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1 Introduction

A quasi-order (qo) is a transitive and reflexive relation. A quasi-order without
any infinite antichain nor infinite descending chain is called a well quasi-order
(wqo). For historical references as well as for a gentle and synthetic introduc-
tion to wqo theory we refer the reader to [Kru72]. The notion of wqo admits
of several different definitions as reviewed in Proposition 2.5. In particular,
using Ramsey’s Theorem, the above forbidden pattern definition is equivalent
to the positive condition that every sequence admits a monotone subsequence.

The notion of better quasi-order (bqo) was introduced by Nash-Williams in
[NW65]. As its name indicates it is a stronger notion than well quasi-order.
The combinatorial definition of better quasi-order relies on a generalisation
of the Ramsey’s Theorem to transfinite dimension: the notion of barrier. It
generalises the positive definition of wqo given above in the sense that it re-
quires every sequence of sequences – or 2-sequence – to admit a “monotone”
sub-2-sequence, every sequence of sequences of sequences – or 3-sequence – to
admit a “monotone”’ sub-3-sequence, so on and so forth in the transfinite.

These α-sequences are just maps from a barrier to some set. They are
sometimes called arrays, but for the purpose of this introduction we call them
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supersequences. One aim of this paper is to show that these objects deserve
this name since they share significant properties with usual sequences.

A crucial property for a sequence in a metric space is the Cauchy condition.
In order to generalise the notion of being Cauchy to supersequences, observe
that a sequence (xn)n∈ω in a metric space satisfies the Cauchy condition iff the
mapping ω → X, n 7→ xn is uniformly continuous, when ω is identified with a
subspace of the Cantor space 2ω via n 7→ 0n10ω.

As observed notably in [AT05, Tod10], barriers can naturally be seen as
subsets of the Cantor space. Viewing every barrier as a uniform subspace
of 2ω, we say that a supersequence in a uniform space is Cauchy when it is
uniformly continuous. We then show the following theorem, which generalises
the usual sequential compactness for zero dimensional metric spaces.

Theorem 1.1. Every supersequence in a zero dimensional compact metric
space has a Cauchy sub-supersequence.

This combinatorial result should be compared with Erdös-Rado Theorem
([ER50]) and Pudlak-Rödl Theorem ([PR82]) as a Ramsey theorem for parti-
tions into infinitely many classes. Note also that this result subsumes Nash-
Williams’ Theorem.

Given X is a complete metric space, every Cauchy sequence f : ω → X
converges, and thus extends to a continuous map f : ω → X, where ω is
the one point compactification of ω. Similarly for a Cauchy supersequence:
any uniformly continuous map f : B → X from a barrier into a complete
metric space X continuously extends to the completion B of the barrier, which
coincides with the topological closure of the barrier inside the Cantor space,
to yield a continuous map f : B → X.

Theorem 1.1 has a nice corollary in the context of wqo theory. Indeed
Pouzet and Sauer show in [PS06] that the set I(Q) of ideals of a wqo Q is
naturally a compact topological partially ordered space in which Q embeds
densely. Without much more work we get

Theorem 1.2. Every supersequence f : B → Q in a wqo Q admits a Cauchy
sub-supersequence f ′ from B′ a sub-barrier of B to Q, which therefore extends
to a continuous map f ′ : B′ → I(Q) into the ideals of Q.

We then turn to the study of continuous extension of Cauchy supersequences.
In full generality, we will be concerned with continuous maps from the topo-
logical closure of a barrier into some topological space.

Recall that a point x in a topological space is called isolated if the singleton
{x} is open, and limit otherwise. The following simple fact exhibits a property
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of converging sequences that can always be achieved by going to a subsequence:
If (xn)n∈ω is a sequence converging in a topological space X to some point x,
then there is a subsequence (xn)n∈N such that

1. if x is isolated, then (xn)n∈N is constant equal to x;

2. if x is limit, then

either xn is isolated for all n ∈ N ;

or xn is limit for all n ∈ N .

This generalises to supersequences as follows

Theorem 1.3. Let f : B → X be a continuous extension of a supersequence
f in a topological space X . Then there exists a sub-supersequence f ′ of f from
a sub-barrier B′ of B to X such that

either f ′ : B′ → X is constant and equal to an isolated point;

or {s ∈ B′ | f(s) is limit} = C for some barrier C.

