given by
𝑆𝑛 = {𝑠 ∈ 𝐹𝑛 ∣ {𝑛} ∪ 𝑠 ∈ 𝑆}.
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Set 𝑋−1 = 𝑋 and 𝑛0 = min 𝑋−1. Since rk 𝐹𝑛0
< 𝛼 there exists by induction

hypothesis some 𝑋0 ∈ [𝑋−1/𝑛0]∞ such that

either 𝐹𝑛0
|𝑋0 ⊆ 𝑆𝑛0

, or 𝐹𝑛0
|𝑋0 ∩ 𝑆𝑛0

= ∅.
Set 𝑛1 = min 𝑋0. Now applying the induction hypothesis to 𝐹𝑛1

|(𝑋0/𝑛0) and
𝑆𝑛1

we get an 𝑋1 ∈ [𝑋0/𝑛0]∞ such that either 𝐹𝑛1
|𝑋1 ⊆ 𝑆𝑛1

, or 𝐹𝑛1
|𝑋1 ∩

𝑆𝑛1
= ∅. Continuing in this fashion, we obtain a sequence 𝑋𝑘 together with

𝑛𝑘 = min 𝑋𝑘−1 such that for all 𝑘 we have 𝑋𝑘 ∈ [𝑋𝑘−1/𝑛𝑘]∞ and

either 𝐹𝑛𝑘
|𝑋𝑘 ⊆ 𝑆𝑛𝑘

, or 𝐹𝑛𝑘
|𝑋𝑘 ∩ 𝑆𝑛𝑘

= ∅.
Now there exists 𝑌 ∈ [𝜔]∞ such that either 𝐹𝑛𝑘

|𝑋𝑘 ⊆ 𝑆𝑛𝑘
for all 𝑘 ∈ 𝑌 ,

or 𝐹𝑛𝑘
|𝑋𝑘 ∩ 𝑆𝑛𝑘

= ∅ for all 𝑘 ∈ 𝑌 . Let 𝑋 = {𝑛𝑘 ∣ 𝑘 ∈ 𝑌 } then 𝐹|𝑋 is
as desired. Indeed for all 𝑠 ∈ 𝐹 |𝑋 we have min 𝑠 = 𝑛𝑘 for some 𝑘 ∈ 𝑌 and
𝑠∖{𝑛𝑘} ∈ 𝐹𝑛𝑘

|𝑋𝑘. Hence by the choice of 𝑌 , either 𝑠∖{min 𝑠} ∈ 𝑆min 𝑠 for all
𝑠 ∈ 𝐹 |𝑋, or 𝑠 ∖ {min 𝑠} ∉ 𝑆min 𝑠 for all 𝑠 ∈ 𝐹 |𝑋. Therefore either 𝐹|𝑋 ⊆ 𝑆
or 𝐹|𝑋 ∩ 𝑆 = ∅.

2.2.3 Multi-sequences
Another approach to super-sequences initiated by Simpson [Sim85] has proved
very useful in the theory of better-quasi-orders. We now describe this approach
and relate it to super-sequences.

Let 𝐸 be any set, and 𝑓 ∶ 𝐹 → 𝐸 be a super-sequence with 𝐹 a front on
𝑋. By the explicit definition of front for every 𝑌 ∈ [𝑋]∞ there exists a unique
𝑠 ∈ 𝐹 with 𝑠 ⊏ 𝑌 . We can therefore define a map 𝑓↑ ∶ [𝑋]∞ → 𝐸 defined by
𝑓↑(𝑌 ) = 𝑓(𝑠) where 𝑠 is the unique member of 𝐹 with 𝑠 ⊏ 𝑌 .

Definition 2.37. A multi-sequence into some set 𝐸 is a map ℎ ∶ [𝑋]∞ → 𝐸
for some 𝑋 ∈ [𝜔]∞. A sub-multi-sequence of ℎ ∶ [𝑋]∞ → 𝐸 is a restriction of
ℎ to [𝑌 ]∞ for some 𝑌 ∈ [𝑋]∞.

For every 𝑋 ∈ [𝜔]∞ we endow [𝑋]∞ with the topology induced by the
Cantor space, viewing subsets as their characteristic functions. As a topological
space [𝑋]∞ is homeomorphic to the Baire space 𝜔𝜔. This homeomorphism is
conveniently realised via the embedding of [𝑋]∞ into 𝜔𝜔 which maps each 𝑌 ∈
[𝑋]∞ to its injective and increasing enumeration 𝑒𝑌 ∶ 𝜔 → 𝑌 . We henceforth
identify the space [𝑋]∞ with the closed subset of 𝜔𝜔 of injective and increasing
sequences in 𝑋. From this point of view we have a countable basis of clopen
sets for [𝑋]∞ consisting in sets of the form

𝑀𝑠 = 𝑁𝑠 ∩ [𝑋]∞ = {𝑌 ∈ [𝑋]∞ ∣ 𝑠 ⊏ 𝑌 }, for 𝑠 ∈ [𝑋]<∞.
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Definition 2.38. A multi-sequence ℎ ∶ [𝑋]∞ → 𝐸 is locally constant if for
all 𝑌 ∈ [𝑋]∞ there exists 𝑠 ∈ [𝑋]<∞ such that 𝑌 ∈ 𝑀𝑠 and ℎ is constant on
𝑀𝑠, i.e. for every 𝑌 ∈ [𝑋]∞ there exists 𝑠 ⊏ 𝑌 such that for every 𝑍 ∈ [𝑋]∞,
𝑠 ⊏ 𝑍 implies ℎ(𝑍) = ℎ(𝑌 ).

Clearly for every super-sequence 𝑓 ∶ 𝐹 → 𝐸 where 𝐹 is a front on 𝑋 the
map 𝑓↑ ∶ [𝑋]∞ → 𝐸 is locally constant.

Conversely for any locally constant multi-sequence ℎ ∶ [𝑋]∞ → 𝐸, let

𝑆ℎ = {𝑠 ∈ [𝑋]<∞ ∣ ℎ is constant on 𝑀𝑠}.
Lemma 2.39. The set 𝐹 ℎ of ⊑-minimal elements of 𝑆ℎ is a front on 𝑋.

Proof. By ⊑-minimality if 𝑠, 𝑡 ∈ 𝐹 ℎ and 𝑠 ⊑ 𝑡, then 𝑠 = 𝑡. For every 𝑌 ∈ [𝑋]∞,
since ℎ is locally constant there exists 𝑠 ⊏ 𝑌 such that ℎ is constant on 𝑀𝑠.
Hence there exists 𝑡 ∈ 𝐹 ℎ with 𝑡 ⊑ 𝑠, and so 𝑡 ⊏ 𝑌 too. To see that either
𝐹 ℎ is trivial or ⋃ 𝐹 ℎ = 𝑋, notice that ℎ is constant if and only if 𝐹 ℎ is the
trivial front if and only if ∅ ∈ 𝐹ℎ. So if 𝐹 ℎ is not trivial, then for every 𝑛 ∈ 𝑋
there exists 𝑠 ∈ 𝐹 ℎ with 𝑠 ⊏ {𝑛} ∪ 𝑋/𝑛 and since 𝑠 ≠ ∅, we get 𝑛 ∈ 𝑠 and
𝑛 ∈ ⋃ 𝐹 ℎ.

We can therefore associate to every locally constant multi-sequence ℎ ∶
[𝑋]∞ → 𝐸 a super-sequence ℎ↓ ∶ 𝐹 ℎ → 𝐸 by letting, in the obvious way,
ℎ↓(𝑠) be equal to the unique value taken by ℎ on 𝑀𝑠 for every 𝑠 ∈ 𝐹 ℎ.
Remark 2.40. Clearly every front arises as an 𝐹 ℎ for some locally constant
multi-sequence ℎ. Indeed for any front 𝐹 and any injective super-sequence 𝑓
from 𝐹 , we have 𝐹 = 𝐹 𝑓↑ . Therefore we can think of the definition of a front
as a characterisation of those families of finite subsets of 𝜔 arising as an 𝐹 ℎ

for some locally constant multi-sequence ℎ.
The basic properties of the correspondence ℎ ↦ ℎ↓ and 𝑓 ↦ 𝑓↑ are easily

stated with the help of the following partial order among super-sequences into
a given set.

Definition 2.41. Let both 𝐹 and 𝐺 be fronts on the same set 𝑋 ∈ [𝜔]∞ and
𝑓 ∶ 𝐹 → 𝐸 and 𝑔 ∶ 𝐺 → 𝐸 be any maps. We write 𝑓 ⊑ 𝑔 if 𝐹 ⊆ 𝐺 and for
every 𝑠 ∈ 𝐹 and every 𝑡 ∈ 𝐺, 𝑠 ⊑ 𝑡 implies 𝑓(𝑠) = 𝑔(𝑡).

To simplify notation we write ̌𝑓 ∶ ̌𝐹 → 𝐸 instead of (𝑓↑)↓ ∶ 𝐹 𝑓↑ → 𝐸.

Fact 2.42. Let 𝑋 ∈ [𝜔]∞ and 𝐸 be a set.

(i) for every front 𝐹 on 𝑋 and every map 𝑓 ∶ 𝐹 → 𝐸, the map ̌𝑓 ∶ ̌𝐹 → 𝐸
is such that ̌𝑓 ⊑ 𝑓 .
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(ii) for every fronts 𝐹 and 𝐺 on 𝑋 and maps 𝑓 ∶ 𝐹 → 𝐸 and 𝑔 ∶ 𝐺 → 𝐸,
𝑓 ⊑ 𝑔 implies 𝑓↑ = 𝑔↑.

(iii) for every locally constant map ℎ ∶ [𝑋]∞ → 𝐸, we have (ℎ↓)↑ = ℎ.

It follows that for every locally constant multi-sequence ℎ ∶ [𝑋]∞ → 𝐸 the
super-sequence ℎ↓ ∶ 𝐹 ℎ → 𝐸 is the minimal element for ⊑ among the set of
super-sequences 𝑔 ∶ 𝐺 → 𝐸 with 𝑔↑ = ℎ. Moreover for every super-sequence
𝑓 ∶ 𝐹 → 𝐸 the super-sequence ̌𝑓 ∶ ̌𝐹 → 𝐸 is the ⊑-minimal among the
super-sequences 𝑔 with 𝑔 ⊑ 𝑓 . In particular ̌̌𝑓 = ̌𝑓 for every super-sequence 𝑓 .

The super-sequences which are ⊑-minimal will play a rôle later and deserve
a name.

Definition 2.43. Let 𝐸 be a set and 𝐹 a front on 𝑋. A super-sequence
𝑓 ∶ 𝐹 → 𝐸 is said to be spare if 𝑓 is minimal for ⊑, or equivalently ̌𝑓 = 𝑓 , i.e.
if ̌𝐹 = 𝐹 .

Example 2.44. If 𝑐 ∶ 𝐹 → 𝐸 is constant equal to 𝑒 ∈ 𝐸 then 𝑐 is not spare and
of course ̌𝑐 ∶ {∅} → 𝐸, ∅ ↦ 𝑒.

The following is a simple characterisation of spare super-sequences.

Lemma 2.45. Let 𝑓 ∶ 𝐹 → 𝐸 be a map from a front to some set 𝐸. Then the
following are equivalent

(i) 𝑓 is spare,

(ii) for every 𝑠 ∈ 𝐹 , if for every 𝑡, 𝑡′ ∈ 𝐹 𝑠 ⊑ 𝑡 and 𝑠 ⊑ 𝑡′ imply 𝑓(𝑡) = 𝑓(𝑡′),
then 𝑠 ∈ 𝐹 .

Proof. Suppose that 𝑠 ∈ 𝐹 ∖ 𝐹 is such that for every 𝑡, 𝑡′ ∈ 𝐹 , 𝑠 ⊑ 𝑡 and
𝑠 ⊑ 𝑡′ imply 𝑓(𝑡) = 𝑓(𝑡′). Then ̂𝑓 is constant on 𝑀𝑠 but 𝑠 ⊏ 𝑡 ∈ 𝐹 so 𝑡 ∉ 𝐹 ̂𝑓 .
Therefore 𝑓 is not spare.

Conversely if 𝑓 is not spare, then there exists 𝑡 ∈ 𝐹 ∖ ̌𝐹 . This means that
there is 𝑠 ∈ ̌𝐹 with 𝑠 ⊏ 𝑡 and 𝑓↑ is constant on 𝑀𝑠, so for every 𝑡′ ∈ 𝐹 with
𝑠 ⊑ 𝑡′ we have 𝑓(𝑡) = 𝑓(𝑡′).

2.2.4 Iterated powerset, determinacy of finite games
It also transpires that if, by a certain fairly natural extension of our
definition of [𝒫𝑛(𝑄)], we define [𝒫𝛼(𝑄)] for every ordinal 𝛼, then
𝑄 is bqo iff [𝒫𝛼(𝑄)] is wqo for every ordinal 𝛼. To justify these
statements would not be relevant here, but it was from this point of
view that the author was first led to study bqo sets.
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Crispin St. John Alvah Nash-Williams [Nas65, p. 700]

Following in Nash-Williams’ steps, we introduce the notion of better-quasi-
orders as the quasi-orders whose iterated powersets are wqo. We do this in
the light of further developments of the theory, taking advantage of Simpson’s
point of view on super-sequences, using the determinacy of finite games and a
powerful game-theoretic technique invented by Tony Martin.

First let us define precisely the iterated powerset of a qo together with its
lifted quasi-order. To facilitate the following discussion we focus on the non-
empty sets over some quasi-order 𝑄. Let 𝒫∗(𝐴) denote the set of non-empty
subsets of a set 𝐴, i.e. 𝒫∗(𝐴) = 𝒫(𝐴) ∖ {∅}. We define by transfinite recursion

𝑉 ∗
0 (𝑄) = 𝑄

𝑉 ∗
𝛼+1(𝑄) = 𝒫∗(𝑉 ∗

𝛼(𝑄))
𝑉 ∗

𝜆 (𝑄) = ⋃
𝛼<𝜆

𝑉 ∗
𝛼(𝑄), for 𝜆 limit.

We treat the element of 𝑄 as urelements or atoms, namely they have no ele-
ments but they are different from the empty set. Let

𝑉 ∗(𝑄) = ⋃
𝛼

𝑉 ∗
𝛼(𝑄).

Let us say that a set 𝐴 is 𝑄-transitive if for all 𝑥 ∈ 𝐴 we have 𝑥 ⊆ 𝐴
whenever 𝑥∉𝑄. We define the 𝑄-transitive closure of 𝑋 ∈ 𝑉 ∗(𝑄), denoted by
tcQ(𝑋), as the smallest 𝑄-transitive set containing 𝑋. Notice that in particular
tcQ(𝑞) = {𝑞} for every 𝑞 ∈ 𝑄 and that tcQ(𝑋) = 𝑋 for every non-empty subset
𝑋 of 𝑄. Finally we define for every 𝑋 ∈ 𝑉 ∗(𝑄) the support of 𝑋, denoted by
suppQ(𝑋), as the set of elements of 𝑄 which belong to tcQ(𝑋):

suppQ(𝑋) = 𝑄 ∩ tcQ(𝑋).
Notice that suppQ(𝑋) is never empty and that for every 𝑞 ∈ 𝑄 we have
suppQ(𝑞) = {𝑞}.

Following an idea of Forster [For03] we define the quasi-order on 𝑉 ∗(𝑄) via
the existence of a winning strategy in a natural game. We refer the reader to
Kechris [Kec95, (20.)] for the basic definitions pertaining to two-player games
with perfect information.

Definition 2.46. For every 𝑋, 𝑌 ∈ 𝑉 ∗(𝑄) we define a two-player game with
perfect information 𝐺𝑉 ∗(𝑋, 𝑌 ) by induction on the membership relation. The
game 𝐺𝑉 ∗(𝑋, 𝑌 ) goes as follows. Player I starts by choosing some 𝑋′ such
that:
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• if 𝑋 ∉ 𝑄, then 𝑋′ ∈ 𝑋,

• otherwise, 𝑋′ = 𝑋.

Then Player II replies by choosing some 𝑌 ′ such that:

• if 𝑌 ∉ 𝑄, then 𝑌 ′ ∈ 𝑌 ,

• otherwise 𝑌 ′ = 𝑌 .

If both 𝑋′ and 𝑌 ′ belong to 𝑄, then Player II wins if 𝑋′ ⩽ 𝑌 ′ in 𝑄 and Player
I wins if 𝑋′ ⩽̸ 𝑌 ′ . Otherwise the game continues as in 𝐺𝑉 ∗(𝑋′, 𝑌 ′).

We then define the lifted quasi-order on 𝑉 ∗(𝑄) by letting for 𝑋, 𝑌 ∈ 𝑉 ∗(𝑄)

𝑋 ⩽ 𝑌 ⟷ Player II has a winning strategy in 𝐺𝑉 ∗(𝑋, 𝑌 ).

Remark 2.47. The above definition can be rephrased by induction on the mem-
bership relation as follows:

(1) if 𝑋, 𝑌 ∈ 𝑄, then 𝑋 ⩽ 𝑌 if and only if 𝑋 ⩽ 𝑌 in 𝑄,

(2) if 𝑋 ∈ 𝑄 and 𝑌 ∉ 𝑄, then

𝑋 ⩽ 𝑌 ⟷ there exists 𝑌 ′ ∈ 𝑌 with 𝑋 ⩽ 𝑌 ′,

(3) if 𝑋 ∉ 𝑄 and 𝑌 ∈ 𝑄, then

𝑋 ⩽ 𝑌 ⟷ for every 𝑋′ ∈ 𝑋 we have 𝑋′ ⩽ 𝑌 ,

(4) if 𝑋 ∉ 𝑄 and 𝑌 ∉ 𝑄, then

𝑋 ⩽ 𝑌 ⟷ for every 𝑋′ ∈ 𝑋 there exists 𝑌 ′ ∈ 𝑌 with 𝑋′ ⩽ 𝑌 ′.

Our definition coincides with the one given by Shelah [She82, Claim 1.7, p.188].
But Milner [Mil85] and Laver [Lav71] both omit condition (3).

The axiom of foundation ensures that in any play of a game 𝐺𝑉 ∗(𝑋, 𝑌 ) a
round where both players have chosen elements of 𝑄 is eventually reached,
resulting in the victory of one of the two players. In particular, each game
𝐺𝑉 ∗(𝑋, 𝑌 ) is determined as already proved by Von Neumann and Morgen-
stern [VM44] (see [Kec95, (20.1)]). The crucial advantage of the game-theoretic
formulation of the quasi-order on 𝑉 ∗(𝑄) resides in the fact that the negative
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Figure 2.3: Constructing a multi-sequence by stringing strategies together.

condition 𝑋 ⩽̸ 𝑌 is equivalent to the existential statement ‘Player I has a
winning strategy’.

Now suppose 𝑄 is a quasi-order such that 𝑉 ∗(𝑄) is not wqo and let (𝑋𝑛)𝑛∈𝜔
be a bad sequence in 𝑉 ∗(𝑄). Whenever 𝑚 < 𝑛 we have 𝑋𝑚 ⩽̸ 𝑋𝑛 and we can
choose a winning strategy 𝜎𝑚,𝑛 for Player I in 𝐺𝑉 ∗(𝑋𝑚, 𝑋𝑛). We define a loc-
ally constant multi-sequence 𝑔 ∶ [𝜔]∞ → 𝑄 as follows. Let 𝑁 = {𝑛0, 𝑛1, 𝑛2, …}
be an infinite subset of 𝜔 enumerated in increasing order. We define 𝑔(𝑁) as
the last move of Player I in a particular play of 𝐺𝑉 ∗(𝑋𝑛0

, 𝑋𝑛1
) in a way best

understood by contemplating Figure 2.3.
Let 𝑌 0

0 be the the first move of Player I in 𝐺𝑉 ∗(𝑋𝑛0
, 𝑋𝑛1

) as prescribed
by its winning strategy 𝜎𝑛0,𝑛1

. Then let Player II copy the first move 𝑌 0
1

of Player I given by the strategy 𝜎𝑛1,𝑛2
in 𝐺𝑉 ∗(𝑋𝑛1

, 𝑋𝑛2
). Then Player I

answers 𝑌 1
0 according to the strategy 𝜎𝑛0,𝑛1

. Now if 𝑌 0
1 is not in 𝑄, then we

need to continue our play of 𝐺𝑉 ∗(𝑋𝑛1
, 𝑋𝑛2

) a little further to determine the
second move of Player II in 𝐺𝑉 ∗(𝑋𝑛0

, 𝑋𝑛1
). Let the first move of Player II in

𝐺𝑉 ∗(𝑋𝑛1
, 𝑋𝑛2

) be the first move of Player I in 𝐺𝑉 ∗(𝑋𝑛2
, 𝑋𝑛3

) as prescribed
by his winning strategy 𝜎𝑛2,𝑛3

. Then this determines the second move 𝑌 1
1 of

Player I in 𝐺𝑉 ∗(𝑋𝑛1
, 𝑋𝑛2

) according to 𝜎𝑛1,𝑛2
. We then let the second move

of Player II in 𝐺𝑉 ∗(𝑋𝑛0
, 𝑋𝑛1

) to be this 𝑌 1
1 . This yields some answer 𝑌 1

0 of
Player I according to 𝜎𝑛0,𝑛1

. We continue so on and so forth until the play
of 𝐺𝑉 ∗(𝑋𝑛0

, 𝑋𝑛1
) reaches an end with some (𝑌 𝑘𝑁

0 , 𝑌 𝑘𝑁
1 ) ∈ 𝑄 × 𝑄 and we let

𝑔(𝑁) = 𝑌 𝑘𝑁
0 . Since the play of 𝐺𝑉 ∗(𝑋𝑛0

, 𝑋𝑛1
) is finite, 𝑔(𝑁) depends only on
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a finite initial segment of 𝑁 and we have therefore defined a locally constant
multi-sequence 𝑔 ∶ [𝜔]∞ → 𝑄.

Now since Player I has followed the winning strategy 𝜎𝑛0,𝑛1
we have 𝑌 𝑘𝑁

0 ⩽̸
𝑌 𝑘𝑁

1 . Now if the play of the game 𝐺𝑉 ∗(𝑋𝑛1
, 𝑋𝑛2

) has not yet reached an end
at step 𝑘𝑁 we go on in the same fashion. Assume it ends with some pair
(𝑌 𝑙

1 , 𝑌 𝑙
2) in 𝑄. By the rules of the game 𝐺𝑉 ∗ , since 𝑌 𝑘𝑁

1 ∈ 𝑄 we necessarily
have 𝑌 𝑙

1 = 𝑌 𝑘𝑁
1 . But 𝑌 𝑙

1 is just 𝑔({𝑛1, 𝑛2, 𝑛3, …}), hence for every 𝑁 ∈ [𝜔]∞
we have

𝑔(𝑁) ⩽̸ 𝑔(𝑁 ∖ {min 𝑁}).
For every 𝑁 ∈ [𝜔]∞ we call the shift of 𝑁 , denoted by ∗𝑁 , the set 𝑁 ∖

{min 𝑁}. We are led to the following:

Definition 2.48. Let 𝑄 be a qo and ℎ ∶ [𝑋]∞ → 𝑄 a multi-sequence.

(1) We say that ℎ is bad if ℎ(𝑁) ⩽̸ ℎ(∗𝑁) for every 𝑁 ∈ [𝑋]∞,

(2) We say that ℎ is good if there exists 𝑁 ∈ [𝑋]∞ with ℎ(𝑁) ⩽ ℎ(∗𝑁),
At last, we present the deep definition due to Nash-Williams here in a modern

reformulation.

Definition 2.49. A quasi-order 𝑄 is a better-quasi-order (bqo) if there is no
bad locally constant multi-sequence into 𝑄.

Of course the definition of better-quasi-order can be formulated in terms of
super-sequences as Nash-Williams originally did. The only missing ingredient
is a counterpart of the shift map 𝑁 ↦ ∗𝑁 on finite subsets of natural numbers.

Definition 2.50. For 𝑠, 𝑡 ∈ [𝜔]<∞ we say that 𝑡 is a shift of 𝑠 and write 𝑠 � 𝑡
if there exists 𝑋 ∈ [𝜔]∞ such that

𝑠 ⊏ 𝑋 and 𝑡 ⊏ ∗𝑋.

Definitions 2.51. Let 𝑄 be a qo and 𝑓 ∶ 𝐹 → 𝑄 be a super-sequence.

(1) We say that 𝑓 is bad if whenever 𝑠 � 𝑡 in 𝐹 , we have 𝑓(𝑠) ⩽̸ 𝑓(𝑡).

(2) We say that 𝑓 is good if there exists 𝑠, 𝑡 ∈ 𝐹 with 𝑠 � 𝑡 and 𝑓(𝑠) ⩽ 𝑓(𝑡).
Lemma 2.52. Let 𝑄 be a quasi-order.

(i) If ℎ ∶ [𝜔]∞ → 𝑄 is locally constant and bad, then ℎ↓ ∶ 𝐹 ℎ → 𝑄 is a bad
super-sequence.
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(ii) If 𝑓 ∶ 𝐹 → 𝑄 is a bad super-sequence from a front on 𝑋, then 𝑓↑ ∶
[𝑋]∞ → 𝑄 is a bad locally constant multi-sequence.

Proof. (i) Suppose ℎ ∶ [𝑋]∞ → 𝑄 is locally constant and bad. Let us show
that ℎ↓ ∶ 𝐹 ℎ → 𝑄 is bad. If 𝑠, 𝑡 ∈ 𝐹 ℎ with 𝑠 � 𝑡, i.e. there exists
𝑌 ∈ [𝑋]∞ such that 𝑠 ⊏ 𝑌 and 𝑡 ⊏ ∗𝑌 . Then ℎ↓(𝑠) = ℎ(𝑌 ) and
ℎ↓(𝑡) = ℎ(∗𝑌 ) and since ℎ is assumed to be bad, we have ℎ↓(𝑠) ⩽̸ ℎ↓(𝑡).

(ii) Suppose 𝑓 ∶ 𝐹 → 𝑄 is bad from a front on 𝑋 and let 𝑌 ∈ [𝑋]∞. There are
unique 𝑠, 𝑡 ∈ 𝐹 such that 𝑠 ⊏ 𝑌 and 𝑡 ⊏ ∗𝑌 , and clearly 𝑓↑(𝑌 ) = 𝑓(𝑠),
𝑓↑(∗𝑌 ) = 𝑓(𝑡), and 𝑠 � 𝑡. Therefore 𝑓↑(𝑋) ⩽̸ 𝑓↑(∗𝑋) holds.

Proposition 2.53. For a quasi-order 𝑄 the following are equivalent.

(i) 𝑄 is a better-quasi-order,

(ii) there is no bad super-sequence into 𝑄,

(iii) there is no bad spare super-sequence into 𝑄.

The idea of stringing strategies together that we used to arrive at the defini-
tion of bqo is directly inspired from a famous technique used by van Engelen,
Miller, and Steel [vEMS87, Theorem 3.2] together with Louveau and Saint
Raymond [LS90, Theorem 3]. This method was first applied by Martin in the
proof of the well-foundedness of the Wadge hierarchy (see [Kec95, (21.15), p.
158]). Forster [For03] introduces better-quasi-orders in a very similar way, but
a super-sequence instead of a multi-sequence is constructed, making the sim-
ilarity with the method used by van Engelen, Miller, and Steel [vEMS87] and
Louveau and Saint Raymond [LS90] less obvious. One of the advantages of
multi-sequences resides in the fact that they enable us to work with super-
sequences without explicitly referring to their domains. This is particularly
useful in the above construction, since a bad sequence in 𝑉 ∗(𝑄) can yield a
multi-sequence whose underlying front is of arbitrarily large rank. Indeed Mar-
cone [Mar94] showed that super-sequences from fronts of arbitrarily large rank
are required in the definition of bqo.

Notice that the notion of bqo naturally lies between those of well-orders and
wqo.

Proposition 2.54. Let 𝑄 be a qo. Then

𝑄 is a well-order → 𝑄 is bqo → 𝑄 is wqo.
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Proof. Suppose 𝑄 is a well order and let ℎ ∶ [𝜔]∞ → 𝑄 is any multi-sequence
into 𝑄. Fix 𝑋 ∈ [𝜔]∞ and let 𝑋0 = 𝑋 and 𝑋𝑛+1 = ∗𝑋𝑛. Since 𝑄 is a well-
order, there exists 𝑛 such that ℎ(𝑋𝑛) ⩽ ℎ(𝑥𝑛+1), otherwise ℎ(𝑋𝑛) would be a
descending chain in 𝑄. So ℎ is good and therefore 𝑄 is bqo.

Now observe that for 𝑚, 𝑛 ∈ {𝜔} we have {𝑚} � {𝑛} if and only if 𝑚 < 𝑛.
So if 𝑄 is bqo, then in particular every sequence 𝑓 ∶ [𝜔]1 → 𝑄 is good, and so
𝑄 is wqo.

2.2.5 Equivalence
Pushing further the idea that led us to the definition of bqo, we can build
from any bad multi-sequence in 𝑉 ∗(𝑄) a bad multi-sequence in 𝑄. Therefore
proving that if 𝑄 is bqo, then 𝑉 ∗(𝑄) is actually bqo.

Proposition 2.55. Let 𝑄 be a qo. For every bad locally constant ℎ ∶ [𝜔]∞ →
𝑉 ∗(𝑄) there exists a bad locally constant 𝑔 ∶ [𝜔]∞ → 𝑄 such that 𝑔(𝑋) ∈
suppQ(ℎ(𝑋)) for every 𝑋 ∈ [𝜔]∞.

Proof. Let ℎ ∶ [𝜔]∞ → 𝑉 ∗(𝑄) be locally constant and bad, and let us write
ℎ(𝑋) = ℎ𝑋 for 𝑋 ∈ [𝜔]∞. Notice that the image of ℎ is countable and choose
for every 𝑋 ∈ [𝜔]∞ a winning strategy 𝜎𝑋 for Player I in 𝐺𝑉 ∗(ℎ𝑋, ℎ

∗𝑋). We
let 𝑋0 = 𝑋 and 𝑋𝑛+1 = ∗𝑋𝑛.
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Figure 2.4: Stringing strategies together.

Consider the diagram in Figure 2.4 obtained by letting Player I follow the
winning strategy 𝜎𝑛 = 𝜎𝑋𝑛

in 𝐺𝑉 ∗(ℎ𝑋𝑛
, ℎ𝑋𝑛+1

) and II responding in 𝐺𝑉 ∗(ℎ𝑋𝑛
, ℎ𝑋𝑛+1

)
by copying I’s moves in 𝐺𝑉 ∗(ℎ𝑋𝑛+1

, ℎ𝑋𝑛+2
). This uniquely determines for each
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𝑛 a finite play (𝑌 𝑖
𝑛, 𝑌 𝑖

𝑛+1)𝑖⩽𝑙𝑛
of the game 𝐺𝑉 ∗(ℎ𝑋𝑛

, ℎ𝑋𝑛+1
) ending with some

𝑌 𝑙𝑛𝑛 ⩽̸ 𝑌 𝑙𝑛
𝑛+1 in 𝑄. Clearly the play (𝑌 𝑖

𝑛, 𝑌 𝑖
𝑛+1)𝑖⩽𝑙𝑛

depends only on the value
taken by ℎ on the 𝑋𝑗 with 𝑗 ∈ {𝑛, … , 𝑛+𝑙𝑛 +2}. By the rules of the game 𝐺𝑉 ∗

for every 𝑛 we have 𝑌 𝑙𝑛
𝑛+1 = 𝑌 𝑙𝑛+1

𝑛+1 . We let 𝑌 𝑋
0 = 𝑌 𝑙0

0 and 𝑌 𝑋
𝑛+1 = 𝑌 𝑙𝑛

𝑛+1 = 𝑌 𝑙𝑛+1
𝑛+1 .

We define 𝑔 ∶ [𝜔]∞ → 𝑄 by letting 𝑔(𝑋) = 𝑌 𝑋
0 . Since 𝑌 𝑋

0 depends only on
ℎ𝑋0

, … ℎ𝑋𝑙0+2
and ℎ is locally constant, it follows that 𝑔 is locally constant.

Moreover, by construction 𝑔(∗𝑋) = 𝑌 ∗𝑋
0 = 𝑌 𝑋

1 and so 𝑔(𝑋) ⩽̸ 𝑔(∗𝑋).

Corollary 2.56. If 𝑄 is bqo, then 𝑉 ∗(𝑄) is bqo.

We now briefly show that there is a strong converse to Corollary 2.56.
Let 𝑓 ∶ 𝐹 → 𝑄 be a super-sequence from a front on 𝜔 into a qo 𝑄. We define

by recursion on the well-founded relation ⊐ on 𝐹 a map ̃𝑓 ∶ 𝐹 → 𝑉 ∗(𝑄) by

̃𝑓(𝑠) = 𝑓(𝑠) if 𝑠 ∈ 𝐹 ,
̃𝑓(𝑠) = { ̃𝑓(𝑠 ∪ {𝑛}) ∣ 𝑛 ∈ 𝜔/𝑠 and 𝑠 ∪ {𝑛} ∈ 𝐹} otherwise.

As long as 𝐹 is not trivial we have [𝜔]1 ⊆ 𝐹 and restricting ̃𝑓 to [𝜔]1 we obtain
the sequence ̃𝑓↾[𝜔]1 ∶ [𝜔]1 → 𝑉 ∗(𝑄). Notice also that ̃𝑓(𝑠) ∈ 𝑄 if and only if
𝑠 ∈ 𝐹 .

Lemma 2.57. If 𝑓 ∶ 𝐹 → 𝑄 is bad, then ̃𝑓↾[𝜔]1 is a bad sequence in 𝑉 ∗(𝑄).

Proof. By way of contradiction suppose that for some 𝑚0, 𝑛0 ∈ 𝜔 with 𝑚0 <
𝑛0 we have ̃𝑓(𝑚0) ⩽ ̃𝑓(𝑛0) in 𝑉 ∗(𝑄) and let 𝜎 be a winning strategy for
Player II in 𝐺𝑉 ∗( ̃𝑓(𝑚0), ̃𝑓(𝑛0)). Let 𝑠0 = (𝑚0), 𝑡0 = (𝑛0) and 𝑢0 = (𝑚0, 𝑛0).
We consider the following play of 𝐺𝑉 ∗( ̃𝑓(𝑚0), ̃𝑓(𝑛0)). Observe that if 𝑠0 =
(𝑚0) ∉ 𝐹 , then 𝑢0 = (𝑚0, 𝑛0) ∈ 𝐹 . We make Player I start with ̃𝑓(𝑠1) where
𝑠1 = 𝑠0 if 𝑠0 ∈ 𝐹 and 𝑠1 = 𝑢0 otherwise. Then II answers according to 𝜎 by

̃𝑓(𝑡1) for some 𝑡1 ∈ 𝐹 . If 𝑡0 = (𝑛0) ∈ 𝐹 , then necessarily 𝑡1 = 𝑡0 and we let
𝑢1 = 𝑢0

⌢ (𝑘) with 𝑘 = 1 + max 𝑢0. Otherwise 𝑡0 ⊏ 𝑡1 and 𝑡1 = (𝑛0, 𝑛1) for
some 𝑛1 > 𝑛0, we then let 𝑢1 = 𝑢0 ∪ 𝑡1 = 𝑢0

⌢ (𝑛1). Notice that in any case
𝑠1 � 𝑡1 since for 𝑋 = 𝑢1 ∪ 𝜔/𝑢1 we have 𝑠1 ⊏ 𝑋 and 𝑡1 ⊏ ∗𝑋. Then we
make I respond with ̃𝑓(𝑠2) where 𝑠2 = 𝑠1 if 𝑠1 ∈ 𝐹 , 𝑠2 = 𝑢2 if 𝑠1 ∉ 𝐹 . We
continue in this fashion, an example of which is depicted in Figure 2.5. After
finitely many rounds I has reached some 𝑓(𝑠) for 𝑠 ∈ 𝐹 , and II has reached
some 𝑓(𝑡) with 𝑡 ∈ 𝐹 . By construction 𝑠 � 𝑡, but since 𝜎 is winning for II, we
have 𝑓(𝑠) ⩽ 𝑓(𝑡), a contradiction.
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I II 𝑚0 𝑛0

̃𝑓(𝑚0, 𝑛0) ̃𝑓(𝑛0, 𝑛1) 𝑛0 𝑛1

̃𝑓(𝑚0, 𝑛0, 𝑛1) ̃𝑓(𝑛0, 𝑛1, 𝑛2) 𝑛1 𝑛2

̃𝑓(𝑚0, 𝑛0, 𝑛1, 𝑛2) ̃𝑓(𝑛0, 𝑛1, 𝑛2, 𝑛3) 𝑛2 𝑛3

̃𝑓(𝑚0, 𝑛0, 𝑛1, 𝑛2) ̃𝑓(𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4) 𝑛4

𝑓(𝑠) 𝑓(𝑡) 𝑠 𝑡
⎧{{{{{{{{{{⎨{{{{{{{{{{⎩ 𝐺𝑉 ∗( ̃𝑓(𝑚0), ̃𝑓(𝑛0))

⎧{{{{
⎨{{{{⎩

𝑠 =

⎫}}}}}
⎬}}}}}⎭

= 𝑡

𝜎

𝜎

𝜎

𝜎
⩽

⩽ �

Figure 2.5: Copying and shift.

Notice that by definition ̃𝑓 ∶ 𝐹 → 𝑉 ∗(𝑄) only reaches hereditarily countable
non-empty sets over 𝑄, namely the elements of 𝑄 and the countable non-empty
sets of hereditarily countable non-empty sets over 𝑄. Let 𝐻∗

𝜔1
(𝑄) denote the

set of hereditarily countable non-empty sets over 𝑄 equipped with the qo
induced from 𝑉 ∗(𝑄). By the axiom of countable choice we have 𝑋 ∈ 𝐻∗

𝜔1
(𝑄)

if and only if 𝑋 ∈ 𝑉 ∗(𝑄) and the set tcQ(𝑋) is countable. We have obtained
the well known equivalence.

Theorem 2.58. A quasi-order 𝑄 is bqo if and only if 𝐻∗
𝜔1

(𝑄) is wqo.

Notice that by definition any countable non-empty subset of 𝐻∗
𝜔1

(𝑄) belongs
to 𝐻∗

𝜔1
(𝑄). Moreover, by Proposition 2.6 (W6) a quasi-order is wqo if and

only if the qo 𝒫<ℵ1
(𝑄) of its countable subsets is well-founded, so 𝐻∗

𝜔1
(𝑄) is

wqo if and only if it is well-founded.

Theorem 2.59. A quasi-order 𝑄 is bqo if and only if 𝐻∗
𝜔1

(𝑄) is well-founded.

2.3 Around the definition of better-quasi-order
In the previous section, we were led to the definition of bqos by reflecting a
bad sequence in 𝑉 ∗(𝑄) into some bad multi-sequence in 𝑄. In this section,
we discuss the definition we obtained and try to understand what its essential
features are. Along this line we show that the presence of the shift is somewhat
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accidental. The material of this section has not yet been published by the
author.

2.3.1 The perfect versus bad dichotomy
For every 𝑋 ∈ [𝜔]∞, let us denote invariably by 𝖲 ∶ [𝑋]∞ → [𝑋]∞ the shift
map defined by 𝖲(𝑁) = ∗𝑁 for every 𝑁 ∈ [𝑋]∞.

For our discussion, we wish to treat both the pairs ([𝑋]∞, 𝖲), for 𝑋 ∈ [𝜔]∞,
and the quasi-orders (𝑄, ⩽) as objects in the same category.

With this in mind, let us call a topological digraph a pair (𝐴, 𝑅) consisting
of a topological space 𝐴 together with a binary relation 𝑅 on 𝐴. If (𝐴, 𝑅) and
(𝐵, 𝑆) are topological digraphs, a continuous homomorphism from (𝐴, 𝑅) to
(𝐵, 𝑆) is a continuous map 𝜑 ∶ 𝐴 → 𝐵 such that for every 𝑎, 𝑎′ ∈ 𝐴, 𝑎 𝑅 𝑎′

implies 𝜑(𝑎) 𝑆 𝜑(𝑎′). As an important particular case, if 𝑓 ∶ 𝐴 → 𝐴 is any
function we write (𝐴, 𝑓) for the topological digraph whose binary relation is
the graph of the function 𝑓 . If 𝑓 ∶ 𝐴 → 𝐴 and 𝑔 ∶ 𝐵 → 𝐵 are functions, a
map 𝜑 ∶ 𝐴 → 𝐵 is a continuous homomorphism from (𝐴, 𝑓) to (𝐵, 𝑔) exactly
in case 𝜑 is continuous and 𝜑 ∘ 𝑓 = 𝑔 ∘ 𝜑. For a binary relation 𝑅 on 𝐴 let us
denote by 𝑅∁ the binary relation (𝐴 × 𝐴) ∖ 𝑅.

Observe that for a discrete space 𝐴, a multi-sequence ℎ ∶ [𝑋]∞ → 𝐴 is
continuous exactly when it is locally constant.

Proposition 2.60. Let 𝑓 ∶ [𝜔]∞ → [𝜔]∞ be a continuous map such that
𝑓(𝑋) ⊆ 𝑋 for every 𝑋 ∈ [𝜔]∞ and 𝑅 be a binary relation on a discrete space
𝐴. For every continuous 𝜑 ∶ [𝜔]∞ → 𝐴 there exists 𝑍 ∈ [𝜔]∞ such that

either 𝜑 ∶ ([𝑍]∞, 𝑓) → (𝐴, 𝑅) is a continuous homomorphism,

or 𝜑 ∶ ([𝑍]∞, 𝑓) → (𝐴, 𝑅∁) is a continuous homomorphism.

Proof. Let 𝜑 ∶ [𝜔]∞ → (𝐴, 𝑅) be locally constant and define 𝑐 ∶ [𝜔]∞ → 2 by
𝑐(𝑋) = 1 if and only if 𝜑(𝑋) 𝑅 𝜑(𝑓(𝑋)). Clearly 𝑐 is locally constant so let 𝑐↓ ∶
𝐹 𝑐 → 2 be the associated super-sequence. By Nash-Williams’ Theorem 2.36
there exists an infinite subset 𝑍 of 𝜔 such that 𝑐↓↾𝐹 𝑐|𝑍 ∶ 𝐹 𝑐|𝑍 → 2 is constant.
Therefore for the restriction 𝜓 = 𝜑↾[𝑍]∞ ∶ [𝑍]∞ → 𝐴 it follows that either
𝜓 ∶ ([𝑍]∞, 𝑓) → (𝐴, 𝑅∁) is a continuous homomorphism, or 𝜓 ∶ ([𝑍]∞, 𝑓) →
(𝐴, 𝑅) is a continuous homomorphism.

Remark 2.61. The previous proposition generalises as follows. Let 𝐴 be any
topological space, 𝑅 ⊆ 𝐴 × 𝐴 be a Borel binary relation and 𝑓 ∶ [𝜔]∞ → [𝜔]∞
a Borel map such that 𝑓(𝑋) ⊆ 𝑋 for every 𝑋 ∈ [𝜔]∞. For every Borel map
𝜑 ∶ [𝜔]∞ → 𝐴 there exists 𝑍 ∈ [𝜔]∞ such that
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either 𝜑 ∶ ([𝑍]∞, 𝑓) → (𝐴, 𝑅) is a Borel homomorphism,

or 𝜑 ∶ ([𝑍]∞, 𝑓) → (𝐴, 𝑅∁) is a Borel homomorphism.

Indeed, the set

{𝑋 ∈ [𝜔]∞ ∣ 𝜑(𝑋) 𝑅 𝜑(𝑓(𝑋))} = (𝜑 × (𝜑 ∘ 𝑓))−1(𝑅)
is Borel in [𝜔]∞ and thus, by the Galvin-Prikry theorem [GP73], there exists
a 𝑍 ∈ [𝜔]∞ as required.

Definition 2.62. Let 𝑅 be a binary relation on a discrete space 𝐴.

(1) A multi-sequence ℎ ∶ [𝑋]∞ → 𝐴 is perfect if ℎ ∶ ([𝑋]∞, 𝖲) → (𝐴, 𝑅) is a
homomorphism, i.e. if ℎ(𝑁) 𝑅 ℎ(∗𝑁) for every 𝑁 ∈ [𝑋]∞,

(2) A super-sequence 𝑓 ∶ 𝐹 → 𝐴 is perfect if for every 𝑠, 𝑡 ∈ 𝐹 , 𝑠 � 𝑡 implies
𝑓(𝑠) 𝑅 𝑓(𝑡).

In particular letting 𝑓 = 𝖲 in Proposition 2.60, we obtain the following
well-known equivalence.

Corollary 2.63. For a quasi-order 𝑄 the following are equivalent.

(i) 𝑄 is bqo,

(ii) every locally constant multi-sequence in 𝑄 admits a perfect sub-multi-
sequence.

(iii) every super-sequence in 𝑄 admits a perfect sub-super-sequence.

Proposition 2.60 also suggests the following generalisation of the notion of
bqo to arbitrary relations:

Definition 2.64. A binary relation 𝑅 on a discrete space 𝐴 is a better-relation
on 𝐴 if there is no continuous homomorphism 𝜑 ∶ ([𝜔]∞, 𝖲) → (𝐴, 𝑅∁).