As observed by Pouzet and Sauer in [PS06] the limit points of the compact
space I(Q) of ideals of a wqo Q are exactly the non principal ideals. Combining
Theorems 1.2 and 1.3 we obtain that

Corollary 1.4. Any supersequence in a wqo

either admits a constant sub-supersequence,

or yields a supersequence into the non principal ideals of Q.

This allows us to give a proof of the following result, conjectured by Pouzet
in his thesis [Pou78]. Pouzet and Sauer advanced a proof of this statement in
[PS06], but this proof contains a gap, as clearly revealed by Alberto Marcone
and acknowledged by Pouzet and Sauer.

Theorem 1.5. If (Q,≤Q) is wqo and the po of non principal ideals of Q,
(I*(Q),⊆) is a bqo, then (Q,≤Q) itself is bqo.

Theorem 1.5 can be very useful when one decomposes a qo into a sum of
bqo. Proving that the index set of the sum is bqo implies indeed that the
whole class is. The following example drawn from [Car13] shows that it can
be at the same time very easy to prove that some index set is a wqo, and not
so easy to prove that it is bqo without the help of Theorem 1.5.
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Example 1.6. Consider the following qo on ω:

n ≤• m iff n = m or 2n < m

Proving that (ω,≤•) is wqo is not difficult, then since there is a single non-
principal ideal – the whole qo – Theorem 1.5 implies immediately that (ω,≤•)
is bqo.

Organisation of the paper. Section 2 is devoted to some classical back-
ground. It can be skipped by the reader well versed in the subject, even
though it contains many notations, definitions and conventions.

In Section 3 we study the barriers as uniform spaces. A basic knowledge
of the classical material on uniform spaces is assumed. We give details on
the particular setting we need, namely uniform subspaces of compact and 0-
dimensional spaces. This section ends with the proof of Theorem 1.1.

Pouzet and Sauer’s way to topologise the space of ideals of a wqo is explained
at the beginning of Section 4. We then show that Theorem 1.1 applies in this
context.

Ideas of Sections 3 and 4 are exemplified on Rado’s typical counterexample.
Section 5 continues with the proof of Theorem 1.3. Finally, after unearthing a
shrewd trick first used by R. Rado in [Rad54], we give a proof of Theorem 1.5.
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2 Preliminaries

2.1 Well Quasi-Orders

Definitions 2.1.

• A quasi-order (qo) is a set Q equipped with a reflexive and transitive
binary relation denoted ≤Q.

• An antisymmetric qo is a partial order (po).

• Every qo has an associated strict relation denoted <Q defined by p <Q q
iff p ≤Q q and q 6≤Q p.

Remark 2.2. If Q is a po then the strict relation <Q is just ≤Q \∆Q, where
∆Q stands for the diagonal in Q2. This is far from being true in any qo, since
for instance the total relation Q2 on Q is a qo. However, every qo Q can be
turned into a po, its associated po, by quotienting by the equivalence relation
p ≤Q q and p ≥Q q.

In what follows Q stands for a qo, and we will write ≤ instead of ≤Q as long
as the context remains clear.

Definitions 2.3.

• Say Q is well founded if there is no infinite <-decreasing sequence in Q.

• We say two elements p and q of Q are incomparable, when both p 6≤ q and
q 6≤ p hold. In this case we write p⊥q. A set of pairwise incomparable
elements in Q is called an antichain.

• A sequence f : ω → Q is called good if there exists m < n < ω such that
f(m) ≤ f(n), otherwise f is called bad.

• A sequence f : ω → Q such that for all m,n ∈ ω the relation m ≤ n
implies f(m) ≤ f(n) is said to be perfect.

• A subset D of Q is a downset if q ∈ D and p ≤ q implies p ∈ D. For
any S ⊆ Q, we write ↓S for the downset generated by S in Q, i.e. the
set {q ∈ Q | ∃p ∈ S q ≤ p}. We also write ↓ p for ↓{p}.

• We give the dual meaning to upset, ↑S and ↑ q.

• We denote by Down(Q) (resp. Up(Q)) the po of downsets (resp. upsets)
of Q equipped with inclusion.
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• A downset I ∈ Down(Q) is called an ideal if it is non empty and directed,
i.e for all p, q ∈ I then there exists r ∈ I with p ≤ r and q ≤ r. For any
q ∈ Q the set ↓ q is a particular example of an ideal called a principal
ideal.

• We denote by I(Q) the po of ideals of Q equipped with inclusion. We let
I*(Q) be the po of non principal ideals of Q.