This definition first appeared in a paper by Shelah [She82] and plays an
important rôle in a work by Marcone [Mar94]. Of course a better-quasi-order
is simply a better-relation which is reflexive and transitive.
Remark 2.65. One could also consider non discrete analogues of the notion of
better-quasi-orders and better-relations. Louveau and Saint Raymond [LS90]
define a topological better-quasi-order as a pair (𝐴, ⩽), where 𝐴 is a topological
space and ⩽ is a quasi-order on 𝐴, such that there is no Borel homomorphism
𝜑 ∶ ([𝜔]∞, 𝖲) → (𝐴, ⩽∁). We believe that topological analogs of bqo and
better-relations deserve further investigations.
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2.3.2 Generalised shifts
The topological digraph ([𝜔]∞, 𝖲) is central to the definition of bqo. Indeed
a qo 𝑄 is bqo if and only if there is no continuous morphism ℎ ∶ ([𝜔]∞, 𝖲) →
(𝑄, ⩽∁). In general, one can ask for the following:

Problem 1. Characterise the topological digraphs which can be substituted for
([𝜔]∞, 𝖲) in the definition of bqo.

Let us write (𝐴, 𝑅) ⩽ch (𝐵, 𝑆) if there exists a continuous homomorphism
from (𝐴, 𝑅) to (𝐵, 𝑆) and (𝐴, 𝑅) ≡ch (𝐵, 𝑆) if both (𝐴, 𝑅) ⩽ch (𝐵, 𝑆) and
(𝐵, 𝑆) ⩽ch (𝐴, 𝑅) hold.

Notice that a binary relation 𝑆 on a discrete space 𝐵 is a better-relation if
and only if ([𝜔]∞, 𝖲)⩽̸ch(𝐵, 𝑆∁). Therefore any topological digraph (𝐴, 𝑅) with
(𝐴, 𝑅) ≡ch ([𝜔]∞, 𝖲) can be used in the definition of better-relation in place of
([𝜔]∞, 𝖲). We do not know whether the converse holds, namely if (𝐴, 𝑅) is a
topological digraph which can be substituted to ([𝜔]∞, 𝖲) in the definition of
bqo, does it follow that (𝐴, 𝑅) ≡ch ([𝜔]∞, 𝖲)?

We now show that at least the shift map 𝖲 can be replaced by certain ‘gen-
eralised shifts’. To this end, we first observe that the topological space [𝜔]∞
admits a natural structure of monoid. Following Solecki [Sol13] and Prömel
and Voigt [PV86], we use the language of increasing injections rather than
that of sets. We denote by ℰ the monoid of embeddings of (𝜔, <) into itself
under composition,

ℰ = {𝑓 ∶ 𝜔 → 𝜔 ∣ 𝑓 is injective and increasing}.
For every 𝑋 ∈ [𝜔]∞, we let 𝑓𝑋 ∈ ℰ denote the unique increasing and injective
enumeration of 𝑋. Conversely we associate to each 𝑓 ∈ ℰ the infinite subset
Im 𝑓 of 𝜔 consisting in the range of 𝑓 . Therefore the set of substructures of
(𝜔, <) which are isomorphic to the whole structure (𝜔, <), namely [𝜔]∞, is in
one-to-one correspondence with the monoid of embeddings of (𝜔, <) into itself.
Moreover observe that for all 𝑋, 𝑌 ∈ [𝜔]∞ we have

𝑋 ⊆ 𝑌 ⟷ ∃𝑔 ∈ ℰ 𝑓𝑋 = 𝑓𝑌 ∘ 𝑔,
so the inclusion relation on [𝜔]∞ is naturally expressed in terms of the monoid
operation. Also, the set [𝑋]∞ corresponds naturally to the following right ideal:

𝑓𝑋 ∘ ℰ = {𝑓𝑋 ∘ 𝑔 ∣ 𝑔 ∈ ℰ}.
As for [𝜔]∞, ℰ is equipped with the topology induced by the Baire space 𝜔𝜔

of all functions from 𝜔 to 𝜔. In particular, the composition ∘ ∶ ℰ × ℰ → ℰ,
(𝑓, 𝑔) ↦ 𝑓 ∘ 𝑔 is continuous for this topology.
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Observe now that, in the terminology of increasing injections, the shift map
𝖲 ∶ ℰ → ℰ is simply the composition on the right with the successor function
𝗌 ∈ ℰ, 𝗌(𝑛) = 𝑛 + 1. Indeed for every 𝑋

𝑓
∗𝑋 = 𝑓𝑋 ∘ 𝗌.

This suggests to consider arbitrary injective increasing function 𝑔, 𝑔 ≠ id𝜔,
in place of the successor function. For any 𝑔 ∈ ℰ, we write ⃗𝑔 ∶ ℰ → ℰ, 𝑓 ↦ 𝑓 ∘𝑔
for the composition on the right by 𝑔. In particular, ⃗𝗌 = 𝖲 is the usual shift
and in our new terminology we have ([𝜔]∞, 𝖲) = (ℰ, ⃗𝗌).

The main result of this section is that these generalised shifts ⃗𝑔 are all equi-
valent as far as the theory of better-relations is concerned.

Theorem 2.66. For every increasing injective function 𝑔 ∈ ℰ, with 𝑔 ≠ id𝜔,
we have (ℰ, ⃗𝑔) ≡ch ([𝜔]∞, 𝖲).

Theorem 2.66 follows from Lemmas 2.72 and 2.73 below, but let us first state
explicitly some of the direct consequences.
Remark 2.67. Every topological digraph (𝐴, 𝑅) has an associated topological
graph (𝐴, 𝑅s) whose symmetric and irreflexive relation 𝑅s is given by

𝑎 𝑅s 𝑏 ⟷ 𝑎 ≠ 𝑏 and (𝑎 𝑅 𝑏 or 𝑏 𝑅 𝑎).

The chromatic number and Borel chromatic number of topological graphs are
studied by Kechris, Solecki, and Todorčević [KST99]. Notably the associated
graph of ([𝜔]∞, 𝖲) has chromatic number 2 and Borel chromatic number ℵ0
(see also the paper by Di Prisco and Todorčević [DT06]). It directly follows
from Theorem 2.66 that for every 𝑔 ∈ ℰ, with 𝑔 ≠ id𝜔, the associated graph
of (ℰ, ⃗𝑔) also has chromatic number 2 and Borel chromatic number ℵ0.

Definition 2.68. Let 𝑔 ∈ ℰ, 𝑅 a binary relation on a discrete space 𝐴. We
say (𝐴, 𝑅) is a 𝑔-better-relation if one of the following equivalent conditions
hold:

(1) for every continuous 𝜑 ∶ ℰ → 𝐴 there exists 𝑓 ∈ ℰ such that the restric-
tion 𝜑𝑓 ∶ (𝑓 ∘ ℰ, ⃗𝑔) → (𝐴, 𝑅) is a continuous morphism,

(2) there is no continuous morphism 𝜑 ∶ (ℰ, ⃗𝑔) → (𝐴, 𝑅∁).

In case ⩽ is a quasi-order on a discrete space 𝑄, we say that 𝑄 is 𝑔-bqo instead
of (𝑄, ⩽) is a 𝑔-better-relation.
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Of course this notion trivialises for 𝑔 = id𝜔, since an id𝜔-better-relation is
simply a reflexive relation. Moreover better relation corresponds to 𝗌-better-
relation.

Theorem 2.69. Let 𝑔 ∈ ℰ ∖ {id𝜔}, 𝑅 a binary relation on a discrete space 𝐴.
Then 𝑅 is a 𝑔-better-relation if and only if 𝑅 is a better-relation. In particular,
a quasi-order (𝑄, ⩽) is 𝑔-bqo if and only if (𝑄, ⩽) is bqo.

Corollary 2.70. A qo 𝑄 is bqo if and only if for every locally constant
𝜑 ∶ ℰ → 𝑄 and every 𝑔 ∈ ℰ there exists 𝑓 ∈ ℰ such that

𝜑(𝑓) ⩽ 𝜑(𝑓 ∘ 𝑔).
As a corollary we have the following strengthening of Corollary 2.63 which

is obtained by repeated applications of Proposition 2.60.

Proposition 2.71. Let 𝑄 be bqo and 𝜑 ∶ ℰ → 𝑄 be locally constant. For every
finite subset 𝒢 of ℰ there exists ℎ ∈ ℰ such that the restriction 𝜑 ∶ ℎ ∘ ℰ → 𝑄
is perfect with respect to every member of 𝒢, i.e. for every 𝑓 ∈ ℰ and every
𝑔 ∈ 𝒢

𝜑(ℎ ∘ 𝑓) ⩽ 𝜑(ℎ ∘ 𝑓 ∘ 𝑔).
Getting a result of this kind was one of our motivations for proving The-

orem 2.66. Indeed they are situations where we need to deal with an arbitrary
super-sequence into some bqo and where going to a perfect sub-super-sequence
is not enough (see Remark 4.44). We believe that Proposition 2.71 can still be
improved.

Finally here are the two lemmas which yield the proof of Theorem 2.66.

Lemma 2.72. Let 𝑔 ∈ ℰ ∖ {id𝜔}. Then (ℰ, ⃗𝑔) ⩽ch (ℰ, ⃗𝗌), i.e. there exists a
continuous map 𝜌 ∶ ℰ → ℰ such that for every 𝑓 ∈ ℰ

𝜌(𝑓 ∘ 𝑔) = 𝜌(𝑓) ∘ 𝗌.
Proof. Since 𝑔 ≠ id𝜔, there exists 𝑘𝑔 = min{𝑘 ∈ 𝜔 ∣ 𝑘 < 𝑔(𝑘)}. Define
𝐺 ∶ 𝜔 → 𝜔 by 𝐺(𝑛) = 𝑔𝑛(𝑘𝑔), where 𝑔0 = id𝜔 and 𝑔𝑛+1 = 𝑔 ∘ 𝑔𝑛. Clearly
𝐺 ∈ ℰ. We let 𝜌(𝑓) = 𝑓 ∘ 𝐺 for every 𝑓 ∈ ℰ. The map 𝜌 ∶ ℰ → ℰ is continuous
and for every 𝑓 ∈ ℰ and every 𝑛 we have

𝜌(𝑓 ∘ 𝑔)(𝑛) = 𝑓 ∘ 𝑔 ∘ 𝑔𝑛(𝑘𝑔) = 𝑓 ∘ 𝐺(𝑛 + 1) = (𝜌(𝑓) ∘ 𝗌)(𝑛).
Lemma 2.73. Let 𝑔 ∈ ℰ ∖ {id𝜔}. Then (ℰ, ⃗𝗌) ⩽ch (ℰ, ⃗𝑔), i.e. there exists a
continuous map 𝜎 ∶ ℰ → ℰ such that for every 𝑓 ∈ ℰ

𝜎(𝑓 ∘ 𝗌) = 𝜎(𝑓) ∘ 𝑔.
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Proof. Let 𝑘𝑔 = min{𝑘 ∣ 𝑘 < 𝑔(𝑘)}. As in the proof of the previous Lemma
we define 𝐺 ∈ ℰ by 𝐺(𝑛) = 𝑔𝑛(𝑘𝑔). For every 𝑓 ∈ ℰ and every 𝑙 ∈ 𝜔, we let

𝜎(𝑓)(𝑙) = {𝑙 if 𝑙 < 𝐺(0),
𝑔𝑓(𝑛)−𝑛(𝑙) if 𝐺(𝑛) ⩽ 𝑙 < 𝐺(𝑛 + 1), for 𝑛 ∈ 𝜔.

Let us check that 𝜎(𝑓) is indeed an increasing injection from 𝜔 to 𝜔 for every
𝑓 ∈ ℰ. Since 𝜎(𝑓) is increasing and injective on each piece of its definition, it
is enough to make the two following observations. Firstly, if 𝑙 < 𝐺(0), then

𝜎(𝑓)(𝑙) = 𝑙 < 𝐺(0) ⩽ 𝐺 ∘ 𝑓(0) = 𝑔𝑓(0)(𝐺(0)) = 𝜎(𝑓)(𝐺(0)).

Secondly, if 𝐺(𝑛) ⩽ 𝑙 < 𝐺(𝑛 + 1) then

𝜎(𝑓)(𝑙) = 𝑔𝑓(𝑛)−𝑛(𝑙) < 𝑔𝑓(𝑛)−𝑛(𝐺(𝑛 + 1))
= 𝑔𝑓(𝑛)+1(𝑘𝑔) ⩽ 𝑔𝑓(𝑛+1)(𝑘𝑔) = 𝐺(𝑓(𝑛 + 1)),

but we have

𝐺(𝑓(𝑛 + 1)) = 𝑔𝑓(𝑛+1)−(𝑛+1)(𝐺(𝑛 + 1)) = 𝜎(𝑓)(𝐺(𝑛 + 1)).

One can easily check that 𝜎 ∶ ℰ → ℰ is continuous. Now on the one hand

𝜎(𝑓 ∘ 𝗌)(𝑙) = {𝑙 if 𝑙 < 𝐺(0),
𝑔𝑓(𝑛+1)−𝑛(𝑙) if 𝐺(𝑛) ⩽ 𝑙 < 𝐺(𝑛 + 1), for 𝑛 ∈ 𝜔.

and on the other hand

𝜎(𝑓)(𝑔(𝑙)) = {𝑔(𝑙) if 𝑔(𝑙) < 𝐺(0),
𝑔𝑓(𝑛)−𝑛(𝑔(𝑙)) if 𝐺(𝑛) ⩽ 𝑔(𝑙) < 𝐺(𝑛 + 1).

By definition of 𝐺, we have 𝑔(𝑙) < 𝐺(0) if and only if 𝑙 = 𝑔(𝑙). Moreover if
𝐺(𝑛) ⩽ 𝑙 < 𝐺(𝑛 + 1) then we have 𝐺(𝑛 + 1) ⩽ 𝑔(𝑙) < 𝐺(𝑛 + 2) and so

𝜎(𝑓 ∘ 𝗌)(𝑙) = 𝑔𝑓(𝑛+1)−𝑛(𝑙) = 𝑔𝑓(𝑛+1)−(𝑛+1)(𝑔(𝑙)) = 𝜎(𝑓)(𝑔(𝑙)),

which proves the Lemma.
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3 Sequences in spaces
This chapter is dedicated to the sequences and super-sequences in metric spaces
and topological spaces. The results presented here appear in an article [CP14]
published by the author and R. Carroy in Fundamenta Mathematicae.

We start by making some simple observations on Cauchy sequences in metric
spaces. Recall that a sequence (𝑥𝑛)𝑛∈𝜔 into a metric space (𝒳, 𝑑𝒳) is Cauchy
if for every 𝜀 > 0 there exists 𝑘 ∈ 𝜔 such that for every 𝑚, 𝑛 ⩾ 𝑘 we have
𝑑𝒳(𝑥𝑚, 𝑥𝑛) < 𝜀.

As we have already done we consider sequences as maps from the front [𝜔]1.
But we now turn [𝜔]1 into a metric space by considering this front as a subset
of the Cantor space.

The Cantor space is the product space 2𝜔 where 2 is the discrete two points
space. A base of clopen sets of 2𝜔 is given by the sets of the form

𝑁𝑢 = {𝑥 ∈ 2𝜔 ∣ 𝑢 ⊏ 𝑥} for 𝑢 ∈ 2<𝜔.

For a point 𝑥 ∈ 2𝜔 a neighbourhood base is given by the sets 𝑁𝑥↾𝑛
for 𝑛 ∈ 𝜔.

The space 2𝜔 admits the compatible metric given by 𝑑(𝑥, 𝑦) = 2−𝑛−1 if 𝑥 ≠ 𝑦
and 𝑛 is the least natural number with 𝑥(𝑛) ≠ 𝑦(𝑛). This metric is complete
and 2𝜔 is a very important example of Polish space, i.e. a separable completely
metrisable topological space. We refer the reader to the monograph by Kechris
[Kec95] for basic results about the Cantor space and Polish spaces in general.
The Cantor space is compact and zero-dimensional.

We identify each {𝑛} with its characteristic function 0𝑛10𝜔 in 2𝜔, therefore
turning [𝜔]1 into a subset of 2𝜔. This makes [𝜔]1 a metric space. Observe that
for every positive natural number 𝑘,

𝑑({𝑚}, {𝑛}) < 2−𝑘−1 ⟷ either 𝑚 = 𝑛, or 𝑚 > 𝑘 and 𝑛 > 𝑘.

We recall that a function 𝑓 ∶ (𝒳, 𝑑𝒳) → (𝒴, 𝑑𝒴) between metric spaces is
uniformly continuous if for every 𝜀 > 0 there exists 𝛿 > 0 such that for every
𝑥, 𝑥′ ∈ 𝒳 we have 𝑑𝒳(𝑥, 𝑥′) < 𝛿 implies 𝑑𝒴(𝑓(𝑥), 𝑓(𝑥′)) < 𝜀.

Fact 3.1. A sequence (𝑥𝑛)𝑛∈𝜔 in a metric space (𝒳, 𝑑𝒳) is Cauchy if and only
if the mapping [𝜔]1 → 𝒳, {𝑛} ↦ 𝑥𝑛 is uniformly continuous.
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Proof. Suppose that for every 𝜀 > 0 there exists 𝛿 > 0 such that for every
𝑚, 𝑛 ∈ 𝜔, 𝑑({𝑛}, {𝑚}) < 𝛿 implies 𝑑𝒳(𝑥𝑛, 𝑥𝑚) < 𝜀. Then for a positive
natural number 𝑘 with 2−𝑘−1 < 𝛿 we have 𝑛, 𝑚 > 𝑘 implies 𝑑𝒳(𝑥𝑛, 𝑥𝑚) < 𝜀,
so (𝑥𝑛) is Cauchy.

Conversely suppose (𝑥𝑛) is Cauchy and let 𝜀 > 0. There exists 𝑘 ∈ 𝜔 such
that 𝑚, 𝑛 > 𝑘 implies 𝑑𝒳(𝑥𝑚, 𝑥𝑛) < 𝜀. So if we take 𝛿 = 2−𝑘−1, then for every
𝑚, 𝑛 ∈ 𝜔, 𝑑({𝑚}, {𝑛}) < 𝛿 implies 𝑑𝒳(𝑥𝑚, 𝑥𝑛) < 𝜀.

For any metric space 𝒳 there exists a unique – up to isometry – complete
metric space 𝒳 such that 𝒳 is a dense subspace of 𝒳, called the metric comple-
tion of 𝒳. The metric completion of 𝒳 is characterised by following universal
property: every uniformly continuous map 𝑓 ∶ 𝒳 → 𝒴 into a complete metric
space extends to a unique continuous map ̂𝑓 ∶ 𝒳 → 𝒴. Recall that a metric
space 𝒳 is totally bounded if for every 𝜀 > 0 there exists a covering of 𝒳
by finitely many open balls of radius 𝜀. A metric space is totally bounded if
and only if its metric completion is compact. By the Heine-Cantor theorem
([Kec95, (4.5), p. 19]) any continuous map from a compact metric space into
a metric space is uniformly continuous. It follows that a map 𝑓 ∶ 𝒳 → 𝒴 from
a totally bounded metric space 𝒳 into a complete metric space 𝒴 is uniformly
continuous if and only if it extends to unique continuous map ̂𝑓 ∶ 𝒳 → 𝒴.

The metric completion of [𝜔]1 is simply given by its closure inside 2𝜔, namely
the set {0𝑛10𝜔 ∣ 𝑛 ∈ 𝜔} ∪ {0𝜔} which we identify with [𝜔]⩽1. Of course, a
sequence into a complete metric space 𝒳 is Cauchy if and only if it converges.
Or in different words, a sequence (𝑥𝑛)𝑛∈𝜔 is Cauchy if and only if [𝜔]1 → 𝒳,
{𝑛} ↦ 𝑥𝑛, extends to a continuous map [𝜔]⩽1 → 𝒳.

3.1 Cauchy super-sequences
As we did for the front [𝜔]1 we now view every front as a subsets of the Cantor
space.

Notation 3.2. For any subset 𝑢 of 𝜔 we let 𝜒𝑢 ∈ 2𝜔 be the characteristic
function of 𝑢 on 𝜔. So for instance, 𝜒{2,4} = 001010𝜔 and 𝜒∅ = 0𝜔. For a
finite subset 𝑠 of 𝜔, the restricted characteristic function of 𝑠, denoted by
�̃�𝑠, is 𝜒𝑠↾max 𝑠+1 if 𝑠 ≠ ∅ and the empty sequence otherwise. For instance,
�̃�{2,4} = 00101.

We embed every subset of [𝜔]<∞ into the Cantor space via 𝑠 ↦ 𝜒𝑠. By
misuse of language, we sometimes identify a subset of 𝜔 with its characteristic
function inside the Cantor space. In the same way, families of finite sets of
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natural numbers are sometimes identified with the corresponding subset of
the Cantor space. Every front 𝐹 is therefore considered a metric space for the
restriction of the metric on the Cantor space. With the introductory discussion
in mind, we make the following definition.

Definition 3.3. Let 𝒳 be a metric space. A super-sequence 𝑓 ∶ 𝐹 → 𝒳 is
said to be Cauchy if it is uniformly continuous.

For a family 𝐹 ⊆ [𝜔]<∞ the closure of 𝐹 , denoted by 𝐹 , is the topological
closure of the set {𝜒𝑠 ∣ 𝑠 ∈ 𝐹} inside the Cantor space. Of course, the closure
of a family 𝐹 coincides with the metric completion of 𝐹 . Therefore every
Cauchy super-sequence 𝑓 ∶ 𝐹 → 𝒳 into a complete metric space 𝒳 extends to
a continuous map ̄𝑓 ∶ 𝐹 → 𝒳.
Examples 3.4. (a) The map 𝑓 ∶ [𝜔]2 → 2𝜔 defined by

𝑓(𝑚, 𝑛) = 0𝑚10𝑛10𝜔

is Cauchy. It extends to the continuous map ̄𝑓 ∶ [𝜔]⩽2 → 2𝜔 where
̄𝑓({𝑚}) = 0𝑚10𝜔 for every 𝑚 ∈ 𝜔 and 𝑓(∅) = 0𝜔.

(b) The map 𝑓 ∶ [𝜔]2 → 2𝜔 defined by

𝑓(𝑚, 𝑛) = {0𝜔 if 𝑛 is even,
1𝜔 otherwise,

is not Cauchy.

(c) The map 𝑓 ∶ [𝜔]2 → 2𝜔 defined by

𝑓(𝑚, 𝑛) = {1𝜔 if 𝑚 + 1 = 𝑛,
0𝑚10𝜔 otherwise,

is not Cauchy. Notice however that for every 𝑚 the sequence 𝑓(𝑚, 𝑛) con-
verges trivially to 0𝑚10𝜔 when 𝑛 tends towards infinity. Moreover the
sequence 0𝑚10𝜔 converges to 0𝜔 when 𝑚 tends towards infinity. How-
ever the sequence 𝑓(𝑚, 𝑚 + 1) is constant equal to 1𝜔 while (𝑚, 𝑚 + 1)
converges to ∅ in 2𝜔. Therefore there is no continuous extension of 𝑓 to
the closure of [𝜔]2 and so 𝑓 is not Cauchy.

For a front 𝐹 , the closure 𝐹 is closely related to the tree 𝑇 (𝐹) associated to
𝐹 (cf. Lemma 2.29). The following result is stated by Todorčević [Tod10].
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Proposition 3.5. For every front 𝐹 we have

𝐹 = {𝜒𝑠 ∈ 2𝜔 ∣ 𝑠 ∈ 𝑇 (𝐹)}.
Proof. Let 𝐹 be a front on 𝑋.

⊇: Suppose 𝑠 is in 𝑇 (𝐹) ∖ 𝐹 , i.e. 𝑠 ⊏ 𝑡 for some 𝑡 ∈ 𝐹 . For every 𝑛 > max 𝑠
there is a 𝑢 ∈ 𝐹 with 𝑢 ⊏ 𝑠∪𝑋/𝑛. If 𝑢 ⊑ 𝑠 then we have 𝐹 ∋ 𝑢 ⊏ 𝑡 ∈ 𝐹 ,
a contradiction. Hence 𝑠 ⊏ 𝑢 and we found a 𝑢 ∈ 𝐹 with 𝜒𝑢 ∈ 𝑁𝜒𝑠↾𝑛

.
Since 𝑛 was arbitrarily large, it follows that 𝜒𝑠 ∈ 𝐹 .

⊆: Conversely suppose that an element 𝑥 of 2𝜔 belongs to 𝐹 . We first
show that 𝑥 is the characteristic function of a finite subset of 𝑋. Since
2𝑋 = {𝜒𝐸 ∣ 𝐸 ∈ 𝒫(𝑋)} is closed in 2𝜔 and 𝐹 ⊆ 2𝑋, necessarily 𝑥
is the characteristic function of a subset of 𝑋. Now suppose towards
a contradiction that 𝑥 is the characteristic function of an infinite set
𝑀 ⊆ 𝑋. Then for all finite prefix 𝑢 of 𝑀 there exists 𝑠 ∈ 𝐹 such that
𝜒𝑠 ∈ 𝑁𝑥↾max(𝑢)+1

, and hence 𝑢 ⊑ 𝑠. But then {𝑢 ∣ 𝑢 ⊏ 𝑀} would be an
infinite branch of 𝑇 (𝐵), contradicting Lemma 2.29.
Hence 𝑥 = 𝜒𝑠 for some 𝑠 ∈ [𝑋]<∞. It only remains to show that there
exists a 𝑡 ∈ 𝐹 with 𝑠 ⊑ 𝑡. Pick 𝑛 > max 𝑠. Since 𝜒𝑠 belongs to the
closure of 𝐹 there is a 𝑡 ∈ 𝐹 with 𝜒𝑠↾𝑛 ⊏ 𝜒𝑡, and so 𝑠 ⊑ 𝑡.

Remark 3.6. The closure 𝐹 of a front 𝐹 , being a countable compact metrisable
space, admits a natural rank, namely the Cantor-Bendixson rank, denoted by
|𝐹 |∗CB (see [Kec95, 6.C, p.33]). For every 𝑋 ∈ [𝜔]∞ the closure of the front
[𝑋]𝑘 has Cantor-Bendixson rank 𝑘. Moreover the Schreier barrier 𝒮 has Cantor-
Bendixson rank 𝜔.

From these examples one could think that for every front 𝐹 the Cantor-
Bendixson rank of 𝐹 is equal to the rank of 𝐹 . Contrary to what is said by
Todorčević [Tod10, Definition 1.24, p.3], this is not the case in general as the
following example shows.

Let 𝐹(0) = {𝑠 ∈ [𝜔/0]<∞ ∣ min 𝑠 = |𝑠|}, and 𝐹(𝑛) = [𝜔/𝑛]𝑛 for 𝑛 ⩾ 1.
Then we build the front 𝐹 = seq𝑛∈𝜔 𝐹(𝑛) (cf. Figure 3.1). In fact 𝐹 is even a
barrier, namely whenever 𝑠 ⊆ 𝑡 in 𝐹 then 𝑠 = 𝑡. Now we have rk(𝐹) = 𝜔 + 1.
However the 𝜔th Cantor-Bendixson derivative of 𝐹 is equal to {∅, {0}}, and so
we have |𝐹 |∗CB = 𝜔. And notably the Cantor-Bendixson rank of 𝐹0 is also 𝜔.

It also follows from this example that when proving a result about fronts by
induction on the Cantor-Bendixson rank of the closure we cannot in general
apply the induction hypothesis to the rays. This is the main reason why we
prefer rk 𝐹 to the Cantor-Bendixson rank of 𝐹 .
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⋯

Figure 3.1: A front 𝐹 with rk 𝐹 = 𝜔 + 1 and |𝐹 |∗CB = 𝜔.

We also note that the closure operation behaves nicely with respect to the
taking of restrictions and rays.

Corollary 3.7. Let 𝐹 be a front on 𝑋.

1. For all 𝑀 ∈ [𝑋]∞ we have 𝐹|𝑀 = 𝐹|𝑀 ;

2. For all 𝑛 ∈ 𝑋 we have 𝐹𝑛 = (𝐹)𝑛.

Proof. (1) It is enough to prove that 𝐹|𝑀 ⊆ 𝐹|𝑀 holds. So let 𝑠 ⊏ 𝑡 ∈ 𝐹
with 𝑠 a subset of 𝑀 . Since 𝐹 is a front there is a 𝑢 ∈ 𝐹 with 𝑢 ⊏ 𝑠∪𝑀/𝑠
and necessarily 𝑢 ∈ 𝐹|𝑀 . If 𝑢 ⊑ 𝑠 ⊏ 𝑡 we have a contradiction. Hence
𝑠 ⊑ 𝑢 ∈ 𝐹|𝑀 and so 𝑠 ∈ 𝐹 |𝑀 by Proposition 3.5.

(2) Since 𝐹𝑛 is a front on 𝜔/𝑠, 𝐹𝑛 = {𝜒𝑡 ∣ ∃𝑢 ∈ 𝐹𝑛 𝑡 ⊑ 𝑢} by Proposition 3.5.
Now if 𝑡 ⊑ 𝑢 ∈ 𝐹𝑛 then {𝑛} ∪ 𝑡 ⊑ {𝑛} ∪ 𝑢 ∈ 𝐹 and thus 𝑡 ∈ (𝐹)𝑛.
Conversely if 𝑡 ∈ (𝐹)𝑛 then {𝑛} ∪ 𝑡 ∈ 𝐹 and thus there exists 𝑢 ∈ 𝐹
with {𝑛} ∪ 𝑡 ⊑ 𝑢 ∈ 𝐹 . Now 𝑡 ⊑ ∗𝑢 ∈ 𝐹𝑛 and therefore 𝑡 ∈ 𝐹𝑛.

Of course a metric space is compact if and only if every sequence admits
a converging subsequence. Similarly, a metric space is totally bounded if and
only if every sequence admits a Cauchy subsequence. The main result of this
chapter (cf. Section 3.3) is the following:

Theorem 3.8. Let 𝒳 be a compact metric space. Then every super-sequence
in 𝒳 admits a Cauchy sub-super-sequence.

Using the fact that every non empty compact metric space 𝒳 is a continuous
image of 2𝜔, it will be enough to prove the theorem in the zero-dimensional
case. Namely we will prove the following (cf. Theorem 3.25).
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Theorem 3.9 (with R. Carroy). Every super-sequence into 2𝜔 admits a Cauchy
sub-super-sequence.

The reason for focusing in the zero-dimensional case stems from the existence
of a nice and simple characterisation of uniform continuity. Let us observe this
already in the simple case of a sequence.

First we recall the following easy characterisation of the clopen sets of 2𝜔.

Fact 3.10. A subset 𝐶 of 2𝜔 is clopen if and only if there exists a finite set
𝐴 ⊆ 2<𝜔 such that

(i) 𝑠, 𝑡 ∈ 𝐴 implies 𝑠⋢𝑡,
(ii) 𝐶 = ⋃𝑠∈𝐴 𝑁𝑠.

Proof. Since each 𝑁𝑠 is clopen, if 𝐶 = ⋃𝑠∈𝐴 𝑁𝑠 for a finite set 𝐴 then 𝐶
is clopen. Conversely, if 𝐶 is clopen in 2𝜔 then 𝐶 = ⋃𝑠∈𝐵 𝑁𝑠 for some set
𝐵 ⊆ 2𝜔 since the 𝑁𝑠 form a base and 𝐶 is open. Now as 𝐶 is also closed in the
compact space 2𝜔 it is compact and so there exists a finite set 𝐵′ ⊆ 𝐵 such
that 𝐶 = ⋃𝑠∈𝐵′ 𝑁𝑠. We can therefore take 𝐴 to be the ⊑-minimal elements of
𝐵′.

Now we can express uniform continuity of a sequence into a compact metric
space in a simple way, reminiscent of topological continuity.

Fact 3.11. Let (𝑥𝑛)𝑛∈𝜔 be a sequence in 2𝜔. The following are equivalent:

(i) (𝑥𝑛)𝑛∈𝜔 is Cauchy;

(ii) the map 𝑓 ∶ [𝜔]1 → 2𝜔, 𝑛 ↦ 𝑥𝑛 is uniformly continuous;

(iii) 𝑓−1(𝐶) = {𝑛 ∈ 𝜔 ∣ 𝑥𝑛 ∈ 𝐶} is finite or cofinite for all clopen 𝐶 of 2𝜔.

Proof. Suppose (𝑥𝑛)𝑛∈𝜔 is Cauchy and fix a clopen 𝐶 of 2𝜔. We can write
𝐶 = ⋃𝑠∈𝐴 𝑁𝑠 for a finite ⊑-antichain 𝐴 ⊆ 2<𝜔, and we let 𝑘 = max{|𝑠| ∣ 𝑠 ∈
𝐴}. There exists 𝑙 ∈ 𝜔 such that for all 𝑚, 𝑛 ⩾ 𝑙 we have 𝑑(𝑥𝑚, 𝑥𝑛) < 2−𝑘−1.
By definition of the distance this means that 𝑥𝑚↾𝑘 = 𝑥𝑛↾𝑘 for all 𝑚, 𝑛 ⩾ 𝑙.
Depending on whether 𝑥𝑙↾𝑘 ∈ 𝐴 or not, we get that {𝑛 ∈ 𝜔 ∣ 𝑥𝑛 ∈ 𝐶} is either
cofinite or finite.

Conversely, suppose that 𝑓 ∶ [𝜔]1 → 2𝜔 is such that {𝑛 ∈ 𝜔 ∣ 𝑥𝑛 ∈ 𝐶} is
finite or cofinite for all clopen 𝐶 of 2𝜔. Let 𝑘 ∈ 𝜔 and consider the partition
[𝜔]1 = ⋃𝑠∈2𝑘 𝑓−1(𝑁𝑠) into preimage of clopen sets. There exists a unique 𝑠 ∈
2𝑘 such that 𝑓−1(𝑁𝑠) is cofinite. Hence there exists 𝑙 ∈ 𝜔 such that for all 𝑛 ⩾ 𝑙
we have 𝑠 ⊑ 𝑥𝑛 and therefore for all 𝑚, 𝑛 ⩾ 𝑙 we have 𝑑(𝑥𝑚, 𝑥𝑛) < 2−𝑘−1.
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Even though we defined at first Cauchy super-sequences in the setting of
metric spaces, this notion is really pertaining to the ‘uniform structure’ of a
front. Our next task is therefore to study the uniform structure of a subset of
some compact zero-dimensional space.

3.2 Uniform subspaces of Boolean spaces
Les espaces métriques sont des « espaces uniformes » de nature par-
ticulière; les espaces uniformes n’ont été définis de manière générale
qu’en 1937, par A. Weil (XI). Auparavant on ne savait utiliser les
notions et les résultats relatifs à « structure uniforme » que lor-
squ’il s’agissait d’espaces métriques: ce qui explique le rôle import-
ant joué dans beaucoup de travaux sur la topologie, par les espaces
métriques ou métrisables (et en particulier par les espaces compact
métrisables) dans des questions où la distance n’est d’aucune utilité
véritable.

Nicolas Bourbaki [Bou06, TG II.43]

The basic reference on uniform spaces is due to Bourbaki [Bou06] and we
follow their terminology. A recent account on this topic is provided by Page
[Pag11].

Every metric space (𝒳, 𝑑) has an associated uniform structure generated by
the entourages of the form {(𝑥, 𝑦) ∈ 𝒳 × 𝒳 ∣ 𝑑(𝑥, 𝑦) < 𝜀} for some 𝜀 > 0.
Very importantly, any compact Hausdorff topological space admits a unique
uniform structure that agrees with its topology [Bou06, Theorem 1, II.27].
In particular, every Boolean space, i.e. compact Hausdorff zero-dimensional
space, is unambiguously seen as a uniform space.

In this section, we focus on those uniform spaces which arise as a uniform
subspace of some Boolean space. We prove a simple characterisation of uniform
continuity between such uniform spaces, which is reminiscent of topological
continuity. This characterisation is of crucial importance in the next section.

The following notion simplifies greatly the study of these uniform subspaces.

Definition 3.12. Let 𝑆 be a subset of a Boolean space 𝒳. A subset 𝐵 of 𝑆 is
called a block of 𝑆 (relatively to 𝒳) if there exists a clopen 𝐶 of 𝒳 such that
𝐵 = 𝐶 ∩ 𝑆. We write Blocks(𝑆) for the Boolean subalgebra of 𝒫(𝑆) of blocks
of 𝑆.

The uniform structure of a uniform subspace of a Boolean space 𝒳 is essen-
tially given by its blocks as we show in Lemma 3.17 below (see also [Bou06,
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Exercice 12, II.38]). As a consequence, uniform continuity between such spaces
admits of the following simple characterisation.

Proposition 3.13. Let 𝒳 and 𝒴 be two Boolean spaces, and let 𝑆 ⊆ 𝒳
and 𝑇 ⊆ 𝒴 be endowed with the induced uniform structure. Then a function
𝑓 ∶ 𝑆 → 𝑇 is uniformly continuous if and only if for all 𝐵 ∈ Blocks(𝑇 ) we
have 𝑓−1(𝐵) ∈ Blocks(𝑆).

When a subset 𝑆 of a Boolean space 𝒳 is endowed with the induced uniform
structure, then the completion of the uniform space 𝑆 coincide with the closure
𝑆 of 𝑆 in 𝒳1. Therefore a function 𝑓 ∶ 𝑆 → 𝑇 as in Proposition 3.13 is
uniformly continuous if and only if there exists a unique continuous map 𝑓 ∶
𝑆 → 𝑇 such that 𝑓↾𝑆 = 𝑓 .

Although Proposition 3.13 is folklore, we did not find any reference for this
very statement (see however the work of Gehrke, Grigorieff, and Pin [GGP10]
in relation with automata theory and the one by Erné [Ern01]). To keep our
exposition self-contained we now provide the reader with a series of lemmas
that lead to a proof of this fact.

Lemma 3.14. Let 𝒳 be a Boolean space. The unique compatible uniform
structure on 𝒳 admits

(i) as a base the entourages of the form 𝑈(𝐶𝑖) = ⋃𝑖 𝐶𝑖 × 𝐶𝑖 where (𝐶𝑖) is a
finite partition of 𝒳 into clopen sets;

(ii) as a subbase the entourages of the form 𝑈𝐶 = (𝐶 × 𝐶) ∪ (𝒳 ∖ 𝐶 × 𝒳 ∖ 𝐶)
where 𝐶 is a clopen set of 𝒳.

Proof. Since 𝒳 is compact and Hausdorff, the unique uniform structure which
is compatible with the topology of 𝒳 consists of the neighbourhoods of the
diagonal of 𝒳 ([Bou06, Theorem 1, II.27]). Clearly each 𝑈(𝐶𝑖) with (𝐶𝑖) a
clopen partition of 𝒳 is a clopen neighbourhood of the diagonal. Conversely
let 𝑈 be a neighbourhood of the diagonal of 𝒳. Since 𝒳 is zero-dimensional,
there exists for each 𝑥 ∈ 𝒳 a clopen 𝐶𝑥 such that 𝑥 ∈ 𝐶𝑥 and 𝐶𝑥×𝐶𝑥 ⊆ 𝑈 . By
compactness of 𝒳, there exist 𝑥1, … , 𝑥𝑛 such that 𝐶𝑥1

, … , 𝐶𝑥𝑛
covers 𝒳. We

can then construct a partition 𝐶1, … , 𝐶𝑛 of 𝒳 in clopen such that 𝐶𝑖 ⊆ 𝐶𝑥𝑖
.

It follows that 𝑈(𝐶𝑖) ⊆ 𝑈 which concludes the proof.

Lemma 3.15. Let 𝒳 be a Boolean space and let 𝐹 be a closed subspace of 𝒳.
Then the clopen sets of 𝐹 coincide with the blocks of 𝐹 .

1The space 𝑆 is also the Stone dual of the Boolean algebra Blocks(𝑆), cf. Subsection 4.1.3.
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Proof. By definition, if 𝐵 is a block of 𝐹 then 𝐵 is clopen in 𝐹 . Conversely,
let 𝐶 be clopen in 𝐹 . The blocks of 𝐹 form a clopen base of 𝐹 , and since 𝐶
is open, it is a union of a family ℬ of blocks of 𝐹 . Since 𝐹 is compact and 𝐶
closed in 𝐹 , there is a finite subset ℬ′ of ℬ for which 𝐶 = ⋃ ℬ′. Since the
blocks of 𝐹 form a Boolean algebra, it follows that 𝐶 is a block.

Lemma 3.16. Let 𝒳 be a Boolean space, and let 𝑆 ⊆ 𝑇 ⊆ 𝒳. Then

Blocks(𝑆) = {𝐵 ∩ 𝑆 ∣ 𝐵 ∈ Blocks(𝑇 )}.

Proof. Let 𝐵 ∈ Blocks(𝑇 ) and let 𝐶 be clopen in 𝒳 such that 𝐵 = 𝐶 ∩ 𝑇 .
Then 𝐵 ∩ 𝑆 = 𝐶 ∩ 𝑆 is a block of 𝑆. Conversely, if 𝐵 is a block of 𝑆 then
there is 𝐶 clopen in 𝒳 with 𝐵 = 𝐶 ∩ 𝑆. It follows that 𝐵 = (𝐶 ∩ 𝑇 ) ∩ 𝑆 where
𝐶 ∩ 𝑇 ∈ Blocks(𝑇 ).

Lemma 3.17. Let 𝒳 be a Boolean space and let 𝑆 be a subset of 𝒳. Then the
uniform structure induced on 𝑆 by 𝒳 admits

(i) as a base the entourages of the form 𝑈(𝐶𝑖) = ⋃𝑖 𝐶𝑖 × 𝐶𝑖 where (𝐶𝑖) is a
finite partition of 𝑆 into blocks;

(ii) as a subbase the entourages of the form 𝑈𝐶 = (𝐶 × 𝐶) ∪ (𝑆 ∖ 𝐶 × 𝑆 ∖ 𝐶)
where 𝐶 is a block of 𝑆.

Proof. Applying Lemmas 3.14 and 3.15 we obtain that the uniform subspace
𝑆 admits as a subbase the entourages of the form 𝑈𝐶 where 𝐶 is a block of 𝑆.
Moreover, the uniform subspace 𝑆 of 𝒳 is identical to the uniform subspace
𝑆 of 𝑆. It follows that entourages of the form (𝑆 × 𝑆) ∩ 𝑈𝐶 where 𝐶 is a
block of 𝑆 constitute a subbase for the uniform space 𝑆. On the one hand
(𝑆 × 𝑆) ∩ 𝑈𝐶 = {(𝑠, 𝑡) ∈ 𝑆 × 𝑆 ∣ 𝑠 ∈ 𝐶 ↔ 𝑡 ∈ 𝐶} = 𝑈𝐶∩𝑆. On the other
hand, {𝐶 ∩ 𝑆 ∣ 𝐶 ∈ Blocks(𝑆)} = Blocks(𝑆) by Lemma 3.16. We have thus
obtained that the entourages of the form 𝑈𝐵 where 𝐵 ∈ Blocks(𝑆) constitute
a subbase for the uniform space 𝑆.

Proof of Proposition 3.13. ⇒: Suppose 𝑓 is uniformly continuous and let ̂𝑓 ∶
𝑆 → 𝑇 be its continuous extension. Then for all clopen 𝐶 of 𝒴 the set 𝑓−1(𝐶 ∩
𝑇 ) = ̂𝑓−1(𝐶) ∩ 𝑆 is a block of 𝑆.

⇐: Suppose 𝑓 ∶ 𝑆 → 𝑇 preserves blocks by preimage. By Lemma 3.17, it is
enough to show that for each block 𝐵 of 𝑇 the preimage of 𝑈𝐵 by 𝑓 × 𝑓 is an
entourage of 𝑆. In fact, (𝑓 × 𝑓)−1(𝑈𝐵) = 𝑈𝑓−1(𝐵).
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3.3 Cauchy super-sequences
We endow every front 𝐹 with the uniform structure inherited from the Cantor
space and Blocks(𝐹) denotes the Boolean algebra of blocks of 𝐹 :

Blocks(𝐹) = {𝐶 ∩ 𝐹 ∣ 𝐶 is a clopen of 2𝜔}.

For an arbitrary family 𝐻 ⊆ [𝜔]<∞ and 𝑛 ∈ 𝜔, we recall that the ray of 𝐻
at 𝑛 is the family

𝐻𝑛 = {𝑢 ∈ [𝜔/𝑛]<∞ ∣ {𝑛} ∪ 𝑢 ∈ 𝐻}

Examples 3.18. (a) For the front [𝜔]1, the Boolean algebra Blocks([𝜔]1) con-
sists of the finite or cofinite subsets of [𝜔]1 (cf. Fact 3.11).

(b) The Boolean algebra of blocks of the front [𝜔]2 consists of the subsets 𝐵
of [𝜔]2 such that for every 𝑛 ∈ 𝜔 the ray 𝐵𝑛 is either finite or cofinite and
either𝐵𝑛 is empty for cofinitely many 𝑛, or 𝐵𝑛 = [𝜔/𝑛]1 for cofinitely
any 𝑛.

Figure 3.2: A block of the front [𝜔]2.

The ray of a family 𝐻 ⊆ [𝜔]<∞ at some 𝑛 ∈ 𝜔 is closely related to the
following subfamily of 𝐻

𝐻𝑛⊑ = {𝑢 ∈ 𝐻 ∣ {𝑛} ⊑ 𝑢} = {𝜒𝑢 ∈ 𝐻 ∣ �̃�{𝑛} ⊏ 𝜒𝑢} = 𝐻 ∩ 𝑁�̃�{𝑛}
.