• The cofinality of an ideal I ∈ I(Q), denoted cof(I), is the least cardinal
λ such that there exists B ⊆ I with |B| = λ and I = ↓B. The principal
ideals are the ideals of cofinality 1. There are no ideals of cofinality k for
2 ≤ k < ω.

• We denote respectively by I≤ω(Q) and Iω(Q) the po of ideals of Q which
have countable cofinality and the po of ideals with cofinality ω. Observe
that I≤ω(Q) = {↓ q | q ∈ Q} ∪ Iω(Q) and that Iω(Q) ⊆ I*(Q).

• An upset U ∈ Up(Q) is said to admit a finite basis or to be finitely
generated if there exists a finite F ⊆ Q such that U = ↑F . We write
Up<∞(Q) for the po of finitely generated upsets with reverse inclusion.

• We say that Q has the finite basis property if every upset of Q admits a
finite basis, i.e. if Up(Q) = Up<∞(Q).

We turn the power-set of Q, denoted P(Q), into a qo by letting X ≤ Y
exactly when ↓X ⊆ ↓Y . Then the po associated to P(Q) is Down(Q).

Definition 2.4. Finally, we say that Q is a well-quasi-order (wqo) when one
of the equivalent conditions of the next proposition is fulfilled.

Proposition 2.5. Let Q be a qo. Then the following assertions are equivalent.

(i) Q is well founded and has no infinite antichain,

(ii) there is no bad sequence f : ω → Q,

(iii) every sequence f : ω → Q admits a perfect subsequence,

(iv) Q has the finite basis property,

(v) P(Q) is well founded,

(vi) Down(Q) is well founded,

(vii) Up(Q) is well founded under reverse inclusion,
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(viii) Up<∞(Q) is well founded under reverse inclusion.

Proof. Folklore.

Remark 2.6. In Proposition 2.5, we cannot replace Down(Q) by I(Q). Con-
sider for example the po A consisting of a countable set partially ordered by
equality. We have I(A) ∼= A so, in particular, even though A is not wqo, I(A)
is well founded. Nonetheless, if Q is wqo then I(Q) is well founded.

Observe also the following

Fact 2.7. For an infinite wqo Q, we have Card(I(Q)) ≤ Card(Q). If Q is a
po, the equality holds.

2.2 Families of finite sets of natural numbers

Notations.

• We let ω be the set of natural numbers. We use the set theoretic definition
n = {0, . . . , n−1}. Given an infinite subset X of ω and a natural number
k, we denote by [X]k the set of subsets of X of cardinality k, and by
[X]<∞ the set of finite subsets of X. We have that [X]<∞ =

⋃
k∈ω[X]k.

We write [X]∞ for the set of infinite subsets of X.

• For any X ∈ [ω]∞ and any s ∈ [ω]<∞, we let X/s = {k ∈ X | k > max s}
and we write X/n for X/{n}. For any non empty set S ⊆ ω we write ∗S
for S \ {minS}.

• For any s ∈ [ω]<∞ we let xs ∈ 2ω be the characteristic function of s on
ω. So for instance x{2,4} = 001010000 · · · . Note that x∅ = 0ω.

• We write u v v when u is an initial segment, or prefix of v, i.e. when
u = v or when there is n ∈ v such that u = {k ∈ v | k < n}. Note
that this definition coincides with the usual prefix relation on sequences
when subsets of ω are identified with their increasing enumeration with
respect to the usual order on ω.

We gather here several combinatorial operations on general families of sub-
sets of ω.

Definitions 2.8. Given a family F ⊆ P(ω) we make the following definitions.

• The base of F is the usual set-theoretic union, denoted by
⋃
F ;
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• for any X ∈ [ω]∞, the shrinkage of F to X, denoted by F |X, is defined
to be the family

F |X := {s ∈ F | s ⊆ X};

• For every n ∈ ω, the ray of F at n is, by definition, the family

Fn := {s ∈ [ω/n]<∞ | {n} ∪ s ∈ F}.

• For every n ∈ ω, we will denote by F↑n the subset of F given by

F↑n := {s ∈ F | {n} v s}.

Observe that for all n ∈ ω we have the bijection

Fn −→ F↑n

s 7−→ {n} ∪ s

Fact 2.9. Let F ⊆ P(ω) and X ∈ [ω]∞. For every n ∈ X we have

Fn|X = (F |X)n.