Lemma 3.19. Let 𝐹 be a front on 𝑁 , 𝑛 ∈ 𝑁 and 𝐵 ⊆ 𝐹 . Then 𝐵𝑛⊑ ∈
Blocks(𝐹) if and only if 𝐵𝑛 ∈ Blocks(𝐹𝑛).
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Proof. Notice first that 𝐵𝑛⊑ = 𝐵 ∩ 𝑁0𝑛1 and that 𝐹𝑛 ⊆ 𝑁0𝑛+1 . Let 𝜂𝑛 ∶
𝑁0𝑛+1 → 𝑁0𝑛1 be the homeomorphism given by 𝜂𝑛(𝑆) = {𝑛} ∪ 𝑆 for every
𝑆 ∈ 𝒫(𝜔/𝑛) = 𝑁0𝑛+1 . Suppose that 𝐵𝑛⊑ ∈ Blocks(𝐹) and let 𝐶 ⊆ 𝑁0𝑛1 be
clopen in 2𝜔 with 𝐵𝑛⊑ = 𝐹 ∩𝐶. Then 𝜂−1

𝑛 (𝐶) is clopen and 𝐵𝑛 = 𝜂−1
𝑛 (𝐶)∩𝐹𝑛,

so 𝐵𝑛 is a block of 𝐹𝑛. Conversely suppose that 𝐵𝑛 ∈ Blocks(𝐹𝑛) and let
𝐶 ⊆ 𝑁0𝑛+1 be clopen in 2𝜔 with 𝐵𝑛 = 𝐹𝑛 ∩ 𝐶. Then 𝐵𝑛⊑ = 𝐹 ∩ 𝜂𝑛(𝐶), and
as 𝜂𝑛(𝐶) is clopen we have 𝐵𝑛⊑ ∈ Blocks(𝐹).

The following proposition gives a useful characterisation of the family of
blocks of a front.

Proposition 3.20. We have the following.

(i) If 𝐹 is the trivial front, then Blocks(𝐹) = 𝒫(𝐹).

(ii) If 𝐹 is a non-trivial front and 𝐵 is a subset of 𝐹 , then 𝐵 ∈ Blocks(𝐹)
if and only if
(a) 𝐵𝑛 is a block of 𝐹𝑛 for every 𝑛 ∈ 𝑁 , and
(b) either for all but finitely many 𝑛 ∈ 𝑁 we have 𝐵𝑛 = ∅, or for all

but finitely many 𝑛 ∈ 𝑁 we have 𝐵𝑛 = 𝐹𝑛.

Proof. The statement (i) is trivial. For (ii), suppose 𝐹 is a non-trivial front
and assume that 𝐵 ⊆ 𝐹 satisfies Conditions (a) and (b). For every 𝑛 ∈ 𝑁 the
set 𝐵𝑚 is a block of 𝐹𝑚 and so by Lemma 3.19 𝐵𝑚⊑ is a block of 𝐹 . Notice
that 𝐵 is equal to the disjoint union of the 𝐵𝑛⊑ for 𝑛 ∈ 𝑁 . If 𝐵𝑛 is empty for
all but finitely many 𝑛, then 𝐵 is a block as a finite union of blocks. Now if
there exists 𝑘 such that 𝐵𝑛 = 𝐹𝑛 for every 𝑛 ∈ 𝑁/𝑘, then

𝐵 = ⋃
𝑚∈𝑁
𝑚⩽𝑘

𝐵𝑚⊑ ∪ 𝐹|(𝑁/𝑘)

is also a block as a finite union of blocks, since 𝐹|(𝑁/𝑘) = 𝐹 ∩ 𝑁0𝑘+1 .
Conversely, if 𝐵 is a block of 𝐹 then there exists a clopen 𝐶 of 2𝜔 with

𝐵 = 𝐹 ∩ 𝐶. In particular 𝐵𝑛⊑ = 𝐹 ∩ 𝐶 ∩ 𝑁0𝑛1 is a block of 𝐹 for every 𝑛 ∈ 𝑁 ,
and so 𝐵𝑛 is a block of 𝐹𝑛 by Lemma 3.19. Now we can write the clopen 𝐶
as ⋃𝑠∈𝐴 𝑁𝑠 for a finite ⊑-antichain 𝐴 ⊆ 2<𝜔. Let 𝐴𝑛 = {𝑠 ∈ 𝐴 ∣ 0𝑛1 ⊑ 𝑠} for
every 𝑛 ∈ 𝜔 and notice that 𝐵𝑛⊑ = 𝐹 ∩ ⋃𝑠∈𝐴𝑛

𝑁𝑠. Then either 𝐴 = ⋃𝑛∈𝜔 𝐴𝑛
or there exists 𝑙 such that 𝐴 = {0𝑙}∪⋃𝑛∈𝜔 𝐴𝑛. In the first case, it follows that
𝐵𝑛 is empty for all but finitely many 𝑛 ∈ 𝑁 . In the second case, it follows
that 𝐵𝑛 = 𝐹𝑛 for every 𝑛 > 𝑙. In both cases the set 𝐵 fulfils Conditions (a)
and (b).

62



3 Sequences in spaces

Remark 3.21. The previous Proposition actually provides us with a definition
of Blocks(𝐹) for every front 𝐹 by induction on the rank.

Next we notice that the notion of block behaves nicely with the taking of
restrictions. Observe that for 𝑆 ⊆ 𝑇 ⊆ [𝜔]<∞ and 𝑁 ∈ [𝜔]∞ we have

𝑆|𝑁 = 𝑆 ∩ [𝑁]<∞ = 𝑆 ∩ 2𝑁 = 𝑆 ∩ 𝑇 ∩ 2𝑁 = 𝑆 ∩ 𝑇 |𝑁,

hence the restriction of 𝑆 to 𝑁 equals the trace of 𝑆 on 𝑇 |𝑁 .

Notation 3.22. Let 𝐹 ⊆ [𝜔]<∞. For a family 𝐒 of subsets of 𝐹 and 𝑁 ∈ [𝜔]∞
we denote by 𝐒|𝑁 the family

{𝑆|𝑁 ∣ 𝑆 ∈ 𝐒} = {𝑆 ∩ 𝐹|𝑁 ∣ 𝑆 ∈ 𝐒}.

In fact, the blocks of the restriction of a front are simply the restrictions of
the blocks of the front.

Lemma 3.23. Let 𝐹 be a front on 𝑀 and let 𝑁 ⊆ 𝑀 be infinite. Then

Blocks(𝐹)|𝑁 = Blocks(𝐹 |𝑁).

Proof. If 𝐵 ∈ Blocks(𝐹) then there exists 𝐶 clopen in 2𝜔 with 𝐵 = 𝐶 ∩ 𝐹 . It
follows that

𝐵|𝑁 = 𝐵 ∩ 𝐹|𝑁 = 𝐵 ∩ 𝐹 ∩ 𝐹|𝑁 = 𝐶 ∩ 𝐹|𝑁

is a block of 𝐹|𝑁 .
Conversely, if we have 𝐵 = 𝐶 ∩ 𝐹|𝑁 for some clopen 𝐶 of 2𝜔 then for the

block 𝐵′ = 𝐶 ∩ 𝐹 of 𝐹 we have 𝐵′|𝑁 = 𝐵′ ∩ 𝐹|𝑁 = 𝐶 ∩ 𝐹 ∩ 𝐹|𝑁 = 𝐵.

We observe that for a finite family 𝐅 of subsets of a front 𝐹 on 𝑀 we can find
by repeated application of Nash-Williams’ Theorem 2.36 an infinite 𝑁 ⊆ 𝑀
such that for all 𝑆 ∈ 𝐅, 𝑆|𝑁 = 𝑆 ∩ 𝐹|𝑁 is either empty or equal to 𝐹|𝑁 . In
other terms, for 𝐅 a finite family of subsets of a front 𝐹 on 𝑀 , there exists
𝑁 ∈ [𝑀]∞ such that 𝐅|𝑁 ⊆ {∅, 𝐹 |𝑁}.

Of course such a conclusion cannot be expected for a countably infinite family
𝐅, as one easily see by considering for example the countably infinite family
𝐅 = {{𝑠} ∣ 𝑠 ∈ 𝐹} of subsets of a non-trivial front 𝐹 . However we obtained
the following which is the main combinatorial result in this chapter.

Theorem 3.24 (with R. Carroy). Let 𝐹 be a front on 𝜔 and let 𝐒 be a
countable family of subsets of 𝐹 . For all 𝑀 ∈ [𝜔]∞ there exists 𝑁 ∈ [𝑀]∞
such that 𝐒|𝑁 consists of blocks of 𝐹|𝑁 , i.e. 𝐒|𝑁 ⊆ Blocks(𝐹 |𝑁).
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Proof. By induction on the rank of 𝐹 . For the trivial front, the theorem is
trivial.

Suppose that 𝐹 is a front of strictly positive rank on 𝜔 and that the statement
of the theorem holds for fronts of strictly smaller rank. Let 𝑀 ∈ [𝜔]∞.
Claim. There exists 𝑋 ∈ [𝑀]∞ such that for all 𝑚 ∈ 𝑋 and all 𝑆 ∈ 𝐒 we
have (𝑆|𝑋)𝑚 ∈ Blocks ((𝐹 |𝑋)𝑚).

Proof of the claim. For each 𝑛 ∈ 𝜔, since 𝐹𝑛 is a front of strictly smaller
rank than 𝐹 , we can apply our induction hypothesis to the countable family
𝐒𝑛 = {𝑆𝑛 ∣ 𝑆 ∈ 𝐒} of subsets of 𝐹𝑛. We thus build recursively a sequence
(𝑋𝑖)𝑖∈𝜔 of infinite subsets of 𝑀 with 𝑘𝑖 = min(𝑋𝑖), such that

(i) 𝑋0 = 𝑀 and 𝑋𝑖+1 ∈ [𝑋𝑖/𝑘𝑖]∞ for every 𝑖 ∈ 𝜔;

(ii) for every 𝑖 ∈ 𝜔 we have 𝐒𝑘𝑖
|𝑋𝑖+1 ⊆ Blocks (𝐹𝑘𝑖

|𝑋𝑖+1).

By induction, suppose that the sequence is defined up to 𝑖 ⩾ 0 and let 𝑘𝑖 =
min 𝑋𝑖. Then 𝐹𝑘𝑖

is a front on 𝑀/𝑘𝑖 whose rank is strictly smaller than the
rank of 𝐹 . We consider the family 𝐒𝑘𝑖

of subsets of 𝐹𝑘𝑖
. By our induction hypo-

thesis there exists 𝑋𝑖+1 ∈ [𝑋𝑖/𝑘𝑖]∞ such that 𝐒𝑘𝑖
|𝑋𝑖+1 ⊆ Blocks (𝐹𝑘𝑖

|𝑋𝑖+1).
We then set 𝑋 = {𝑘𝑖 ∣ 𝑖 ∈ 𝜔}. To see that 𝑋 satisfies the Claim, let 𝑘𝑖 ∈ 𝑋

and 𝑆 ∈ 𝐒. Since 𝑋/𝑘𝑖 ⊆ 𝑋𝑖+1 we have

(𝑆|𝑋)𝑘𝑖
= 𝑆𝑘𝑖

|𝑋 = 𝑆𝑘𝑖
|𝑋/𝑘𝑖 = 𝑆𝑘𝑖

|𝑋𝑖+1|𝑋/𝑘𝑖 ∈ Blocks (𝐹𝑘𝑖
|𝑋𝑖+1)|𝑋/𝑘𝑖,

by the choice of 𝑋. Therefore by Lemma 3.23, it follows that

(𝑆|𝑋)𝑘𝑖
∈ Blocks (𝐹𝑘𝑖

|𝑋/𝑘𝑖) = Blocks ((𝐹 |𝑋)𝑘𝑖
),

as desired.

By the Claim, there is no loss of generality in assuming that 𝐹 is a front on
𝑀 and that for all 𝑚 ∈ 𝑀 and all 𝑆 ∈ 𝐒 we have 𝑆𝑚 ∈ Blocks(𝐹𝑚).

We now fix an enumeration {𝑆𝑖 ∣ 𝑖 ∈ 𝜔} of 𝐒. We build a sequence (𝑁𝑖)𝑖∈𝜔
of infinite subsets of 𝑀 with 𝑛𝑖 = min 𝑁𝑖 such that

(i) 𝑁0 = 𝑀 and 𝑁𝑖+1 ∈ [𝑁𝑖/𝑛𝑖]∞;

(ii) for every 𝑖 ∈ 𝜔 and every 𝑗 < 𝑖, either 𝑆𝑗|𝑁𝑖 is empty, or 𝑆𝑗|𝑁𝑖 = 𝐹|𝑁𝑖.
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By induction suppose that the sequence is defined up to 𝑖 ⩾ 0. Applying Nash-
Williams’ Theorem 𝑖 + 1 many times, there exists 𝑁𝑖+1 ∈ [𝑁𝑖/𝑛𝑖]∞ such that
for every 𝑗 < 𝑖 + 1 either 𝑆𝑗|𝑁𝑖+1 is empty or equal to 𝐹|𝑁𝑖+1.

Now for 𝑁 = {𝑛0, 𝑛1, …}, we claim that for all 𝑆 ∈ 𝐒 we have 𝑆|𝑁 is a
block of 𝐹|𝑁 . To see this let 𝑆𝑗 ∈ 𝐒. Firstly, for every 𝑖 we have

(𝑆𝑗|𝑁)𝑛𝑖
= 𝑆𝑗

𝑛𝑖 |𝑁 ∈ Blocks (𝐹𝑛𝑖
)|𝑁 = Blocks (𝐹 |𝑁)𝑛𝑖

),

by Lemma 3.23. Secondly, since 𝑁/𝑘𝑗 ⊆ 𝑁𝑗+1 we have

𝑆𝑗|(𝑁/𝑘𝑗) = (𝑆𝑗|𝑁𝑗+1)|𝑁/𝑘𝑗

and 𝑆𝑗|𝑁𝑗+1 is either empty or equal to 𝐹|𝑁𝑗+1 by the choice of 𝑁 . It follows
that either (𝑆𝑗|𝑁)𝑚 is empty for every 𝑚 ∈ 𝑁/𝑘𝑗 or (𝑆𝑗|𝑁)𝑚 = (𝐹 |𝑁)𝑚 for
every 𝑚 ∈ 𝑁/𝑘𝑗. We therefore conclude by Proposition 3.20 that 𝑆𝑗|𝑁 is a
block of 𝐹|𝑁 for every 𝑗 ∈ 𝜔 as desired.

We can now come to the main result of this section.

Theorem 3.25 (with R. Carroy). Let 𝐹 be a front on some 𝑀 ∈ [𝜔]∞.
For all 𝑓 ∶ 𝐹 → 2𝜔 there exists an infinite 𝑁 ⊆ 𝑀 such that the restriction
𝑓 ∶ 𝐹 |𝑁 → 2𝜔 is uniformly continuous.

Proof. Applying Theorem 3.24 to 𝐒 = {𝑓−1(𝐶) ∣ 𝐶 is clopen in 2𝜔} we obtain
an infinite 𝑁 ⊆ 𝜔 such that the restriction 𝑓|𝑁 ∶ 𝐹 |𝑁 → 𝑋 satisfies that for
all clopen set 𝐶 we have

(𝑓|𝑁)−1(𝐶) = 𝑓−1(𝐶) ∩ 𝐹 |𝑁 = 𝑓−1(𝐶)|𝑁 ∈ Blocks(𝐹 |𝑁).

Therefore 𝑓|𝑁 is uniformly continuous by Proposition 3.13.

This result generalises to arbitrary compact metric space using the fact that
every such space is a continuous image of the Cantor space as we already
noticed in Theorem 3.8.

Theorem 3.26. Let 𝐹 be a front on some 𝑀 ∈ [𝜔]∞ and 𝒳 be a compact
metric space. For all 𝑓 ∶ 𝐵 → 𝒳 there exists an infinite 𝑁 ⊆ 𝑀 such that the
restriction 𝑓 ∶ 𝐵|𝑁 → 𝒳 is uniformly continuous.

Proof. If 𝒳 is a non-empty compact metric space, then there exists a con-
tinuous ℎ ∶ 2𝜔 → 𝒳 onto 𝒳 [Kec95, (4.18), p. 23], and this ℎ is in fact
uniformly continuous by the Heine-Cantor theorem [Kec95, (4.5), p. 19]. So
let 𝑓 ∶ 𝐹 → 𝒳 be any super-sequence. We can choose some super-sequence
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𝑔 ∶ 𝐹 → 2𝜔 such that ℎ ∘ 𝑔 = 𝑓 . Now applying Theorem 3.25 to 𝑔, there exists
some front 𝐹 ′ ⊆ 𝐹 such that 𝑔↾𝐹 ′ ∶ 𝐹 ′ → 2𝜔 is uniformly continuous. It fol-
lows that 𝑓↾𝐹 ′ = ℎ ∘ 𝑔↾𝐹 ′ ∶ 𝐹 ′ → 𝒳 is uniformly continuous as a composition
of uniformly continuous maps.

In Subsection 2.2.3 we considered [𝑋]∞ for 𝑋 ∈ [𝜔]∞ with the induced
topology from 2𝜔. We noticed it was homeomorphic to the Baire space and we
viewed it as the closed subset of 𝜔𝜔 consisting of strictly increasing sequences
in 𝑋.

However as a subspace of 2𝜔, the set [𝑋]∞ also receives a unique uniformity.
As a uniform space [𝑋]∞ is not complete, its completion is of course the Cantor
space 2𝑋. The Boolean algebra of blocks of [𝑋]∞ consists of finite union of
sets of the form

𝑁(𝐹, 𝐺) = {𝑌 ∈ [𝑋]∞ ∣ 𝐹 ⊆ 𝑌 and 𝐺 ∩ 𝑌 = ∅}, for 𝐹, 𝐺 ∈ [𝑋]<∞.

We have an analogue to Theorem 3.8 in the context of locally constant maps
from [𝜔]∞ into a compact metric space.

Theorem 3.27. Let 𝒳 be compact metrisable and ℎ ∶ [𝜔]∞ → 𝒳 be locally
constant. There exists 𝑌 ∈ [𝜔]∞ such that the restriction ℎ ∶ [𝑌 ]∞ → 𝒳 is
uniformly continuous, and therefore extends to a continuous map ℎ ∶ 2𝑌 → 𝒳.

Proof. By Theorem 3.26 there exists some 𝑌 ∈ [𝜔]∞ such that the restriction
ℎ̌ ∶ 𝐹 ℎ|𝑌 → 𝒳 is uniformly continuous. This 𝑌 is as required since ℎ ∶ [𝑌 ]∞ →
𝒳 extends to the continuous ℎ ∶ 2𝑌 → 𝒳 given by ℎ(𝑠) = ℎ̌(𝑠) if 𝑠 ∈ 𝐹 ℎ|𝑌
and ℎ(𝑢) = ℎ̌(𝑠) for the unique 𝑠 ∈ 𝐹 ℎ|𝑌 with 𝑠 ⊏ 𝑢, otherwise.

3.4 Converging super-sequences
One can think of a super-sequence 𝑓 ∶ 𝐹 → 𝒳 which extends to a continuous
𝑓 ∶ 𝐹 → 𝒳 as ‘converging towards 𝑓 ’. In this section, we study these ‘con-
verging super-sequences’, namely the continuous maps 𝑓 ∶ 𝐹 → 𝒳 into some
topological space 𝒳.

3.4.1 Normal form
Let 𝑓 ∶ 𝐹 → 𝒳 be a map from the closure of a front 𝐹 on some 𝑁 ∈ [𝜔]∞ into
a topological space 𝒳. Let

Λ𝑓 = {𝑠 ∈ 𝐹 ∣ 𝑓(𝑠) is limit in 𝒳},
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the closed subset of 𝐹 of those points whose image is a limit point in 𝒳.
Observe that if 𝑀 ∈ [𝑁]∞ and 𝑔 = 𝑓↾𝐹|𝑀 ∶ 𝐹 |𝑀 → 𝒳, then Λ𝑔 = Λ𝑓 |𝑀 .
Recall that by Corollary 3.7, for all 𝑀 ∈ [𝑁]∞ we have 𝐹|𝑀 = 𝐹|𝑀 and
(𝐹)𝑛 = 𝐹𝑛 for all 𝑛 ∈ 𝑁 .

Definition 3.28. Let 𝐹 be a front on 𝑁 ∈ [𝜔]∞ and 𝒳 a topological space.
We say that a continuous map 𝑓 ∶ 𝐹 → 𝒳 is normal if

(1) Λ𝑓 is either empty or the closure of a front on 𝑋,

(2) for all 𝑠, 𝑡 ∈ 𝐹 ∖ Λ𝑓 , 𝑠 ⊑ 𝑡 implies 𝑓(𝑠) = 𝑓(𝑡).

Example 3.29. The map 𝑓 ∶ [𝜔]⩽2 → [𝜔]⩽2 given by

𝑓(𝑚, 𝑛) = {0𝜔 if 𝑚 = 0 and 𝑛 = 1,
0𝑚10𝑛10𝜔 otherwise,

𝑓(𝑚) = 0𝑚10𝜔 and 𝑓(∅) = 0𝜔, is continuous but it is not normal since Λ𝑓 =
[𝜔]⩽1 ∪ {(0, 1)} is not the closure of a front.

Lemma 3.30. If 𝑓 ∶ 𝐹 → 𝒳 is normal and 𝐺 ⊆ 𝐹 is a front then 𝑔 = 𝑓↾𝐺 ∶
𝐺 → 𝒳 is normal too.

Proof. Let 𝑀 ∈ [⋃ 𝐹]∞ with 𝐺 = 𝐹|𝑀 . Then Λ𝑔 = Λ𝑓 |𝑀 is either empty or a
front on 𝑀 . Moreover if 𝑠, 𝑡 ∈ 𝐺∖Λ𝑔, then 𝑠, 𝑡 ∈ 𝐹 , 𝑠, 𝑡 ⊂ 𝑀 , and 𝑠, 𝑡 ∉ Λ𝑓 |𝑀 ,
so 𝑠, 𝑡 ∉ Λ𝑓 and thus 𝑠 ⊑ 𝑡 implies 𝑔(𝑠) = 𝑓(𝑠) = 𝑓(𝑡) = 𝑔(𝑡).

Here is Theorem 1.2 from the Introduction.

Theorem 3.31 (with R. Carroy). Let 𝐹 be a front on 𝑁 ∈ [𝜔]∞, 𝒳 be a
topological space and 𝑓 ∶ 𝐹 → 𝒳 be a continuous map. Then there exists a
front 𝐺 ⊆ 𝐹 such that 𝑔 = 𝑓↾𝐺 ∶ 𝐺 → 𝒳 is normal.

Proof. By induction on the rank of 𝐹 . The theorem is obvious for the trivial
front. We suppose it holds for all continuous maps from the closure of a front
with rank strictly smaller than 𝛼 > 0. Let 𝐹 be a front on 𝑁 with rk 𝐹 = 𝛼.
Claim. There exists 𝑀 ∈ [𝑁]∞ such that for all 𝑚 ∈ 𝑀 the map

𝑓𝑀
𝑚 ∶ (𝐹 |𝑀)𝑚 ⟶ 𝒳

𝑠 ⟼ 𝑓({𝑚} ∪ 𝑠)

is normal.

67



3 Sequences in spaces

Proof of the claim. We build by recursion a sequence (𝑀𝑖)𝑖∈𝜔, with 𝑚𝑖 the
minimum of 𝑀𝑖, such that for all 𝑖 ∈ 𝜔 we have

(a) 𝑀0 = 𝑁 and 𝑀𝑖+1 ∈ [𝑀𝑖/𝑚𝑖]∞,

(b) 𝑓𝑀𝑖𝑚𝑖 ∶ (𝐹 |𝑀𝑖+1)𝑚𝑖
→ 𝒳 is normal.

By induction, suppose that the sequence is defined up to 𝑖 ⩾ 0. The family
𝐹𝑚𝑖

is a front on 𝑀𝑖/𝑚𝑖 with rk(𝐹𝑚𝑖
) < 𝛼, so we can use the induction

hypothesis on the continuous map 𝑓𝑚𝑖
∶ 𝐹𝑚𝑖

→ 𝒳 defined by 𝑠 ↦ 𝑓({𝑚𝑖} ∪ 𝑠)
to get 𝑀𝑖+1 ∈ [𝑀𝑖/𝑚𝑖]∞ such that the restriction 𝑓𝑀𝑖+1𝑚𝑖 ∶ (𝐹 |𝑀𝑖+1)𝑚𝑖

→ 𝒳
is normal.

Now setting 𝑀 = {𝑚0, 𝑚1, …} we have 𝑀/𝑚𝑖 ∈ [𝑀𝑖+1]∞ and thus 𝑓𝑀/𝑚𝑖𝑚𝑖
is normal by Lemma 3.30.

Therefore we can suppose without loss of generality that 𝐹 is a non-trivial
front on 𝑁 and that 𝑓 ∶ 𝐹 → 𝒳 is such that

𝑓𝑛 ∶ 𝐹 𝑛 ⟶ 𝒳
𝑠 ⟼ 𝑓({𝑛} ∪ 𝑠)

is normal for all 𝑛 ∈ 𝑁 . Notice that as 𝐹 is a non-trivial front on 𝑁 , {𝑛} ∈ 𝐹
for all 𝑛 ∈ 𝑁 . We now distinguish two cases.

∅ ∉ Λ𝑓 : Since 𝑓 is continuous we have 𝑓(∅) = lim𝑛∈𝑁 𝑓({𝑛}) and as 𝑓(∅)
is isolated in 𝒳 there exists a 𝑀 ∈ [𝑁]∞ such that 𝑓({𝑚}) = 𝑓(∅)
for all 𝑚 ∈ 𝑀 . Then for all 𝑚 ∈ 𝑀 we have that {𝑚} ∉ Λ𝑓 , that is
∅ ∉ (Λ𝑓){𝑚}. Hence (Λ𝑓){𝑚} cannot be the closure of a front, so it must
be empty. Therefore Λ𝑓 |𝑀 is empty and for 𝐺 = 𝐹|𝑀 , the restriction
𝑓↾𝐺 ∶ 𝐺 → 𝒳 is constant, hence normal.

∅ ∈ Λ𝑓 : There exists 𝑀 ∈ [𝑁]∞ such that either {𝑚} ∉ Λ𝑓 for all 𝑚 ∈ 𝑀 , or
{𝑚} ∈ Λ𝑓 for all 𝑚 ∈ 𝑀 .

– In the former case, we have Λ𝑓 |𝑀 = {∅} and so 𝐺 = 𝐹|𝑀 meets
the conditions.

– In the latter case, for all 𝑚 ∈ 𝑀 the set (Λ𝑓 |𝑀)𝑚 is the closure of
a front 𝐿𝑚 on 𝑀/𝑚. Hence 𝐿 = seq𝑚∈𝑀 𝐿𝑚 is a front on 𝑀 and
Λ𝑓 |𝑀 = 𝐿. Hence 𝐺 = 𝐹|𝑀 meets the requirements.
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Remark 3.32. It does not hold that for every map 𝑓 ∶ 𝐹 → 2 from the closure
of a front there exists a front 𝐺 ⊆ 𝐹 such that at least one of 𝑓↾−1

𝐺 (0) or
𝑓↾−1

𝐺 (1) is either empty or the closure of a front. One can for example consider
the function 𝑓 ∶ [𝜔]⩽2 → 2 defined by

𝑓(𝑚, 𝑛) = {0 if 𝑚 is even,
1 if 𝑚 is odd,

𝑓(𝑚) = {1 if 𝑚 is odd,
0 if 𝑚 is even,

𝑓(∅) = 0.

3.4.2 Super-sequences of isolated points
In Section 4.2 we deal with super-sequences 𝑓 ∶ 𝐹 → 𝒳 which range in Isol(𝒳),
the isolated points of 𝒳, and which continuously extend to a map ̄𝑓 ∶ 𝐹 → 𝒳.
In this case, the set Λ ̄𝑓 is then included in 𝐹 ∖ 𝐹 . We collect here some easy
lemmas pertaining to this situation.

Lemma 3.33. If 𝐹 is a front then 𝐹 ∖ 𝐹 = {𝜒𝑠 ∣ ∃𝑡 ∈ 𝐹 𝑠 ⊏ 𝑡} and
𝐹 = max⊑ 𝐹 .

Proof. By Proposition 3.5 we have {𝜒𝑠 ∣ ∃𝑡 ∈ 𝐹 𝑠 ⊑ 𝑡} = 𝐹 . For the first
claim, if 𝑠 ⊑ 𝑡 ∈ 𝐹 and 𝑠 ∉ 𝐹 then 𝑠 ⊏ 𝑡. Conversely, if 𝑠 ⊏ 𝑡 ∈ 𝐹 then 𝑠 ∉ 𝐹
since 𝐹 is a front. For the second claim, if 𝑠 ∈ 𝐹 and 𝑠 ⊑ 𝑡 ∈ 𝐹 , then there is
𝑢 ∈ 𝐹 with 𝑡 ⊑ 𝑢, so 𝑠 ⊑ 𝑢 and thus 𝑠 = 𝑡 = 𝑢. And if 𝑠 ∈ 𝐹 is maximal in 𝐹
then there is no 𝑡 ∈ 𝐹 with 𝑠 ⊏ 𝑡 and thus by the first claim 𝑠 ∈ 𝐹 .

Lemma 3.34. If 𝐹 and 𝐺 are fronts and 𝐺 ⊆ 𝐹 ∖ 𝐹 then 1 + rk 𝐺 ⩽ rk 𝐹 .

Proof. Notice that 𝑇 (𝐺) ⊆ 𝑇 (𝐹). By induction we show that for every 𝑠 ∈
𝑇 (𝐺) we have 1 + 𝜌𝑇 (𝐺)(𝑠) ⩽ 𝜌𝑇 (𝐹)(𝑠). If 𝑠 ∈ 𝐺 then there exists 𝑡 ∈ 𝐹 with
𝑠 ⊏ 𝑡 and so 1 + 𝜌𝑇 (𝐺)(𝑠) = 1 ⩽ sup{𝜌𝑇 (𝐹)(𝑡) + 1 ∣ 𝑠 ⊏ 𝑡 ∈ 𝑇 (𝐹)} = 𝜌𝑇 (𝐹)(𝑠).
Now if 𝑠 ∈ 𝑇 (𝐺) ∖ 𝐺 then by induction hypothesis

1 + 𝜌𝑇 (𝐺)(𝑠) = sup{(1 + 𝜌𝑇 (𝐺)(𝑡)) + 1 ∣ 𝑠 ⊏ 𝑡 ∈ 𝑇 (𝐺)}
⩽ sup{𝜌𝑇 (𝐹)(𝑡) + 1 ∣ 𝑠 ⊏ 𝑡 ∈ 𝑇 (𝐹)} = 𝜌𝑇 (𝐹)(𝑠).

Therefore 1 + rk 𝐺 = 1 + 𝜌𝑇 (𝐺)(∅) ⩽ 𝜌𝑇 (𝐹)(∅) = rk 𝐹 .

Remark 3.35. The topology induced by the Cantor space on every front 𝐹 is
discrete. It easily follows from this fact that the set of isolated points Isol(𝐹)
of the closure of 𝐹 is equal to 𝐹 , or in other words the Cantor-Bendixson
derivative of 𝐹 is equal to 𝐹 . However, in general it is not true that 𝐹 ∖ 𝐹 is
the closure of a front as the following example shows.
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Bendixson The closed set 𝐺

⋯

...and its derivative

⋯

Figure 3.3: A front whose derivative of the closure is no closure of a front.

Let 𝐺(0) = {{1}} ∪ [𝜔/1]2 and 𝐺(𝑛) = [𝜔/𝑛]2 for every 𝑛 ⩾ 1. We build the
front 𝐺 = seq𝑛∈𝜔 𝐺(𝑛) (cf. Figure 3.3). We have

𝐺′ = Isol (𝐺 ∖ 𝐺) = {{0, 𝑛} ∣ 𝑛 ⩾ 2} ∪ [𝜔/1]2.

But while ⋃ 𝐺′ = 𝜔, the infinite set 𝜔 has no initial segment in 𝐺′. Hence 𝐺′

is not a front.

Lemma 3.36. Let 𝐹 be a front, 𝒳 a topological space. If 𝑓 ∶ 𝐹 → Isol(𝒳) is
spare and extends to a normal 𝑓 ∶ 𝐹 → 𝒳, then Λ𝑓 = 𝐹 ∖ 𝐹 .

Proof. Since 𝑓 ∶ 𝐹 → Isol(𝒳) we have Λ𝑓 ⊆ 𝐹 ∖𝐹 by definition. Let 𝑠 ∈ 𝐹 ∖Λ𝑓 .
Since 𝑓 ∶ 𝐹 → 𝒳 is normal then for every 𝑡 ∈ 𝐹 we have 𝑠 ⊑ 𝑡 implies
𝑓(𝑠) = 𝑓(𝑡). Since 𝑓 ∶ 𝐹 → 𝒳 is spare, necessarily 𝑠 ∈ 𝐹 by Lemma 2.45.

In general for a front 𝐹 , 𝐹 ∖ 𝐹 , which is the Cantor-Bendixson derivative of
𝐹 , is not of the form 𝐺 for a front 𝐺. However when this happens, as in the
previous lemma, we have the following result.

Lemma 3.37. Let 𝐹 be a front on 𝑋. If 𝐹 ∖ 𝐹 = 𝐺 for some front 𝐺 on 𝑋,
then for every 𝑠 ∈ 𝐺 the following are equivalent

(i) 𝑠 ∈ 𝐺,

(ii) for every 𝑛 ∈ 𝑋/𝑠, 𝑠 ∪ {𝑛} ∈ 𝐹 ,

(iii) there exists 𝑛 ∈ 𝑋/𝑠 such that 𝑠 ∪ {𝑛} ∈ 𝐹 .

And moreover,
𝐹 = {𝑠 ∪ {𝑛} ∣ 𝑠 ∈ 𝐺 and 𝑛 ∈ 𝑋/𝑠}.
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Proof. (i)→(ii): Let 𝑛 ∈ 𝑋/𝑠. Since 𝐹 is a front on 𝑋, there exists 𝑡 ∈ 𝐹
with 𝑡 ⊏ 𝑠 ∪ {𝑛} ∪ 𝑋/𝑛. Now 𝑡 ⊑ 𝑠 would contradict Lemma 3.33 for 𝐹 .
And if 𝑠 ∪ {𝑛} ⊏ 𝑡 then 𝑠 ∪ {𝑛} ∈ 𝐹 ∖ 𝐹 = 𝐺 by Lemma 3.33 and so
𝑠 ⊏ 𝑠 ∪ {𝑛} ∈ 𝐺 contradicting Lemma 3.33 for 𝐺. So 𝑠 ∪ {𝑛} = 𝑡 ∈ 𝐹 as
desired.

(iii)→(i): If for some 𝑛 ∈ 𝑋/𝑠 we have 𝑠 ∪ {𝑛} ∈ 𝐹 , then by Lemma 3.33 𝑠 is
maximal for ⊑ in 𝐺 and so 𝑠 ∈ 𝐺.

Finally by (ii) 𝑠 ∪ {𝑛} ∈ 𝐹 for every 𝑠 ∈ 𝐺 and 𝑛 ∈ 𝑋/𝑠. Conversely if
𝑠 ∪ {𝑛} ∈ 𝐹 then 𝑠 ∈ 𝐺 and thus 𝑠 ∈ 𝐺 by (iii).

This concludes this chapter on super-sequences in metric and topological
spaces. The results we obtained are applied in the context of bqo theory in
the next chapter.
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4 The ideal space of a
well-quasi-order

For simplicity we restrict ourselves to partial orders in this chapter. This is
of course no real restriction since we are only interested in the properties of
quasi-orders preserved by equivalence and every quasi-order admits a unique
equivalent partial order up to isomorphism.

The following ‘ideal objects’ of a partial ordered play a central rôle in this
chapter.

Definition 4.1. Let 𝑃 be a partial order. An ideal (also directed ideal, up-
ideal) of 𝑃 is a subset 𝐼 ⊆ 𝑃 such that

(1) 𝐼 is non empty;

(2) 𝐼 is a downset;

(3) for every 𝑝, 𝑞 ∈ 𝐼 there exists 𝑟 ∈ 𝐼 with 𝑝 ⩽ 𝑟 and 𝑞 ⩽ 𝑟.

Equivalently a subset 𝐼 of a po 𝑃 is an ideal if 𝐼 a downset and 𝐼 is directed,
namely every (possibly empty) finite subset 𝐹 ⊆ 𝐼 admits an upper bound in
𝐼 , i.e. there exists 𝑞 ∈ 𝐼 with 𝐹 ⊆ ↓ 𝑞. For every 𝑝 ∈ 𝑃 , the set ↓ 𝑝 is an ideal
called a principal ideal.

Definition 4.2. The set of ideals of 𝑃 partially ordered by inclusion, denoted
by Id(𝑃 ), is referred to as the ideal completion of the partial order 𝑃 .

For each partial order 𝑃 we have the embedding

𝑃 ⟼ Id(𝑃)
𝑝 ⟼ ↓ 𝑝,

and we henceforth identify each element 𝑝 with the corresponding principal
ideal ↓ 𝑝. In particular we have the inclusions 𝑃 ⊆ Id(𝑃) ⊆ 𝒟(𝑃) as partial
orders.

We observe that we cannot replace 𝒟(𝑃) by Id(𝑃 ) in Proposition 2.6, i.e. it
is not true that a po 𝑃 is wqo if and only Id(𝑃 ) is well-founded. The simplest
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example is given by the antichain 𝐴 = (𝜔, =). The partial order Id(𝐴) is
equal to 𝐴 so, in particular, even though 𝐴 is not wqo, Id(𝐴) is well-founded.
Nonetheless, when 𝑃 is wqo then Id(𝑃 ) is well-founded.

Recall also that by Corollary 2.56 if 𝑃 is bqo, then 𝑉 ∗(𝑃 ) is bqo, and so
in particular Id(𝑃 ) – which is included in 𝑉 ∗(𝑃 ) – is bqo. Of course since
𝑃 ⊆ Id(𝑃), it follows that 𝑃 is bqo if and only if Id(𝑃 ) is bqo.

A non-principal ideal of 𝑃 is an ideal which is not of the form ↓ 𝑝 for some 𝑝 ∈
𝑃 . We write Id*(𝑃 ) for the partial order of non-principal ideals, i.e. Id*(𝑃 ) =
Id(𝑃) ∖ 𝑃 . The partial order Id*(𝑃 ) is therefore the remainder of the ideal
completion of 𝑃 .

The main new result in this chapter is a proof of the following conjecture
due to Pouzet [Pou78]: If 𝑃 is wqo and Id*(𝑃 ) is bqo, then 𝑃 is bqo.

Notice that the assumption that 𝑃 is wqo cannot be dropped since for both
the antichain (𝜔, =) and the descending chain 𝜔op – the opposite of (𝜔, ⩽) –
the remainder of the ideal completion is empty, hence bqo.

Our proof of Pouzet’s conjecture relies on the fact that the ideal completion
Id(𝑃 ) of a wqo 𝑃 is actually a compact topological space when topologised
as a subspace of the generalised Cantor space 2𝑃 and that the results we
obtained in Chapter 3 can eventually be applied to yield the following (cf.
Theorem 4.34):

Theorem 4.3. Every super-sequence 𝑓 ∶ 𝐹 → 𝑃 into a wqo 𝑃 admits a
Cauchy sub-super-sequence 𝑓 ′ ∶ 𝐹 ′ → 𝑃 which therefore extends to a continu-
ous map 𝑓 ′ ∶ 𝐹 ′ → Id(𝑃) into the ideals of 𝑃 .

Using the above theorem and the results of Chapter 3 we then prove (cf.
Theorem 4.39) that any bad super-sequence in a wqo 𝑃 yields a bad super-
sequence into the non principal ideals of 𝑃 . This shows that if a wqo 𝑃 is not
bqo, then Id*(𝑃 ) is not bqo, therefore proving Pouzet’s conjecture.

Our first task is to collect the properties of the ideal completion of a wqo
which are required to prove the above theorem. We do this in the first section
by showing that in the case of a wqo the ideal completion coincides with
two other important completions of a quasi-order – namely the Cauchy ideal
completion and the profinite completion or Nachbin order-compactification –
the properties of which combine to yield what we call the ideal space of a wqo.
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4.1 Completions of well-quasi-orders
4.1.1 Ideal completion
Let us start by the well-known fact that ideals play a particular rôle among
the downsets of a partial order.

Proposition 4.4. For a non empty downset 𝐼 of a partial order 𝑃 , the fol-
lowing are equivalent.

(i) 𝐼 is an ideal;

(ii) 𝐼 is a join-prime element of the lattice 𝒟(𝑃), i.e. for every 𝐸, 𝐷 ∈ 𝒟(𝑃),
𝐼 ⊆ 𝐸 ∪ 𝐷 implies 𝐼 ⊆ 𝐸 or 𝐼 ⊆ 𝐷;

(iii) for every 𝐸, 𝐷 ∈ 𝒟fb(𝑃 ), 𝐼 ⊆ 𝐸 ∪ 𝐷 implies 𝐼 ⊆ 𝐸 or 𝐼 ⊆ 𝐷.

Proof. (i)→(ii): For an ideal 𝐼 and downsets 𝐷 and 𝐸, suppose that 𝐼 ⊈ 𝐷
and 𝐼 ⊈ 𝐸. Then there exist 𝑝, 𝑞 ∈ 𝐼 with 𝑝 ∉ 𝐷 and 𝑞 ∉ 𝐸, and since
𝐼 is directed there is some 𝑟 ∈ 𝐼 with 𝑟 ⩾ 𝑝 and 𝑟 ⩾ 𝑞. As 𝐸 and 𝐷
are downsets, necessarily 𝑟 does not belong to 𝐷 nor to 𝐸. Therefore
𝐼 ⊈ 𝐸 ∪ 𝐷.

(ii)→(iii): Trivial.

(iii)→(i): Suppose 𝐼 is a non empty downset which is not directed. Then there
exist 𝑝, 𝑞 ∈ 𝐼 such that ↑ 𝑝∩↑ 𝑞∩𝐼 is empty. Therefore 𝐼 ⊆ 𝑃 ∖↑ 𝑝∪𝑃 ∖↑ 𝑞
while both 𝐼 ⊈ 𝑃 ∖ ↑ 𝑝 and 𝐼 ⊈ 𝑃 ∖ ↑ 𝑞 hold.

A partial order in which every directed set 𝐷 admits a supremum, denoted
by sup 𝐷, is called a directed complete partial order (dcpo, also up-complete).
Since any directed union of ideals of a po 𝑃 is an ideal of 𝑃 , Id(𝑃 ) is a dcpo.
Recall that an element 𝑝 of dcpo is compact if for every directed subset 𝐷,
𝑝 ⩽ sup 𝐷 implies that there exists 𝑞 ∈ 𝑆 with 𝑝 ⩽ 𝑞. Finally a partial order
𝑃 is said to be algebraic (also algebraic domain) if it is a dcpo and for each
𝑝 ∈ 𝑃 there exists a directed set 𝐷 of compact elements with sup 𝐷 = 𝑝. It
is easy to see that Id(𝑃 ) is an algebraic partial order whose compact elements
are exactly the principal ideals. Therefore every partial order is isomorphic to
the partial order of compact elements of some algebraic partial order. In fact,
conversely a partial order is algebraic if and only if it is isomorphic to the ideal
completion of some partial order (see for example [Ern93]). We also refer the
reader to the paper by Gehrke and Priestley [GP08, Proposition 2.1] for an
abstract characterisation of the ideal completion of a partial order.
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4 The ideal space of a well-quasi-order

We now endow the ideal completion of a partial order with a topology. We do
this by exploiting the fact that any dcpo can be equipped with several intrinsic
topologies, i.e. topologies which can be defined by in terms of the partial order.
We recall the relevant definitions and refer the reader to the textbook by Gierz
et al. [Gie+03] for a more detailed presentation of these concepts.

For a dcpo 𝑃 , a subset 𝑈 of 𝑃 is called Scott open if it is an upset and for
every directed 𝑆, sup 𝑆 ∈ 𝑈 implies 𝑆 ∩ 𝑈 ≠ ∅. Scott open subsets of a dcpo
𝑃 form a topology on 𝑃 called the Scott topology.

The lower topology on a partial order 𝑃 is generated by the base consisting
of the finitely bounded downsets, namely the subsets of the form 𝑃 ∖ ↑ 𝐹 for
finite 𝐹 ⊆ 𝑃 .

The Lawson topology on a dcpo 𝑃 is the join of the Scott and the lower
topology, it admits as a subbase the family of Scott open sets and sets of the
form 𝑃 ∖ ↑ 𝑝, for 𝑝 ∈ 𝑃 , and as a base the sets of the form 𝑈 ∖ ↑ 𝐹 for 𝑈 Scott
open and 𝐹 a finite subset of 𝑃 .

For every partial order 𝑃 let us endow Id(𝑃 ) with the Lawson topology. It
turns out that this topology on Id(𝑃 ) admits another useful description.