2.3 Nash-Williams’ fronts and barriers

We use the fundamental definition first enunciated by Nash-Williams [NW65].

Definition 2.10. A family B ⊆ [ω]<∞ is a called a front on X ∈ [ω]∞ if

1. either B = {∅}, or X is the domain of B,

2. B is a v-antichain,

3. (Density) for all X ′ ∈ [X]∞ there is an s ∈ B such that s < X ′.

4. If moreover B is a ⊆-antichain, then B is called a barrier on X.

The barrier {∅} is called the trivial barrier.

Remark 2.11. In the literature, fronts are sometimes called blocks or thin
blocks. Since in section 3 we will have another use for the term block we follow
the terminology of [Tod10].

Facts 2.12. Let X ∈ [ω]∞. If B is a front (resp. a barrier) on X, then

(i) for all Y ∈ [X]∞, B|Y is a front (resp. a barrier) on Y .
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(ii) If B is non trivial and n ∈ X, then Bn is a front (resp. a barrier) on
X/n.

Remarks 2.13.

1. If B is a front on M and C ⊆ B is a front on N then N ⊆ M and
C = B|N . Therefore the fronts contained in B are exactly the shrinkages
of B.

2. If for M ∈ [ω]∞ and all m ∈M the family F (m) is a front on M/m then
the family

F =
⋃

m∈M

{{m} ∪ s | s ∈ F (m)}

is a front on M . Observe though that there exist sequences of barriers
〈F (m) | m ∈ ω〉 such that F is not a barrier.

We now recall some important combinatorial results about barriers and
fronts for later use. We refer the reader to [Tod10, AT05] for proofs. Through-
out this paper we will use extensively the following fundamental theorem.

Theorem 2.14 (Nash-Williams).

(i) Let F be a front on N . For any subset S of F there exists a front F ′ ⊆ F
such that either F ′ ⊆ S or F ′ ∩ S = ∅.

(ii) Let B be a barrier on N . For any subset S of B there exists a barrier
B′ ⊆ B such that either B′ ⊆ S or B′ ∩ S = ∅.

Theorem 2.15. Let F be a front on M . There exists N ∈ [M ]∞ such that
F |N is a barrier on N .

Notation. For a non empty set A, we write A<ω (resp. Aω) for the set of
finite (resp. infinite) sequences of A. For u ∈ A<ω and x ∈ A<ω ∪Aω, we write
u v x (resp. u < x) when x extends (resp. properly) u. We write uax for the
concatenation operation. For n ∈ ω we write x�n for the prefix of x of length
n.

Definitions 2.16.

• Recall that a tree T on a set A is a prefix-closed subset of A<ω.

• A tree T on A is called well founded if it has no infinite branch, i.e. if it
admits no infinite sequence x ∈ Aω such that x�n ∈ T for all n ∈ ω.
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• A well founded tree admits a canonical rank. It is a strictly decreasing
function ρ from T to the ordinals, defined by induction as follows.

ρT (t) = sup{ρT (s) + 1 | t < s ∈ T}.

for all t ∈ T . It is easily shown to be equivalent to

ρT (t) = sup{ρT (ta(a)) + 1 | a ∈ A ∧ ta(a) ∈ T}.

The rank of T is by definition the ordinal ρT (∅). By convention, the rank
of the empty tree is 0.

Identifying any finite subset of ω with its increasing enumeration with re-
spect to the usual order on ω, we view any front as a subset of ω<ω. For a
front F we let T (F ) be the smallest tree on ω containing the set F , i.e.

T (F ) = {s ∈ ω<ω | ∃t ∈ F s v t}.

As a direct consequence of the definition of front we have

Lemma 2.17. For any front B on N , the tree T (B) is well founded.

Definition 2.18. Let B be a front. The tree-rank of B, denoted by rkB, is
the rank of the tree T (B).

Remarks 2.19.

• The trivial barrier is the only front of null tree-rank, and for all positive
integer n we have rk[ω]n = n.

• Let B be a non trivial front on N and let n ∈ N . The tree T (Bn) of the
front Bn is naturally isomorphic to the subset

{s ∈ T (B) | {n} v s}

of T (B). The tree-rank of the front B is therefore related to the tree-
ranks of its rays through the following formula:

rkB = sup{rk(Bn) + 1 | n ∈ N}.

In particular, rkBn < rkB for all n ∈ N .