Recall from Subsection 2.1.4 that the clopen subsets of the generalised Cantor
space 2𝑃 are finite unions of sets of the form

𝑁(𝐹, 𝐺) = {𝑋 ⊆ 𝑃 ∣ 𝐹 ⊆ 𝑋 and 𝐺 ∩ 𝑋 = ∅}

for finite subsets 𝐹 and 𝐺 of 𝑃 . We write ⟨𝐹⟩ instead of 𝑁(𝐹, ∅) and ⟨𝑝⟩
instead of ⟨{𝑝}⟩. In particular, the sets of the form ⟨𝑝⟩ or ⟨𝑝⟩∁ for 𝑝 ∈ 𝑃
constitute a subbase for the topology of 2𝑃 . As a matter of fact, the topology
on 2𝑃 is the Lawson topology associated with the partial order of inclusion on
the subsets of 𝑃 .

We now notice that the topology induced on Id(𝑃 ) by 2𝑃 is intrinsic:

Lemma 4.5. Let 𝑃 be a partial order. The Lawson topology on Id(𝑃 ) coincides
with the topology induced by 2𝑃 .

Proof. For 𝑝 ∈ 𝑃 , ⟨𝑝⟩ ∩ Id(𝑃 ) is an upset for inclusion. In addition, if 𝑆 is a
directed set of ideals and 𝑝 ∈ ⋃ 𝑆 then for some 𝐼 ∈ 𝑆 we have 𝑝 ∈ 𝐼 , i.e.
𝐼 ∈ ⟨𝑝⟩. Therefore ⟨𝑝⟩ is Scott open. Moreover if 𝑝 ∈ 𝑃 , then ⟨𝑝⟩∁ ∩ Id(𝑃)
is equal to {𝐼 ∈ Id(𝑃) ∣ ↓ 𝑝 ⊈ 𝐼}, which is open in the lower topology by
definition.

Conversely, let 𝑈 be a Scott open set of Id(𝑃 ). For every 𝐼 ∈ 𝑈 since 𝐼
is the directed union of the principal ideals ↓ 𝑝 for 𝑝 ∈ 𝐼 , there must exist
𝑝 ∈ 𝐼 with ↓ 𝑝 ∈ 𝑈 , and therefore 𝐼 ∈ ⟨𝑝⟩ ∩ Id(𝑃) ⊆ 𝑈 . Therefore 𝑈 is open
in the relative topology. Moreover for 𝐼 ∈ Id(𝑃), the lower open subbasic set
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{𝐽 ∈ Id(𝑃) ∣ 𝐼 ⊈ 𝐽} is equal to the set Id(𝑃 ) ∩ ⋃𝑝∈𝐼⟨𝑝⟩∁ which is open in the
relative topology.

In particular, since a subspace of the compact Hausdorff space 2𝑃 is compact
if and only if it is closed, we have the following.

Corollary 4.6. The partial order Id(𝑃 ) is compact in the Lawson topology if
and only if Id(𝑃 ) is closed as a subset of 2𝑃 .

Remark 4.7. Any partial order 𝑃 can be equipped with the Alexandroff to-
pology consisting in the upsets of 𝑃 . The condition (ii) in Proposition 4.4
amounts to saying that the ideals are the irreducible non empty closed sets of
𝑃 for the Alexandroff topology. Along this line, Hoffmann [Hof79] observed
that the sobrification of a partial order 𝑃 equipped with the Alexandroff to-
pology coincide with the partial order Id(𝑃 ) equipped with the Scott topology
(see for example [Joh86, p. 291] for a proof).

4.1.2 The Cauchy ideal completion
We now regard a partial order 𝑃 as a subset of the generalised Cantor space
2𝑃 via the identification 𝑝 ↦ ↓ 𝑝.

Definition 4.8. The topological closure of 𝑃 inside 2𝑃 equipped with the
partial order of inclusion is denoted by CId(𝑃) and referred to as the Cauchy
ideal completion of the partial order 𝑃 .

Erné and Palko [EP98] call a subset 𝐽 of a partial order 𝑃 a Cauchy ideal
if for every finite 𝐹 ⊆ 𝐽 and every finite 𝐺 ⊆ 𝑃 ∖ 𝐽 there exists 𝑝 ∈ 𝑃 with
𝐹 ⊆ ↓ 𝑝 and 𝐺∩↓ 𝑝 = ∅. In our terminology, a subset 𝐽 ⊆ 𝑃 is a Cauchy ideal
if and only if for every finite 𝐹, 𝐺 ⊆ 𝑃 with 𝐽 ∈ 𝑁(𝐹 , 𝐺) there exists 𝑝 ∈ 𝑃
such that ↓ 𝑝 ∈ 𝑁(𝐹 , 𝐺). Whence in other words a subset 𝐽 of 𝑃 is a Cauchy
ideal exactly when 𝐽 ∈ CId 𝑃 .

The term ‘Cauchy ideal completion’ is introduced by Erné and Palko [EP98]
who define on any partial order 𝑃 a uniformity 𝑈𝑃 by taking as subbasic
entourages the sets of the form

𝑈↑ 𝑝 = {(𝑟, 𝑠) ∈ 𝑃 × 𝑃 ∣ 𝑝 ⩽ 𝑟 ↔ 𝑝 ⩽ 𝑠} = (↑ 𝑝 × ↑ 𝑝) ∪ (𝑃 ∖ ↑ 𝑝 × 𝑃 ∖ ↑ 𝑝),

for 𝑝 ∈ 𝑃 . Now by the results of Section 3.2, the uniformity induced by the
unique compatible uniformity on the compact Hausdorff space 2𝑃 is described
via the blocks of 𝑃 .
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Lemma 4.9. Let 𝑃 be a partial order viewed as a subset of 2𝑃 via 𝑝 ↦ ↓ 𝑝.
The family of blocks of 𝑃 is the Boolean algebra generated by the sets of the
form ↑ 𝑝 for 𝑝 ∈ 𝑃 .

Proof. The family of clopen subsets of 2𝑃 being the Boolean algebra generated
by the sets of the form ⟨𝑝⟩ for 𝑝 ∈ 𝑃 , it follows that the family of blocks of
𝑃 is the Boolean algebra of subsets of 𝑃 generated by the sets of the form
⟨𝑝⟩ ∩ 𝑃 for each 𝑝 ∈ 𝑃 . Via the identification 𝑝 ↦ ↓ 𝑝 we have

⟨𝑝⟩ ∩ 𝑃 = {𝑞 ∈ 𝑃 ∣ ↓ 𝑞 ∈ ⟨𝑝⟩} = {𝑞 ∈ 𝑃 ∣ 𝑝 ∈ ↓ 𝑞} = ↑ 𝑝.

Therefore Blocks(𝑃 ) is the Boolean algebra generated by the sets of the form
↑ 𝑝 for 𝑝 ∈ 𝑃 .

It follows that the uniformity associated with Blocks(𝑃 ) (see Lemma 3.17)
coincides with the uniformity 𝑈𝑃 . In particular, it follows that the uniform
completion of (𝑃 , 𝑈𝑃 ) is (uniformly isomorphic to) the topological closure of 𝑃
in 2𝑃 . Therefore as observed by Erné and Palko [EP98] the Cauchy ideals may
also be viewed as the points of the uniform completion of (𝑃 , 𝑈𝑃 ). This justifies
our use of their terminology. We also refer the reader to the paper by Erné
[Ern01] where the idea of uniform completion and quasi-uniform completion
of partial orders is further explored.

The following simple observation relates the ideal completion of a partial
order with its Cauchy ideal completion.

Lemma 4.10. Let 𝑃 be a partial order.

(i) The set 𝒟(𝑃) is closed in 2𝑃 .

(ii) Every ideal is a Cauchy ideal.

In particular, we have the following inclusions of partial orders:

𝑃 ⊆ Id(𝑃) ⊆ CId(𝑃) ⊆ 𝒟(𝑃).

Proof. (i) As we already observed in Subsection 2.1.4, the set 𝒟(𝑃) is closed
in 2𝑃 since

𝒟(𝑃) = ⋂
𝑝⩽𝑞

⟨𝑞⟩∁ ∪ ⟨𝑝⟩.

(ii) Let 𝐼 be an ideal of 𝑃 and 𝑁(𝐹, 𝐺) – 𝐹, 𝐺 ∈ [𝑄]<∞ – be any basic
neighbourhood of 𝐼 in 2𝑃 . Since 𝐼 is directed, 𝐹 ⊆ 𝐼 implies that there
exists 𝑝 ∈ 𝐼 with 𝐹 ⊆ ↓ 𝑝. Since 𝐼 is downward closed, 𝐺 ∩ 𝐼 = ∅ implies
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𝐺 ∩ ↓ 𝑝 = ∅. Therefore ↓ 𝑝 belongs to the neighbourhood 𝑁(𝐹, 𝐺). Since
𝑁(𝐹, 𝐺) was arbitrary, it follows that 𝐼 ∈ CId(𝑃).

Finally since 𝒟(𝑃) is closed, we have CId(𝑃) ⊆ 𝒟(𝑃) and by (ii) we have
Id(𝑃 ) ⊆ CId(𝑃).

In general Cauchy ideals need not be directed (nor do they need to be non-
empty), and CId(𝑃) need not coincide with Id(𝑃 ). Two particularly simple
examples where Id(𝑃 ) is not equal to CId(𝑃) are given by the antichain 𝐴 =
(𝜔, =) and the descending chain 𝐷 = 𝜔op – the opposite of (𝜔, ⩽). Indeed,
while as we already noticed Id(𝐴) = 𝐴, the Cauchy ideal completion CId(𝐴)
is the antichain 𝐴 = {{𝑛} ∣ 𝑛 ∈ 𝜔} with the addition of a minimal element
∅ which is also a limit point. Similarly we have Id(𝐷) = 𝐷, while CId(𝐷)
consists of 𝐷 together with a minimal element which is also a limit point.

We now turn to the characterisation of the partial orders for which the ideal
completion coincide with the Cauchy ideal completion. For any subset 𝑆 of a
partial order 𝑃 let

𝑆↑ = ⋂
𝑝∈𝑆

↑ 𝑝 = {𝑞 ∈ 𝑃 ∣ ∀𝑝 ∈ 𝑆 𝑝 ⩽ 𝑞},

the upset of upper bounds of 𝑆 in 𝑃 . Also, as we did for infinite subsets of the
natural numbers, let us denote by [𝑃 ]<∞ the set of finite subsets of a set 𝑃 .

Definition 4.11. We say that a partial order 𝑃 has property 𝑀 if the set of
upper bounds of any finite (possibly empty) subset of 𝑃 admits a finite basis.
In symbols, for all 𝐹 ∈ [𝑃 ]<∞ there exists 𝐺 ∈ [𝑃 ]<∞ such that 𝐹 ↑ = ↑ 𝐺.

Equivalently 𝑃 has property 𝑀 if 𝑃 is finitely generated and for every 𝑝, 𝑞 ∈
𝑃 the upset ↑ 𝑝 ∩ ↑ 𝑞 is finitely generated.

Recall that by Proposition 2.6 (W4) a partial order 𝑃 is wqo if and only
if every upset is finitely generated. In particular every wqo has property 𝑀 .
However adding a minimal element ⊥ to the antichain (𝜔, =) provides an
example of a partial order with property 𝑀 which is of course not wqo.

Notice however that while any subset of a wqo is wqo, the property 𝑀 is
not hereditary. Indeed removing the minimal element from (𝜔, =)∪{⊥} results
in the loss of the property 𝑀 .
Remark 4.12. Bekkali, Pouzet, and Zhani [BPZ07] call a partial order 𝑃 up-
closed if ↑ 𝑝 ∩ ↑ 𝑞 is finitely generated for every 𝑝, 𝑞 ∈ 𝑃 . Their notion of
up-closed differs from property 𝑀 only in that 𝑃 = ∅↑ need not be finitely
generated.
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⋮
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Figure 4.1: Examples of partial orders without property 𝑀 .

Now observe that by Lemma 4.10 we have Id(𝑃 ) = CId(𝑃) if and only if
Id(𝑃 ) is closed in 2𝑃 . Moreover by Corollary 4.6 Id(𝑃 ) is closed in 2𝑃 if and
only if Id(𝑃 ) is compact in the Lawson topology. Finally it is folklore that a
partial order 𝑃 has property 𝑀 if and only if Id(𝑃 ) is compact in the Lawson
topology (see e.g. [Gie+03, Corollary II-5.15, p.259 and Proposition I-4.10,
p.118]). However to keep our exposition self-contained we provide the proof
of the following proposition which can also be found in the paper by Bekkali,
Pouzet, and Zhani [BPZ07].

Proposition 4.13. For a partial order 𝑃 , the following are equivalent.

(i) 𝑃 has property 𝑀 ;

(ii) CId(𝑃) = Id(𝑃) as subsets of 2𝑃 ;

(iii) Id(𝑃 ) is compact in the Lawson topology.

In particular, 𝑃 has property 𝑀 if and only if every Cauchy ideal of 𝑃 is an
ideal.

Proof. (i)→(ii): Suppose 𝑃 has property 𝑀 . For all 𝐹 ∈ [𝑃 ]<∞ there exists
𝐺 ∈ [𝑃 ]<∞ such that 𝐹 ↑ = ↑ 𝐺 and therefore

⋃
𝑟∈𝐹 ↑

⟨𝑟⟩ = ⋃
𝑟∈𝐺

⟨𝑟⟩

is clopen in 2𝑃 as a finite union of clopen sets. Since ∅↑ = 𝑃 is also
finitely generated there exists a finite 𝐵 ⊆ 𝑃 with 𝑃 = ↑ 𝐵. Now we can
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see that

Id(𝑃 ) ={𝐼 ∈ 𝒟(𝑃) ∣ ∀𝐹 ∈ [𝑃 ]<∞(𝐹 ⊆ 𝐼 → ∃𝑟 ∈ 𝐹 ↑ 𝑟 ∈ 𝐼) ∧ 𝐼 ≠ ∅}
= 𝒟(𝑃) ∩ ⋂

𝐹∈[𝑃 ]<∞
(⟨𝐹⟩∁ ∪ ⋃

𝑟∈𝐹 ↑
⟨𝑟⟩) ∩ ⋃

𝑝∈𝐵
⟨𝑝⟩.

is closed in 2𝑃 . Since 𝑃 ⊆ Id(𝑃) ⊆ CId(𝑃) by Lemma 4.10, we have
CId(𝑃) = Id(𝑃).

(ii)→(iii): By Lemma 4.10 again, we have CId(𝑃) = Id(𝑃) if and only if Id(𝑃 )
is closed in 2𝑃 . Moreover by Corollary 4.6, Id(𝑃 ) is closed in 2𝑃 if and
only if Id(𝑃 ) is compact in the Lawson topology.

(iii)→(i): By Corollary 4.6, if Id(𝑃 ) is compact in the Lawson topology, then
Id(𝑃 ) is closed in 2𝑃 and therefore compact. In particular, the empty
set – which is not an ideal by definition – does not belong to the closure
of 𝑃 and so ∅ admits a basic neighbourhood 𝑁(∅, 𝐺) for a finite subset
𝐺 of 𝑃 such that ↓ 𝑝 ∉ 𝑁(∅, 𝐺) for all 𝑝 ∈ 𝑃 , i.e. ↑ 𝐺 = 𝑃 , or in other
symbols ∅↑ = ↑ 𝐺. Now let 𝐹 ⊆ 𝑃 be non empty and finite. If 𝐹 ↑ is
empty it is equal to ↑ ∅, so suppose 𝐹 ↑ is non empty. Notice that the
compact subspace ⟨𝐹⟩ ∩ Id(𝑃) is equal to the union of the basic open
sets ⟨𝑝⟩ for 𝑝 ∈ 𝐹 ↑. Consequently there exists a finite 𝐺 ⊆ 𝐹 ↑ with
⟨𝐹⟩ ∩ Id(𝑄) = ⋃𝑞∈𝐺⟨𝑞⟩ and it follows that 𝐹 ↑ = ↑ 𝐺, as desired.

In particular when 𝑃 is wqo, since 𝑃 has property 𝑀 , then the ideal com-
pletion Id(𝑃 ) equipped with the Lawson topology coincides with the Cauchy
ideal completion CId(𝑃).

Notation 4.14. When 𝑃 is wqo, we make a slight abuse of notation and
denote by Id(𝑃 ) the Cauchy ideal completion of 𝑃 , or equivalently the ideal
completion of 𝑃 endowed with the Lawson topology. In this case, we refer to
Id(𝑃 ) as the ideal space of the wqo 𝑃 .

For 𝑃 wqo, the ideal space Id(𝑃 ) is a partially ordered compact topological
space. It actually enjoys further properties as we now see.

Recall that a point 𝑥 of a topological space 𝒳 is isolated in 𝒳 if the singleton
{𝑥} is open. A limit point of a topological space 𝒳 is a point that is not
isolated, i.e. for every neighbourhood 𝑈 of 𝑥 there is a point 𝑦 ∈ 𝑈 with
𝑦 ≠ 𝑥. A topological space with no isolated points is called perfect. On the
other extreme, a topological space is called scattered if it admits no perfect
subspace.
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Proposition 4.15 ([PS06]). Let 𝑃 be wqo. Then the space Id(𝑃 ) is scattered.
Moreover, an ideal 𝐼 is isolated in Id(𝑃 ) if and only if 𝐼 is principal.

Proof. We show that 𝒟(𝑃) is scattered as a subspace of 2𝑃 . Let 𝑋 ⊆ 𝒟(𝑃)
be non empty. Since 𝑃 is wqo, then 𝒟(𝑃) is well-founded by Proposition 2.6
so there exists a ⊆-minimal element 𝐷 in 𝑋. Now since 𝑃 has the finite basis
property by Proposition 2.6 there exists a finite 𝐹 ⊆ 𝑃 with ↑ 𝐹 = 𝑃 ∖ 𝐷. It
follows that 𝑁(∅, 𝐹)∩𝑋 = {𝐷}, whence 𝐷 is isolated in 𝑋. Since the property
of being scattered is hereditary, it follows that Id(𝑃 ) is scattered.

Now let 𝐼 ∈ Id(𝑃). If 𝐼 is isolated, {𝐼} is open in Id(𝑃 ), and since 𝑃 is dense
in Id(𝑃 ), 𝐼 = ↓ 𝑝 holds for some 𝑝 ∈ 𝑃 and so 𝐼 is principal. Conversely for
𝑝 ∈ 𝑃 let 𝐹 be a finite basis for 𝑃 ∖ ↓ 𝑝. We have 𝑁({𝑞}, 𝐹) ∩ Id(𝑃) = {↓ 𝑝},
so ↓ 𝑃 is isolated in Id(𝑃 ).

Moreover we have the following corollary of Lemma 2.12:

Proposition 4.16. Let 𝑃 be wqo. Every sequence (𝐼𝑛)𝑛∈𝜔 in Id(𝑃 ) admits
a subsequence (𝐼𝑗)𝑗∈𝑁 which converges to the ideal ⋃𝑗∈𝑁 𝐼𝑗 inside Id(𝑃 ). In
particular, every sequence (𝑝𝑛)𝑛∈𝜔 ⊆ 𝑃 admits a subsequence (𝑝𝑛)𝑛∈𝑁 which
converges to the ideal ↓{𝑝𝑛 ∣ 𝑛 ∈ 𝑁} in Id(𝑃 ).
Proof. As 𝑃 is wqo, Id(𝑃 ) is a closed subset of 𝒟(𝑄) and therefore the first
statement directly follows from Lemma 2.12. The second statement already
follows from the more particular result stated in Fact 2.11.

To continue our study of the ideal space of a wqo it is instructive to explore
the dual description of the Cauchy ideal completion CId(𝑃) of an arbitrary
partial order 𝑃 . Importantly, this will lead us to recognise the ideal space of a
wqo as the profinite completion or Nachbin compactification of this wqo.

4.1.3 Duality and Cauchy ideal completion
Zero-dimensional compact Hausdorff topological spaces play a prominent rôle
in this thesis. Thanks to the seminal work of Stone [Sto36] these spaces are
known to be intimately related to Boolean algebras. Their ordered analogues
are the totally order-disconnected compact topological spaces, important ex-
amples of which are given in our context by the Cauchy ideal completion of
a partial order. As discovered by Priestley [Pri72], totally-order disconnected
compact spaces also possess a dual, algebraic, life as bounded distributive lat-
tices. We now briefly recall the basic facts about these dualities and introduce
some notations and conventions. We refer the reader to the monograph by
Davey and Priestley [DP02] for details and proofs.
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A topological space 𝒳 equipped with a partial order ⩽ is totally order-
disconnected if given 𝑥 ⩽̸ 𝑦 in 𝒳, there exists a clopen upset 𝑈 such that
𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈 . A Priestley space is a totally order-disconnected compact
topological space. For every set 𝐸 the generalised Cantor space 2𝐸 partially
ordered by set-inclusion ⊆ is a Priestley space. In fact up to isomorphism the
Priestley spaces are exactly the closed subspaces of a space (2𝐸, ⊆) for some
set 𝐸. In particular, the Cauchy ideal completion CId(𝑃) of any partial order
𝑃 is a Priestley space.

The morphisms between two Priestley spaces are the order-preserving and
continuous maps or Priestley maps. The category of Priestley spaces with
Priestley maps is denoted by 𝐏𝐫.

A bounded distributive lattice, henceforth simply a lattice, is a partial order
𝐿 which admits a maximal element ⊤, a minimal element ⊥, a greatest lower
bound (infimum) 𝑎 ∧ 𝑏 and a least upper bound (supremum) 𝑎 ∨ 𝑏 for every
𝑎, 𝑏 ∈ 𝐿 and satisfies the distributivity law

𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐), for every 𝑎, 𝑏, 𝑐 ∈ 𝐿.

Importantly, bounded distributive lattices are shown to form a variety of algeb-
ras in the signature (∧, ∨, ⊥, ⊤). A bounded lattice homomorphism, henceforth
just a lattice homomorphism, is a map ℎ ∶ 𝐿 → 𝐾 preserving ⊤, ⊥, ∧ and
∨. We denote by 𝐃𝐋𝐚𝐭 the category of (bounded distributive) lattices with
(bounded) lattice homomorphisms.

A prime filter of a lattice 𝐿 is a subset 𝑈 of 𝐿 such that ⊥ ∉ 𝑈 , ⊤ ∈ 𝑈 ,
𝑎, 𝑏 ∈ 𝑈 implies 𝑎 ∧ 𝑏 ∈ 𝑈 , and for every 𝑎, 𝑏 ∈ 𝐿, 𝑎 ∨ 𝑏 ∈ 𝑈 implies 𝑎 ∈ 𝑈 or
𝑏 ∈ 𝑈 . For a lattice 𝐿 we denote by 𝗗(𝐿) the set of prime filters of 𝐿 partially
ordered by reverse inclusion and endowed with the topology Stone topology,
namely the topology generated by the sets of the form

{𝑈 ∈ 𝗗(𝐿) ∣ 𝑎 ∈ 𝑈} and {𝑈 ∈ 𝗗(𝐿) ∣ 𝑎 ∉ 𝑈}, for 𝑎 ∈ 𝐿.

Conversely for every Priesltey space 𝒳 we denote by 𝗘(𝒳) the lattice of
clopen downsets of 𝒳.

Moreover, to each lattice homomorphism ℎ ∶ 𝐿 → 𝐾 corresponds an order-
preserving and continuous map 𝗗(ℎ) ∶ 𝗗(𝐾) → 𝗗(𝐿) given by 𝗗(ℎ)(𝑈) =
ℎ−1(𝑈) for every prime filter 𝑈 of the lattice 𝐾. Conversely to each order-
preserving continuous map 𝑓 ∶ 𝒳 → 𝒴 between Priestley spaces corresponds a
lattice homomorphism 𝗘(𝑓) ∶ 𝗘(𝒴) → 𝗘(𝒳) given by 𝗘(𝑓)(𝐷) = 𝑓−1(𝐷) for
every clopen downset 𝐷 of 𝑌 .

Theorem 4.17 (Priestley duality). The functors 𝗗 ∶ 𝐃𝐋𝐚𝐭 → 𝐏𝐫 and
𝗘 ∶ 𝐏𝐫 → 𝐃𝐋𝐚𝐭 establish a duality of categories. In particular, 𝗗(𝗘(𝒳)) and
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𝒳 are isomorphic as Priestley spaces and 𝗘(𝗗(𝐿)) and 𝐿 are isomorphic as
lattices.

Remark 4.18. We could have chosen to equip the set of prime filters of a lattice
with the order of inclusion (instead of reverse inclusion) and have defined the
dual of a Priestley space to be the lattice of clopen upsets (instead of clopen
downsets) with the same result. While this convention makes some of the
statements look nicer, we will regret in Theorem 4.20, for example, not to
have chosen the other convention.

This duality encompasses two other famous dualities. Firstly, every finite
partial order admits a unique topology, namely the discrete topology, which
makes it a Priestley space. Priestley duality restricts to a duality between the
category of finite partial orders with order-preserving maps and finite bounded
distributive lattices: this is the content of Birkhoff duality [Bir37]. Secondly,
Boolean algebras are particular examples of bounded distributive lattices. Since
the prime filters of a Boolean algebra are the maximal filters, or ultrafilters,
the partial order on the dual of a Boolean algebra under Priestley duality is
discrete. The Priestley dual of a Boolean algebra, also called the Stone dual,
is therefore simply a zero-dimensional compact Hausdorff space, or Boolean
space. The restriction of Priestley duality to Boolean algebras on one side and
Boolean spaces on the other is the celebrated Stone duality.

Importantly, we recall that Priestley duality turns sub-objects into quotients
and vice versa:

Theorem 4.19. For any lattice homomorphism ℎ ∶ 𝐿 → 𝐾 the following are
equivalent.

(i) ℎ is injective if and only if 𝗗(ℎ) is surjective;

(ii) ℎ is surjective if and only if 𝗗(ℎ) is both an order embedding and a
topological embedding.

Towards the identification of the Priestley dual of the Cauchy ideal com-
pletion of a partial order 𝑃 , we study a slightly more general situation where
Priestley duality relates the taking of the topological closure with the algebraic
generation of a lattice.

Let 𝐴 and 𝐵 be sets and 𝑅 ⊆ 𝐴 × 𝐵 a binary relation from 𝐴 to 𝐵. Let
𝑅←(𝑏) = {𝑎 ∈ 𝐴 ∣ 𝑎 𝑅 𝑏} for every 𝑏 ∈ 𝑇 . We denote by 𝑋𝑅 the Priestley
space consisting in the closure of the set {𝑅←(𝑏) ∣ 𝑏 ∈ 𝐵} inside 2𝐴 partially
ordered by inclusion.

Let 𝑅→(𝑎) = {𝑏 ∈ 𝐵 ∣ 𝑎 𝑅 𝑏} for 𝑎 ∈ 𝐴. We denote by 𝐿𝑅 the bounded
distributive lattice generated by {𝑅→(𝑎) ∣ 𝑎 ∈ 𝐴} inside (𝒫(𝐵), ∩, ∪, ∅, 𝐵),
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namely the smallest family of subsets of 𝐵 which contains {𝑅→(𝑎) ∣ 𝑎 ∈ 𝐴},
contains 𝐵 and ∅, and is closed under both finite intersections and finite unions.

We denote by 𝐿op
𝑅 the opposite of the lattice 𝐿𝑅. Observe that 𝐿op

𝑅 is conveni-
ently realised as the bounded distributive lattice generated by {¬𝑅→(𝑎) ∣ 𝑎 ∈
𝐴} inside (𝒫(𝐵), ∩, ∪, ∅, 𝐵), where ¬𝑅→(𝑎) = {𝑏 ∈ 𝐵 ∣ ¬𝑎 𝑅 𝑏} = 𝐵 ∖𝑅→(𝑎).
Theorem 4.20 ([BPZ07]). The lattice of clopen upsets of 𝑋𝑅 is isomorphic
to the lattice 𝐿𝑅, or dually 𝑋𝑅, is isomorphic to the space of prime filters of
𝐿𝑅 ordered by inclusion and equipped with the Stone topology. Hence, with our
convention, 𝑋𝑅 is the Priestley dual of the lattice 𝐿op

𝑅 .
Bekkali, Pouzet, and Zhani [BPZ07] provide a direct proof of this fact. We

now provide a ‘fast proof’ (cf. Figure 4.2) that we find to be conceptually more
illuminating. It relies on the following fact. On the one hand, the space (2𝐴, ⊆)
is dual to the free bounded distributive lattice on the set 𝐴 of free generators.
On the other hand, the ‘free Priestley space’ associated to the set 𝐵, namely
the Stone–Czech compactification 𝛽𝐵, is dual to the Boolean lattice 𝒫(𝐵).
This allows us to relate via Priestley duality the ‘taking of the topological
closure’ and the process of ‘generating a lattice’.

2𝐴 𝑋𝑅 𝛽𝐵

𝐴 𝐵

𝐹𝐃𝐋𝐚𝐭𝐴 𝐿𝑅 𝒫(𝐵)

𝑅

𝐹𝐃𝐋𝐚𝐭𝑅→

𝛽𝑅←

𝑅←

𝑅→

Figure 4.2: Hamburger diagram: left vs right, algebra vs topology.

Proof. Consider the map 𝑅← ∶ 𝐵 ⟶ 2𝐴, 𝑏 ⟼ 𝑅←(𝑏) from the set 𝐵 into the
Priestley space 2𝐴 partially ordered by inclusion. Now restricting the preim-
age map of 𝑅← to the lattice 𝐹 of clopen upsets of 2𝐴 we obtain the lattice
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homomorphism (𝑅←)−1 ∶ 𝐹 → 𝒫(𝐵). The dual map of (𝑅←)−1 is the unique
continuous map 𝛽𝑅← ∶ 𝛽𝐵 → 2𝐴 which extends 𝑅← to the Stone–Czech com-
pactification of the discrete space 𝐵. The image of 𝛽𝑅← inside 2𝐴 is simply
𝑋𝑅.

The lattice of clopen upsets of (2𝐴, ⊆) is (isomorphic to) the free bounded
distributive lattice 𝐹𝐃𝐋𝐚𝐭(𝐴) on the set 𝐴 of free generators and to every 𝑎 ∈ 𝐴
corresponds the clopen upset {𝑋 ∈ 2𝐴 ∣ 𝑎 ∈ 𝑋}. The lattice homomorphism
(𝑅←)−1 is therefore uniquely determined by its value on the sets {𝑋 ∈ 2𝐴 ∣
𝑎 ∈ 𝑋}, for 𝑎 ∈ 𝐴, and we have

(𝑅←)−1({𝑋 ∈ 2𝐴 ∣ 𝑎 ∈ 𝑋}) = {𝑏 ∈ 𝐵 ∣ 𝑎 ∈ 𝑅←(𝑏)}
= {𝑏 ∈ 𝐵 ∣ 𝑎 𝑅 𝑏} = 𝑅→(𝑎).

It follows that (𝑅←)−1 is equal to the unique lattice homomorphism

𝐹𝐃𝐋𝐚𝐭(𝑅→) ∶ 𝐹𝐃𝐋𝐚𝐭(𝐴) → 𝒫(𝐵)

which extends the map 𝑅→ ∶ 𝐴 → 𝒫(𝐵). The image of 𝐹𝐃𝐋𝐚𝐭(𝑅→) in 𝒫(𝐵)
is of course the lattice 𝐿𝑅.

Summarising, the lattice homomorphism 𝐹𝐃𝐋𝐚𝐭𝑅→ ∶ 𝐹𝐃𝐋𝐚𝐭(𝐴) ⟶ 𝒫(𝐵) is
dual to the order-preserving continuous map 𝛽𝑅← ∶ 𝛽𝐵 ⟶ 2𝐴. Whence the
lattice of clopen upsets of 𝑋𝑅 is isomorphic to 𝐿𝑅.

We now apply Theorem 4.20 to the particular case of a reflexive, transitive
and antisymmetric relation ⩽ ⊆ 𝑃 × 𝑃 . Notice that the Priestley space 𝑋⩽ is
simply the Cauchy ideal completion CId(𝑃). The lattice 𝐿⩽ generated by the
{↑ 𝑝 ∣ 𝑝 ∈ 𝑃} inside (𝒫(𝑃), 𝑃 , ∅, ∩, ∪) is called the tail lattice [BPZ07] of 𝑃
and is denoted by TailLat(𝑃 ).

Theorem 4.21. Let 𝑃 be a partial order. Then the Cauchy ideal completion
CId(𝑃) is the Priestley dual of the opposite of TailLat(𝑃 ).

In fact, the property 𝑀 really pertains to the dual lattice of CId(𝑃).

Lemma 4.22. The following are equivalent for a partial order 𝑃 .

(i) 𝑃 has property 𝑀 ;

(ii) TailLat(𝑃 ) consists precisely in the finitely generated upsets of 𝑃 ;

(iii) 𝒟fb(𝑃 ) = TailLat(𝑃 )op.
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Proof. Firstly notice that for any po 𝑃 the finitely generated upsets are closed
under finite unions and contains the empty set – since ∅ = ↑ ∅ is finitely
generated.

(i)↔ (ii): If 𝑃 has property 𝑀 and 𝐹, 𝐺 ⊆ 𝑄 are finite then it follows that the
set ↑ 𝐹 ∩ ↑ 𝐺 = ⋃𝑝∈𝐹,𝑞∈𝐺{𝑝, 𝑞}↑ is finitely generated. Moreover 𝑃 = ∅↑

is finitely generated if 𝑃 has property 𝑀 . The converse follows from the
fact that by definition 𝐹 ↑ = ⋂𝑝∈𝐹 ↑ 𝑝.

(ii)↔ (iii): Notice that the family 𝒟fb(𝑄) is obtained by complementation
from the family of finitely generated upsets.

Whence for the partial orders which enjoy the property 𝑀 we have the
following.

Proposition 4.23. Let 𝑃 be a partial order with property 𝑀 . Then the Cauchy
ideal completion CId(𝑃), which coincides with Id(𝑃 ) equipped with the Lawson
topology, is the Priestley dual of 𝒟fb(𝑃 ).

We give the above mentioned isomorphism explicitly.

Proposition 4.24. Let 𝑃 be a partial order with property 𝑀 . The map

𝗗(𝒟fb(𝑃 )) ⟶ Id(𝑃)
𝑈 ⟼ 𝐼𝑈 = ⋂ 𝑈 = {𝑝 ∈ 𝑃 |𝑃 ∖ ↑ 𝑝 ∉ 𝑈}

is an isomorphism between the Priestley dual of 𝒟fb(𝑃 ) and Id(𝑃 ) = CId(𝑃)
whose inverse is given by

Id(𝑃 ) ⟶ 𝗗(𝒟fb(𝑃 ))
𝐼 ⟼ 𝑈𝐼 = {𝐷 ∈ 𝒟fb(𝑃 ) ∣ 𝐼 ⊆ 𝐷}.

Proof. Let 𝑈 be a prime filter of 𝒟fb(𝑃 ). Let us first show that ⋂ 𝑈 = {𝑝 ∈
𝑃 ∣ 𝑃 ∖ ↑ 𝑝 ∉ 𝑈}. Clearly if 𝑃 ∖ ↑ 𝑝 ∈ 𝑈 , then 𝑝 ∉ ⋂ 𝑈 . Conversely, if 𝑝 ∉ ⋂ 𝑈 ,
then there exists 𝐷 ∈ 𝑈 with 𝑝 ∉ 𝐷. Therefore 𝐷 ⊆ 𝑃 ∖ ↑ 𝑝, and since 𝑈 is a
filter 𝑃 ∖ ↑ 𝑝 belongs to 𝑈 too.

Notice that if 𝑃 is the empty partial order, then both the dual of 𝒟fb(𝑃 ) =
{∅} and Id(𝑃 ) are empty. So suppose that 𝑃 is not empty and that 𝑈 is a
prime filter of 𝒟fb(𝑃 ). Clearly 𝐼𝑈 is a downset of 𝑃 . We show that 𝐼𝑈 is an
ideal of 𝑃 . Since 𝑃 has property 𝑀 we have 𝑃 = ↑ 𝐹 for some non-empty
finite 𝐹 ⊆ 𝑃 . Since ∅ = ⋂𝑟∈𝐹 𝑃 ∖ ↑ 𝑟 does not belong to the prime filter 𝑈
there exists 𝑟 ∈ 𝐹 with 𝑃 ∖ ↑ 𝑟 ∉ 𝑈 , and so 𝑟 ∈ ⋂ 𝑈 and 𝐼𝑈 is non empty.
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Moreover 𝐼𝑈 is directed as follows from Proposition 4.4 and the fact that 𝑈 is
prime.

The map 𝑈 ↦ 𝐼𝑈 is clearly an order embedding. To see it is continuous,
observe that for every finite 𝐹, 𝐺 ⊆ 𝑃 and every 𝑈 ∈ 𝗗(𝒟fb(𝑃 )):

𝐼𝑈 ∈ 𝑁(𝐹 , 𝐺) ⟷ ∀𝑝 ∈ 𝐹 𝑃 ∖ ↑ 𝑝 ∉ 𝑈 and ∀𝑞 ∈ 𝐺 𝑃 ∖ ↑ 𝑞 ∈ 𝑈.

As a continuous and injective map from a compact space to a Hausdorff space,
𝑈 ↦ 𝐼𝑈 is therefore a homeomorphism onto its image.

To see it is onto Id(𝑃 ), let 𝐼 be an ideal of 𝑃 . Let us show that 𝑈𝐼 is a
prime filter of 𝒟fb(𝑃 ). Clearly 𝑈𝐼 is upward closed and closed under finite
intersections. Since 𝐼 is non empty, ∅ ∉ 𝑈𝐼. Finally the fact that 𝑈𝐼 is prime
follows from the directedness of 𝐼 via Proposition 4.4 again.

Returning to the case of a wqo, we recall that a partial order 𝑃 is wqo if and
only if every upset of 𝑃 is finitely generated. Whence in this case, the lattice
𝒟fb(𝑃 ) of finitely bounded downsets is simply equal to the lattice 𝒟(𝑃) of
downsets of 𝑃 . Therefore when 𝑃 is wqo, the Cauchy ideal completion is the
Priestley dual of the lattice 𝒟(𝑃). As a matter of fact, for an arbitrary partial
order 𝑃 the Priestley dual of the lattice 𝒟(𝑃) of downsets turns out to be the
profinite completion of 𝑃 , also known as the Nachbin order-compactification
of 𝑃 .

4.1.4 Profinite completion, Nachbin order-compactification
We now describe another very natural completion of a partial order called the
profinite completion. This completion is very natural from a category theory
perspective. Though the material of this subsection is certainly considered
folklore by experts, we were unable to find any reference. We therefore provide
proofs for these basic results.

Let us denote by 𝐏𝐨 the category of partial orders together with order-
preserving maps. The profinite completion of a partial order 𝑃 is in a sense
‘the best approximation of 𝑃 among finite partial orders’. As it is, such a best
approximation does not exist among finite partial orders, the reason being
arguably that the category 𝐏𝐨fin of finite partial orders is only finitely com-
plete, but not complete. To remedy this and make sense of the above intuitive
idea, one consider the pro-completion Pro- 𝐏𝐨fin of the category 𝐏𝐨fin, which
is somehow the completion of 𝐏𝐨fin with respect to the property of admitting
all (small) limits.

The category Pro- 𝐏𝐨fin admits as objects directed diagrams 𝐷 ∶ 𝐼 → 𝐏𝐨fin
and the morphisms between 𝐷 ∶ 𝐼 → 𝐏𝐨fin and 𝐸 ∶ 𝐽 → 𝐏𝐨fin are given by
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the following double limit formula

lim
𝐽

lim
𝐼

{𝑓 ∶ 𝐷(𝑖) → 𝐸(𝑗) ∣ 𝑓 is order-preserving}.

Fortunately the category Pro- 𝐏𝐨fin is equivalent to the concrete category 𝐏𝐫
of Priestley spaces [Joh86, (VI 3.3), p. 248; Pri94; Spe72]. In this equivalence
a directed diagram 𝐷 ∶ 𝐼 → 𝐏𝐨fin corresponds to the actual limit lim𝐼 𝐷(𝑖)
taken in the category of ordered topological spaces, regarding each finite partial
order 𝐷(𝑖) as a discrete space, and the morphisms between profinite partial
orders are realised as the order-preserving and continuous maps, the Priestley
maps.

The profinite completion of a partial order 𝑃 is – now formulated correctly –
the best approximation (from the left) of 𝑃 among the profinite partial orders,
or equivalently, among the Priestley spaces. In formal terms, the profinite
completion of partial orders 𝗣 ∶ 𝐏𝐨 → 𝐏𝐫 is the left adjoint to the forgetful
functor 𝗨 ∶ 𝐏𝐫 → 𝐏𝐨 which simply drops the topology. We now describe
concretely this functor.

For a partial order 𝑃 we denote by ℰ𝑃 the set of all quasi-orders 𝐸 on 𝑃
which contains ⩽ and whose partial order quotient is finite, i.e. the reflexive
and transitive relations 𝐸 ⊆ 𝑃 × 𝑃 such that

(1) for all 𝑝, 𝑞 ∈ 𝑃 , 𝑝 ⩽ 𝑞 implies 𝑝 𝐸 𝑞,

(2) the quotient 𝑃/𝐸 by the equivalence relation (𝑝 𝐸 𝑞 and 𝑞 𝐸 𝑝) has
finitely many classes.

Now when partially ordered by inclusion ℰ𝑃 is directed, since 𝐸, 𝐹 ∈ ℰ𝑃
implies that 𝐸 ∩ 𝐹 ∈ ℰ. Moreover each time 𝐸 ⊆ 𝐹 for 𝐸, 𝐹 ∈ ℰ𝑃 there is a
unique order-preserving and surjective map 𝜋𝐸,𝐹 ∶ 𝑃/𝐸 → 𝑃/𝐹 , [𝑝]𝐸 → [𝑝]𝐹 .
We let

𝐷𝑃 ∶ ℰ𝑃 ⟶ 𝐏𝐨fin
𝐸 ⟼ 𝑃/𝐸

𝐸 ⊆ 𝐹 ⟼ 𝜋𝐸,𝐹 ∶ 𝑃/𝐸 → 𝑃/𝐹

be the directed diagram of finite quotients of 𝑃 .

Proposition 4.25. Let 𝑃 be a partial order and ̂𝑃 be the limit in 𝐏𝐫 of the
diagram 𝐷𝑃 , regarding finite partial orders as finite Priestley spaces. Then ̂𝑃
is the Priestley dual of the lattice 𝒟(𝑃).
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Proof. By Birkhoff duality, consider the diagram 𝐷′
𝑃 ∶ ℰ𝑃 → 𝐃𝐋𝐚𝐭fin dual

to 𝐷𝑃 , namely 𝐷′
𝑃 (𝐸) = 𝒟(𝑃/𝐸) for every 𝐸 ∈ ℰ𝑃 and 𝐸 ⊆ 𝐹 ↦ 𝑝−1

𝐸,𝐹 ∶
𝒟(𝑃 /𝐹) → 𝒟(𝑃/𝐸). Let 𝐷 be the colimit of 𝐷′

𝑃 in 𝐃𝐋𝐚𝐭. This distributive
lattice is just the lattice 𝒟(𝑄) of downsets of 𝑄. Indeed 𝐷 is really the union
of all downsets of 𝑄 of the form 𝑝−1(𝐴) for an order-preserving map 𝑝 ∶ 𝑄 → 𝑅
with 𝑅 finite and 𝐴 a downset of 𝐹 . But for every downset 𝐿 of 𝑄 the function
𝑝𝐿 ∶ 𝑄 → 2 with 𝑝𝐿(𝑞) = 0 ↔ 𝑞 ∈ 𝐿 into 2 = {0 < 1} is order-preserving and
𝜒−1

𝐿 ({0}) = 𝐿. By Priestley duality the colimit of 𝐷′
𝑃 in 𝐃𝐋𝐚𝐭 is dual to the

limit of 𝐷𝑃 . Therefore ̂𝑃 is the Priestley dual of 𝒟(𝑃).
From this description of ̂𝑃 we get the following embedding

𝑒 ∶ 𝑃 ⟶ ̂𝑃
𝑝 ⟼ ̂𝑝 = {𝐷 ∈ 𝒟(𝑃) ∣ 𝑝 ∈ 𝐷}.

We generally identify 𝑃 with 𝑒(𝑃 ) = { ̂𝑝 ∣ 𝑝 ∈ 𝑃}.

Lemma 4.26. Let 𝑃 be a partial order, then ̂𝑃 is the closure of { ̂𝑝 ∣ 𝑝 ∈ 𝑃}
inside 2𝒟(𝑃) and so 𝑃 is dense in ̂𝑃 .

Proof (folklore). Suppose that 𝑈 ∈ 2𝒟(𝑃) belongs to the closure of { ̂𝑝 ∣ 𝑝 ∈ 𝑃}.
Since {𝑋 ∈ 2𝒟(𝑃) ∣ ∅ ∈ 𝑋} is open and ∅ ∉ ̂𝑝 for all 𝑝 ∈ 𝑃 , ∅ ∉ 𝑈 . If 𝐷, 𝐸 ∈ 𝑈
and 𝐷 ∩ 𝐸 ∉ 𝑈 , then 𝑈 belongs to the basic open set 𝑁({𝐷, 𝐸}, {𝐷 ∩ 𝐸}) of
2𝒟(𝑃), and so there exists 𝑝 ∈ 𝑃 with ̂𝑞 ∈ 𝑁({𝐷, 𝐸}, {𝐷 ∩ 𝐸}), i.e. 𝑝 ∈ 𝐷,
𝑝 ∈ 𝐸, and 𝑝 ∉ 𝐷 ∩ 𝐸, contradiction. Hence 𝐷, 𝐸 ∈ 𝑈 implies 𝐷 ∩ 𝐸 ∈ 𝑈 .
Next if 𝐷 ∈ 𝑈 and 𝐸 ∉ 𝑈 , then 𝑈 ∈ 𝑁({𝐷}, {𝐸}) and thus there exists 𝑝 ∈ 𝑃
with 𝑝 ∈ 𝐷 and 𝑝 ∉ 𝐸, so 𝐷 ⊈ 𝐸. Finally if 𝐷 ∪ 𝐸 ∈ 𝑈 and 𝐷, 𝐸 ∉ 𝑈 , then
𝑈 ∈ 𝑁({𝐷 ∪ 𝐸}, {𝐷, 𝐸}) so there is 𝑝 ∈ 𝑃 with 𝑝 ∈ 𝐷 ∪ 𝐸 and 𝑝 ∉ 𝐷, 𝑝 ∉ 𝐸,
a contradiction. So every 𝑈 ∈ 2𝒟(𝑃) which belongs to the closure of 𝑒(𝑃 ) is a
prime filter on 𝒟(𝑃).