• This allows one to prove results by induction on the tree-rank by applying
the induction hypothesis to the rays, following [PR82].
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• As an example, Nash-Williams’ Theorem 2.14 can be proved by induction
on the tree-rank.

The tree T (B) associated to a front B also enjoys a topological description
to which we now turn.

The Cantor space is the product space 2ω where 2 is the discrete two points
space. A basis of clopen sets is given by the sets of the form

Nu = {x ∈ 2ω | u < x}

for a finite sequence u in 2. For a point x ∈ 2ω a neighbourhood basis is given
by the sets Nx�n for n ∈ ω.

We embed every subset of [ω]<∞ into the Cantor space via s 7→ xs. By
misuse of language, we sometimes identify fronts and barriers with their image
inside the Cantor space. For a front B, the closure of B denoted B is the
topological closure of the set {xs | s ∈ B} inside the Cantor space. We now
recall some results about this closure operation on fronts. More results along
this line are to be found in [Tod10, AT05].

Proposition 2.20. Let B be a front on X. We have

B = {xs ∈ 2ω | s ∈ T (B)}.

Proof. ⊇: Let s be in T (B) \ B, so s < t holds for some t ∈ B. Let now
n be in ω/s. Since B is a front there is a u ∈ B with u < s ∪ X/n. If
u v s then we have B 3 u < t ∈ B contradicting the fact that B is a
<-antichain. Hence we must have s < u, we have found a u ∈ B with
xu ∈ Nxs�n. It follows that xs ∈ B.

⊆: Conversely suppose that an element x of 2ω belongs to B. We first
show that x is the characteristic function of a finite subset of X. Since
2X = {xE | E ∈ P(X)} is closed in 2ω and B ⊆ 2X , necessarily x
is the characteristic function of a subset of X. Now suppose towards
a contradiction that x is the characteristic function of an infinite set
M ⊆ X. For all finite prefix u of M , there is by definition of B some
s ∈ B such that xs ∈ Nx�max(u)+1, and hence u v s. But then M should
be an infinite branch of T (B), a contradiction with the well foundedness.

Hence x = xs for some s ∈ [X]<∞. It only remains to show that there
exists a t ∈ B with s v t. By definition of the closure in 2ω, for all
n ∈ ω there is a t ∈ B with xs�n < xt. For n ∈ ω/s, xs�n < xt means
s v t.
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Corollary 2.21. Let B be a front on X.

(i) For all M ∈ [X]∞ we have B|M = B|M ;

(ii) For all n ∈ X we have Bn =
(
B
)
n
.

Proof. (i) It is enough to prove that B|M ⊆ B|M holds. So let s < t ∈ B
with s a subset of M . Since B is a front there is a u ∈ B with u < s∪M/s
and necessarily u ∈ B|M . If u v s < t we have a contradiction. Hence
s v u ∈ B|M .

(ii) Since Bn is a front on ω/s, Bn = {xt ∈ 2ω | ∃u ∈ Bn t v u} holds.
Now if t v u ∈ Bn then {n} ∪ t v {n} ∪ u ∈ B and thus t ∈

(
B
)
n
.

Conversely if xt ∈
(
B
)
n

then {n} ∪ t ∈ B and thus there exists u ∈ B
with {n} ∪ t v u ∈ B. Now t v ∗u ∈ Bn and therefore xt ∈ Bn.

2.4 Better Quasi-Orders

Definitions 2.22.

• We define the following binary relation, denoted �, on [ω]<∞. We say
that s� t holds iff there exists X ∈ [ω]∞ such that

s < X and t < ∗X.

• Given a family F ⊆ [ω]<∞ and a set X endowed with a binary relation
R, we say that a function f : F → X is good if there exists a pair (s, t)
in F such that both s� t and f(s)Rf(t) hold, otherwise f is said to be
bad.

• If for all s, t ∈ F when s� t holds then so does f(s)Rf(t), i.e. if f is a
relational morphism, the map f is said to be perfect.

Remark 2.23. When s, t belong to a barrier B, then s� t implies |s| ≤ |t|.

Definition 2.24. Given a qo Q, we say that Q is a better quasi-order (bqo)
iff any map from some barrier to Q is good.