Conversely let 𝑈 be a prime filter on 𝒟(𝑃) and 𝐷0, … , 𝐷𝑛, 𝐸0, … 𝐸𝑚 ∈
𝒟(𝑃 ) be such that 𝑈 ∈ 𝑁({𝐷0, … , 𝐷𝑛}, {𝐸0, … , 𝐸𝑚}). Then since 𝑈 is a
prime filter, we have 𝐷 = ⋂𝑛

𝑖=0 𝐷𝑖 ∈ 𝑈 and 𝐸 = ⋃𝑚
𝑗=0 𝐸𝑗 ∉ 𝑈 , so necessarily

𝐷 ⊈ 𝐸. Hence there exists 𝑝 ∈ 𝐷 ∖ 𝐸 and we have

̂𝑝 ∈ 𝑁({𝐷0, … , 𝐷𝑛}, {𝐸0, … , 𝐸𝑚}).

Therefore 𝑈 belongs to the closure of 𝑒(𝑃 ).
Proposition 4.27. Let 𝑃 be a partial order. For every Priestley space 𝑋 and
every order-preserving map 𝑓 ∶ 𝑃 → 𝑋 there exists a unique Priestley map

̂𝑓 ∶ ̂𝑃 → 𝑋 such that 𝑔 ∘ 𝑒 = ̂𝑓.
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𝗨(𝑋) 𝑋

𝑃

𝗨( ̂𝑃 ) ̂𝑃

𝑓

𝗨( ̂𝑓) ̂𝑓
𝑒

Proof. Let 𝗘(𝑋) be the lattice of clopen downsets of 𝑋. Since 𝑓 ∶ 𝑃 → 𝑋 is
order-preserving the preimage map goes 𝑓−1 ∶ 𝒟(𝑋) → 𝒟(𝑃) and restricts
to a homomorphism 𝑓−1 ∶ 𝗘(𝑋) → 𝒟(𝑃) whose Priesltey dual is an order-
preserving continuous map ̂𝑓 ∶ ̂𝑃 → 𝑋. Clearly we have ̂𝑓 ∘ 𝑒 = 𝑓 . Finally if
ℎ ∶ ̂𝑃 → 𝑋 is a Priestley map such that ℎ ∘ 𝑒 = 𝑓 , then ℎ↾𝑃 = 𝑓 = ̂𝑓↾𝑃 . Since
both ℎ and ̂𝑓 are continuous and agree the subset 𝑃 of ̂𝑃 which is dense by
Lemma 4.26, we must have ̂𝑓 = ℎ.

This allows us to define the functor

𝗣 ∶ 𝐏𝐨 ⟶ 𝐏𝐫
𝑃 ⟼ ̂𝑃

(𝑓 ∶ 𝑃 → 𝑄) ⟼ ( ̂𝑓 ∶ ̂𝑃 → �̂�)

where ̂𝑓 is the dual map of 𝑓−1 ∶ 𝒟(𝑄) → 𝒟(𝑃) under Priestley duality. By
the previous proposition, this functor is left adjoint to the forgetful functor
𝗨 ∶ 𝐏𝐫 → 𝐏𝐨 as desired.

Notice that for a discrete partial order (𝑋, =) the profinite completion �̂� is
just the Stone-Čech compactification of the set 𝑋. Indeed 𝒟(𝑋) = 𝒫(𝑋) and
the Priestley dual of the complete Boolean algebra 𝒫(𝑋) is simply its Stone
dual. In particular, the profinite completion ̂𝐴 of the antichain 𝐴 = (𝜔, =) is
the Stone-Čech compactification 𝛽𝜔 of the natural numbers.

Actually, the profinite completion of a partial order enjoys a stronger uni-
versal property as notably proved by Bezhanishvili et al. [Bez+06].

Proposition 4.28 (Bezhanishvili et al. [Bez+06, Proposition 3.4]). Let 𝑃 be
a partial order. For every compact Hausdorff space 𝑌 equipped with a partial
order ⩽ closed in 𝑌 × 𝑌 and every order preserving map 𝑓 ∶ 𝑃 → 𝑌 there
exists a unique continuous and order-preserving map ̂𝑓 ∶ ̂𝑃 → 𝑌 such that

̂𝑓 ∘ 𝑒 = 𝑓.

90



4 The ideal space of a well-quasi-order

𝑌

𝑃

̂𝑃

𝑓
̂𝑓

𝑒

This proposition shows that the profinite completion of a partial order 𝑃
is also the Nachbin order-compactification [Nac65, p.103–104] of 𝑃 equipped
with the discrete topology.

We also notice that the profinite completion functor behaves nicely with
respect to embeddings.

Lemma 4.29. Let 𝑓 ∶ 𝑃 → 𝑄 be an order-preserving map between posets.
Then 𝑓 is an order embedding if and only if ̂𝑓 ∶ ̂𝑃 → �̂� is both an order
embedding and a topological embedding.

Proof. By Theorem 4.19 it is enough to prove that 𝑓 ∶ 𝑃 → 𝑄 is an order
embedding if and only if 𝑓−1 ∶ 𝒟(𝑄) → 𝒟(𝑃) is surjective. Notice that if 𝑓 is
an embedding, then for every downset 𝐷 ∈ 𝒟(𝑃) we have 𝐷 = 𝑓−1 ↓𝑄 𝑓(𝐷)
since

𝑝′ ∈ 𝑓−1 ↓𝑄 𝑓(𝐷) ⟷ ∃𝑝 ∈ 𝐷 𝑓(𝑝′) ⩽𝑄 𝑓(𝑝)
⟷ ∃𝑝 ∈ 𝐷 𝑝′ ⩽𝑃 𝑝
⟷ 𝑝′ ∈ 𝐷.

Conversely suppose 𝑓−1 ∶ 𝒟(𝑄) → 𝒟(𝑃) is surjective and let 𝑝, 𝑝′ ∈ 𝑃 with
𝑓(𝑝) ⩽ 𝑓(𝑝′). There exists 𝐷 ∈ 𝒟(𝑄) with 𝑓−1(𝐷) = ↓ 𝑝′ and since 𝑓(𝑝) ⩽
𝑓(𝑝′) ∈ 𝐷 we have 𝑝 ∈ ↓ 𝑝′, i.e. 𝑝 ⩽ 𝑝′.

Back to wqos, we have obtained:

Corollary 4.30. Let 𝑃 be a partial order. If 𝑃 is wqo, then the following are
isomorphic as partially ordered topological spaces:

(i) the ideal completion Id(𝑃 ) with the Lawson topology,

(ii) the Cauchy ideal completion CId 𝑃 ,

(iii) the Priestley dual of 𝒟(𝑃),

(iv) the profinite completion ̂𝑃 ,
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(v) the Nachbin order-compactification of 𝑃 .

If one wants to view the profinite completion ̂𝑃 of a wqo 𝑃 as Id(𝑃 ), then
the action of the functor 𝗣 ∶ 𝐏𝐨 → 𝐏𝐫 on order-preserving maps between
wqos can be simply described as follows:

Lemma 4.31. Let 𝑓 ∶ 𝑃 → 𝑄 be an order preserving map between wqos. The
Priestley map 𝗣(𝑓) ∶ ̂𝑃 → �̂� viewed as a map 𝗣(𝑓) ∶ Id(𝑃 ) → Id(𝑄) is given
by

𝗣(𝑓)(𝐼) = ↓𝑄{𝑓(𝑝) ∣ 𝑝 ∈ 𝐼} for every 𝐼 ∈ Id(𝑃).

Proof. The Priestley map 𝗣(𝑓) ∶ Id(𝑃 ) → Id(𝑄) is the dual of the lattice
homomorphism 𝑓−1 ∶ 𝒟(𝑄) → 𝒟(𝑃). Now an ideal 𝐼 ∈ Id(𝑃) corresponds
to the prime filter 𝑈𝐼 = {𝐷 ∈ 𝒟(𝑃) ∣ 𝐼 ⊆ 𝐷} via the isomorphism given in
Proposition 4.24. Then 𝑉𝐼 = {𝐸 ∈ 𝒟(𝑄) ∣ 𝑓−1(𝐸) ∈ 𝑈𝐼} is the prime filter of
𝒟(𝑄) which is the image of 𝑈𝐼 by 𝗣(𝐹) ∶ ̂𝑃 → �̂�. Now, by Proposition 4.24
again, the prime filter 𝑉𝐼 corresponds to the ideal of 𝑄 given by {𝑞 ∈ 𝑄 ∣
𝑄 ∖ ↑ 𝑞 ∉ 𝑉𝐼}. We therefore have

𝗣(𝑓)(𝐼) ={𝑞 ∈ 𝑄 ∣ 𝑄 ∖ ↑ 𝑞 ∉ 𝑉𝐼}
={𝑞 ∈ 𝑄 ∣ 𝐼 ⊈ 𝑓−1(𝑄 ∖ ↑ 𝑞)}
={𝑞 ∈ 𝑄 ∣ ∃𝑝 ∈ 𝐼 𝑓(𝑝) ∉ 𝑄 ∖ ↑ 𝑞}
={𝑞 ∈ 𝑄 ∣ ∃𝑝 ∈ 𝐼 𝑓(𝑝) ⩾ 𝑞}
= ↓𝑄{𝑓(𝑝) ∣ 𝑝 ∈ 𝐼},

as desired.

Remark 4.32. The canonical extension of a bounded distributive lattice is con-
cretely defined as the lattice of downsets of its Priestley dual. However, it also
admits an algebraic characterisation as the unique complete distributive lat-
tice in which the lattice embeds in a dense and compact way (see for example
the nicely written survey by Gehrke and Vosmaer [GV11]). For a wqo 𝑄,
the wqo character of Id(𝑄) is naturally related to the canonical extension of
𝒟(𝑄). Namely if 𝑄 is wqo, then Id(𝑄) is wqo if and only if the canonical
extension of 𝒟(𝑄) is well-founded. Indeed Id(𝑄) is the Priestley dual of 𝒟(𝑄),
so the lattice of downsets of Id(𝑄) is canonical extension of 𝒟(𝑄). Moreover
Id(𝑄) is wqo if and only if 𝒟(Id(𝑄)) is well-founded by Proposition 2.6.
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4.2 From well to better: A proof of Pouzet’s
conjecture

Henceforth 𝑄 stands for a wqo and we assume 𝑄 is a partial order. The
space of ideals of 𝑄 is the partially ordered compact space described by one
of the equivalent alternatives gathered in Corollary 4.30. The partial order 𝑄
is viewed as a subset of Id(𝑄) via the embedding 𝑞 ↦ ↓ 𝑞. The space Id(𝑄),
being a compact Hausdorff topological space, admits a unique uniformity which
agrees with its topology. As a subset of Id(𝑄) the wqo 𝑄 is equipped with
the induced uniformity. We henceforth refer to this uniformity on 𝑄 when we
talk about a Cauchy, or uniformly continuous, super-sequence 𝑓 ∶ 𝐹 → 𝑄 into
a wqo.
Remark 4.33. It follows from Lemma 4.9 and Proposition 3.13 that a super-
sequence 𝑓 ∶ 𝐹 → 𝑄 into a wqo 𝑄 is Cauchy if and only if for every 𝑞 ∈ 𝑄 we
have 𝑓−1(↑ 𝑞) ∈ Blocks(𝐹).
Theorem 4.34 (with R. Carroy). Let 𝑄 be wqo. Then every super-sequence
𝑓 ∶ 𝐹 → 𝑄 admits a Cauchy sub-super-sequence 𝑓 ′ ∶ 𝐹 ′ → 𝑄 which therefore
extends to a continuous map 𝑓 ′ ∶ 𝐹 ′ → Id(𝑄).
Proof. As 𝑄 is wqo, the ideal space Id(𝑄) is a compact subspace of 2𝑄. Now
suppose first that 𝑄 is countable, then 2𝑄 is metrisable and therefore so is
Id(𝑄). In this case, the statement follows from Theorem 3.25. In the general
case, even though 𝑄 may not be countable, the set 𝑃 = Im 𝑓 always is. By
Lemma 4.29, the embedding of 𝑃 into 𝑄 extends to an embedding of Id(𝑃 )
into Id(𝑄) both in the order and the topological sense. Therefore 𝑓 ∶ 𝐹 → 𝑄 is
uniformly continuous if and only if 𝑓 ∶ 𝐹 → 𝑃 is uniformly continuous. Since
𝑃 is wqo as a subset of a wqo, the first case applies.

Remark 4.35. In the previous proof, the only place where the hypothesis that
𝑄 is wqo, and not only has property 𝑀 , is used is in the general case. This
is when we conclude that 𝑃 is wqo (or in fact that it has property 𝑀 for
that matter) from the fact that 𝑄 is wqo. This is indeed necessary since as
we already noticed the property 𝑀 is not hereditary.

As a corollary we have new characterisation of bqo:

Corollary 4.36. A quasi-order 𝑄 is bqo if and only if 𝑄 is wqo and every
Cauchy super-sequence is good.

The cofinality of an ideal 𝐼 ∈ Id(𝑄), denoted cof(𝐼), is the least cardinal
𝜆 such that there exists a subset 𝐵 of 𝐼 of cardinality 𝜆 with 𝐼 = ↓ 𝐵. The
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principal ideals are the ideals of cofinality 1, they are the only ideals with finite
cofinality. We denote respectively by Id⩽ω(𝑄) and Idω(𝑄) the po of ideals of 𝑄
which have countable cofinality and the po of ideals with cofinality 𝜔. Observe
that Id⩽ω(𝑄) = 𝑄 ∪ Idω(𝑄) and that Idω(𝑄) ⊆ Id*(𝑄). The following should
not come as a surprise.

Lemma 4.37. If 𝑓 ∶ 𝐹 → 𝑄 is a Cauchy super-sequence into a wqo, then the
the image of the unique continuous extension ̄𝑓 ∶ 𝐹 → Id(𝑄) is contained in
Id⩽ω(𝑄).

Proof. Since 𝐹 is metrisable, for every 𝑠 ∈ 𝐹 there exists a sequence (𝑠𝑛)𝑛∈𝜔 ⊆
𝐹 which converges to 𝑠. Then by continuity of 𝑓 we have 𝑓(𝑠) = lim 𝑓(𝑠𝑛).
Then by Proposition 4.16, there is 𝑁 ∈ [𝜔]∞ such that 𝑓(𝑠) = ⋃𝑛∈𝑁 ↓ 𝑓(𝑠𝑛).
Therefore ̄𝑓(𝑠) has countable cofinality.

Before proving the main result of this chapter we stop on our crucial example
once again.
Example 4.38 (Rado’s poset). Rado’s partial order ℜ was defined in Ex-
ample 2.15, it is given by the set [𝜔]2 partially ordered by :

{𝑚, 𝑛} ⩽ {𝑚′, 𝑛′} ⟷ {𝑚 = 𝑚′ and 𝑛 ⩽ 𝑛′, or
𝑛 < 𝑚′.

We claim that Id(ℛ) = ℛ ∪ {𝐼𝑛 ∣ 𝑛 ∈ 𝜔} ∪ {⊤} where for all 𝑛 ∈ 𝜔 𝐼𝑛 =
⋃𝑛<𝑘 ↓(𝑛, 𝑘) and ⊤ = ℛ. We have (𝑚, 𝑛) ⩽ 𝐼𝑘 if and only if 𝑚 = 𝑘 or 𝑛 < 𝑘,
and 𝑎 ⩽ ⊤ for all 𝑎 ∈ Id(ℛ). The non principal ideals are the 𝐼𝑛s and ⊤. We
show there are no other ideals. Let 𝐼 be an ideal of ℛ. First suppose for all
𝑘 ∈ 𝜔 there is an (𝑚, 𝑛) ∈ 𝐼 with 𝑘 < 𝑚, then 𝐼 = ⊤. Suppose now that
there exists 𝑚 = max{𝑘 ∣ ∃𝑙(𝑘, 𝑙) ∈ 𝐼}. If there is infinitely many 𝑛 such that
(𝑚, 𝑛) ∈ 𝐼 then 𝐼 = 𝐼𝑚. Otherwise 𝐼 = ↓(𝑚, 𝑛) for 𝑛 = max{𝑙 ∣ (𝑚, 𝑙) ∈ 𝐼}.

In Example 2.15 we showed that ℜ is wqo but not bqo as notably witnessed
by the bad super-sequence id ∶ [𝜔]2 → ℛ, which is the identity on the underly-
ing sets. Using Remark 4.33, it is clear that id is Cauchy and therefore extends
to a continuous map id ∶ [𝜔]⩽2 → Id(ℛ). This continuous extension is simply
given by id({𝑚}) = 𝐼𝑚 for every 𝑚 ∈ 𝜔 and id(∅) = ⊤ (see Figure 4.3). Now
the restriction of id to the barrier [𝜔]1 is a bad sequence in Id*(ℛ) witnessing
the fact that it is not wqo. Hence this Cauchy bad super-sequence into ℛ
yields a bad super-sequence into the non principal ideals of ℛ.

Theorem 4.39. Let 𝑓 ∶ 𝐹 → 𝑄 be a Cauchy super-sequence into a wqo and
̄𝑓 ∶ 𝐹 → Id(𝑄) its continuous extension. If 𝑓 is bad, then there exists a front
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Figure 4.3: A bad Cauchy super-sequence into Rado’s poset.

𝐺 ⊆ 𝐹 such that the restriction ̄𝑓↾𝐺 ∶ 𝐺 → Id*(𝑄) is bad. Moreover ̄𝑓↾𝐺 has
image in Idω(𝑄).

Proof. By going to ̌𝑓 ∶ ̌𝐹 → 𝑄 if necessary by Proposition 2.53, we can assume
that 𝑓 ∶ 𝐹 → 𝑄 is spare. By Theorem 3.31 we can assume that 𝑓 ∶ 𝐹 → Id(𝑄) is
normal. Since Isol(Id(𝑄)) = 𝑄 by Proposition 4.15 we have Λ𝑓 = 𝑓−1(Id*(𝑄)).
Moreover by Lemma 3.36 we obtain 𝑓−1(Id*(𝑄)) = 𝐹 ∖ 𝐹 . If 𝑓−1(Id*(𝑄))
is empty, then 𝐹 is trivial and thus 𝑓 is good, a contradiction. Otherwise
𝑓−1(Id*(𝑄)) is the closure of a front 𝐺 on 𝑋 = ⋃ 𝐹 and by Lemma 3.37 we
have

𝐹 = {𝑠 ∪ {𝑛} ∣ 𝑠 ∈ 𝐺 and 𝑛 ∈ 𝑋/𝑠}.
If 𝐺 is trivial then 𝐹 = [𝑋]1, since 𝑄 is wqo, then 𝑓 is good, a contradiction

again.
Otherwise 𝐺 is not trivial, and consider 𝑔 = ̄𝑓↾𝐺 ∶ 𝐺 → Id*(𝑄). By

contradiction, suppose there is no front 𝐺′ ⊆ 𝐺 such that the restriction
𝑔↾𝐺′ ∶ 𝐺′ → Id*(𝑄) is bad. Hence by Corollary 2.63 there exists a front 𝐺′ ⊆ 𝐺
such that the restriction 𝑔↾𝐺′ ∶ 𝐺′ → 𝑄 is perfect. Let 𝑠 ∈ 𝐺′ be minimal for ⊆
in 𝐺′ and 𝑌 = ⋃ 𝐺′. By continuity we have 𝑔(𝑠) = lim𝑛∈𝑌 /𝑠 𝑓(𝑠∪{𝑛}) and by
Proposition 4.16 there is 𝑍 ∈ [𝑌 /𝑠]∞ such that 𝑔(𝑠) = {𝑞 ∈ 𝑄 ∣ ∃𝑛 ∈ 𝑍 𝑞 ⩽
𝑓(𝑠 ∪ {𝑛})}. For 𝑛0 = min 𝑍 there exists 𝑡 ∈ 𝐺′ with 𝑡 ⊏ ∗𝑠 ∪ {𝑛0} ∪ 𝑌 /𝑛0.
By the minimality of 𝑠 in 𝐺′ for the inclusion, we have ∗𝑠 ∪ {𝑛0} ⊑ 𝑡. Again
𝑔(𝑡) = lim𝑛∈𝑌 /𝑡 𝑓(𝑡 ∪ {𝑛}) and by Proposition 4.16 there is 𝑍′ ∈ [𝑌 /𝑡]∞
with 𝑔(𝑡) ={𝑞 ∈ 𝑄 ∣ ∃𝑚 ∈ 𝑍′ 𝑞 ⩽ 𝑓(𝑠 ∪ {𝑚})}. Since 𝑠 � 𝑡 in 𝐺′ and
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𝑔 is perfect, we have 𝑔(𝑠) ⊆ 𝑔(𝑡). Therefore there exists 𝑚0 ∈ 𝑍′ with
𝑓(𝑠 ∪ {𝑛0}) ⩽ 𝑓(𝑡 ∪ {𝑚0}). Since 𝑠 ∪ {𝑛0} � 𝑡 ∪ {𝑚0}, 𝑓 is good. This
contradiction terminates the proof.

As a direct corollary we have the proof of the conjecture by Pouzet [Pou78].

Theorem 4.40 (with R. Carroy). Let 𝑄 be wqo. If Idω(𝑄) is bqo, then 𝑄
is bqo. In particular if Id*(𝑄) is bqo, then 𝑄 is bqo.

The following classes of wqos are sometimes considered as approximations
of the concept of bqo.

Definition 4.41. Let 𝑄 be a quasi-order and 1 ⩽ 𝛼 < 𝜔1. We say that 𝑄 is
𝛼-bqo if and only if every super-sequence 𝑓 ∶ 𝐹 → 𝑄 with rk 𝐹 ⩽ 𝛼 is good.

Clearly a qo is wqo if and only if it is 1-bqo, and it is bqo if and only if
its 𝛼-bqo for every 𝛼 < 𝜔1.
Remark 4.42. Marcone [Mar94], Pouzet and Sauer [PS06], for example, use a
different definition of 𝛼-bqo which is easily seen to be equivalent to ours.

A finer utilisation of Theorem 4.39 yields the following:

Theorem 4.43. Let 𝑄 be a quasi-order.

(i) For every 𝛼 < 𝜔1, if 𝑄 is (𝛼 + 1)-bqo, then 𝒟(𝑄) is 𝛼-bqo and so
Id*(𝑄) is 𝛼-bqo too.

(ii) If 𝑄 is wqo, then for every 𝛼 < 𝜔1, Idω(𝑄) is 𝛼-bqo implies that 𝑄 is
(1 + 𝛼)-bqo.

(iii) If 𝑄 is wqo then for every 𝑛 < 𝜔, 𝑄 is (1+𝑛)-bqo if and only if Idω(𝑄)
is 𝑛-bqo.

Proof. (i) By contraposition, suppose 𝑓 ∶ 𝐹 → 𝒟(𝑄) is a bad super-sequence
from some front 𝐹 . A bad super-sequence 𝑓2 ∶ 𝐹 2 → 𝑄 from the front

𝐹 2 = {𝑠 ∪ 𝑡 ∣ 𝑠, 𝑡 ∈ 𝐹 and 𝑠 � 𝑡}
is obtained by choosing for every 𝑠, 𝑡 ∈ 𝐹 with 𝑠 � 𝑡 some 𝑓(𝑠 ∪ 𝑡) ∈
𝑓(𝑠)∖𝑓(𝑡). By observing that for each ray 𝐹 2

𝑛, the tree 𝑇 (𝐹 2
𝑛) is included

in the union 𝑇 (𝐹) ∪ 𝑇 (𝐹𝑛), we see that rk 𝐹 2 ⩽ rk 𝐹 + 1.

(ii) By contraposition, suppose 𝑄 is wqo and there is bad super-sequence
from a front 𝐹 into 𝑄, then by Theorem 4.39 there exists a bad super-
sequence from some front 𝐺 with 𝐺 ⊆ 𝐹 ∖𝐹 into Idω(𝑄). By Lemma 3.34
we have 1 + rk 𝐺 ⩽ rk 𝐹 , so if rk 𝐹 ⩽ 1 + 𝛼 then rk 𝐺 ⩽ 𝛼.
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(iii) Since for a finite ordinal 𝑛 we have 𝑛 + 1 = 1 + 𝑛, the statement follows
from (i) and (ii).

Remark 4.44. In an attempt to prove the converse of Theorem 4.43 (ii), one
could try the following. For a bad super-sequence 𝑓 ∶ 𝐹 → Idω(𝑄), one could
consider a map 𝑓+ ∶ 𝐹 + → 𝑄 defined on the front

𝐹 + = {𝑠 ∪ {𝑛} ∣ 𝑠 ∈ 𝐹 and 𝑛 ∈ 𝜔/𝑠}
by choosing a strictly increasing sequence (𝑞𝑠

𝑛)𝑛∈𝜔/𝑠 with ↓{𝑞𝑠
𝑛 ∣ 𝑛 ∈ 𝜔/𝑠} =

𝑓(𝑠) and letting 𝑓(𝑠 ∪ {𝑛}) = 𝑞𝑠
𝑛 for every 𝑠 ∈ 𝐹 and 𝑛 ∈ 𝜔/𝑠. Notice that

rk 𝐹 + = 1 + rk 𝐹 as desired. However assuming that 𝑓+ is perfect is not
sufficient to prove that 𝑓 is good, as the following example shows.

Consider the super-sequence 𝑓+ ∶ [𝜔]2 → ℜ into Rado’s partial order given
by 𝑓+(𝑚, 𝑛) = (2𝑚, 𝑚 + 𝑛). The super-sequence 𝑓+ is perfect since whenever
𝑚 < 𝑛 < 𝑘 we have (2𝑚, 𝑚 + 𝑛) ⩽ (2𝑛, 𝑛 + 𝑘) in ℜ. Using Remark 4.33, 𝑓+

is easily seen to be Cauchy and therefore extends to a continuous ̄𝑓 ∶ [𝜔]⩽2 →
Id(ℜ). But clearly the restriction 𝑓 = ̄𝑓↾[𝜔]1 → Id*(ℜ) is bad.

This observation is a motivation to seek to strengthen the notion of ‘perfect
super-sequence’ in the conclusion of the implication ‘if there is no bad sequence
in 𝑄, then every super-sequence admits a perfect sub-super-sequence’ while
maintaining the validity of this fact. The results presented in Section 2.3 can
be seen as a first attempt in this direction.

Although some ingredients seem yet to be missing, we make the following
conjecture. Notice that it differs from the claim made by Pouzet and Sauer
[PS06, Theorem 2.17].

Conjecture 2. Let 𝑄 be wqo and 𝛼 < 𝜔1. Then 𝑄 is (1 + 𝛼)-bqo if and
only if Idω(𝑄) is 𝛼-bqo.

4.3 Corollaries
4.3.1 Finitely many non principal ideals
The first corollary of Theorem 4.40 that we mention is:

Corollary 4.45. If 𝑄 is wqo and Id*(𝑄) is finite, then 𝑄 is bqo.

This result is due to Pouzet [Pou78] and a direct proof is presented by Fraı̈ssé
[Fra00, Chapter 7, 7.7.8].

This first simple corollary already allows us to prove the following proposi-
tion, a particular case of which was used by Carroy [Car13].
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Proposition 4.46. Let 𝜑 ∶ 𝜔 → 𝜔 be progressive, i.e. such that 𝑛 ⩽ 𝜑(𝑛) for
every 𝑛 ∈ 𝜔. Then the partial order ⩽𝜑 on 𝜔 defined by

𝑚 ⩽𝜑 𝑛 ⟷ 𝑚 = 𝑛 or 𝜑(𝑚) < 𝑛.

is a better-quasi-order.

Proof. Let 𝑔 ∶ 𝜔 → 𝜔 be any sequence. Then either 𝑔 is bounded in the usual
order and so 𝑔 is good for ⩽𝜑, or 𝑔 is unbounded in the usual order and so
there exists 𝑛 such that 𝑔(𝑛) > 𝜑(𝑔(0)) and so 𝑔 is good for ⩽𝜑. Hence (𝜔, ⩽𝜑)
is wqo.

Now let 𝐼 be a non principal ideal in (𝜔, ⩽𝜑). In particular 𝐼 is an infinite
subset of 𝜔, so for every 𝑚 ∈ 𝜔 there exists 𝑛 ∈ 𝐼 such that 𝜑(𝑚) < 𝑛 and so
𝑚 ⩽𝜑 𝑛 ∈ 𝐼 . Therefore 𝐼 = 𝜔 and so there is exactly one non-principal ideal
of (𝜔, ⩽𝜑). It follows by Corollary 4.45 that (𝜔, ⩽𝜑) is bqo.

4.3.2 Interval orders
We now turn to the case of a wqo 𝑄 such that Id*(𝑄) is a well order. Since
by Proposition 2.54 well orders are bqo, such quasi-orders are bqo by The-
orem 4.40.

Observe that when 𝑄 is wqo, since ideals are downsets and 𝒟(𝑄) is well-
founded, Id*(𝑄) is well-founded too. Henceforth, if 𝑄 is wqo then Id*(𝑄) is
linearly ordered if and only if Id*(𝑄) is a well order.

What are the quasi-orders whose non principal ideals are linearly ordered?
Well, assume 𝑄 is a quasi-order and that 𝐼, 𝐽 ∈ Id*(𝑄) are incomparable
for inclusion. Let 𝑝 ∈ 𝐼 ∖ 𝐽 and 𝑞 ∈ 𝐽 ∖ 𝐼 . Then 𝑝 is incomparable with 𝑞.
Forbidding antichains of size 2 in 𝑄 is simply asking that 𝑄 is a linear order,
and of course well orders are bqo. But we can do better: since 𝐼 and 𝐽 are non
principal, there are 𝑝′ ∈ 𝐼 with 𝑝 < 𝑝′ and 𝑞′ ∈ 𝐽 with 𝑞 < 𝑞′. The restriction
of the quasi-order on 𝑄 to {𝑝, 𝑞, 𝑝′, 𝑞′} is isomorphic to the po

2 ⊕ 2 =
• •

• •

and therefore 2⊕2 embeds into 𝑄. We are naturally led to following definition
which appears frequently in the literature.

Definition 4.47. A partial order 𝑃 is an interval order if the partial order
2 ⊕ 2 does not embed into 𝑃 . In other words for every 𝑝, 𝑞, 𝑥, 𝑦 ∈ 𝑃 , 𝑝 < 𝑥
and 𝑞 < 𝑦 imply 𝑝 < 𝑦 or 𝑞 < 𝑥.
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The preceding discussion yields the following which is already stated by
Pouzet and Sauer [PS06].
Theorem 4.48. An interval order is bqo if and only if it is wqo.

Notice that this theorem can be rephrased as follows: a partial order 𝑃 such
that neither (𝜔, =), nor 𝜔op (the opposite of 𝜔), nor 2 ⊕ 2 embeds into 𝑃 is a
better-quasi-order.

According to Fishburn and Monjardet [FM92], the notion of interval order
was first studied by the twenty-years-old Norbert Wiener [Wie14] who credits
Bertrand Russell for suggesting the subject. Wiener was later acknowledged
as the originator of cybernetics [CS06]. The reverse mathematics of interval
orders is studied by Marcone [Mar07].

For 𝑝 ∈ 𝑃 , let Pred(𝑝) = {𝑞 ∈ 𝑃 ∣ 𝑞 < 𝑝}. It is easy to see that a partial
order 𝑃 is an interval order if and only if the set {Pred(𝑝) ∣ 𝑝 ∈ 𝑃} is linearly
ordered by inclusion.

The terminology ‘interval order’ was introduced by Fishburn [Fis70] and
stems from the following characterisation.

A non trivial closed interval of a partial order 𝑄 is a set of the form [𝑎, 𝑏] =
{𝑞 ∈ 𝑄 ∣ 𝑎 ⩽ 𝑞 ⩽ 𝑏} for some 𝑎, 𝑏 ∈ 𝑄 with 𝑎 < 𝑏. We partially order the set
Int(𝑄) of non trivial closed intervals of 𝑄 by [𝑎, 𝑏] ⩽ [𝑐, 𝑑] if and only if 𝑎 = 𝑐
and 𝑏 = 𝑑 or 𝑏 ⩽ 𝑐.

For a partial order 𝑃 let us say that a map 𝐼 ∶ 𝑃 → Int(𝑄) is an interval
representation of 𝑃 in 𝑄 if for every 𝑥, 𝑦 ∈ 𝑃 we have 𝑥 < 𝑦 ↔ 𝐼(𝑥) < 𝐼(𝑦).

Let us first see that any partial order 𝑃 admits an interval representation.
Let Pred+(𝑝) = ⋂𝑝<𝑥 Pred(𝑥) and

𝑄𝑃 = {Pred(𝑝) ∣ 𝑝 ∈ 𝑃} ∪ {Pred+(𝑝) ∣ 𝑝 ∈ 𝑃}
be partially ordered by inclusion.
Proposition 4.49 ([Bog93]). Let 𝑃 be a partial order. The map

𝐼 ∶ 𝑃 ⟶ Int(𝑄𝑃 )
𝑝 ⟼ 𝐼𝑝 = ( Pred(𝑝), Pred+(𝑝))

is an interval representation of 𝑃 in 𝑄𝑃 .
Proof. First observe that for every 𝑝 ∈ 𝑃 we have Pred(𝑞) ⊂ Pred+(𝑞) since
𝑞 < 𝑝 imply 𝑞 ∈ Pred(𝑥) for all 𝑥 > 𝑝, and in fact 𝑝 ∈ Pred+(𝑝) ∖ Pred(𝑝).
So 𝐼 is well defined. If 𝑝 < 𝑞, then Pred+(𝑝) = ⋂𝑝<𝑥 Pred(𝑥) ⊆ Pred(𝑞),
and so 𝐼𝑝 < 𝐼𝑞. Conversely if 𝐼𝑝 < 𝐼𝑞, then Pred+(𝑝) ⊆ Pred(𝑞) and since
𝑝 ∈ Pred+(𝑝) we have 𝑝 < 𝑞. Hence 𝐼 is an interval representation of 𝑃 .
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The following is a slight generalisation of a theorem by Fishburn [Fis70]. The
proof we give is due to Bogart [Bog93].

Proposition 4.50. A partial order 𝑃 is an interval order if and only if there
exists an interval representation of 𝑃 in some linear order.

Proof. Suppose 𝐼 ∶ 𝑃 → Int(𝐿) is an interval representation of 𝑃 in a linear
order 𝐿 and let 𝑝0 < 𝑝1 and 𝑞0 < 𝑞1 in 𝑃 . If 𝐼(𝑝𝑖) = [𝑙𝑖, 𝑟𝑖] and 𝐼(𝑞𝑖) = [𝑚𝑖, 𝑠𝑖]
then 𝑟0 ⩽ 𝑙1 and 𝑠0 ⩽ 𝑚1. Since 𝐿 is linearly ordered, either 𝑟0 ⩽ 𝑚1 and so
𝑝0 < 𝑞1, or 𝑚1 ⩽ 𝑟0 and so 𝑞0 < 𝑝1. Therefore 𝑃 is an interval order.

Conversely, suppose 𝑃 is an interval order. By Proposition 4.49, it suffices
to prove the 𝑄𝑃 is linearly ordered. But {Pred(𝑝) ∣ 𝑝 ∈ 𝑃} is linearly ordered
and Pred+(𝑝) = ⋂𝑝<𝑥 Pred(𝑥) is incomparable for the inclusion with some
𝑋 ∈ 𝑄𝑃 if and only if Pred(𝑥) is incomparable with 𝑋 for some 𝑥 > 𝑝.

4.3.3 Classes of better-quasi-orders via forbidden patterns
In fact continuing the above discussion we find that for any qo 𝑄, Id*(𝑄) is
linearly ordered if and only if the po

𝜔 ⊕ 𝜔 =

⋮ ⋮

• •
• •
• •

does not embed into 𝑄. We therefore have the following:

Theorem 4.51. If neither (𝜔, =), nor 𝜔op, nor 𝜔 ⊕ 𝜔 embed into 𝑄, then 𝑄
is bqo.

Suppose now for a partial order 𝑃 that there exists a natural number 𝑛 such
that the size of every antichain of 𝑃 is bounded by 𝑛. Then, by a theorem
due to Dilworth [Dil50], for 𝐴 an antichain of maximum size, say 𝑛, there exist
subsets 𝑃𝑖, 𝑖 ∈ 𝑛, such that |𝑃𝑖∩𝐴| = 1, 𝑃𝑖 is linearly ordered and ⋃𝑖∈𝑛 𝑃𝑖 = 𝑃
(see also [Fra00, 4.14.1, p. 141]). In particular, if 𝑃 is further assumed to be
well-founded, then 𝑃 is bqo as a finite union of well orders.

Continuing further the discussion of the previous subsection, we see that if
there exists an antichain 𝐴 of size 𝑛 among the non principal ideals of a qo 𝑄,
then the partial order
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4 The ideal space of a well-quasi-order

𝑛 ⊗ 𝜔 =

⋮ ⋮ ⋮

• • •
• • ⋯ •
• • •⎫}}}}⎬}}}}⎭

𝑛 times

embeds into 𝑄. Indeed, assume that {𝐼𝑖 ∣ 𝑖 ∈ 𝑛}, 𝑛 ⩾ 2 is an antichain of non
principal ideals of a qo 𝑄. For each 𝑖 ∈ 𝑛 and every 𝑗 ∈ 𝑛 with 𝑖 ≠ 𝑗, since
𝐼𝑖 ⊈ 𝐼𝑗 we can pick 𝑞𝑗 ∈ 𝐼𝑖 ∖ 𝐼𝑗 and by the fact that 𝐼𝑖 is directed there is
𝑞𝑖 ∈ 𝐼𝑖 with 𝑞𝑖 ∉ 𝐼𝑗 for every 𝑗 ≠ 𝑖. Now since each 𝐼𝑖 is non principal there
exists a strictly increasing sequence (𝑞𝑖

𝑘)𝑘∈𝜔 in 𝐼𝑖 with 𝑞𝑖
0 = 𝑞𝑖. This clearly

yields and embedding of 𝑛 ⊗ 𝜔 into ⋃𝑖∈𝑛 𝐼𝑖. Therefore

Theorem 4.52. Let 𝑛 ⩾ 1. If neither (𝜔, =), nor 𝜔op, nor 𝑛 ⊗ 𝜔 embed into
𝑄, then 𝑄 is bqo.

In this theorem, for each 𝑛 ⩾ 1, we have a class of bqo which is defined
by finitely many forbidden patterns. Examples of classes of bqos defined by
mean of forbidden patterns – left alone by finitely many – are quite rare. In
fact to our knowledge the previous theorem is the best result of this sort.
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5 A Wadge hierarchy for second
countable spaces

Our last chapter is of a more applied nature. We are interested in quasi-ordering
the subsets of a topological space according to their complexities. Among the
properties of such a quasi-order the following are arguably wished for. It should
agree with an a priori idea of topological complexity, in particular it should
refine the classical hierarchies of topological complexity. Moreover it should be
as fine as possible while still being wqo or even bqo – at least on the Borel
subsets.

The Wadge quasi-order on the Baire space 𝜔𝜔 satisfies all these properties
and even more. But the fact that the Wadge quasi-order is well-founded on
Borel subsets of 𝜔𝜔 is not at all straightforward. It relies on the determinacy
of certain infinite games and this result is actually best seen as an immediate
corollary of a theorem on bqos obtained by van Engelen, Miller, and Steel
[vEMS87, Theorem 3.2]. Elaborating on Chapter 2, we start this chapter by
presenting a slight generalisation of this theorem in a way which makes it
appear as an extension of the very idea underlying the definition of bqo.

We then define a notion of reducibility based on relatively continuous rela-
tions. We show that this notion of reducibility satisfies the above mentioned
properties and generalises the Wadge quasi-order to virtually all second count-
able 𝑇0 spaces.

This chapter is based on an article [Peq15] published by the author in Archive
for Mathematical Logic.

5.1 The van Engelen–Miller–Steel theorem
In Chapter 2, we started from the idea that a qo 𝑄 is bqo if the quasi-order
𝑉 ∗(𝑄) of non empty sets over 𝑄 is wqo. We then found a convenient definition
of bqo by observing that any bad sequence in 𝑉 ∗(𝑄) yields a multi-sequence
into 𝑄 of a particular kind, which we identified as the bad multi-sequences.
Pushing the same idea a little further we showed that when 𝑄 is bqo, then
so is 𝑉 ∗(𝑄). We then observed in Subsection 2.2.5 that the restriction to
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5 A Wadge hierarchy for second countable spaces

the quasi-order 𝐻∗
𝜔1

(𝑄) of hereditarily countable non-empty subsets over 𝑄
already contained all the required information. In particular, we showed in
Theorems 2.58 and 2.59 that 𝑄 is bqo if and only if 𝐻∗

𝜔1
(𝑄) is wqo if and

only if 𝐻∗
𝜔1

(𝑄) is well-founded. We now describe 𝐻∗
𝜔1

(𝑄) in slightly different
terms before we greatly generalise this construction in a way that is crucial to
the present chapter.

We can endow a set 𝐴 with the discrete topology in which every subset of
𝐴 is open. This space 𝐴 admits the compatible metric 𝛿(𝑎, 𝑏) = 1 whenever
𝑎 ≠ 𝑏. The set 𝐴𝜔 of infinite sequences on 𝐴, viewed as the product space of
infinitely many copies of 𝐴, is also metrisable: we use the compatible ultramet-
ric 𝑑(𝑥, 𝑦) = 2−𝑛 if 𝑥 ≠ 𝑦 and 𝑛 is the least number with 𝑥𝑛 ≠ 𝑦𝑛. When 𝐴 is
countable, 𝐴𝜔 is a Polish space, i.e. a separable completely metrisable space.
Important examples are given by the Cantor space 2𝜔 and the Baire space 𝜔𝜔.

Recall from Definitions 2.28 that by a tree on a non-empty set 𝐴 we mean a
set 𝑇 ⊆ 𝐴<𝜔 of finite sequences on 𝐴 which is closed under prefixes, i.e. 𝑢 ⊑ 𝑣
and 𝑣 ∈ 𝑇 imply 𝑢 ∈ 𝑇 . We say that a tree 𝑇 on 𝐴 is pruned if for every 𝑢 ∈ 𝑇
there exists 𝑣 ∈ 𝑇 with 𝑢 ⊏ 𝑣. For a tree 𝑇 on 𝐴, we let

[𝑇 ] = {𝑥 ∈ 𝐴𝜔 ∣ for every 𝑛 ∈ 𝜔, 𝑥↾𝑛 ∈ 𝑇 }

denote the set of infinite branches of 𝑇 . It is well-known that the map 𝑇 ↦ [𝑇 ]
is a one-to-one correspondence between pruned trees on 𝐴 and closed subsets
of 𝐴𝜔.

For 𝑋 ∈ 𝑉 ∗(𝑄) recall that tcQ 𝑋 is the smallest transitive set containing
{𝑋} when elements of 𝑄 are treated as urelements or atoms, namely each
element of 𝑄 contains no element and is different from the empty set. Notice
that in particular for 𝑞 ∈ 𝑄 we have tcQ(𝑞) = {𝑞}. Therefore by the axiom of
countable choice we have 𝑋 ∈ 𝐻∗

𝜔1
(𝑄) if and only if 𝑋 ∈ 𝑉 ∗(𝑄) and tcQ(𝑋)

is countable.
For every 𝑋 ∈ 𝐻∗

𝜔1
(𝑄) we define a non-empty pruned tree 𝑇𝑋 on tcQ(𝑋) by

letting

(1) if 𝑋 ∈ 𝑄, then 𝑇𝑋 = {𝑋}<𝜔,

(2) if 𝑋 ∉ 𝑄, then 𝑇𝑋 is the the set of finite sequences 𝑠 on tcQ(𝑋) such
that

𝑠 = ∅ or [𝑠0 ∈ 𝑋 and ∀𝑖 < |𝑠| − 1

(𝑠𝑖 ∋ 𝑠𝑖+1 or (𝑠𝑖 ∈ 𝑄 and 𝑠𝑖 = 𝑠𝑖+1))].
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5 A Wadge hierarchy for second countable spaces

Next we define a map 𝑙𝑋 ∶ [𝑇𝑋] → 𝑄 by letting for every 𝛼 ∈ [𝑇𝑋]

𝑙𝑋(𝛼) = 𝑞 ⟷ ∃𝑛 ∈ 𝜔 𝛼𝑛 = 𝑞.

By the axiom of foundation 𝑙𝑋 is defined on the whole of [𝑇𝑋]. Moreover 𝑙𝑋
is locally constant, so 𝑙−1

𝑋 (𝑞) is open in [𝑇𝑋] for every 𝑞 ∈ 𝑄 and 𝑙𝑋 has a
countable image.

For every 𝑋 ∈ 𝐻∗
𝜔1

(𝑄) the map 𝑙𝑋 ∶ [𝑙𝑋] → 𝑄 is – up to a bijection between
tcQ(𝑋) and 𝜔 – a locally constant map from a closed subset of 𝜔𝜔 into 𝑄.

We now generalise 𝐻∗
𝜔1

(𝑄) in the following way. Recall that the family of
Borel subsets of a topological space 𝒳 is the smallest Boolean algebra of sub-
sets of 𝒳 containing the open sets and closed under countable union and
complementation – and hence under countable intersection. Recall that if 𝒴 is
a subspace of 𝒳 then the family of Borel sets of 𝒴 consists of the intersection
with 𝒴 of some Borel set of 𝒳.

Definition 5.1. Let 𝑄 be a quasi-order. A map 𝑙 ∶ 𝐷 → 𝑄 from a Borel subset
𝐷 of 𝜔𝜔 is called a Borel 𝑄-labelling function on 𝐷 if

(1) for every 𝑞 ∈ 𝑄, the set 𝑙−1(𝑞) is Borel in 𝐷,

(2) the image Im 𝑙 of 𝑙 is countable.

We refer to 𝐷 as the domain of 𝑙 and denote it by dom 𝑙. We let 𝔏𝐵(𝑄) be the
set of all Borel 𝑄-labelling functions on some Borel subset of 𝜔𝜔.

For every 𝑙0 ∶ 𝐷0 → 𝑄 and 𝑙1 ∶ 𝐷1 → 𝑄 in 𝔏𝐵(𝑄) we define a two player
game with perfect information 𝐺(𝑙0, 𝑙1) as follows (see Figure 5.1). The players
I and II choose natural numbers alternatively. Player I starts by choosing some
𝛼0 ∈ 𝜔, then Player II chooses some 𝛽0 ∈ 𝜔, then it is again the turn of Player
I to choose some 𝛼1 ∈ 𝜔, so on and so forth. Both players eventually produce
𝛼 ∈ 𝜔𝜔 and 𝛽 ∈ 𝜔𝜔 respectively. Player II wins the play (𝛼, 𝛽) if and only if
the following condition holds:

𝛼 ∈ 𝐷0 implies (𝛽 ∈ 𝐷1 and 𝑙0(𝛼) ⩽ 𝑙1(𝛽)).

Player I wins the play (𝛼, 𝛽) if and only if Player II does not win, namely when
the following condition holds:

𝛼 ∈ 𝐷0 and (𝛽 ∈ 𝐷1 implies 𝑙0(𝛼) ⩽̸ 𝑙1(𝛽)).

We then quasi-order 𝔏𝐵(𝑄) by

𝑙0 ⩽𝔏 𝑙1 ⟷ Player II has a winning strategy in 𝐺(𝑙0, 𝑙1).
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5 A Wadge hierarchy for second countable spaces

I II

𝛼0 𝛽0

𝛼1 𝛽1

𝛼2 𝛽2

⋮ ⋮

𝛼 𝛽
⎧{{⎨{{⎩ 𝐺(𝑙0, 𝑙1)

Figure 5.1: A play of the game 𝐺(𝑙0, 𝑙1).

Remark 5.2. When 𝑙0 and 𝑙1 in 𝔏𝐵(𝑄) have non-empty closed domains, then
there are non-empty pruned trees 𝑇0 and 𝑇1 on 𝜔 with dom 𝑙0 = [𝑇0] and
dom 𝑙1 = [𝑇1]. The game 𝐺(𝑙0, 𝑙1) is then equivalent to the following game
where each player is required to stay inside 𝑇0 or 𝑇1 respectively. Player I starts
by choosing some 𝛼0 ∈ 𝜔 with (𝛼0) ∈ 𝑇0, then Player II chooses some 𝛽0 ∈ 𝜔
with (𝛽0) ∈ 𝑇1, then Player I chooses some 𝛼1 ∈ 𝜔 such that (𝛼0, 𝛼1) ∈ 𝑇0,
so on and so forth. Both players eventually produce 𝛼 ∈ [𝑇0] and 𝛽 ∈ [𝑇1]
respectively. Player II wins if and only if 𝑙0(𝛼) ⩽ 𝑙1(𝛽) in 𝑄. Clearly the
restriction of any winning strategy for II in 𝐺(𝑙0, 𝑙1) to the positions for I
which belong to 𝑇0 is a winning strategy for Player II in the above game.
Conversely the restriction of any winning strategy for Player I in 𝐺(𝑙0, 𝑙1) to
the positions for II which belong to 𝑇1 is a winning strategy for I in the above
game.

In particular it is clear from the remark that for every 𝑋, 𝑌 ∈ 𝐻∗
𝜔1

(𝑄) the
game 𝐺𝑉 ∗(𝑋, 𝑌 ) (see Subsection 2.2.4) is equivalent to the game 𝐺(𝑙𝑋, 𝑙𝑌 ).
Therefore 𝑋 ↦ 𝑙𝑋 is an embedding of 𝐻∗

𝜔1
(𝑄) into 𝔏𝐵(𝑄) and we can really

see 𝔏𝐵(𝑄) as a Borel generalisation of 𝐻∗
𝜔1

(𝑄).
In the definition of 𝔏𝐵(𝑄) the restriction to Borel 𝑄-labelling functions on

Borel subsets of 𝜔𝜔 ensures that the game 𝐺(𝑙0, 𝑙1) is Borel and therefore
determined by Martin’s Borel determinacy [Mar75]. By the axiom of choice,
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5 A Wadge hierarchy for second countable spaces

such a restriction is actually necessary to get positive results. However one can
weaken this restriction if one is willing to assume the determinacy of a larger
class of games.

As observed for the first time by van Engelen, Miller, and Steel [vEMS87,
Theorem 3.2] a bad locally constant multi-sequence in 𝔏𝐵(𝑄) can be reflected
into 𝑄, in a similar way as we reflected a bad locally constant multi-sequence
in 𝑉 ∗(𝑄) or 𝐻∗

𝜔1
(𝑄) into 𝑄 in Proposition 2.55. But this time we do not get

a locally constant multi-sequence into 𝑄 in general, but only a Borel multi-
sequence.

Definition 5.3. A multi-sequence 𝑓 ∶ [𝑋]∞ → 𝐸 into some set 𝐸 is said to be
Borel if 𝑓 has a countable image and 𝑓−1(𝑒) is Borel in [𝑋]∞ for every 𝑒 ∈ 𝐸.

The following can be seen as the Borel analogue of Proposition 2.55 and its
proof follows the same line (see the discussion in Subsection 2.2.4). This is a
slight generalisation of a theorem by van Engelen, Miller, and Steel [vEMS87,
Theorem 3.2] (see also the paper by Louveau and Saint Raymond [LS90, The-
orem 3]).

Theorem 5.4. Let 𝑄 be a qo. For every bad locally constant multi-sequence
ℎ ∶ [𝜔]∞ → 𝔏𝐵(𝑄) there exists a bad Borel multi-sequence 𝑔 ∶ [𝜔]∞ → 𝑄 such
that 𝑔(𝑋) ∈ Im(ℎ(𝑋)) for every 𝑋 ∈ [𝜔]∞.

Proof. Let ℎ ∶ [𝜔]∞ → 𝔏𝐵(𝑄), 𝑋 ↦ ℎ𝑋 be a bad locally constant multi-
sequence. Let 𝐿 be the countable image of ℎ inside 𝔏𝐵(𝑄) and endow 𝐿 with
the discrete topology. We consider the closed subset of 𝐿𝜔 of ‘nowhere ascend-
ing’ sequences in 𝐿:

𝐿na = {(𝑙𝑛)𝑛∈𝜔 ∈ 𝐿𝜔 ∣ for every 𝑛 ∈ 𝜔, 𝑙𝑛 ⩽̸Lip 𝑙𝑛+1}.

Notice that 𝐿na comes with a shift map ̃𝖲 ∶ 𝐿na → 𝐿na given by ̃𝖲((𝑙𝑛)𝑛∈𝜔) =
(𝑙𝑛+1)𝑛∈𝜔. We are going to define 𝑔 ∶ [𝜔]∞ → 𝑄 as the composition of a map
ℎ⃗ ∶ [𝜔]∞ → 𝐿na with a map Ψ ∶ 𝐿na → 𝑄.

Recall that 𝖲 ∶ [𝜔]∞ → [𝜔]∞ denotes the shift map 𝑋 ↦ ∗𝑋 and let 𝖲0 =
id[𝜔]∞ and 𝖲𝑘+1 = 𝖲 ∘ 𝖲𝑘 for every 𝑘 ∈ 𝜔.

Claim. The map ℎ⃗ ∶ [𝜔]∞ → 𝐿na defined by ℎ⃗(𝑋) = ℎ(𝖲𝑛(𝑋))𝑛∈𝜔 is continu-
ous and we have ℎ⃗ ∘ 𝖲 = ̃𝖲 ∘ ℎ⃗.

Since ℎ is bad, ℎ(𝖲𝑛(𝑋)) ⩽̸Lip ℎ(𝖲𝑛+1(𝑋)) for every 𝑛 ∈ 𝜔 and so ℎ⃗ is well
defined. If we let 𝜋𝑛 ∶ 𝑃 𝜔 → 𝑃 denote the projection on the 𝑛th coordinate,
then the map 𝜋𝑛 ∘ ℎ⃗ = ℎ(𝖲𝑛(𝑋)) is continuous since 𝖲 is continuous and ℎ is
locally constant. It follows that ℎ⃗ is continuous and we have proved the Claim.
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5 A Wadge hierarchy for second countable spaces

Claim. There is a map Ψ ∶ 𝐿na → 𝑄 such that

(i) for every 𝜆 ∈ 𝐿na we have Ψ(𝜆) ⩽̸ Ψ( ̃𝖲(𝜆)) in 𝑄,

(ii) Ψ(𝜆) ∈ Im 𝑙0 for every 𝜆 = (𝑙𝑛)𝑛∈𝜔 ∈ 𝐿na,

(iii) the image of Ψ is countable and Ψ−1(𝑞) is Borel in 𝐿na for every 𝑞 ∈ 𝑄.

If 𝑙0 ⩽̸𝔏 𝑙1 in 𝔏𝐵(𝑄), then II has no winning strategy in the Borel game
𝐺(𝑙0, 𝑙1) and therefore Player I has a winning strategy. By the axiom of count-
able choice we choose for every 𝑙0, 𝑙1 ∈ 𝐿 with 𝑙0 ⩽̸𝔏 𝑙1 a winning strategy 𝜎𝑙1

𝑙0
for Player I in 𝐺(𝑙0, 𝑙1).

𝑙0 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5

𝛼0
0 𝛼1

0 𝛼2
0 𝛼3

0 𝛼4
0

𝛼0
1 𝛼1

1 𝛼2
1 𝛼3

1 ⋮

𝛼0
2 𝛼1

2 𝛼2
2 ⋮

𝛼0
3 𝛼1

3 ⋮

𝛼0
4 ⋮

⋮

𝛼0 𝛼1 𝛼2 𝛼3 𝛼4
∈ dom 𝑙0

∈ dom 𝑙1
∈ dom 𝑙2

∈ dom 𝑙3
∈ dom 𝑙4

⎧{{{⎨{{{⎩ 𝐺(𝑙0, 𝑙1)

⎧{{{⎨{{{⎩ 𝐺(𝑙1, 𝑙2)

⎧{{{⎨{{{⎩ 𝐺(𝑙2, 𝑙3)

⎧{{{⎨{{{⎩ 𝐺(𝑙3, 𝑙4)

⎧{{{⎨{{{⎩ 𝐺(𝑙4, 𝑙5)

𝜎𝑙1
𝑙0

𝜎𝑙1
𝑙0

𝜎𝑙1
𝑙0

𝜎𝑙1
𝑙0

𝜎𝑙1
𝑙0

𝜎𝑙2
𝑙1

𝜎𝑙2
𝑙1

𝜎𝑙2
𝑙1

𝜎𝑙2
𝑙1

𝜎𝑙3
𝑙2

𝜎𝑙3
𝑙2

𝜎𝑙3
𝑙2

𝜎𝑙4
𝑙3

𝜎𝑙4
𝑙3

𝜎𝑙5
𝑙4

Figure 5.2: Stringing strategies together towards infinity.
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For each sequence 𝜆 = (𝑙𝑛)𝑛∈𝜔 ∈ 𝐿na we define a diagram (𝛼𝑖(𝜆))𝑖∈𝜔 ∈
∏𝑖∈𝜔 dom 𝑙𝑖 by stringing strategies together as depicted in Figure 5.2. In
each game 𝐺(𝑙𝑛, 𝑙𝑛+1) Player I follows the strategy 𝜎𝑙𝑛+1

𝑙𝑛
and Player II cop-

ies the moves made by Player I in 𝐺(𝑙𝑛+1, 𝑙𝑛+2). Writing 𝛼𝑛(𝜆) = (𝛼𝑛
𝑘)𝑘∈𝜔

this means that for every 𝑛, 𝑘 ∈ 𝜔 the number 𝛼𝑛
𝑘 is the next move for

Player I in 𝐺(𝑙𝑛, 𝑙𝑛+1) provided by the strategy 𝜎𝑙𝑛+1
𝑙𝑛

in the position where
Player II has played 𝛼𝑛+1↾𝑘. Therefore, for every 𝑛 ∈ 𝜔, (𝛼𝑛(𝜆), 𝛼𝑛+1(𝜆)) is a
play of 𝐺(𝑙𝑛, 𝑙𝑛+1) in which Player I has followed the winning strategy 𝜎𝑙𝑛+1

𝑙𝑛
and so necessarily 𝛼𝑛(𝜆) ∈ dom 𝑙𝑛. It follows that for every 𝑛 ∈ 𝜔 we have
𝑙𝑛(𝛼𝑛(𝜆)) ⩽̸ 𝑙𝑛+1(𝛼𝑛+1(𝜆)).

We define Ψ ∶ 𝐿na → 𝑄 by Ψ(𝜆) = 𝑙0(𝛼0(𝜆)) for every 𝜆 = (𝑙𝑛)𝑛∈𝜔 ∈ 𝐿na.
We have Ψ((𝑙𝑛)𝑛∈𝜔) ∈ Im 𝑙0 for every (𝑙𝑛)𝑛∈𝜔 ∈ 𝐿na and therefore the image

of Ψ is contained in the countable union of countable sets ⋃𝑙∈𝐿 Im 𝑙. For 𝑙 ∈ 𝐿,
let us denote by 𝐿na

𝑙 = {(𝑙𝑛)𝑛 ∈ 𝐿na ∣ 𝑙0 = 𝑙} the clopen subset of 𝐿na of
sequences starting with 𝑙. For every 𝑙 ∈ 𝐿, the map 𝛼0↾𝐿na

𝑙
∶ 𝐿na

𝑙 → dom 𝑙 is
continuous since for every 𝜆 = (𝑙𝑛)𝑛 ∈ 𝐿na

𝑙 the initial segment 𝛼0(𝜆)↾𝑘 depends
only on 𝑙1, … , 𝑙𝑘 – and it is determined by 𝜎𝑙1

𝑙0
, 𝜎𝑙2

𝑙1
… 𝜎𝑙𝑘

𝑙𝑘−1
– as easily seen by

contemplating Figure 5.2. Therefore for every 𝑞 ∈ 𝑄,

Ψ−1(𝑞) = ⋃
𝑙∈𝐿

(𝑙 ∘ 𝛼0↾𝐿na
𝑙

)
−1

(𝑞)

is Borel since 𝐿 is countable, 𝑙 is Borel and 𝛼0↾𝐿na
𝑙

is continuous.
Moreover, by construction for every 𝜆 = (𝑙𝑛)𝑛∈𝜔 ∈ 𝐿na, we have 𝛼1(𝜆) =

𝛼0( ̃𝖲(𝜆)) and therefore

Ψ(𝜆) = 𝑙0(𝛼0(𝜆)) ⩽̸ 𝑙1(𝛼1(𝜆)) = 𝑙1(𝛼0( ̃𝖲(𝜆))) = Ψ( ̃𝖲(𝜆)),
as 𝜎𝑙1

𝑙0
is winning for Player I in 𝐺(𝑙0, 𝑙1). This finishes the proof of the second

Claim.
Finally we define the multi-sequence 𝑔 ∶ [𝜔]∞ → 𝑄 by letting 𝑔 = Ψ ∘ ℎ⃗. We

have for every 𝑋 ∈ [𝜔]∞

𝑔(𝑋) = Ψ(ℎ⃗(𝑋)) ⩽̸ Ψ( ̃𝖲(ℎ⃗(𝑋))) = Ψ(ℎ⃗(𝖲(𝑋))),
hence 𝑔 is bad. Moreover 𝑔 is a Borel multi-sequence since for every 𝑞 ∈ 𝑄, the
set

𝑔−1(𝑞) = ℎ⃗−1(Ψ−1(𝑞))
is Borel in [𝜔]∞ since Ψ−1(𝑞) is Borel in 𝐿na and ℎ⃗ preserves Borel sets by
preimages since it is continuous.
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5 A Wadge hierarchy for second countable spaces

The previous theorem only yields a Borel multi-sequence and we are therefore
led to consider the combinatorial properties of Borel subsets of [𝜔]∞. Notice
that Nash-Williams Theorem 2.36 is equivalent to the statement that for every
clopen subset 𝐶 of [𝜔]∞ there exists 𝑋 ∈ [𝜔]∞ such that either [𝑋]∞ ⊆ 𝐶
or [𝑋]∞ ∩ 𝐶 = ∅. Galvin and Prikry [GP73] proved the following important
generalisation:

Theorem 5.5 (Galvin and Prikry). For every Borel subset 𝐵 of [𝜔]∞ there
exists 𝑋 ∈ [𝜔]∞ such that either [𝑋]∞ ⊆ 𝐵 or [𝑋]∞ ∩ 𝐵 = ∅.

The proof of this theorem uses an important technique sometimes called com-
binatorial forcing. Several textbooks (notably [Tod10; Kec95; Hal11; Jec03])
provide a proof of this theorem and its generalisation to the sets enjoying the
Baire property relatively to the Ellentuck topology. In our context, we are in-
terested in the following well-known corollary (see also [PV92, Theorem 3.4],
[LS82]).

Theorem 5.6. Let 𝐸 be a set. Every Borel multi-sequence into 𝐸 admits a
locally constant sub-multi-sequence. In particular a quasi-order 𝑄 is bqo if
and only if there is no bad Borel multi-sequence into 𝑄.

Proof (Folklore). Let 𝑔 ∶ [𝜔]∞ → 𝑄 be a Borel multi-sequence and let (𝐵𝑖)𝑖∈𝜔
enumerate the countable Borel partition {𝑓−1(𝑞) ∣ 𝑞 ∈ Im 𝑔} of [𝜔]∞. We
show that there exists 𝑋 ∈ [𝜔]∞ such that for each 𝐵𝑘 ∩ [𝑋]∞ is clopen in
[𝑋]∞, therefore showing that the sub-multi-sequence 𝑔 ∶ [𝑋]∞ → 𝑄 is locally
constant. To do so, we define a sequence (𝑁𝑖)𝑖∈𝜔 ⊆ [𝜔]∞ with 𝑛𝑖 = min 𝑁𝑖
such that for every 𝑖 ∈ 𝜔:

(i) 𝑁𝑖+1 ∈ [∗𝑁𝑖]∞,

(ii) for every 𝑠 ⊆ {𝑛𝑗 ∣ 𝑗 < 𝑖}

either {𝑠 ∪ 𝑍 ∣ 𝑍 ∈ [𝑁𝑖]∞} ⊆ 𝐵𝑖, or {𝑠 ∪ 𝑍 ∣ 𝑍 ∈ [𝑁𝑖]∞} ∩ 𝐵𝑖 = ∅,

By Theorem 5.5, there exists 𝑁0 ∈ [𝜔]∞ such that either [𝑁0]∞ ⊆ 𝐵0 or
𝐵0 ∩ [𝑁0]∞ = ∅. Now assume the sequence (𝑁𝑖)𝑖 is defined up to some 𝑖 ⩾ 0.
For each 𝑠 ⊆ {𝑛𝑗 ∣ 𝑗 < 𝑖 + 1} we consider the following Borel subset of [∗𝑁𝑖]∞:

𝐵𝑖+1
𝑠 = {𝑍 ∈ [∗𝑁𝑖]∞ ∣ 𝑠 ∪ 𝑍 ∈ 𝐵𝑖+1}.

Let 𝑠𝑙 for 𝑙 < 2𝑖+1 enumerate the subsets of {𝑛𝑗 ∣ 𝑗 < 𝑖 + 1}. Applying
Theorem 5.5 to 𝐵𝑖+1

𝑠0
we find 𝑌0 ∈ [∗𝑁𝑖]∞ such that either [𝑌0]∞ ⊆ 𝐵𝑖+1

𝑠0
or
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5 A Wadge hierarchy for second countable spaces

[𝑌0]∞ ∩𝐵𝑖+1
𝑠0

= ∅. Next we apply Theorem 5.5 to 𝐵𝑖+1
𝑠1

to find 𝑌1 ∈ [𝑌0]∞ such
that either [𝑌0]∞ ⊆ 𝐵𝑖+1

𝑠1
or [𝑌0]∞ ∩𝐵𝑖+1

𝑠1
= ∅. We go on like this for 2𝑖+1 steps

and we let 𝑁𝑖+1 = 𝑌2𝑖+1 which satisfies the requirements.
Finally let 𝑋 = {𝑛𝑖 ∣ 𝑖 ∈ 𝜔}. For any 𝑖 ∈ 𝜔 let 𝑆𝑖 denote the finite set of

those 𝑠 ⊆ {𝑛𝑗 ∣ 𝑗 < 𝑖} such that {𝑠 ∪ 𝑍 ∣ 𝑍 ∈ [𝑁𝑖]∞} ⊆ 𝐵𝑖. Then for every
𝑖 ∈ 𝜔 we have

𝐵𝑖 ∩ [𝑋]∞ = ⋃
𝑠∈𝑆𝑖

𝑀𝑠 ∩ [𝑋]∞,

where we recall that 𝑀𝑠 = {𝑌 ∈ [𝜔]∞ ∣ 𝑠 ⊏ 𝑌 } is a basic clopen set. Therefore
each 𝐵𝑖 ∩ [𝑋]∞ is clopen in [𝑋]∞ as desired.

Therefore we have obtained the following:

Theorem 5.7. Let 𝑄 be a quasi-order. If 𝑄 is bqo, then 𝔏𝐵(𝑄) is bqo.

Remark that since 𝐻∗
𝜔1

(𝑄) embeds into 𝔏𝐵(𝑄) via 𝑋 ↦ 𝑙𝑋, it follows from
Theorem 2.59 that if 𝔏𝐵(𝑄) is well-founded (in particular if it is wqo), then
𝑄 is bqo. Hence in a sense a quasi-order 𝑄 relates to 𝔏𝐵(𝑄) in the same way
as it does to 𝐻∗

𝜔1
(𝑄).

In the game 𝐺(𝑙0, 𝑙1), any winning strategy 𝜎 for Player II induces continuous
maps 𝜎∗ ∶ 𝜔𝜔 → 𝜔𝜔 such that for every 𝛼 ∈ dom 𝑙0 we have 𝜎∗(𝛼) ∈ dom 𝑙1 and
𝑙0(𝛼) ⩽ 𝑙1(𝜎∗(𝛼)). In particular the function 𝜎∗ restricts to a continuous map
𝑓 ∶ dom 𝑙0 → dom 𝑙1 such that for every 𝛼 ∈ dom 𝑙0 we have 𝑙0(𝛼) ⩽ 𝑙1(𝑓(𝛼)).
This allows us to bring 𝔏𝐵(𝑄) to the topological setting.

A Luzin space – or Borel absolute space – is a separable metrisable space
which is Borel in every Polish space in which it embeds. It is well-known a space
𝒳 is Luzin if and only if there exists a continuous bijection 𝑓 ∶ 𝐹 → 𝒳 from a
closed subset 𝐹 of 𝜔𝜔, if and only if it is homeomorphic to a Borel subspace of
some Polish space (see for example the article by Dellacherie [Del80, p.208]).

Since every separable metrisable zero-dimensional space – or equivalently
every zero-dimensional second countable space – is homeomorphic to a sub-
space of the Baire space, the zero-dimensional Luzin spaces are the topological
spaces which are homeomorphic to a Borel subspace of 𝜔𝜔.

Definition 5.8. Let 𝑄 be a quasi-order. A map 𝑙 ∶ 𝒳 → 𝑄 from some Luzin
zero-dimensional space 𝒳 is called a Borel 𝑄-labelling function of 𝒳 if

(1) for every 𝑞 ∈ 𝑄, the set 𝑙−1(𝑞) is Borel in 𝒳,

(2) the image Im 𝑙 of 𝑙 is countable.
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5 A Wadge hierarchy for second countable spaces

We refer to 𝒳 as the domain of 𝑙 and denote it by dom 𝑙. We let 𝐵(𝑄) be the
class of all Borel 𝑄-labelling of some zero-dimensional Luzin space.

We quasi-order 𝐵(𝑄) by

𝑙0 ⩽c 𝑙1 ⟷ there exists a continuous map 𝑔 ∶ dom 𝑙0 → dom 𝑙1 s.t.
for every 𝑥 ∈ dom 𝑙0 we have 𝑙0(𝑥) ⩽ 𝑙1(𝑔(𝑥)) in 𝑄.

Theorem 5.9. If 𝑄 is bqo, then 𝐵(𝑄) is bqo.

Proof. Let ℎ ∶ [𝜔]∞ → 𝐵(𝑄) be a locally constant multi-sequence. Since ℎ has
a countable image and every zero-dimensional Luzin space is homeomorphic
to a Borel subset of 𝜔𝜔, we can assume that in fact ℎ ∶ [𝜔]∞ → 𝔏𝐵(𝑄). By
Theorem 5.7, if 𝑄 is bqo then there exist 𝑋 ∈ [𝜔]∞ such that ℎ(𝑋) ⩽𝔏
ℎ(∗𝑋), i.e. Player II has a winning strategy in 𝐺(ℎ(𝑋), ℎ(∗𝑋). Now a winning
strategy 𝜎 for Player II in 𝐺(ℎ(𝑋), ℎ(∗𝑋) induces a continuous map 𝜎∗ ∶ 𝜔𝜔 →
𝜔𝜔 which restricts to a continuous 𝑓 ∶ dom ℎ(𝑋) → dom ℎ(∗𝑋) such that
ℎ(𝑋)(𝛼) ⩽ ℎ(∗𝑋)(𝑓(𝛼)) for every 𝛼 ∈ dom ℎ(𝑋). Therefore ℎ(𝑋) ⩽c ℎ(∗𝑋)
and ℎ ∶ [𝜔]∞ → 𝐵(𝑄) is good. Since ℎ was arbitrary, it follows that 𝐵(𝑄) is
bqo.

The case of the bqo 2 = {0, 1} partially ordered by equality has received
much attention. In this case, 𝐵(2) consists of the characteristic functions of
Borel subsets of zero-dimensional Luzin spaces quasi-ordered by continuous
reducibility, and by Theorem 5.9 𝐵(2) is bqo. Let us write any 𝑙 ∈ 𝐵(2) as
the ordered pair (𝐴𝑙, dom 𝑙) where 𝐴𝑙 = 𝑙−1(1). Conversely we can write every
Borel subset 𝐴 of some zero-dimensional Luzin space 𝒳 as the element of 𝐵(𝑄)
consisting in its characteristic function 𝑙𝐴 ∶ 𝒳 → 2. Now for every 𝑙0, 𝑙1 ∈ 𝐵(𝑄)
we have 𝑙0 ⩽c 𝑙1 if and only if there exists a continuous function 𝑓 ∶ dom 𝑙0 →
dom 𝑙1 such that 𝐴𝑙0

= 𝑓−1(𝐴𝑙1
). We therefore also write (𝐴, 𝒳) ⩽W (𝐵, 𝒴)

in place of 𝑙𝐴 ⩽c 𝑙𝐵.
The symmetry of the qo 2 allows us to prove the following result, usually

referred to as the ‘Wadge Lemma’.

Lemma 5.10 (Wadge Lemma). Let 𝒳 and 𝒴 be zero-dimensional Luzin spaces,
𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 be Borel. Then either (𝐴, 𝒳) ⩽W (𝐵, 𝒴) or (𝐵, 𝒴) ⩽W
(𝒳 ∖ 𝐴, 𝒳).
Proof. We can assume that 𝒳 and 𝒴 are Borel subsets 𝐷0 and 𝐷1 of 𝜔𝜔. Let
𝑙𝐴 ∶ 𝐷0 → 2 and 𝑙𝐵 ∶ 𝐷1 → 2 be the characteristic functions of 𝐴 and 𝐵
respectively. If (𝐴, 𝒳) ⩽W (𝐵, 𝒴) then Player II has no winning strategy in
the Borel game 𝐺(𝑙𝐴, 𝑙𝐵) and so Player I has a winning strategy. Notice that
any winning strategy 𝜏 for Player I in 𝐺(𝑙𝐴, 𝑙𝐵) induces a continuous map
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5 A Wadge hierarchy for second countable spaces

𝜏∗ ∶ 𝜔𝜔 → 𝜔𝜔 with the property that 𝜏∗(𝛽) ∈ 𝐷0 for every 𝛽 ∈ 𝜔𝜔 and if
𝛽 ∈ 𝐷1, then 𝑙𝐴(𝑓(𝛽)) ≠ 𝑙𝐵(𝛽). Therefore when we restrict 𝜏∗ to 𝐷1 we get a
continuous map 𝑓 ∶ 𝐷1 → 𝐷0 such that

for every 𝛽 ∈ 𝐷1 (𝑓(𝛽) ∉ 𝐴 ⟷ 𝛽 ∈ 𝐵),

and therefore (𝐵, 𝒴) ⩽W (𝒳 ∖ 𝐴, 𝒳) as desired.

One consequence of Wadge Lemma is that antichains in 𝐵(2) are of size at
most two. To see this, observe that (𝐴, 𝒳) ⩽W (𝐵, 𝒴) if and only if (𝐴∁, 𝒳) ⩽W
(𝐵∁, 𝒴). Suppose that (𝐴, 𝒳) and (𝐵, 𝒴) are incomparable. It follows from
Wadge Lemma that that (𝐵, 𝒴) is equivalent to (𝐴∁, 𝒳), and therefore (𝐴, 𝒳) is
equivalent to (𝐵∁, 𝒴). Let now (𝐶, 𝒵) be an arbitrary element of 𝐵(2). Then by
Wadge Lemma again, we have either (𝐴, 𝒳) ⩽W (𝐶, 𝒵) or (𝐶, 𝒵) ⩽W (𝐴∁, 𝒳).

(𝐶, 𝒵)

(𝐴, 𝒳) (𝐵, 𝒴)

(𝐶, 𝒵)

⩽ W

|W
⩽ W

≡W (𝐴∁, 𝒳)

Figure 5.3: Consequences of Wadge Lemma

Therefore antichains are of size at most two, and up to equivalence they are
necessarily of the form (𝐴, 𝒳) and (𝐴∁, 𝒳). As we have just seen a second
consequence of Wadge Lemma is that if we stipulate that (𝐴, 𝒳) and (𝐴∁, 𝒳)
are always equivalent, this makes 𝐵(2) into a linear order, and therefore a
well-order.

While the continuous reducibility is ideal in the zero-dimensional framework,
the situation is dramatically different in spaces like the real line for example.
As far as we know the only way to prove that the continuous reducibility is
well-founded on Borel subsets of the Baire space relies on two player games
with perfect information. Moreover we think that the notion of dimension
zero in the topological setting compares with the idea of perfect information
in the game-theoretic setting. This may indicate that the restriction to zero-
dimensional spaces in Theorem 5.9 is in a sense necessary.

We aim to generalise the continuous reducibility – and in fact Theorem 5.9
– to spaces of higher dimension while maintaining the nice properties it enjoys
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5 A Wadge hierarchy for second countable spaces

on zero-dimensional spaces. Our first step in this direction is very simple but
fundamental. We observe that the notion of function is not essential to the
idea of reduction, but that on the contrary one can advantageously consider
total relations in place of functions.

5.2 Reductions as total relations
The concept of reduction is used in several different fields, such as complexity
theory, automata theory and descriptive set theory. While particular definitions
relies on different concepts, they all share a general idea. If 𝒳 and 𝒴 are sets,
𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴, a function 𝑓 ∶ 𝒳 → 𝒴 is called a reduction of 𝐴 to 𝐵 if
𝐴 = 𝑓−1(𝐵) or equivalently if

∀𝑥 ∈ 𝒳 (𝑥 ∈ 𝐴 ⟷ 𝑓(𝑥) ∈ 𝐵) .

Let ℱ be a class of functions from 𝒳 to 𝒳 that contains the identity on 𝒳
and that is closed under composition. For 𝐴, 𝐵 ⊆ 𝒳 we say that 𝐴 is reducible
to 𝐵 with respect to ℱ if there exists 𝑓 ∈ ℱ such that 𝑓 is a reduction of 𝐴
to 𝐵. This always defines a quasi-order on the powerset of 𝒳.

We now observe that as far as reducibility is concerned reductions do not
need to be functions. In fact one may as well consider total relations in place
of functions.

We say 𝑅 ⊆ 𝒳 × 𝒴 is a (total) relation from 𝒳 to 𝒴, in symbols 𝑅 ∶ 𝒳 ⇉ 𝒴,
if for all 𝑥 ∈ 𝒳 there exists 𝑦 ∈ 𝒴 with (𝑥, 𝑦) ∈ 𝑅. We also write 𝑅(𝑥, 𝑦) in
place of (𝑥, 𝑦) ∈ 𝑅.

Definition 5.11. If 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 we say that a reduction of 𝐴 to 𝐵 is
a total relation 𝑅 ∶ 𝒳 ⇉ 𝒴 such that

∀𝑥 ∈ 𝒳 ∀𝑦 ∈ 𝒴 [𝑅(𝑥, 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)]. (5.1)

One can also view a relation 𝑅 ⊆ 𝒳 × 𝒴 as the function

𝑅→ ∶ 𝒳 ⟶ 𝒫(𝒴)
𝑥 ⟼ 𝑅→(𝑥) = {𝑦 ∈ 𝒴 ∣ 𝑅(𝑥, 𝑦)}.

From this point of view, 𝑅 is total from 𝒳 to 𝒴 if and only if 𝑅→(𝑥) ≠ ∅ for
all 𝑥 ∈ 𝒳, and (5.1) can be stated in the following way:

∀𝑥 ∈ 𝒳 [(𝑥 ∈ 𝐴 ∧ 𝑅→(𝑥) ⊆ 𝐵) ∨ (𝑥 ∈ 𝐴∁ ∧ 𝑅→(𝑥) ⊆ 𝐵∁)]. (5.2)
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Of course, for every function 𝑓 ∶ 𝒳 → 𝒴, 𝑓 is a reduction of 𝐴 to 𝐵 if and only
if its graph {(𝑥, 𝑓(𝑥)) ∣ 𝑥 ∈ 𝒳}, as a total relation from 𝒳 to 𝒴, is a reduction
of 𝐴 to 𝐵. So our notion of reduction as total relations subsumes the notion
of reduction as functions.

Observe also that it follows directly from (5.2) that a total relation 𝑅 is a
reduction of 𝐴 to 𝐵 if and only if it is a reduction from 𝐴∁ to 𝐵∁.

Two total relations 𝑅 ∶ 𝒳 ⇉ 𝒴 and 𝑆 ∶ 𝒴 ⇉ 𝒵 compose to yield the total
relation 𝑆 ∘ 𝑅 ∶ 𝒳 ⇉ 𝒵 in the expected way

𝑆 ∘ 𝑅 = {(𝑥, 𝑧) ∈ 𝒳 × 𝒵 ∣ ∃𝑦 ∈ 𝒴 𝑅(𝑥, 𝑦) ∧ 𝑆(𝑦, 𝑧)}.

Fact 5.12. If 𝐴 ⊆ 𝒳, 𝐵 ⊆ 𝒴, 𝐶 ⊆ 𝒵, 𝑅 ∶ 𝒳 ⇉ 𝒵 is a reduction of 𝐴 to 𝐵
and 𝑆 ∶ 𝒴 ⇉ 𝒵 is a reduction of 𝐵 to 𝐶, then 𝑆 ∘ 𝑅 ∶ 𝒳 ⇉ 𝒵 is a reduction of
𝐴 to 𝐶.

Let ℛ be a class of total relations from 𝒳 to 𝒳 that contains the diagonal
{(𝑥, 𝑥) ∣ 𝑥 ∈ 𝒳} and that is closed under composition. For 𝐴, 𝐵 ⊆ 𝒳 we say
that 𝐴 is reducible to 𝐵 with respect to ℛ if there 𝑅 ∈ ℛ such that 𝑅 is a
reduction of 𝐴 to 𝐵. Again this defines a quasi-order on the powerset of 𝒳
that we call ℛ-reducibility.

The following fact follows immediately from (5.1).

Fact 5.13. Let 𝑅, 𝑆 ∶ 𝒳 ⇉ 𝒴, 𝐴 ⊆ 𝒳, 𝐵 ⊆ 𝒴. If 𝑅 ⊆ 𝑆 and 𝑆 is a reduction
of 𝐴 to 𝐵, then 𝑅 is also a reduction of 𝐴 to 𝐵.

Consequently, for a class ℛ as above, if we consider the the upward closure
of ℛ defined by

ℛ = {𝑆 ∶ 𝒳 ⇉ 𝒳 ∣ ∃𝑅 ∈ ℛ 𝑅 ⊆ 𝑆},
then the ℛ-reducibility equals the ℛ-reducibility. Therefore as far as reducib-
ility is concerned, we gain generality by considering classes of total relations
instead of classes of functions, and we can always consider classes of total
relations that are upward closed.

In the next section the definition of a notion of continuity for total relations
between second countable 𝑇0 spaces is provided. We then discuss in the fol-
lowing sections some properties of the reducibility associated with this class of
‘continuous’ total relations.

5.3 Relatively continuous relations
We are interested in a notion of continuity for total relations called relative
continuity. It relies on the concept of admissible representation of a topological
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space. While this concept is fundamental to Type-2 Theory of Effectivity (see
the textbook by Weihrauch [Wei00]), we do not expect our reader to be familiar
with the simple and interesting underpinning of this approach to computable
analysis.

We therefore review the basic definitions and provide proofs for the conveni-
ence of the reader.

5.3.1 Admissible representations
A topological space 𝒳 is called second countable if it admits a countable base
of open sets. It satisfies the separation axiom 𝑇0 if every two distinct points
are topologically distinguishable, i.e. for any two distinct points 𝑥 and 𝑦 there
is an open set which contains one of these points and not the other. It is
called zero-dimensional, or 0-dimensional, if it admits a base of clopen sets,
i.e. of simultaneously open and closed sets. A space is second countable and
0-dimensional if and only if it is homeomorphic to a subset of 𝜔𝜔. A Polish
space is a second countable completely metrisable topological space, the Baire
space is a crucial example of Polish space. Recall [Kec95, (3.11), p.17] that
a subspace of a Polish space is Polish if and only if it 𝚷0

2, i.e. a countable
intersection of open sets.

Let 𝒳, 𝒴 be second countable 𝑇0 spaces. If 𝐴 ⊆ 𝒳 and 𝑓 ∶ 𝐴 → 𝒴 is a
function, 𝑓 is called a partial function from 𝒳 to 𝒴, in symbols 𝑓 ∶⊆ 𝒳 → 𝒴,
and we refer to 𝐴 as the domain of 𝑓 , denoted by dom 𝑓 . A partial function
𝑓 ∶⊆ 𝒳 → 𝒴 is continuous if it is continuous on its domain for the subspace
topology on dom 𝑓 , i.e. if for every open 𝑈 of 𝒴 there is an open 𝑉 of 𝒳 such
that 𝑓−1(𝑈) = 𝑉 ∩ dom 𝑓 .

We quasi-order the partial functions from 𝜔𝜔 into 𝒳 by saying that for
𝑓, 𝑔 ∶⊆ 𝜔𝜔 → 𝒳

𝑓 ⩽rep 𝑔 ⟷ { there exists a continuous ℎ ∶ dom 𝑓 → dom 𝑔
with 𝑓(𝛼) = 𝑔 ∘ ℎ(𝛼) for all 𝛼 ∈ dom 𝑓 .

Clearly, if 𝑔 is continuous and 𝑓 ⩽rep 𝑔, then 𝑓 is continuous too. Hence the
set of partial continuous functions from 𝜔𝜔 into 𝒳 is downward closed with
respect to ⩽rep.

Definition 5.14 ([Wei00]). Let 𝒳 be a topological space. A partial continuous
function 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 is called an admissible representation of 𝒳 if it is a
⩽rep-greatest element among partial continuous functions to 𝒳, i.e. 𝑓 ⩽rep 𝜌
holds for every partial continuous 𝑓 ∶⊆ 𝜔𝜔 → 𝒳.
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Observe that an admissible representation 𝜌 of 𝒳 is necessarily onto 𝒳, since
for every point 𝑥 ∈ 𝒳, we have 𝑐𝑥 ⩽rep 𝜌 where 𝑐𝑥 ∶ 𝜔𝜔 → 𝒳, 𝛼 ↦ 𝑥 is the
constant function.
Remark 5.15. Since the subspaces of 𝜔𝜔 are up to homeomorphism the second
countable 0-dimensional spaces, an admissible representation of 𝒳 is also a
continuous map 𝜌 ∶ 𝐷 → 𝒳 from some second countable 0-dimensional space
𝐷 such that for every continuous map 𝑔 ∶ 𝐸 → 𝒳 from a second countable
0-dimensional space 𝐸 there exists a continuous map ℎ ∶ 𝐸 → 𝐷 such that
𝑔 = 𝜌 ∘ ℎ.

Now it is well known that every second countable 𝑇0 space 𝒳 has an admiss-
ible representation. Since it is simple and crucial for the sequel we now explain
this fact in detail.

Definition 5.16. Let 𝒳 be a second countable 𝑇0 space and (𝑉𝑛)𝑛∈𝜔 be a
countable base of open sets for 𝒳. We define the standard representation of 𝒳
with respect to (𝑉𝑛) to be the partial map 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 defined by

𝜌(𝛼) = 𝑥 ⟷ {𝑛 ∣ ∃𝑘 𝛼(𝑘) = 𝑛 + 1} = {𝑛 ∣ 𝑥 ∈ 𝑉𝑛}.

Notice that in the definition 𝜌 is indeed a function on its domain because
𝒳 is 𝑇0. An 𝛼 ∈ 𝜔𝜔 codes via 𝜌 a point 𝑥 ∈ 𝒳 if and only if 𝛼 enumerates
the indices of all the 𝑉𝑛’s to which 𝑥 belongs, while 0 can be thought of as an
index for the whole space 𝒳 – which may not appear among the 𝑉𝑛’s.

Theorem 5.17. For every second countable 𝑇0 space 𝒳 there exists an ad-
missible representation 𝜌 ∶⊆ 𝜔𝜔 → 𝒳. Moreover it can be chosen such that

(i) 𝜌 is open,

(ii) for every 𝑥 ∈ 𝒳, the fibre 𝜌−1(𝑥) is Polish.

Proof. Let (𝑉𝑛) be a countable base for 𝒳 and let 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 be the
standard representation of 𝒳 with respect to (𝑉𝑛). It is enough to show that
𝜌 satisfies all the requirements.

Continuity: Note that 𝜌−1(𝑉𝑛) = {𝛼 ∈ dom 𝜌 ∣ ∃𝑘 𝛼(𝑘) = 𝑛 + 1} is open in
𝜔𝜔 for every 𝑛, so 𝜌 is continuous.

Openness: For every basic 𝑁𝑠 = {𝑥 ∈ 𝜔𝜔 ∣ 𝑠 ⊆ 𝑥}, 𝑠 ∈ 𝜔<𝜔, we have 𝜌(𝑁𝑠) =
⋂𝑘<|𝑠| 𝑉𝑠𝑘−1 (where 𝑉−1 = 𝒳 by convention) which is open in 𝒳, so 𝜌 is
an open map.
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Polish fibres: For every point 𝑥 ∈ 𝒳

𝜌(𝛼) = 𝑥 ⟷ ∀𝑛[(∃𝑘 𝛼(𝑘) = 𝑛 + 1) ↔ 𝑥 ∈ 𝑉𝑛]

is a 𝚷0
2 definition of the fibre in 𝑥, so 𝜌 has Polish fibres.

Admissibility: Let 𝑓 ∶⊆ 𝜔𝜔 → 𝒳 be continuous. Note that for every 𝑛 ∈ 𝜔 and
every 𝛼 ∈ dom 𝑓

∃𝑘 𝑓(𝑁𝛼↾𝑘
) ⊆ 𝑉𝑛 ⟷ 𝑓(𝛼) ∈ 𝑉𝑛.

Let 𝑘 ↦ ((𝑘)0, (𝑘)1) be some bijection from 𝜔 to 𝜔 × 𝜔 whose inverse is
denoted by ⟨(𝑘)0, (𝑘)1⟩ = 𝑘. We define ℎ ∶ dom 𝑓 → dom 𝜌 by

ℎ(𝛼)(𝑘) = {
(𝑘)1 + 1 if 𝑓(𝑁𝛼↾(𝑘)0

) ⊆ 𝑉(𝑘)1
,

0 otherwise.