Definition 2.25. For B ⊆ [ω]<∞, let B2 = {s ∪ t | s, t ∈ B ∧ s� t}. If B is a
front (resp. a barrier) on N , then the family B2 is a front (resp. a barrier) on
N and for any u ∈ B2 there exist unique s, t ∈ B such that s� t and u = s∪ t.
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Lemma 2.26. Let B be a front on N , R be a binary relation on a set X and
let f : B → (X,R) be any function. There exists an infinite M ⊆ N such that
f : B|M → (X,R) is either bad or perfect.

Proof. Consider the subset of the front B2 given by

S = {s ∪ t ∈ B2 | s, t ∈ B ∧ s� t ∧ f(s) ≤ f(t)}.

By Nash-Williams’ Theorem there is an infinite M ⊆ N such that B2|M ⊆ S
or B2|M ∩ S = ∅. Then f : B|M → Q is perfect or bad accordingly.

3 Fronts as uniform spaces

Regarded as a topological subspace of 2ω, any front is a discrete space. Indeed
for any element s of a front F we have Nxs�(1+max s) ∩ F = {xs}. However, as
any compact Hausdorff space, 2ω is really more than a topological space: it is
a uniform space. Viewed as uniform subspaces of 2ω, every non trivial front is
endowed with a non discrete uniform structure.

3.1 Uniform continuity in compact 0-dimensional spaces

This subsection is devoted to a description of the uniform subspaces of compact
Hausdorff zero dimensional spaces.

A compact Hausdorff space is called zero dimensional (0-dim) if it admits
a basis of simultaneously closed and open sets, or clopen sets. Such a space is
also called a Boolean space in the context of Stone duality. Any such space is
a closed subset of a generalised Cantor space 2X .

A general reference on uniform spaces is [Bou06]. Recall that any compact
Hausdorff topological space admits a unique uniform structure that agrees with
its topology.

Every compact Hausdorff space is thus unambiguously seen as a complete
totally bounded uniform space.

The adequate framework for this paper is in fact the totally bounded “0-
dimensional” uniform spaces, that is, the uniform spaces whose completion
is a compact Hausdorff 0-dimensional space. These are exactly the uniform
subspaces of Boolean spaces. The following notion simplifies greatly the study
of these uniform subspaces:

Definition 3.1. Let S be a subset of a Boolean space X. A subset B of S is
called a block of S (relatively to X) if there exists a clopen C of X such that
B = C ∩ S. We write Blocks(S) for the Boolean subalgebra of P(S) of blocks
of S.

14
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The uniform structure of a uniform subspace of a Boolean space X is essen-
tially given by its blocks, see Lemma 3.6 below (see also [Bou06, §Exercice 12,
II.38]). As a consequence, uniform continuity between such spaces admits of
the following simple characterisation:

Proposition 3.2. Let X and Y be two Boolean spaces, and let S ⊆ X and T ⊆
Y be endowed with the induced uniform structure. Then a function f : S → T
is uniformly continuous iff for all B ∈ Blocks(T ) we have f−1(B) ∈ Blocks(S).

When the condition of Proposition 3.2 is met, there exists a unique contin-
uous map f : S → T such that f�S = f .

Although Proposition 3.2 is folklore, we give in the rest of this subsection a
serie of lemmas that lead to a proof of this fact.

Lemma 3.3. Let X be a Boolean space. The unique compatible uniform struc-
ture on X admits

• as a basis the entourages of the form U(Ci) =
⋃

iCi × Ci where (Ci) is a
finite partition of X into clopen sets;

• as a subbasis the entourages of the form UC = (C×C)∪ (X \C×X \C)
where C is a clopen set of X.

Lemma 3.4. Let X be a Boolean space and let F be a closed subspace of X.
Then the clopen sets of F coincide with the blocks of F .

Fact 3.5. Let X be a Boolean space, and let S ⊆ T ⊆ X. Then we have
Blocks(S) = {B ∩ S | B ∈ Blocks(T )}.

Lemma 3.6. Let X be a Boolean space and let S be a subset of X. Then the
uniform structure induced on S by X admits

• as a basis the entourages of the form U(Ci) =
⋃

iCi × Ci where (Ci) is a
finite partition of S into blocks;

• as a subbasis the entourages of the form UC = (C ×C)∪ (S \C ×S \C)
where C is a block of S.

Proof of Proposition 3.2. ⇒: Suppose f is uniformly continuous and let f̂ :
S → T be its continuous extension. Then for all clopen C of Y the set
f−1(C ∩ T ) = f̂−1(C) ∩ S is a block of S.
⇐: Suppose f : S → T preserves blocks by preimage. By Lemma 3.6, it is

enough to show that for each block B of T the preimage of UB by f × f is an
entourage of S. In fact, (f × f)−1(UB) = Uf−1(B).