Clearly ℎ is continuous. Moreover for every 𝛼 ∈ dom 𝑓 and every 𝑛 ∈ 𝜔,
if 𝑓(𝛼) ∈ 𝑉𝑛 then there exists 𝑘 ∈ 𝜔 such that 𝑓(𝑁𝛼↾𝑘

) ⊆ 𝑉𝑛 and so
ℎ(𝛼)(⟨𝑘, 𝑛⟩) = 𝑛 + 1.
Conversely, if for 𝛼 ∈ dom 𝑓 we have ℎ(𝛼)(𝑘) = 𝑛+1 then it means that
𝑓(𝑁𝛼↾(𝑘)0

) ⊆ 𝑉𝑛 and so 𝑓(𝛼) ∈ 𝑉𝑛.

It follows that 𝑓(𝛼) = 𝜌 ∘ ℎ(𝛼) for all 𝛼 ∈ dom 𝑓 , as desired.

Remark 5.18. i. If (𝑉𝑛) is a countable base of a 𝑇0 space 𝒳, the map 𝜎 ∶⊆
𝜔𝜔 → 𝒳 defined by

𝜎(𝛼) = 𝑥 ⟷ Im 𝛼 = {𝑛 ∣ 𝑥 ∈ 𝑉𝑛}.

is also an admissible representation of 𝒳. Indeed 𝜎 is continuous and for
𝜌 the standard representation of 𝒳 with respect to (𝑉𝑛) we have 𝜌 ⩽rep 𝜎.
To see this we define a monotone map 𝜑 ∶ 𝜔<𝜔 → 𝜔<𝜔 by induction on
the length by:

𝜑(∅) =∅

𝜑(𝑠 ⌢ 0) = {𝜑(𝑠) ⌢ 𝜑(𝑠)(0) if 𝜑(𝑠) ≠ ∅
∅ otherwise,

𝜑(𝑠 ⌢ (𝑛 + 1)) =𝜑(𝑠) ⌢ 𝑛.

This map 𝜑 induces a continuous map 𝜑∗ ∶ dom 𝜑∗ → 𝜔𝜔 where 𝜑∗(𝛼) =
⋃𝑛∈𝜔 𝜑(𝛼↾𝑛) for 𝛼 ∈ {𝛼 ∈ 𝜔𝜔 ∣ lim𝑛→∞ 𝜑(𝛼↾𝑛) = ∞} = dom 𝜑∗([Kec95,
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(2.6), p.8]). We have dom 𝜌 ⊆ dom 𝜑∗ for if 𝛼 ∈ dom 𝜌 then there exists
𝑛 with 𝜌(𝛼) ∈ 𝑉𝑛, so there exists a 𝑘 minimal such that 𝛼(𝑘) > 0. Hence
if 𝛼 = 0𝑘 ⌢ 𝛼(𝑘) ⌢ 𝛽 then 𝜑∗(𝛼)(𝑛) = 𝛼(𝑛 + 𝑘) − 1 when 𝛼(𝑛 + 𝑘) > 0
and 𝜑∗(𝛼)(𝑛) = 𝛼(𝑘) − 1 if 𝛼(𝑛 + 𝑘) = 0. Moreover we clearly have
= 𝜌 = 𝜎 ∘ 𝜑∗.

ii. However, a standard representation 𝜌 of a second countable space 𝒳
relatively to some base has the following advantage. If one chooses the
bijection 𝑘 ↦ ((𝑘)0, (𝑘)1) from 𝜔 to 𝜔×𝜔 such that (𝑘)0 ⩽ 𝑘 for every 𝑘,
then the map ℎ ∶ dom 𝑓 → dom 𝜌 defined in the proof of Theorem 5.17
as a witness to the fact that 𝑓 ⩽rep 𝜌 is actually Lipschitz, i.e. ℎ(𝛼)↾𝑛
depends only on 𝛼↾𝑛 for every 𝛼 ∈ dom 𝑓 and every 𝑛 ∈ 𝜔. This is
sometimes convenient.

Importantly, Brattka [Bra99, Corollary 4.4.12] showed that every Polish
space 𝑋 has a total admissible representation, i.e. an admissible representa-
tion 𝜌 ∶⊆ 𝜔𝜔 → 𝑋 with dom 𝜌 = 𝜔𝜔. As an easy consequence one gets that
for every second countable 𝑇0 space 𝑋: there exists an admissible representa-
tion of 𝑋 with a Polish domain if and only if there exists a total admissible
representation of 𝑋. Motivated by the rich theory of Polish spaces, it is nat-
ural to consider the class of those second countable 𝑇0 spaces which have a
total admissible representation. As a matter of fact de Brecht [deB13] showed
that this class coincides with the class of quasi-Polish spaces that he recently
introduced. Moreover he showed that many classical results of descriptive set
theory can be generalised to this large class of non necessarily Hausdorff spaces
and that the metrisable quasi-Polish spaces are exactly the Polish spaces.

The real line ℝ is certainly the most important example of non zero-dimen-
sional Polish space and we now introduce two different admissible representa-
tions for it.
Example 5.19. Let (𝑞𝑛)𝑛∈𝜔 be an enumeration of the rationals and let 𝐼𝑛 =
(𝑞𝑛0

, 𝑞𝑛1
) be an enumeration of the non empty intervals of the real line ℝ with

rational endpoints.
We define 𝜌ℝ ∶⊆ 𝜔𝜔 → ℝ relatively to the enumerated base (𝐼𝑛)𝑛∈𝜔 by

𝜌ℝ(𝛼) = 𝑥 ⟷ Im 𝛼 = {𝑛 ∣ 𝑥 ∈ 𝐼𝑛},

so that 𝛼 ∈ 𝜔𝜔 codes 𝑥 ∈ ℝ if and only if 𝛼 enumerates all the intervals with
rational endpoints in which 𝑥 belongs.

The second admissible representation is based on Cauchy sequences and it
works mutatis mutandis for every separable complete metric space.
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Example 5.20. Let (𝑞𝑛)𝑛∈𝜔 be an enumeration of the rationals, and let 𝑑 be
the euclidean metric on ℝ. A sequence (𝑥𝑘)𝑘∈𝜔 is said to be rapidly Cauchy if
for every 𝑖, 𝑗 ∈ 𝜔, 𝑖 < 𝑗 implies 𝑑(𝑥𝑖, 𝑥𝑗) ⩽ 2−𝑖. The Cauchy representation
𝜎ℝ ∶⊆ 𝜔𝜔 → ℝ of the real line is defined by

𝜎ℝ(𝛼) = 𝑥 ⟷ (𝑞𝛼(𝑘))𝑘∈𝜔 is rapidly Cauchy and lim
𝑘→∞

𝑞𝛼(𝑘) = 𝑥.

This is an admissible representation of ℝ.
To illustrate our ideas in the non-metrisable case we consider the Scott Do-

main 𝒫𝜔, namely the powerset of 𝜔 partially ordered by inclusion and en-
dowed with the Scott topology. A base of 𝒫𝜔 is given by sets of the form
𝑂𝐹 = {𝑋 ⊆ 𝜔 ∣ 𝐹 ⊆ 𝑋} for some finite 𝐹 ⊆ 𝜔. This space is universal among
the second countable 𝑇0 spaces. Indeed for every 𝑇0 space 𝒳 with some count-
able base (𝑉𝑛)𝑛∈𝜔 the map 𝑒 ∶ 𝒳 → 𝒫𝜔, 𝑥 ↦ {𝑛 ∣ 𝑥 ∈ 𝑉𝑛} is an embedding.
Example 5.21. The enumeration representation of 𝒫𝜔 is the total function
𝜌En ∶ 𝜔𝜔 → 𝒫𝜔 defined by

𝜌En(𝑥) = {𝑛 ∣ ∃𝑘 𝑥𝑘 = 𝑛 + 1}.

It is easy to see that 𝜌En is an open admissible representation with Polish
fibres.

As another example of an admissible representation of 𝒫𝜔 consider:
Example 5.22. Let (𝑠𝑛)𝑛∈𝜔 be an enumeration of the finite subsets of 𝜔. We
define 𝜌<∞ ∶⊆ 𝜔𝜔 → 𝒫𝜔 by

𝜌<∞(𝛼) = 𝑥 ⟷ ∀𝑛 ∈ 𝜔 𝑠𝛼(𝑛) ⊆ 𝑠𝛼(𝑛+1) and ⋃
𝑛∈𝜔

𝑠𝛼(𝑛) = 𝑥.

The domain of 𝜌<∞ is closed and 𝜌<∞ is clearly continuous. The map 𝜌<∞ is
also an admissible representation of the space 𝒫𝜔 since it is continuous and
𝜌En ⩽rep 𝜌<∞, as witnessed by the continuous 𝑓 ∶ 𝜔𝜔 → dom 𝜌<∞ defined by

𝑓(𝛼)(𝑛) = 𝑘, where 𝑠𝑘 = {𝑚 ∣ ∃𝑗 ⩽ 𝑛 𝛼(𝑗) = 𝑚 + 1}.

5.3.2 Relative continuity
The importance of admissible representations stems from the fact that con-
tinuity of a function between second countable 𝑇0 spaces can be accounted for
“in the codes”.

119



5 A Wadge hierarchy for second countable spaces

Definition 5.23. Let 𝒳, 𝒴 be second countable 𝑇0 spaces. We say that a
total function 𝑓 ∶ 𝒳 → 𝒴 is relatively continuous if for some (any) admissible
representations 𝜌𝒳 and 𝜌𝒴 of 𝒳 and 𝒴 respectively, there exists a continuous
𝑔 ∶ dom 𝜌𝒳 → dom 𝜌𝒴, called a continuous realiser of 𝑓 , such that 𝑓 ∘ 𝜌𝒳(𝛼) =
𝜌𝒴 ∘ 𝑔(𝛼) for ever 𝛼 ∈ dom 𝜌𝒳.

Using the very definition of an admissible representation, it is easy to see
that a function 𝑓 ∶ 𝒳 → 𝒴 admits a continuous realiser for some choice of
admissible representations of 𝒳 and 𝒴 if and only if it admits a continuous
realiser for any choice of admissible representations.

Theorem 5.24. Let 𝒳, 𝒴 be second countable 𝑇0 spaces. A total function
𝑓 ∶ 𝒳 → 𝒴 is relatively continuous if and only if 𝑓 is continuous.

Proof. Let 𝜌𝒳 and 𝜌𝒴 be open admissible representations of 𝒳 and 𝒴 respect-
ively.

If 𝑓 ∶ 𝒳 → 𝒴 is continuous, then 𝑓 ∘ 𝜌𝒳 ∶ dom 𝜌𝒳 → 𝒴 is continuous.
Since 𝜌𝒴 is admissible, there exists a partial continuous 𝑔 ∶ dom 𝜌𝒳 → dom 𝜌𝒴
(dom 𝑓 ∘ 𝜌𝒳 = dom 𝜌𝒳) with 𝑓 ∘ 𝜌𝒳 = 𝜌𝒴 ∘ 𝑔 on the domain of 𝜌𝒳, so 𝑓 is
relatively continuous.

Conversely, if 𝑓 ∶ 𝒳 → 𝒴 is relatively continuous there exists a partial
continuous 𝑔 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 with 𝑓 ∘𝜌𝒳 = 𝜌𝒴∘𝑔 on dom 𝑓 ∘𝜌𝒳 = dom 𝜌𝒳.
Therefore 𝑓 ∘ 𝜌𝒳 ∶ dom 𝜌𝒳 → 𝒴 is continuous. So the proof will be finished
once we have established the following lemma.

Lemma 5.25. Let 𝑔 ∶⊆ 𝒳 → 𝒴 be a continuous, surjective and open map, and
𝑓 ∶ 𝒴 → 𝒵 any function. If 𝑓 ∘𝑔 ∶⊆ 𝒳 → 𝒵 is continuous, then 𝑓 is continuous.

Proof. Let 𝑈 be open in 𝒵. Then

𝑓−1(𝑈) ={𝑔(𝑥) ∣ 𝑥 ∈ dom 𝑔 ∧ 𝑔(𝑝) ∈ 𝑓−1(𝑈)} since 𝑔 is onto,
=𝑔((𝑓 ∘ 𝑔)−1(𝑈))

is open in 𝒴 since 𝑔 is an open map and 𝑓 ∘ 𝑔 is continuous.

5.3.3 Admissible representations and dimension
For an admissible representation 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 and a point 𝑥 ∈ 𝒳, one can
think of 𝛼 ∈ 𝜔𝜔 with 𝜌(𝛼) = 𝑥 as a ‘code’ or ‘name’ for 𝑥. It is natural to ask
what are the spaces which possess an injective admissible representation. It is
actually simple to see that these spaces are exactly those of dimension zero.
We now show this fact.

Recall the following fact on the cardinality of a base.
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Lemma 5.26. Let 𝒳 be second countable. For every base 𝒞, there is a countable
base 𝒞′ ⊆ 𝒞.

Proof. Let (𝑉𝑛) be countable base for 𝒳. Whenever possible choose 𝐶𝑛,𝑚 ∈ 𝒞
with 𝑉𝑛 ⊆ 𝐶𝑛,𝑚 ⊆ 𝑉𝑚. Then the countable family of the 𝐶𝑛,𝑚’s is a base for
𝒳. Indeed for every 𝑥 ∈ 𝑉𝑚 there is a 𝐶 ∈ 𝒞 with 𝑥 ∈ 𝐶 ⊆ 𝑉𝑚 (since 𝒞 is
a base for 𝒳), and furthermore there exists 𝑛 with 𝑥 ∈ 𝑉𝑛 ⊆ 𝐶 ⊆ 𝑉𝑚 (since
(𝑉𝑛)𝑛∈𝜔 is a base for 𝒳), hence 𝑥 ∈ 𝐶𝑛,𝑚 ⊆ 𝑉𝑚.

Lemma 5.27. Let 𝒳 be second countable 𝑇0 space and 𝜎 ∶⊆ 𝜔𝜔 → 𝒳 be an
admissible representation of 𝒳. Then there is 𝐴 ⊆ dom 𝜎 such that 𝜎↾𝐴 is an
open admissible representation of 𝒳.

Proof. Let 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 be an open admissible representation of 𝒳 which
exists by Theorem 5.17. There exists a continuous ℎ ∶ dom 𝜌 → dom 𝜎 that
witnesses 𝜌 ⩽rep 𝜎. We claim that 𝐴 = {ℎ(𝛼) ∣ 𝛼 ∈ dom 𝜌} works. Indeed
𝜌 ⩽rep 𝜎↾𝐴 as ℎ also witnesses, and for every open 𝑂 ⊆ 𝜔𝜔 we have

𝜎↾𝐴(𝑂) = {𝜎 ∘ ℎ(𝛼) ∣ 𝛼 ∈ dom 𝜌} = 𝜌(𝑂).

Theorem 5.28. Let 𝒳 be a second countable 𝑇0 space. The following are
equivalent:

(i) 𝒳 is 0-dimensional,

(ii) there exists an injective admissible representation of 𝒳.

Proof. (i)→(ii): By Lemma 5.26, 𝑋 admits a countable basis (𝑉𝑛) consisting
in clopen subsets of 𝑋, and for simplicity we may assume further that
the basis is closed under complements, i.e. for every 𝑛 there exists 𝑚
with 𝑋 ∖ 𝑉𝑛 = 𝑉𝑚.
Let 𝜎 ∶⊆ 𝜔𝜔 → 𝑋 be the partial map defined by 𝜎(𝛼) = 𝑥 if and only if
𝛼 ∶ 𝜔 → 2 is the characteristic function of {𝑛 ∈ 𝜔 ∣ 𝑥 ∈ 𝑉𝑛}. Clearly 𝜎 is
injective and continuous. To see that 𝜎 is admissible, it is enough to show
that 𝜌 ⩽rep 𝜎 where 𝜌 is the standard representation of 𝑋 with respect
to (𝑉𝑛). This is witnessed by the continuous function 𝑔 ∶ dom 𝜌 → dom 𝜎
defined by

𝑔(𝛼)(𝑛) =
⎧{
⎨{⎩

1 if there exists 𝑘 with 𝛼(𝑘) = 𝑛 + 1,
0 if there exists 𝑘 with 𝛼(𝑘) = 𝑚 + 1

and 𝑉𝑚 = 𝑋 ∖ 𝑉𝑛.
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5 A Wadge hierarchy for second countable spaces

(ii)→(i): Suppose that 𝜌 is an injective admissible representation of 𝒳. It fol-
lows from Lemma 5.27 that there exists 𝐴 ⊆ dom 𝜌 such that 𝜌↾𝐴 is open
and admissible. But since an admissible representation is surjective and
𝜌 is injective, we must have 𝐴 = dom 𝜌. Therefore 𝜌 is a homeomorph-
ism, and so 𝒳 is homeomorphic to dom 𝜌, hence 𝒳 is 0-dimensional, as
desired.

5.3.4 Relatively continuous relations
We have seen that a function 𝑓 ∶ 𝒳 → 𝒴 between second countable 𝑇0 spaces
is continuous if and only if it is induced by some continuous function ‘in the
codes’. Moreover we have seen that when 𝒳 is not 0-dimensional, then no
admissible representation of 𝒳 is injective, and so necessarily some points are
to receive several codes. Since different codes of the same point can be sent
onto codes of different points, a continuous function in the codes may very
well induce a relation which is not functional on the spaces. Even though the
resulting ‘transformations’ of the space are not necessarily functions, they are
still continuous in some sense. They are called relatively continuous relations,
and were first studied in [BH94].

𝒳

𝒴

𝑥

𝑦

𝛼 = (3, 3, 1987, …)
𝜌𝒳

𝑓(𝛼) = (3, 3, 2015, …)
𝜌𝒴

𝑓

Figure 5.4: Relatively continuous relation.

Definition 5.29. Let 𝒳 and 𝒴 be second countable 𝑇0 spaces. A total relation
𝑅 ∶ 𝒳 ⇉ 𝒴 is said to be relatively continuous if, for some (any) admissible
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5 A Wadge hierarchy for second countable spaces

representations 𝜌𝒳 and 𝜌𝒴 of 𝒳 and 𝒴 respectively, there exists a continuous
realiser 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 such that for every 𝛼 ∈ dom 𝜌𝒳 we have

(𝜌𝒳(𝛼), 𝜌𝒴 ∘ 𝑓(𝛼)) ∈ 𝑅.
Remark 5.30. Suppose 𝑅 ∶ 𝒳 ⇉ 𝒴 is relatively continuous with respect to
𝜌𝒳 and 𝜌𝒴 as witnessed by some continuous 𝑓 ∶ dom 𝜌𝒳 → 𝜌𝒴 and let 𝜎𝒳, 𝜎𝒴
be admissible representations of 𝒳 and 𝒴 respectively. Since 𝜎𝒳 ⩽rep 𝜌𝒳 and
𝜌𝒴 ⩽rep 𝜎𝒴 there are continuous 𝑔 ∶ dom 𝜎𝒳 → dom 𝜌𝒳 and ℎ ∶ dom 𝜌𝒴 →
dom 𝜎𝒴 with 𝜌𝒳 ∘ 𝑔 = 𝜎𝒳 and 𝜎𝒴 ∘ ℎ = 𝜌𝒴. Therefore if we set 𝑓 ′ ∶ dom 𝜎𝒳 →
dom 𝜎𝒴 to be 𝑓 ′ = ℎ ∘ 𝑓 ∘ 𝑔 we obtain that for every 𝛼 ∈ dom 𝜎𝒳

𝜎𝒴 ∘ 𝑓 ′(𝛼) = 𝜎𝒴 ∘ ℎ ∘ 𝑓 ∘ 𝑔(𝛼) = 𝜌𝒴 ∘ 𝑓 ∘ 𝑔(𝛼).
Now since 𝜎𝒳(𝛼) = 𝜌𝒳 ∘ 𝑔(𝛼) if we let 𝛽 = 𝑔(𝛼) we have

(𝜎𝒳(𝛼), 𝜎𝒴 ∘ 𝑓 ′(𝛼)) = (𝜌𝒳(𝛽), 𝜌𝒴 ∘ 𝑓(𝛽)) ∈ 𝑅,
so 𝑅 is relatively continuous with respect to 𝜎𝒳 and 𝜎𝒴.

Clearly a function 𝑓 ∶ 𝒳 → 𝒴 is (relatively) continuous if and only if its
graph is relatively continuous as total relation from 𝒳 to 𝒴. Moreover it is
easily seen that the class of relatively continuous total relations is closed under
composition.

Notice also that if 𝑅 ∶ 𝒳 ⇉ 𝒴 is relatively continuous and 𝑆 ∶ 𝒳 ⇉ 𝒴 is such
that 𝑅 ⊆ 𝑆, then 𝑆 is relatively continuous too.

Let 𝒳 and 𝒴 be second countable 𝑇0 spaces together with admissible repres-
entations 𝜌𝒳 and 𝜌𝒴. Every continuous function 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 induces
a total relation 𝑅𝜌𝒳,𝜌𝒴

𝑓 ∶ 𝒳 ⇉ 𝒴 defined by

𝑥 𝑅𝜌𝒳,𝜌𝒴
𝑓 𝑦 ⟷ ∃𝛼 ∈ dom 𝜌𝒳 (𝜌𝒳(𝛼) = 𝑥 ∧ 𝜌𝒴 ∘ 𝑓(𝛼) = 𝑦).

The function 𝑓 witnesses that 𝑅𝜌𝒳,𝜌𝒴
𝑓 is relatively continuous. In fact, 𝑓 wit-

nesses that some 𝑅 ∶ 𝒳 ⇉ 𝒴 is relatively continuous if and only if 𝑅𝜌𝒳,𝜌𝒴
𝑓 ⊆ 𝑅.

Therefore we have the following.

Fact 5.31. Let 𝒳 and 𝒴 be second countable 𝑇0 and 𝜌𝒳 and 𝜌𝒴 be admissible
representations of 𝒳 and 𝒴 respectively. A total relation 𝑅 ∶ 𝒳 ⇉ 𝒴 is relatively
continuous if and only if there exists a continuous 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 such
that 𝑅𝜌𝒳,𝜌𝒴

𝑓 ⊆ 𝑅.

From Theorem 5.28 and the previous fact, it follows that the relatively con-
tinuous relations from a 0-dimensional spaces are simply the continuously uni-
formisable relations.
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5 A Wadge hierarchy for second countable spaces

Corollary 5.32. Let 𝒳 and 𝒴 be second countable 𝑇0 with 𝒳 0-dimensional.
A total relation 𝑅 from 𝒳 to 𝒴 is relatively continuous if and only if it admits
a continuous uniformising function, i.e. there exists a continuous 𝑓 ∶ 𝒳 → 𝒴
with 𝑅(𝑥, 𝑓(𝑥)) for all 𝑥 ∈ 𝒳.

It is an interesting problem to look for an intrinsic characterisation of the
relatively continuous total relations, that is, one which does not rely on the
notion of admissible representation. Partial answers were obtained by Brattka
and Hertling [BH94] and Pauly and Ziegler [PZ13]. However, to our knowledge,
the general problem is still open. We conclude this subsection with some known
results in the direction.

Let us say that 𝑅 ∶ 𝒳 ⇉ 𝒴 preserves open sets if the set

𝑅−1(𝑂) = {𝑥 ∈ 𝒳 ∣ ∃𝑦 ∈ 𝑂 𝑅(𝑥, 𝑦)}

is open in 𝒳 for ever open set 𝑂 of 𝒴.

Proposition 5.33 ([BH94, Proposition 4.5]). Let 𝒳 and 𝒴 be second countable
𝑇0 spaces. There exists a class ℛ of total relations from 𝒳 to 𝒴 which preserves
open sets such that for every 𝑆 ∶ 𝒳 ⇉ 𝒴

𝑆 is relatively continuous ⟷ ∃𝑅 ∈ ℛ 𝑅 ⊆ 𝑆.

Proof. Let 𝜌𝒳 and 𝜌𝒴 be admissible representations of 𝒳 and 𝒴 respectively.
By Theorem 5.17 we can choose 𝜌𝒳 to be an open map. Let ℛ be the family of
total relations 𝑅𝜌𝒳,𝜌𝒴

𝑓 where 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 is continuous. By Fact 5.31,
it only remains to prove that 𝑅𝜌𝒳,𝜌𝒴

𝑓 preserves open sets for every continuous
𝑓 .

Indeed for every continuous 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 and every open 𝑂 of 𝒴

(𝑅𝜌𝒳,𝜌𝒴
𝑓 )−1(𝑂) = {𝜌𝒳(𝑥) ∣ 𝑥 ∈ (𝜌𝒴 ∘ 𝑓)−1(𝑂)} = 𝜌𝒳[(𝜌𝒴 ∘ 𝑓)−1(𝑂)],

which is open since 𝜌𝒴 ∘ 𝑓 is continuous and 𝜌𝒳 is open.

Moreover, in the case of a Polish codomain, Brattka and Hertling [BH94]
showed the following.

Theorem 5.34. Let 𝒳 be second countable 𝑇0, 𝒴 be Polish, and 𝑅 ∶ 𝒳 ⇉ 𝒴
be such that 𝑅→(𝑥) is closed for every 𝑥 ∈ 𝒳. Then 𝑅 is relatively continuous
if and only if there exists 𝑆 ∶ 𝒳 ⇉ 𝒴 that preserves open sets and such that
𝑆 ⊆ 𝑅.

124



5 A Wadge hierarchy for second countable spaces

Remark 5.35. One should notice that in general preserving open sets is not a
sufficient condition for the relative continuity of a total relation. Consider for
example the partition of 𝜔𝜔 into

𝐹 = {𝛼 ∈ 𝜔𝜔 ∣ ∃𝑛∀𝑘 ⩾ 𝑛 𝛼(𝑘) = 0} and 𝐹 = 𝜔𝜔 ∖ 𝐺.

Clearly 𝐺 and 𝐹 are both dense in 𝜔𝜔. Moreover it is well known that 𝐹 ∈
𝚺0

2∖𝚷0
2. Consider the total relation 𝑅 = (𝐺×𝐹)∪(𝐹 ×𝐺). Then 𝑅−1(𝑂) = 𝜔𝜔

for every non-empty open set, but 𝑅 not relatively continuous. Indeed any
function 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔 which uniformises 𝑅 needs to verify 𝑓−1(𝐺) = 𝐹 , and
since 𝐹 is not 𝚷0

2, 𝑓 cannot be continuous.

5.3.5 Reduction by relatively continuous relations
Aiming to generalise the continuous reducibility outside the realm of the di-
mension zero while maintaining its nice properties, we first observed in Sec-
tion 5.2 that the notion of reduction nicely generalises from functions to total
relations. We have then singled out in Subsection 5.3.4 a class of total relations
between second countable 𝑇0 spaces which are continuous in a sense. We can
now come to the definition of the notion of reducibility that we propose.

Definition 5.36. If 𝒳 and 𝒴 are second countable 𝑇0 spaces, 𝐴 ⊆ 𝒳 and
𝐵 ⊆ 𝒴, we say that 𝐴 is relatively Wadge reducible to 𝐵, in symbols (𝐴, 𝒳) ≼W
(𝐵, 𝒴), if there exists a total relatively continuous 𝑅 ∶ 𝒳 ⇉ 𝒴 that is a reduc-
tion of 𝐴 to 𝐵.

We might sometimes make an abuse of notation and simply write 𝐴 ≼W 𝐵
in place of (𝐴, 𝒳) ≼W (𝐵, 𝒴) when the underlying spaces are understood.

Since the class of relatively continuous relations between second countable
𝑇0 spaces contains the identity functions (in fact all continuous functions) and
is closed under composition, ≼W is a quasi-order on the class of subsets of
second countable 𝑇0 spaces.

For every second countable 𝑇0 spaces 𝒳 and 𝒴, (𝐴, 𝒳) ⩽𝑊 (𝐵, 𝒴) implies
(𝐴, 𝒳) ≼W (𝐵, 𝒴), by Theorem 5.24. However, the qo ≼W should not be con-
fused with the quasi-order ⩽𝑊 of continuous reducibility.

The quasi-order ≼W intuitively relates to topological complexity in the fol-
lowing sense. Assume 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 are subsets of second countable 𝑇0
spaces. Consider the problem of deciding when given a point 𝑥 ∈ 𝒳 whether
𝑥 belongs to 𝐴 or not. Any admissible representation 𝜌𝒳 of 𝒳 provides an
optimal way to represent this abstract problem in more concrete way, i.e. as
a problem about infinite sequences of natural numbers, and therefore about
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5 A Wadge hierarchy for second countable spaces

infinite binary sequences. The membership problem in the codes for 𝐴 is to
decide when given a code 𝛼 ∈ dom 𝜌𝒳 for some point of 𝒳 whether 𝛼 is a code
of a point in 𝐴 or not. By the very definition of an admissible representation,
the topological complexity of the membership problem in the codes for 𝐴 does
not depend on the chosen admissible representation. Therefore if 𝜌𝒳 and 𝜌𝒴 are
admissible representations of 𝒳 and 𝒴 respectively, then (𝐴, 𝒳) ≼W (𝐵, 𝒴) if
and only if one can continuously reduce the membership problem in the codes
for 𝐴 to the membership problem in the codes for 𝐵.

We state this observation in the following lemma which follows from Fact 5.31
and Fact 5.13.

Lemma 5.37. Let 𝒳 and 𝒴 be second countable 𝑇0 spaces, with admissible
representations 𝜌𝒳 and 𝜌𝒴 respectively. For every 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 the
following are equivalent

(i) (𝐴, 𝒳) ≼W (𝐵, 𝒴),

(ii) (𝜌−1
𝒳 (𝐴), dom 𝜌𝒳) ⩽𝑊 (𝜌−1

𝒴 (𝐵), dom 𝜌𝒴).
In particular since 0-dimensional second countable spaces admits injective

admissible representations, it follows that ≼W is a generalisation of ⩽W to
spaces of arbitrary dimension.

Proposition 5.38. Let 𝒳 be a 0-dimensional separable metrisable space. Then
⩽𝑊 and ≼W coincide on subsets of 𝒳.

Proof. This follows from Corollary 5.32 and the previous lemma.

It is an easy consequence of the results in Section 5.1 that the quasi-order ≼W
is bqo and satisfies the Wadge Lemma when suitably restricted. We however
postpone this discussion a little to consider a more pressing matter. Even
though we have seen that the quasi-order ≼W conveys a certain a priori idea
of topological complexity, it still remains to show that it refines the Borel and
Hausdorff–Kuratowski hierarchies.

5.4 Borel and Hausdorff–Kuratowski hierarchies
The classical approach initiated by the French analysts Baire, Borel, and Le-
besgue to the classification of the subsets of a metric space is more descriptive
in nature. Sets are classified according to the complexity of their definition
from open sets. This approach was continued later by Luzin, Suslin, Haus-
dorff, Sierpiński and Kuratowski.
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5 A Wadge hierarchy for second countable spaces

As observed – apparently for the first time – by Tang [Tan79; Tan81], the
classical definition of the Borel hierarchy in metric spaces is not satisfactory
for non metrisable spaces. Following Selivanov [Sel06] and de Brecht [deB13]
we use the following slightly modified definition of the Borel hierarchy in an
arbitrary topological space (see also the paper by Spurný [Spu10]).

Definition 5.39. Let 𝒳 be a topological space. For each positive ordinal
𝛼 < 𝜔1 we define by induction

𝚺0
1(𝒳) = {𝑂 ⊆ 𝒳 ∣ 𝒳 is open},

𝚺0
𝛼(𝒳) = {⋃

𝑖∈𝜔
𝐵𝑖 ∩ 𝐶∁

𝑖 ∣ 𝐵𝑖, 𝐶𝑖 ∈ ⋃
𝛽<𝛼

𝚺0
𝛽 for each 𝑖 ∈ 𝜔},

𝚷0
𝛼(𝒳) = {𝐴∁ ∣ 𝐴 ∈ 𝚺0

𝛼},
𝚫0

𝛼(𝒳) = 𝚺0
𝛼(𝒳) ∩ 𝚷0

𝛼(𝒳).

Proposition 5.40. For any topological space 𝒳 and any 𝛼 > 0:

(i) 𝚺0
𝛼(𝒳) is closed under countable union and finite intersection;

(ii) 𝚷0
𝛼(𝒳) is closed under countable intersection and finite union;

(iii) 𝚫0
𝛼(𝒳) is closed under finite union and intersection as well as under

complementation.

Proposition 5.41. If 𝛼 < 𝛽, then 𝚺0
𝛼 ∪ 𝚷0

𝛼 ⊆ 𝚫0
𝛽. So the following diagram

of inclusion holds between Borel classes:

𝚺0
1 𝚺0

2 𝚺0
𝛼

𝚫0
1 𝚫0

2 𝚫0
3 ⋯ 𝚫0

𝛼 𝚫0
𝛼+1 ⋯

𝚷0
1 𝚷0

2 𝚷0
𝛼

⊆
⊆

⊆

⊆
⊆

⊆
⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆

Figure 5.5: The Borel hierarchy

Proposition 5.42. If 𝛼 > 2, then

𝚺0
𝛼(𝒳) = {⋃

𝑖∈𝜔
𝐵𝑖 ∣ 𝐵𝑖 ∈ ⋃

𝛽<𝛼
𝚷0

𝛽(𝒳) for each 𝑖 ∈ 𝜔}.
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And if 𝒳 is metrisable the previous statement holds also for 𝛼 = 2, i.e.

𝚺0
2(𝒳) = {⋃

𝑖∈𝜔
𝐵𝑖 ∣ 𝐵𝑖 ∈ 𝚷0

1(𝒳) for each 𝑖 ∈ 𝜔}.

Hausdorff and later Kuratowski refined the Borel hierarchy by introducing
the so called difference Hierarchy. Recall that any ordinal 𝛼 can uniquely be
expressed as 𝛼 = 𝜆 + 𝑛 where 𝜆 is limit or equal to 0, and 𝑛 < 𝜔. The ordinal
𝛼 is said to be even if 𝑛 is even, otherwise 𝛼 is said to be odd.

Definition 5.43. Let 𝜉 ⩾ 1 be a countable ordinal. For any sequence (𝐶𝜂)𝜂<𝜉
with 𝛼 < 𝛽 < 𝜉 implies 𝐶𝛼 ⊆ 𝐶𝛽, the set 𝐴 = 𝐷𝜉((𝐶𝜂)𝜂<𝜉) is defined by

𝐴 = {
⋃{𝐶𝜂 ∖ ⋃𝜂′<𝜂 𝐶𝜂′ ∣ 𝜂 odd, 𝜂 < 𝜉} for 𝜉 even,
⋃{𝐶𝜂 ∖ ⋃𝜂′<𝜂 𝐶𝜂′ ∣ 𝜂 even, 𝜂 < 𝜉} for 𝜉 odd.

For a topological space 𝒳, 1 ⩽ 𝛼 < 𝜔1 and 1 ⩽ 𝜉 < 𝜔1 we let 𝐷𝜉(𝚺0
𝛼(𝒳))

be the class of all sets 𝐷𝜉((𝐶𝜂)𝜂<𝜉) where (𝐶𝜂)𝜂<𝜉 is an increasing sequence in
𝚺0

𝛼(𝒳). Notice that in particular 𝐷1(𝚺0
𝛼) = 𝚺0

𝛼.

Of course if 𝑓 ∶ 𝒳 → 𝒴 is a continuous map and 𝐴 ∈ 𝐷𝜉(𝚺0
𝛼(𝒴)), then

𝑓−1(𝐴) ∈ 𝐷𝜉(𝚺0
𝛼(𝒳)). For the Baire space, this straightforward observation is

crystallised in the definition of a pointclass, that is a collection of subsets of the
Baire space closed under continuous preimages, or in other words, an initial
segment of the Wadge quasi-order on the Baire space. In any topological space,
the fact that the classes 𝚷0

𝛼, 𝚺0
𝛼 and 𝐷𝜉(𝚺0

𝛼) are closed under continuous
preimages means that these classes are initial segment of the quasi-order of
continuous reducibility ⩽W. In this sense ⩽W refines these classical hierarchies.

We now show that in an arbitrary second countable 𝑇0 space 𝒳 the classes
𝚷0

𝛼, 𝚺0
𝛼, 𝐷𝜉(𝚺0

𝛼) enjoy the stronger and less straightforward property of being
initial segments of the quasi-order ≼W. Therefore the quasi-order ≼W also
refines these classical hierarchies.

Proposition 5.44. Let 𝒳 and 𝒴 be second countable 𝑇0 spaces and 𝐴 ⊆ 𝒳,
𝐵 ⊆ 𝒴. For every 1 ⩽ 𝛼, 𝜉 < 𝜔1,

(i) if 𝐵 ∈ 𝚺0
𝛼(𝒴) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝚺0

𝛼(𝒳),

(ii) if 𝐵 ∈ 𝐷𝜉(𝚺0
𝛼(𝒴)) and 𝐴 ≼W 𝐵, then 𝐴 ∈ 𝐷𝜉(𝚺0

𝛼(𝒳)).

128



5 A Wadge hierarchy for second countable spaces

We defer the proof of the previous proposition until the end of this section
since it follows from results of independent interest. The proof relies essentially
on the following proposition which is a slightly modified version of a result due
to Saint Raymond [Sai07, Lemma 17]. Its relevance in our context was first
observed by de Brecht [deB13]. It is based on Baire category and we refer the
reader to the textbook by Kechris [Kec95] for the basic definitions and results.

Proposition 5.45. Let 𝒳 and 𝒴 be topological spaces, with 𝒳 metrisable. Let
𝜑 ∶ 𝒳 → 𝒴 be an open, continuous map with Polish fibres, i.e. 𝜑−1(𝑦) is Polish
for all 𝑦 ∈ 𝒴. For every 𝑍 ⊆ 𝒳 define:

𝑁0(𝑍) = {𝑦 ∈ 𝒴 ∣ 𝑍 ∩ 𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦)},
𝑁1(𝑍) = {𝑦 ∈ 𝒴 ∣ 𝑍 ∩ 𝜑−1(𝑦) is comeagre in 𝜑−1(𝑦)}.

Then for every positive ordinal 𝛼 < 𝜔1,

(i) If 𝑍 ∈ 𝚺0
𝛼(𝒳), then 𝑁0(𝑍) ∈ 𝚺0

𝛼(𝒴),
(ii) If 𝑍 ∈ 𝚷0

𝛼(𝒳), then 𝑁1(𝑍) ∈ 𝚷0
𝛼(𝒴).

In particular, if 𝜑 is further assumed to be surjective then for every 𝐴 ⊆ 𝒴 and
every positive ordinal 𝛼 < 𝜔1,

(i) 𝜑−1(𝐴) ∈ 𝚺0
𝛼(𝒳) ⟷ 𝐴 ∈ 𝚺0

𝛼(𝒴),
(ii) 𝜑−1(𝐴) ∈ 𝚷0

𝛼(𝒳) ⟷ 𝐴 ∈ 𝚷0
𝛼(𝒴).

Proof. Since 𝑁1(𝒳 ∖ 𝑍) = 𝒴 ∖ 𝑁0(𝑍) both statements are equivalent for every
𝛼. Let (𝑉𝑘)𝑘∈𝜔 be a countable base for the topology of 𝒳. We proceed by
induction on 𝛼.

For 𝛼 = 1 let 𝑍 ∈ 𝚺0
1, since 𝜑 is assumed to be open we have 𝜑(𝑍) is open

in 𝒴. Since 𝜑−1(𝑦) is a Baire space for all 𝑦 ∈ 𝒴, the open subset 𝑍 ∩𝜑−1(𝑦) of
𝜑−1(𝑦) is non meagre if and only if it is non empty. So 𝑁0(𝑍) = 𝜑(𝑍) ∈ 𝚺0

1(𝒴).
So assume now that both statements are true for every 𝛼′ < 𝛼 and let

𝑍 ∈ 𝚺0
𝛼. Since 𝒳 is metrisable, 𝑍 is the union of a countable family (𝑍𝑛)𝑛∈𝜔

with 𝑍𝑛 ∈ 𝚷0
𝛼𝑛

for some 𝛼𝑛 < 𝛼. For any point 𝑦 ∈ 𝒴, using the fact that any
Borel subset of a Polish space has the Baire Property, we have the following
equivalences:

𝑍 ∩ 𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦)
↔ ∃𝑛 𝑍𝑛 ∩ 𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦)
↔ ∃𝑛 𝑍𝑛 ∩ 𝜑−1(𝑦) is comeagre in some non-empty open subset of 𝜑−1(𝑦)
↔ ∃𝑛 ∃𝑘 (𝑍𝑛 ∪ 𝑉 ∁

𝑘 ) ∩ 𝜑−1(𝑦) is comeagre in 𝜑−1(𝑦) and 𝑉𝑘 ∩ 𝜑−1(𝑦) ≠ ∅.
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5 A Wadge hierarchy for second countable spaces

Therefore,
𝑁0(𝑍) = ⋃

𝑛,𝑘
𝑁1(𝑍𝑛 ∪ 𝑉 ∁

𝑘 ) ∩ 𝜑(𝑉𝑘).

Now 𝑍𝑛 ∪𝑉 ∁
𝑘 ∈ 𝚷0

𝛼𝑛
, and so 𝑁1(𝑍𝑛 ∪𝑉 ∁

𝑘 ) ∈ 𝚷0
𝛼𝑛

by the induction hypothesis.
Moreover 𝜑(𝑉𝑘) ∈ 𝚺0

1 since 𝜑 is an open map. It follows that 𝑁0(𝑍) is 𝚺0
𝛼

according to Definition 5.39.
For the second claim, assume that 𝜑 is moreover surjective and notice that

if 𝐴 ⊆ 𝒴 then for 𝑍 = 𝜑−1(𝐴) we have 𝐴 = 𝑁0(𝑍) = 𝑁1(𝑍).
Building on Proposition 5.45 and using the same technique, de Brecht [deB13]

showed:

Proposition 5.46. Let 𝒳 and 𝒴 be topological spaces, with 𝒳 metrisable.
Let 𝜑 ∶ 𝒳 → 𝒴 be an open and continuous map with Polish fibres, 𝐴 ⊆ 𝒴
and 1 ⩽ 𝛼, 𝜉 < 𝜔1. If 𝜑−1(𝐴) = 𝐷𝜉((𝐶𝜂)𝜂<𝜉) with (𝐶𝜂)𝜂<𝜉 an increasing
sequence in 𝚺0

𝛼, then 𝐴 = 𝐷𝜉(𝑁0(𝐶𝜂)𝜂<𝜉). So 𝐴 ∈ 𝐷𝜉(𝚺0
𝛼(𝒴)) if and only if

𝜑−1(𝐴) ∈ 𝐷𝜉(𝚺0
𝛼(𝒳)).

Proof. Let 𝐵𝜂 = 𝑁0(𝐶𝜂). First let 𝑦 ∈ 𝐴. Since 𝜑−1(𝑦) = ⋃𝜂<𝜉 𝐶𝜂 ∩ 𝜑−1(𝑦)
and 𝜑−1(𝑦) is Polish and non empty, there exists a least 𝜂𝑦 < 𝜉 such that
𝐶𝜂𝑦

∩𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦), i.e. 𝑦 ∈ 𝐵𝜂𝑦
. In particular, 𝐶𝜂′ ∩𝜑−1(𝑦)

is meagre in 𝜑−1(𝑦) for all 𝜂′ < 𝜂𝑦, hence ⋃𝜂′<𝜂𝑦
𝐶𝜂′ ∩ 𝜑−1(𝑦) is meagre in

𝜑−1(𝑦). It follows that (𝐶𝜂𝑦
∖ ⋃𝜂′<𝜂𝑦

𝐶𝜂′) ∩ 𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦),
so in particular it contains some 𝑥 ∈ 𝒳. Since 𝑥 ∈ 𝜑−1(𝐴) = 𝐷𝜉((𝐶𝜂)𝜂<𝜉) the
parity of 𝜉 must differ from that of 𝜂𝑦. Therefore 𝑦 ∈ 𝐷𝜉((𝐵𝜂)𝜂<𝜉).

Conversely let 𝑦 ∈ 𝐷𝜉((𝐵𝜂)𝜂<𝜉). There exists 𝜂𝑦 < 𝜉 whose parity is different
from that of 𝜉 such that 𝑦 ∈ 𝐵𝜂𝑦

∖⋃𝜂′<𝜂𝑦
𝐵𝜂′ . Since 𝐵𝜂 = 𝑁0(𝐴𝜂), 𝐶𝜂𝑦

∩𝜑−1(𝑦)
is non meagre in 𝜑−1(𝑦), and ⋃𝜂′<𝜂𝑦

𝐶𝜂′∩𝜑−1(𝑦) is meagre in 𝜑−1(𝑦). As before
(𝐶𝜂𝑦

∖ ⋃𝜂′<𝜂𝑦
𝐶𝜂′) ∩ 𝜑−1(𝑦) is non meagre in 𝜑−1(𝑦) and so in particular it

must contain some point 𝑥 ∈ 𝒳. We have 𝑥 ∈ 𝐷𝜉((𝐶𝜂)𝜂<𝜉) = 𝜑−1(𝐴) and so
𝑦 = 𝜑(𝑥) ∈ 𝐴.

Since every second countable 𝑇0 space has an admissible representation which
is open and has Polish fibres, we obtain:

Theorem 5.47 ([deB13, Theorem 78]). Let 𝒳 be a second countable 𝑇0 space,
𝜌 ∶⊆ 𝜔𝜔 → 𝒳 an admissible representation of 𝒳. For any countable 𝛼, 𝜉 > 0
and every 𝐴 ⊆ 𝒳 we have

𝐴 ∈ 𝐷𝜉(𝚺0
𝛼(𝒳)) ⟷ 𝜌−1(𝐴) ∈ 𝐷𝜉(𝚺0

𝛼(dom 𝜌)).
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5 A Wadge hierarchy for second countable spaces

Proof. The left to right implication follows from the continuity of the admiss-
ible representation and the fact that the preimage map 𝜌−1 is a complete
Boolean homomorphism.

For the right to left implication, it is enough by Propositions 5.45 and 5.46
to show that we can assume 𝜌 to be open with Polish fibres – since such an
admissible representation always exists by Theorem 5.17. So let 𝛿 ∶⊆ 𝜔𝜔 → 𝒳
be any admissible representation of 𝒳, then there exists a continuous 𝑓 ∶
dom 𝜌 → dom 𝜎 with 𝛿∘𝑓 = 𝜌 on the domain of 𝜌. If 𝛿−1(𝐴) ∈ 𝐷𝜉(𝚺0

𝛼(dom 𝛿))
then as in the first implication we have

𝜌−1(𝑆) = 𝑓−1(𝛿−1(𝑆)) ∈ 𝐷𝛼(𝚺0
𝜃(dom 𝜌)).

This concludes the claim.

The proof of Proposition 5.44 is now straightforward.

Proof of Proposition 5.44. Since 𝐷1(𝚺0
𝛼) is just 𝚺0

𝛼, (i) is a particular case of
(ii). Let 𝐵 ∈ 𝐷𝜉(𝚺0

𝛼(𝒴)) and suppose that 𝐴 ⊆ 𝒳 satisfies 𝐴 ≼W 𝐵. Let 𝜌𝒳, 𝜌𝒴
be admissible representations of 𝒳, 𝒴 respectively. Since 𝐴 ≼W 𝐵, there exists a
continuous 𝑓 ∶ dom 𝜌𝒳 → dom 𝜌𝒴 with (𝜌𝒴 ∘𝑓)−1(𝐵) = 𝜌−1

𝒳 (𝐴). By continuity,
𝜌−1

𝒳 (𝐴) = (𝜌𝒴 ∘ 𝑓)−1(𝐵) ∈ 𝐷𝜉(𝚺0
𝛼(dom 𝜌𝒳)), and so by Theorem 5.47 𝐴 is

𝐷𝜉(𝚺0
𝛼) in 𝒳.

In the Baire space, the pointclasses and the Wadge quasi-order are two sides
of the same coin. Moreover while the pointclasses 𝚺0

𝛼, 𝚷0
𝛼 and 𝐷𝜉(𝚺0

𝛼) are
defined in terms of operations on open sets, Wadge showed that every non-
self-dual Borel pointclass – i.e. a pointclass of Borel sets which is not closed
under complementation – can be described in this fashion. Since we investigate
a generalisation of the Wadge quasi-order on 𝜔𝜔 to more general spaces, it is
therefore natural to wonder what is the generalisation of the notion pointclass.
With Proposition 5.44 in mind and by analogy with the case of 𝜔𝜔, our ap-
proach suggests to define a ‘pointclass’ in any second countable 𝑇0 space as an
initial segment of the quasi-order ≼W.

It is worth mentioning that after the paper on which this chapter is based
was finished we discovered that Louveau and Saint Raymond [LS11, Section 4]
define for each Borel non-self dual pointclass Γ in 𝜔𝜔 a corresponding class
Γ(𝒳) for every metric separable space 𝒳 as follows, Γ(𝒳) is the family of
those sets 𝐴 ⊆ 𝒳 such that for every (total) continuous map 𝑓 ∶ 𝜔𝜔 → 𝒳
we have 𝑓−1(𝐴) ∈ Γ. It is easy to see these classes Γ(𝒳) are always initial
segments of our quasi-order ≼W. Conversely when 𝒳 is Polish, one can show1

1Using that every Polish space has a total (i.e. defined on the whole 𝜔𝜔) admissible rep-
resentation as proved by Brattka [Bra99, Corollary 4.4.12].
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5 A Wadge hierarchy for second countable spaces

that if Γ′ is a initial segment for ≼W consisting in Borel subsets of 𝒳 which
is not closed under complementation, then there is a Borel non-self-dual point
class Γ of 𝜔𝜔 such that Γ′ = Γ(𝒳). However we reserve the investigation of
the relation between these classes and the quasi-order ≼W as well as a general
discussion on the notion of pointclass in arbitrary spaces for a later work.

5.5 A general reduction game
We now explain how the results of Section 5.1 imply that the quasi-order ≼W
is bqo and satisfies the Wadge Lemma when suitably restricted.

In the investigation of the quasi-order ≼W the following simple adaptation
of the game in Definition 5.1 is essential.

Definition 5.48. Let 𝒳 and 𝒴 be second countable 𝑇0 spaces, 𝜌𝒳, 𝜌𝒴 admiss-
ible representations of 𝒳 and 𝒴 respectively, and 𝐴 ⊆ 𝒳, 𝐵 ⊆ 𝒴. We define a
perfect information two players game 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) as follows. Player I starts
by choosing some 𝛼0 ∈ 𝜔 and then Player II chooses some 𝛽0 ∈ 𝜔, then Player
I choose some 𝛼1 ∈ 𝜔, so on and so forth. Player II wins the play (𝛼, 𝛽) if and
only if

𝛼 ∈ dom 𝜌𝒳 implies [𝛽 ∈ dom 𝜌𝒴 and (𝜌𝒳(𝛼) ∈ 𝐴 ↔ 𝜌𝒴(𝛽) ∈ 𝐵)].

When 𝜌𝒳 = 𝜌𝒴 we write 𝐺𝜌𝒳(𝐴, 𝐵) instead of 𝐺𝜌𝒳,𝜌𝒳(𝐴, 𝐵).
Of course the game 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) is tightly related to the reducibility by

relatively continuous relations.

Proposition 5.49. Let 𝒳 and 𝒴 be second countable 𝑇0 spaces, 𝜌𝒳, 𝜌𝒴 be
admissible representations of 𝒳 and 𝒴 respectively. Then for all 𝐴 ⊆ 𝒳 and
𝐵 ⊆ 𝒴:

(i) If Player II has a winning strategy in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵), then 𝐴 ≼W 𝐵,

(ii) If Player I has a winning strategy in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵), then 𝐵 ≼W 𝐴∁.

Proof. A winning strategy for Player II induces a total continuous function
𝑓 ∶ 𝜔𝜔 → 𝜔𝜔 such that for every 𝛼 ∈ dom 𝜌𝒳, we have 𝑓(𝛼) ∈ dom 𝜌𝒴 and

𝜌𝒳(𝛼) ∈ 𝐴 ⟷ 𝜌𝒴(𝑓(𝛼)) ∈ 𝐵,

or equivalently

𝛼 ∈ 𝜌−1
𝒳 (𝐴) ⟷ 𝑓(𝛼) ∈ 𝜌−1

𝒴 (𝐵).
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5 A Wadge hierarchy for second countable spaces

Therefore if Player II has a winning strategy in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵), then

(𝜌−1
𝒳 (𝐴), dom 𝜌𝒳) ⩽W (𝜌−1

𝒴 (𝐵), dom 𝜌𝒴)

and so 𝐴 ≼W 𝐵 by Lemma 5.37.
Now any winning strategy for Player I induces a continuous function 𝑔 ∶

𝜔𝜔 → 𝜔𝜔 such that whenever 𝛼 ∈ dom 𝜌𝒴 then 𝑔(𝛼) ∈ dom 𝜌𝒳 and

𝜌𝒴(𝛼) ∈ 𝐵 ⟷ 𝜌𝒳(𝑔(𝛼)) ∈ 𝐴∁

or equivalently,

𝑔(𝛼) ∉ 𝜌−1
𝒳 (𝐴) ⟷ 𝛼 ∈ 𝜌−1

𝒴 (𝐵)

Therefore if Player I has a winning strategy in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵), then (𝐵, 𝒴) ≼W
(𝐴∁, 𝒳).
Remark 5.50. A priori the existence of a winning strategy for Player II in
𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) is not equivalent to 𝐴 ≼W 𝐵. This is however the case when 𝜌𝒴
satisfies a stronger property than being an admissible representation.

Recall that a a partial map ℎ ∶⊆ 𝜔𝜔 → 𝜔𝜔 is called Lipschitz if for every
𝛼, 𝛽 ∈ dom ℎ and every 𝑛 ∈ 𝜔, 𝛼↾𝑛 = 𝛽↾𝑛 implies ℎ(𝛼)↾𝑛 = ℎ(𝛽)↾𝑛.

Let us say that a partial continuous map 𝜌 ∶⊆ 𝜔𝜔 → 𝒴 is a nice admissible
representation if for every partial continuous function 𝑓 ∶⊆ 𝜔𝜔 → 𝒴 there
exists a Lipschitz map ℎ ∶ dom 𝑓 → dom 𝜌 such that for every 𝛼 ∈ dom 𝑓 we
have 𝑓(𝛼) = 𝜌(ℎ(𝛼)). Since Lipschitz maps are continuous, a nice admissible
representation is in particular an admissible representation. Moreover, as we
noticed in Remark 5.18 ii., the standard representation of a second countable
𝑇0 space 𝒴 relatively to some base is always a nice admissible representation of
𝒴. Hence every second countable 𝑇0 space has a nice admissible representation.

Now if 𝜌𝒴 is a nice admissible representation of 𝒴, then Player II has a
winning strategy in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) if and only if 𝐴 ≼W 𝐵. Indeed if 𝐴 ≼W 𝐵,
then there exists some relatively continuous reduction of 𝐴 to 𝐵, and therefore
there exists some continuous function 𝐹 ′ ∶ dom 𝜌𝒳 → dom 𝜌𝒴. Since 𝜌𝒴 is a nice
admissible representation there exists a Lipschitz map 𝐹 ∶ dom 𝜌𝒳 → dom𝜌𝒴
such that 𝜌𝒴 ∘ 𝐹 ′ = 𝜌𝒴 ∘ 𝐹 . This means that 𝐹(𝛼)↾𝑛 depends only on 𝛼↾𝑛 for
every 𝛼 ∈ dom 𝜌𝒳. Therefore a winning strategy for Player II in 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵)
is for example given by the function 𝜎 ∶ 𝜔<𝜔 → 𝜔<𝜔 defined by induction on
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the length by:

𝜎(∅) = ∅

𝜎(𝑠) =
⎧{
⎨{⎩

𝐹(𝛼)↾|𝑠| for some 𝛼 ∈ 𝑁𝑠 ∩ dom 𝜌𝒳, if any,
𝜎(𝑠↾𝑘) ⌢ 0|𝑠|−𝑘 if 𝑁𝑠 ∩ dom 𝜌𝒳 = ∅ and 𝑘 < |𝑠| is the largest

such that 𝑁𝑠↾𝑘
∩ dom 𝜌𝒳 ≠ ∅.

Observe that when dom 𝜌𝒳 and dom 𝜌𝒴 are Borel subsets of 𝜔𝜔, the reduction
game 𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) is Borel and therefore determined by Martin’s result as long
as 𝐴 ⊆ 𝒳, 𝐵 ⊆ 𝒴 are Borel subsets of 𝒳 and 𝒴 respectively. We are therefore
naturally led to the following definition.

Definition 5.51. A second countable 𝑇0 space 𝒳 is called Borel representable
if there exists an admissible representation 𝜌 ∶⊆ 𝜔𝜔 → 𝒳 of 𝒳 such that dom 𝜌
Borel in 𝜔𝜔.

It is clear that every Borel subset of the Scott domain 𝒫𝜔 is Borel repres-
entable. We do not know if the converse is true, namely:

Problem 3. Is every Borel representable space homeomorphic to a Borel subset
of 𝒫𝜔?

From Proposition 5.49 and Borel determinacy we obtain the following gen-
eralisation of Lemma 5.10.

Theorem 5.52 (Generalised Wadge Lemma). Let 𝒳 and 𝒴 be a Borel repres-
entable spaces, 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 be Borel. Then

either (𝐴, 𝒳) ≼W (𝐵, 𝒴) or (𝐵, 𝒴) ≼W (𝐴∁, 𝒳).

For the same reasons already exposed after Lemma 5.10, the quasi-order
≼W has a very simple structure when restricted to Borel subsets of Borel
representable spaces. Namely antichains are of size at most two, and up to
equivalence they are necessarily of the form (𝐴, 𝒳) and (𝐴∁, 𝒳). Moreover if
we stipulate that (𝐴, 𝒳) and (𝐴∁, 𝒳) are always equivalent, this makes ≼W
into a linear order.

Using the above game, the well-foundedness of ≼W on Borel subsets of
Borel representable spaces can be obtained by following the proof of the well-
foundedness of the Wadge quasi-order on 𝜔𝜔 as for example presented by
Kechris [Kec95, p. 21.15]. However we think it is best seen as a particular case
of the following extension of Theorem 5.9 to Borel representable spaces.

Let us first extend Definition 5.8 in the obvious way:
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Definition 5.53. Let 𝑄 be a quasi-order. A map 𝑙 ∶ 𝒳 → 𝑄 from some Borel
representable space 𝒳 is called a Borel 𝑄-labelling function of 𝒳 if

(1) for every 𝑞 ∈ 𝑄, the set 𝑙−1(𝑞) is Borel in 𝒳,

(2) the image Im 𝑙 of 𝑙 is countable.

We refer to 𝒳 as the domain of 𝑙 and denote it by dom 𝑙. We let 𝐵gen(𝑄) be
the class of all Borel 𝑄-labelling of some Borel representable space.

We quasi-order 𝐵gen(𝑄) by

𝑙0 ≼c 𝑙1 ⟷ there exists a relatively continuous 𝑅 ∶ dom 𝑙0 ⇉ dom 𝑙1
such that for every 𝑥 ∈ dom 𝑙0 and every 𝑦 ∈ dom 𝑙1,
𝑥 𝑅 𝑦 implies 𝑙0(𝑥) ⩽ 𝑙1(𝑔(𝑥)) in 𝑄.

We now have the following straightforward generalisation of Theorem 5.9.

Theorem 5.54. If 𝑄 is bqo, then 𝐵gen(𝑄) is bqo.

Proof. Let ℎ ∶ [𝜔]∞ → 𝐵gen(𝑄) be a locally constant multi-sequence. We
can choose for every 𝑙 ∈ 𝐵gen(𝑄) in the countable image of ℎ an admissible
representation 𝜌dom 𝑙 ∶ 𝐷𝑙 → dom𝑙 with 𝐷𝑙 a Borel subset of 𝜔𝜔. We get a
multi-sequence ℎ̃ ∶ [𝜔]∞ → 𝔏𝐵(𝑄) by letting ℎ̃(𝑋) = ℎ(𝑋) ∘ 𝜌dom ℎ(𝑋). Since
𝔏𝐵(𝑄) is bqo by Theorem 5.7, there exists 𝑋 ∈ [𝜔]∞ such that ℎ̃(𝑋) ⩽𝔏
ℎ̃(∗𝑋). To lighten the notation, let ℎ(𝑋) = 𝑙0 ∶ 𝒳0 → 𝑄 and ℎ(∗𝑋) = 𝑙1 ∶
𝒳1 → 𝑄 so that we have 𝑙0 ∘ 𝜌𝒳0

⩽𝔏 𝑙1 ∘ 𝜌𝒳1
, i.e. Player II has a winning

strategy 𝜎 in 𝐺(𝑙0 ∘ 𝜌𝒳0
, 𝑙1 ∘ 𝜌𝒳1

). Now this winning strategy for Player II
induces a continuous function 𝜎∗ ∶ 𝜔𝜔 → 𝜔𝜔 which restricts to a continuous
𝑓 ∶ dom 𝜌𝒳0

→ dom 𝜌𝒳1
such that for every 𝛼 ∈ dom 𝜌𝒳0

we have

𝑙0 ∘ 𝜌𝒳0
(𝛼) ⩽ 𝑙1 ∘ 𝜌𝒳1

(𝑓(𝛼)) in 𝑄.

Therefore the continuous function dom 𝜌𝒳0
→ dom 𝜌𝒳1

induces a relatively
continuous total relation 𝑅 ∶ 𝒳0 → 𝒳1 that witnesses 𝑙0 ≼c 𝑙1, i.e. ℎ(𝑋) ≼c
ℎ(∗𝑋), and so ℎ is good. Since ℎ was arbitrary, it follows that 𝐵gen(𝑄) is
bqo.

When 𝑄 is the bqo 2 partially ordered by equality, then 𝐵gen(2) consists of
the Borel subsets of Borel representable spaces quasi-ordered by ≼W.

Corollary 5.55. The quasi-order ≼W is well-founded on the Borel subsets of
Borel representable spaces.
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5 A Wadge hierarchy for second countable spaces

Of course assuming the Axiom of Determinacy (AD), the general structural
result holds. Namely assuming AD, all subsets of any second countable 𝑇0
space 𝒳 are bqo under ≼W, and if 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 are subsets of second
countable 𝑇0 spaces, then either (𝐴, 𝒳) ≼W (𝐵, 𝒴), or (𝐵∁, 𝒴) ≼W (𝐴, 𝒳).

These positive results on the structure of the quasi-order ≼W also imply that
≼W often differs with the quasi-order of continuous reducibility ⩽W. Indeed
Schlicht [Sch] showed that in every non 0-dimensional metric space there exists
an antichain of the size of the continuum for the continuous reducibility. Using
this result and Proposition 5.38, we see that in the separable metrisable case the
two notions of reducibility differ as soon as we depart from the zero-dimensional
framework.

Corollary 5.56. Let 𝒳 be a metrisable and Borel representable space. Then
≼W and ⩽W coincide on subsets of 𝒳 if and only if 𝒳 is 0-dimensional.

5.6 The real line and the Scott domain
We now briefly have a closer look at the difference between the continuous
reducibility and the reducibility by continuous relations in two important ex-
amples.

5.6.1 The Real Line
In [Ike10] (see also [IST]) an embedding from (𝒫(𝜔), ⊆fin), where ⊆fin denotes
inclusion modulo finite, i.e. 𝑥 ⊆fin 𝑦 ↔ 𝑥 ∖ 𝑦 is finite, into the difference of two
open sets of the real line ordered by Wadge reducibility is exhibited. We now
recall this construction.

Take increasing sequences of real numbers ⟨𝑎𝛼, 𝑏𝛼 ∣ 𝛼 < 𝜔𝜔⟩ indexed by the
ordinal 𝜔𝜔 and ⟨𝑐𝑛 ∣ 𝑛 ⩾ 1⟩ with

𝑎𝛼 < 𝑏𝛼 < 𝑎𝛼+1 for each 𝛼 < 𝜔𝜔

𝑎−
𝜆 ∶= sup{𝑎𝛼 ∣ 𝛼 < 𝜆} < 𝑎𝜆 for each limit 𝜆 < 𝜔𝜔

𝑎−
𝜔𝑛 < 𝑐𝑛 < 𝑎𝜔𝑛 for each 𝑛 ∈ 𝜔.

Now for 𝑋 ⊆ 𝜔 ∖ {0} we let

𝐷𝑋 = ⋃
𝛼<𝜔𝜔

[𝑎𝛼, 𝑏𝛼) ∪ {𝑐𝑛 ∣ 𝑛 ∉ 𝑋}.

Clearly 𝐷𝑋 is a difference of two open sets for all 𝑋 ⊆ 𝜔 ∖ {0}.
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Theorem 5.57 ([Ike10]). For every 𝑋, 𝑌 ⊆ 𝜔 ∖ {0},

𝑋 ⊆fin 𝑌 ⟷ 𝐷𝑋 ⩽𝑊 𝐷𝑌 .

By Parovičenko’s Theorem [Par93], any poset of size ℵ1 embeds into the par-
tially ordered set (𝒫(𝜔), ⊆fin), hence there are long infinite descending chains
and long antichains for the Wadge reducibility, already among the difference
of two open sets of the real line.

As an example, we now give winning strategies witnessing 𝐷𝑋 ≼W 𝐷𝑌 for
every 𝑋, 𝑌 ⊆ 𝜔 ∖ {0}.

Proposition 5.58. For every 𝑋, 𝑌 ⊆ 𝜔 ∖ {0}, we have 𝐷𝑋 ≼W 𝐷𝑌 .

Proof. Let 𝜌ℝ be the admissible representation of the real line from Example 5.19.
We choose for every 𝑥 ∈ ℝ a particular code via 𝜌ℝ by setting 𝛼𝑥 ∶ 𝜔 → 𝜔

to be the increasing enumeration of {𝑛 ∈ 𝜔 ∣ 𝑥 ∈ 𝐼𝑛}.
Now fix 𝑋, 𝑌 ⊆ 𝜔 ∖ {0}. We describe a winning strategy 𝜎 = 𝜎𝑋,𝑌 for

player II in the game 𝐺𝜌ℝ(𝐷𝑋, 𝐷𝑌 ). Let 𝐽𝑘 be the open interval (𝑎−
𝜔𝑘 , 𝑎𝜔𝑘).

And note that we only need to consider positions where Player I has played
(𝑛0, 𝑛1, … , 𝑛𝑗) with ⋂𝑗

𝑖=0 𝐼𝑛𝑖
is non empty. Let 𝑋 △ 𝑌 denote the symmetric

difference of 𝑋 and 𝑌 , i.e.

𝑋 △ 𝑌 = {𝑥 ∈ 𝜔 ∖ {0} ∣ ¬(𝑥 ∈ 𝑋 ↔ 𝑥 ∈ 𝑌 )}.

Our winning strategy 𝜎 ∶ 𝜔𝜔 → 𝜔 for Player II in 𝐺𝜌ℝ(𝐷𝑋, 𝐷𝑌 ) goes as follows:
As long as Player I is in a position where he has played (𝑛0, 𝑛1, ⋯ , 𝑛𝑗) such

that 𝐼𝑗 = ⋂𝑗
𝑖=0 𝐼𝑛𝑖

⊈ 𝐽𝑘 for all 𝑘 ∈ 𝑋 △ 𝑌 , 𝜎 consists simply in copying the
last move of Player I: 𝑛𝑗. Therefore 𝜎 will induce the identity function outside
the 𝐽𝑘’s for which 𝑘 ∉ 𝑋 △ 𝑌 .

Now consider Player I has played (𝑛0, 𝑛1, ⋯ , 𝑛𝑗) such that there exists 𝑘 ∈
𝑋 △𝑌 with 𝐼𝑗 = ⋂𝑗

𝑖=0 ⊆ 𝐽𝑘 and let 𝑙 be the least integer with 𝐼 𝑙 = ⋂𝑙
𝑖=0 𝐼𝑛𝑖

⊆
𝐽𝑘. We distinguish several cases:

𝑐𝑘 ∈ 𝐷𝑌 ∖ 𝐷𝑋: then for 𝜎 to be winning for Player II, it must eventually make
him play the code of a point outside of 𝐷𝑌 and it cannot be 𝑐𝑘.
Now since 𝐼 𝑙 ⊆ 𝐽𝑘, say 𝐼 𝑙 = (𝑟0, 𝑟1), we can for example choose

𝑦 =𝑟0 + min{𝑟1, 𝑐𝑘}
2 , if 𝑟0 < 𝑐𝑘,

or 𝑦 =max{𝑟0, 𝑐𝑘} + 𝑟1
2 , if 𝑐𝑘 ⩽ 𝑟0,
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5 A Wadge hierarchy for second countable spaces

and play 𝛼𝑦(𝑗 − 𝑙).
In other words, if Player I enters some 𝐽𝑘 with 𝑐𝑘 ∈ 𝐷𝑌 ∖ 𝐷𝑋, then 𝜎
consists in playing the code of some 𝑦 ∈ 𝐽𝑘 different from 𝑐𝑘, where 𝑦
depends on the first position where Player I enters 𝐽𝑘.

𝑐𝑘 ∈ 𝐷𝑋 ∖ 𝐷𝑌 and 𝑐𝑘 ∈ 𝐼𝑗: then as long as 𝑐𝑘 ∈ 𝐼𝑗, 𝜎 must consist in playing
as if Player I was going to play 𝑐𝑘, i.e. describe step by step a point
belonging to 𝐷𝑌 and it cannot be 𝑐𝑘.
Now since 𝐼 𝑙−1 ⊈ 𝐽𝑘 (if 𝑙 = 0 set 𝐼 𝑙−1 = ℝ), we choose some 𝑦 ∈ 𝐷𝑌 ∩𝐼𝑙−1
as follows:

• if 𝑎𝜔𝑘 ∈ 𝐼 𝑙−1, then set 𝑦 = 𝑎𝜔𝑘 ,
• otherwise there is a minimal 𝛽 < 𝜔𝑘 with 𝑎𝛽 ∈ 𝐼 𝑙−1, set 𝑦 = 𝑎𝛽,

and we play 𝛼𝑦(𝑗 − 𝑙).

𝑐𝑘 ∈ 𝐷𝑋 ∖ 𝐷𝑌 and 𝑐𝑘 ∉ 𝐼𝑗: then for 𝜎 to be winning for Player II, it must
eventually make him play the code of a point which is outside of 𝐷𝑌 ,
but we must be careful to be consistent with what Player II has already
played until that point.
Let 𝑝 be the least integer such that 𝑐𝑘 ∉ 𝐼𝑘. First if 𝑝 ⩽ 𝑙, i.e. at the first
position where Player I entered 𝐽𝑘 we already knew he was not going to
play 𝑐𝑘, so we can just copy its last move 𝑛𝑗. Otherwise 𝑙 < 𝑝 so 𝑐𝑘 ∈ 𝐼 𝑙

and we must distinguish two cases:
• if 𝑎𝜔𝑘 ∈ 𝐼 𝑙−1, then according to our previous case, at round 𝑝, Player

II has so far played according to 𝜎:

𝑡 = (𝑛0, 𝑛1, … , 𝑛𝑙−1, 𝛼𝑎𝜔𝑘 (0), 𝛼𝑎𝜔𝑘 (1), … , 𝛼𝑎𝜔𝑘 (𝑝 − 𝑙 − 1)).

so ⋂𝑝−1
𝑖=0 𝐼𝑡(𝑖) is an open interval (𝑟0, 𝑟1) with rational endpoints

satisfying 𝑟0 < 𝑎𝜔𝑘 < 𝑟1, so we can take

𝑧 = max{𝑎−
𝜔𝑘 , 𝑟0} + 𝑎𝜔𝑘

2
and play 𝛼𝑧(𝑗 − 𝑝).

• Otherwise according to our previous case, up to round 𝑝, the moves
of Player II according to 𝜎 are

𝑡 = (𝑛0, 𝑛1, … , 𝑛𝑙−1, 𝛼𝑎𝛽(0), 𝛼𝑎𝛽(1), … , 𝛼𝑎𝛽(𝑝 − 𝑙 − 1)).
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5 A Wadge hierarchy for second countable spaces

where 𝛽 is the minimal ordinal with 𝑎𝛽 ∈ 𝐼 𝑙−1. Again ⋂𝑝−1
𝑖=0 𝐼𝑡(𝑖)

is an open interval (𝑟0, 𝑟1) with rational endpoints satisfying 𝑟0 <
𝑎𝛽 < 𝑟1, so we can take

𝑧 =
max{𝑎−

𝛽 , 𝑟0} + 𝑎𝛽
2

where 𝑎−
𝛽 stands for 𝑏𝛽−1 if 𝛽 is successor, and we play 𝛼𝑧(𝑗 − 𝑝).

It should be clear that 𝜎 is a winning strategy for Player II in 𝐺𝜌ℝ(𝐷𝑋, 𝐷𝑌 ).
So 𝐷𝑋 ≼W 𝐷𝑌 .

If 𝑋 ⊈fin 𝑌 , then 𝑋 ⩽̸W 𝑌 by Theorem 5.57 and so the winning strategy
for II in 𝐺𝜌ℝ(𝐷𝑋, 𝐷𝑌 ) described in the previous proof induces a continuous
𝑓𝑋,𝑌 ∶ 𝜔𝜔 → 𝜔𝜔. The relation

𝑅𝜌ℝ
𝑓𝑋,𝑌

(𝑥, 𝑦) ⟷ ∃𝛼 ∈ dom 𝜌ℝ (𝜌ℝ(𝛼) = 𝑥 ∧ 𝑦 = 𝜌ℝ(𝑓𝑋,𝑌 (𝛼)))

is therefore a relatively continuous relation from ℝ to ℝ with no continuous
uniformising function. Indeed any function uniformising 𝑅𝜌ℝ

𝑓𝑋,𝑌
is a reduction

of 𝑋 to 𝑌 and since 𝐷𝑋 ⩽̸W 𝐷𝑌 there is no such continuous function.

5.6.2 The Scott Domain
We now give a simple example in the space 𝒫𝜔 of a case where ⩽W differs from
≼W. Consider {{0}}, {𝜔} ⊆ 𝒫𝜔, we first show that {{0}} ⩽̸W {𝜔}. To see this,
recall that continuous functions on 𝒫𝜔 are the Scott continuous functions with
respect to inclusion, so in particular they are monotone for inclusion. Now since
𝜔 is the top element, any monotone map 𝑓 ∶ 𝒫𝜔 → 𝒫𝜔 with 𝑓({0}) = 𝜔 has
to send every 𝑋 ⊆ 𝜔 with 0 ∈ 𝑋 onto 𝜔 too, so that 𝑓−1(𝜔) ⊇ 𝑂{0}. Therefore
no Scott continuous function is a reduction from {{0}} to {𝜔}.

While we have {{0}} ⩽̸W {𝜔}, we actually have {{0}} ≼W {𝜔}, i.e. there
exists a relatively continuous 𝑅 ∶ 𝒫𝜔 ⇉ 𝒫𝜔 such that for all 𝑋, 𝑌 ∈ 𝒫𝜔:

𝑋 𝑅 𝑌 ⟶ (𝑋 = {0} ↔ 𝑌 = 𝜔).

Clearly any such relation 𝑅 cannot be uniformised by a Scott continu-
ous function. Indeed such a Scott continuous function would be a reduction
between the considered sets, and we know there is none.
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We now give such a relation 𝑅 as a strategy in the game 𝐺𝜌En({{0}}, {𝜔}).
Since 𝜌En is total, we know by Lemma 5.37 that {{0}} ≼W {𝜔} if and only if
𝐴 ⩽𝑊 𝐵 for

𝐴 = 𝜌−1({{0}}) = {𝛼 ∈ 𝜔𝜔 ∣ 𝛼 ∈ 2𝜔 ∧ ∃𝑘 𝛼(𝑘) = 1}
and 𝐵 = 𝜌−1({𝜔}) = {𝛼 ∈ 𝜔𝜔 ∣ 𝛼 ∶ 𝜔 → 𝜔 is surjective}.

A winning strategy for Player II is for example given by the function 𝜎 ∶
𝜔<𝜔 → 𝜔 defined by

𝜎(𝑠) = {0 if 𝑠 ∈ {0}<𝜔 or ∃𝑘 < |𝑠| 𝑠𝑘 ≠ 0, 1,
𝑛 if 𝑠 ∈ 2𝜔 and 𝑛 = |𝑠| − min{𝑘 ∣ 𝑠𝑘 = 1}.

It is easily seen that this strategy induces a continuous function 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔

witnessing the relative continuity of the relation 𝑅 ∶ 𝒫𝜔 ⇉ 𝒫𝜔 given by

𝑅({0}) = {𝜔},
𝑅(𝑋) = {∅} if 0 ∉ 𝑋,
𝑅(𝑋) = {𝑛 ∣ 𝑛 ∈ 𝜔} if {0} ⊂ 𝑋,

where 𝑛 = {0, … , 𝑛 − 1} and ⊂ denotes strict inclusion.
We close this chapter by mentioning another crucial difference between ≼W

and ⩽W in relation with complete sets. Recall (e.g. [Kec95]) that 𝐹 = {𝛼 ∈
𝜔𝜔 ∣ ∃𝑛∀𝑘 ⩾ 𝑛 𝛼(𝑘) = 0} is complete for 𝚺0

2(𝜔𝜔), i.e. 𝐹 ∈ 𝚺0
2(𝜔𝜔) and for

every 𝐴 ∈ 𝚺0
2(𝜔𝜔) we have 𝐴 ⩽W 𝐹 . In fact a subset of 𝜔𝜔 is complete for

𝚺0
2(𝜔𝜔) if and only if it belongs to 𝚺0

2(𝜔𝜔) ∖ 𝚷0
2(𝜔𝜔).

The set 𝒫<∞(𝜔) of finite subsets of 𝜔 is 𝚺0
2 in 𝒫𝜔. It is shown in [BG15,

Theorem 5.10] that it is not complete for the Scott continuous reducibility in
the class 𝚺0

2(𝒫𝜔), i.e. there exists 𝐺 ∈ 𝚺0
2(𝒫𝜔) such that 𝐺 ⩽̸W 𝒫<∞(𝜔). In

contrast the following easy result holds.

Lemma 5.59. We have 𝚺0
2(𝒫𝜔) = {𝐴 ⊆ 𝒫𝜔 ∣ 𝐴 ≼W 𝒫<∞(𝜔)}.

Proof. Since 𝒫<∞(𝜔) is 𝚺0
2 in 𝒫𝜔, the right to left inclusion follows from

Proposition 5.44.
Now for the admissible representation 𝜌En ∶ 𝜔𝜔 → 𝒫𝜔 from Example 5.21,

we have
𝐹 = 𝜌−1

En(𝒫<∞(𝜔)) = {𝛼 ∈ 𝜔𝜔 ∣ ∃𝑛∀𝑘 𝛼(𝑘) ⩽ 𝑛}.
Clearly 𝐹 ⩽W 𝐹 as the continuous function 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔, 𝑓(𝛼)(𝑛) = Card{𝑘 <
𝑛 ∣ 𝛼(𝑘) ≠ 0} witnesses. Hence 𝐹 is also complete for 𝚺0

2 in 𝜔𝜔. Therefore for
any 𝚺0

2 set 𝐴 ⊆ 𝒫𝜔, there is a continuous function 𝑓 ∶ 𝜔𝜔 → 𝜔𝜔 which reduces
𝜌−1

En(𝐴) to 𝜌−1
En(𝒫<∞(𝜔)), and so 𝐴 ≼W 𝒫<∞(𝜔).
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5 A Wadge hierarchy for second countable spaces

We end here our brief exemplification of the difference between the quasi-
orders ⩽W and ≼W on the real line and the Scott domain. However, the study
of the reducibility by relatively continuous relations on these two spaces, and
others, yet remains to be realised.
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The notion of better-quasi-order
One aim throughout this thesis was to understand better the notion of bqo. We
have have committed ourselves to motivate as best as we could the definition
of bqo in Chapter 2. Nonetheless, we could not help but to notice that the way
we arrived to the definition was somehow accidental. We therefore formulated
the following problem (see Problem 1):

Problem 4. Characterise the topological digraphs which can be substituted for
([𝜔]∞, 𝖲) in the definition of bqo.

In a first attempt to apprehend this problem, we proved Theorem 2.69 which
shows that one can at least substitute a so called generalised shift for the shift
map 𝖲. At present, a complete solution however seems elusive.

Fronts as uniform spaces
In Chapter 3 we investigated fronts as uniform spaces. We believe that our
results, especially Theorems 3.24 and 3.25, entertain the relevance of this ap-
proach and we hope that these ideas can be applied in other contexts where
fronts are used. In any case, these techniques allow for a smooth proof of
Pouzet’s conjecture as presented in Chapter 4.

Unravel the notion of better-quasi-order
One obstacle in understanding the notion of bqo may lie in the difficulty to
appreciate the gap between being wqo and being bqo. In this regard our
Theorem 4.40 (Pouzet’s conjecture) provides a first step in understanding the
notion of bqo. Notice that it provides us with a process which can be iterated.
Suppose 𝑄 is wqo, and consider Id*(𝑄). If Id*(𝑄) is not wqo, then 𝑄 is not
bqo. But assume now that Id*(𝑄) is wqo, we can apply Theorem 4.40 once
again and can consider Id*(Id*(𝑄)) = Id2(𝑄). If Id2(𝑄) is not wqo, then 𝑄 is
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not bqo, otherwise we can consider Id*(Id2(𝑄)) = Id3(𝑄), so on and so forth.
There are however examples of wqos such that Id𝑛(𝑄) is wqo for ever natural
number 𝑛, while 𝑄 admits a bad super-sequence from the Schreier barrier. We
believe that finding a way to go on unravelling a wqo into the transfinite could
give new insights into the notion of bqo.

As an example of a related problem we cannot answer, we would like to
mention the following challenging question (see [Pou78]):

Problem 5 (R. Bonnet). Is every wqo poset a countable union of bqo posets?

Better-quasi-ordering the subsets of a topological
space
In Chapter 5 we have defined a quasi-order on the subsets of an arbitrary
second countable topological 𝑇0 space by considering reductions by relatively
continuous relations. We think it conveys a natural idea of relative complexity
and we have proved that it refines the classical Borel and Hausdorff-Kuratowski
hierarchies. Moreover we showed that, contrary to the quasi-order of reducib-
ility by continuous functions, it is bqo on the Borel subsets of every space
belonging to the very large class of Borel representable spaces.

However, this quasi-order has not yet been really studied on alternative
spaces, not even on Polish spaces. To give an indication of what could be
expected, it is worth mentioning that Duparc and Fournier [DF] have studied
the quasi-order of reducibility by relatively continuous relations on the space
𝜔⩽𝜔 of finite or infinite sequences of natural numbers, equipped with the prefix
topology1. They showed that for every Borel non-self-dual subset 𝐴 of 𝜔𝜔 – i.e.
a Borel subset 𝐴 of 𝜔𝜔 such that 𝐴 ⩽̸W 𝐴∁ – there exists a Borel subset 𝐴′ of
𝜔⩽𝜔 such that 𝐴 ≼W 𝐴′ and 𝐴′ ≼W 𝐴, and moreover every Borel subset 𝐴′ of
𝜔⩽𝜔 appears in this way.

This result motivates the following general question:

Problem 6. Let 𝒳 be an uncountable quasi-Polish space. Is it true that for
every non-self-dual Borel subset 𝐴 of 𝜔𝜔 there exists a subset 𝐴′ of 𝒳 with
𝐴 ≼W 𝐴′ and 𝐴′ ≼W 𝐴?

In a different but related direction, we recall that one very satisfactory fact
about the Wadge quasi-order on the Baire space is crystallised in the following
observation:

1Namely the Scott topology associated with the prefix relation, a base for which is given
by the sets of the form {𝑢 ∈ 𝜔⩽𝜔 ∣ 𝑠 ⊑ 𝑢} for some 𝑠 ∈ 𝜔<𝜔.
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6 Conclusion

Thus we have come to a full circle – non-self-dual pointclasses con-
sidered by early descriptive set theorists were defined in terms of
(explicit) operations, and assuming AD every non-self-dual point-
class is defined in terms of operations on open sets.

Andretta and Louveau [AL, p.5]
Now if 𝒳 is a quasi-Polish space, let us say that a family Γ of subsets of 𝒳 is

a non-self-dual initial segment for ≼W if Γ is not closed under complementation
and, 𝐴 ≼W 𝐵 and 𝐵 ∈ Γ implies 𝐴 ∈ Γ. We believe that the following question
is worth studying.

Problem 7. Assume AD and let 𝒳 be a quasi-Polish space. Is every non-self-
dual initial segment for ≼W defined in terms of operations on open sets?
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List of Symbols
Below are listed the main symbols and abbreviations used throughout the
thesis together with a short description and the numbers of the pages where
they are introduced.

𝑋/𝑠, 𝑋/𝑛 {𝑘 ∈ 𝑋 ∣ 𝑘 > max 𝑠}, {𝑘 ∈ 𝑋 ∣ 𝑘 > 𝑛} 21, 28
[𝑋]𝑘 {𝑠 ⊆ 𝑋 ∣ |𝑠| = 𝑘} 28
𝑆↑ the set of upper bounds of 𝑆 78
⋃ 𝐹 {𝑛 ∣ ∃𝑠 ∈ 𝐹 𝑛 ∈ 𝑠} 30
↓ 𝑆, ↓ 𝑞 {𝑝 ∣ ∃𝑠 ∈ 𝑆 𝑝 ⩽ 𝑠}, {𝑝 ∣ 𝑝 ⩽ 𝑞} 19

̂𝑃 the profinite completion of the po 𝑃 88
[𝑋]∞ the infinite subsets of 𝑋 28
𝜔op the opposite of the po (𝜔, ⩽) 73
⊑, ⊏ 𝑠 ⊏ 𝑡 ↔ ∃𝑘 ∈ 𝑡 𝑠 = {𝑛 ∈ 𝑡 ∣ 𝑛 < 𝑘} 30, 31
∗𝑋 the shift 𝑋 ∖ {min 𝑋} 41
� 𝑠 � 𝑡 ↔ ∃𝑋 ∈ [𝜔]∞ (𝑠 ⊏ 𝑋 ∧ 𝑡 ⊏ ∗𝑋) 41
𝑝 | 𝑞 𝑝 ⩽̸ 𝑞 and 𝑞 ⩽̸ 𝑝 15
|𝑠| the cardinality of 𝑠 28
𝐵(𝑄) the qo of Borel 𝑄-labelling functions of 0-dim Luzin spaces 111
𝐵gen(𝑄) the qo of Borel 𝑄-labelling functions of Borel representable spaces 135
bqo better-quasi-order 41
𝒟(𝑄) downsets of 𝑄 with inclusion 19
𝒟fb(𝑄) finitely bounded downsets of 𝑄 with inclusion 19
𝗗(𝐿) the Priestley dual of the lattice 𝐿 82
𝚫0

𝛼 the ambiguous class 𝛼 127
𝐷𝜉(𝚺0

𝛼) the class of 𝜉-differences of 𝚺0
𝛼 128

𝗘(𝒳) the lattice dual to the Priestley space 𝒳 82
𝐺𝑉 ∗ the game defining the qo on 𝑉 ∗(𝑄) 38
𝐺(𝑙0, 𝑙1) the game defining the qo on 𝔏𝐵(𝑄) 104
𝐺𝜌𝒳,𝜌𝒴(𝐴, 𝐵) the reduction game relatively to the representations 132
𝐻∗

𝜔1
𝑄 qo of hereditarily countable non-emptys sets over 𝑄 45

Id(𝑃 ) the ideal completion of the po 𝑃 , the ideal space of the wqo 𝑃 72, 80
Id*(𝑃 ) the po of non principal ideals of 𝑃 73
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List of Symbols

𝔏𝐵(𝑄) the qo of Borel 𝑄-labelling functions of Borel subsets of 𝜔𝜔 104
⩽rep the quasi-order on partial functions 𝑓 ∶⊆ 𝜔𝜔 → 𝒳 115
CId(𝑃) the Cauchy ideal completion of 𝑃 76
𝑉 ∗(𝑄) qo of non-empty sets over 𝑄 38
𝒫<ℵ1

(𝑄) qo of countable subsets of 𝑄 19
𝒫(𝑄) powerset of the qo 𝑄 19
𝒮 the Schreier barrier 29
Im 𝑓 the image or range of the function 𝑓 48
𝚷0

𝛼 the multiplicative class 𝛼 127
𝒫𝜔 the Scott domain 119
ℜ Rado’s partial order 25
𝜌En an admissible representation of the Scott domain 119
𝜌<∞ another admissible representation of the Scott domain 119
𝜌ℝ an admissible representation of the real line 118
seq𝑛∈𝑋 𝐹𝑛 {{𝑛} ∪ 𝑠 ∣ 𝑛 ∈ 𝑋 and 𝑠 ∈ 𝐹𝑛} 28
𝚺0

𝛼 the additive class 𝛼 127
𝜎ℝ an admissible representation of the real line based on Cauchy sequences 119
TailLat(𝑃 ) the lattice lattice of the po 𝑃 85
≼W reducibility by relatively continuous relations 125
wqo well-quasi-order 18
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Index
Below are listed the main definitions and theorems appearing in this thesis to-
gether with the numbers of the pages where they are introduced and discussed.

better-quasi-order (bqo) 41, 42, 47
better-relation 47
block 58
Borel hierarchy 127
Borel representable space 134

canonical extension 92
Cantor-Bendixson rank 55
Cauchy ideal 76

difference hierarchy 128
downset 19

finite basis property 19
finitely bounded 19
front 28, 30

sub-front 33

ideal 72
principal ideal 72

ideal completion 72
ideal space of a wqo 80
initial segment 19
interval order 98

Lawson topology 75, 79

multi-sequence 35
bad multi-sequence 41
Borel multi-sequence 106
locally constant multi-sequence 36
perfect multi-sequence 47
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Index

Nash-Williams’ theorem 34
normal 67

partial order (po) 16
Priestley duality 82
profinite completion of a partial order 88
property M 78, 79

quasi-order (qo) 15

Rado’s partial order 25, 94
Rado’s trick 23
ray 30
reduction 113
regular sequence 21
relatively continuous

relatively continuous function 120
relatively continuous relation 122

relatively Wadge reducible 125
representation

admissible representation 115
standard representation 116

Schreier barrier 29
super-sequence 29

bad super-sequence 41
Cauchy super-sequence 54, 56, 65
perfect super-sequence 47
spare super-sequence 37
sub-super-sequence 33

tail lattice 85
topological digraph 46
tree 31

uniformly continuous 52, 59
upset 19

well-founded 18
well-quasi-order (wqo) 18
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