15
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Fact 3.7. Let X and Y be Boolean, S ⊆ X, T ⊆ Y , f : S → T be a function
and Im f be the image of f . Then f is uniformly continuous iff f : S → Im f
is uniformly continuous.

3.2 Cauchy sub-supersequences.

We give every front B the uniform structure inherited from the Cantor space
through the identification

B −→ 2ω

s 7−→ xs

For all front B we write Blocks(B) for the Boolean algebra of subsets of B
given by

Blocks(B) = {C ∩B | C is a clopen of 2ω}.

Example 3.8. For the barrier [ω]1, the Boolean algebra Blocks([ω]1) consists
in the finite or cofinite subsets of [ω]1.

Lemma 3.9. Let B be a front on N . Then for all n ∈ N we have the isomor-
phism

Blocks(Bn) −→ Blocks(B↑n) = {C ∈ Blocks(B) | ∀s ∈ C {n} v s}
A 7−→ {{n} ∪ t | t ∈ A}.

Proof. The clopen N0n+1 = {x ∈ 2ω | 0n+1 v x} is homeomorphic to the clopen
N0n1 = {x ∈ 2ω | 0n1 v x} via P(ω/n) 3 S 7→ {n} ∪ S. This homeomorphism
induces a Boolean isomorphism

hn : {C ⊆ N0n+1 | C clopen in 2ω} −→ {D ⊆ N0n1 | D clopen in 2ω}
C 7−→ {{n} ∪ s | s ∈ C}.

Now if S ∈ Blocks(Bn) then there is a clopen C of 2ω such that C ⊆ N0n+1

and S = C ∩Bn. Then hn(C) ∩B = {{n} ∪ s | s ∈ S} ∈ Blocks(B).
Conversely if T ∈ Blocks(B) with T ⊆ N0n1 then T = B ∩ C for a clopen

C ⊆ N0n1. We have T = hn(Cn ∩Bn).

Observe that for S ⊆ T ⊆ [ω]<∞ and N ∈ [ω]∞ we have

S|N = S ∩ [N ]<∞ = S ∩ 2N = S ∩ T ∩ 2N = S ∩ T |N,

hence the shrinkage of S to N equals the trace of S on T |N .

16
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Notation. Let F ⊆ [ω]<∞. For a family S ⊆ P(F ) of subsets of F and
N ∈ [ω]∞ we denote by S|N the family

{S|N | S ∈ S} = {S ∩ F |N | S ∈ S}.

Lemma 3.10. Let B be a front on M and let N ⊆M be infinite. Then

Blocks(B)|N = Blocks(B|N).

Proof. If S ∈ Blocks(B) then there exists C clopen in 2ω with S = C ∩ B. It
follows that

S|N = S ∩B|N = S ∩B ∩B|N = C ∩B|N

is a block of B|N .
Conversely, if we have S = C ∩ B|N for some clopen C of 2ω then for the

block S ′ = C ∩B of B we have S ′|N = S ′ ∩B|N = C ∩B ∩B|N = S.

Remark 3.11. Observe that for F a finite family of subsets of a front B on
M we can find by repeated application of Nash-Williams’ Theorem 2.14 an
infinite N ⊆ M such that for all S ∈ F , S|N = S ∩ B|N is either empty or
equal to B|N . In other terms, for F a finite family of subsets of a front B on
M , there exists N ∈ [M ]∞ such that F|N ⊆ {∅, B|N}.

For a countably infinite family we have:

Theorem 3.12. Let B be a front on ω and let S be a countable family of
subsets of B. For all M ∈ [ω]∞ there exists N ∈ [M ]∞ such that S|N consists
in blocks of B|N , i.e. S|N ⊆ Blocks(B|N).

Proof. By induction on the tree-rank of B. For the trivial barrier, the theorem
is trivial.

Suppose that B is a front of non zero tree-rank on ω and that the statement
of the theorem holds for fronts of strictly smaller tree-rank. Let M ∈ [ω]∞.

Claim. There exists X ∈ [M ]∞ such that for all m ∈ X and all S ∈ S we
have (S|X)↑m ∈ Blocks(B|X).

Proof of the claim. For each n ∈ ω, since Bn is a front of strictly smaller tree-
rank than B, we can apply our induction hypothesis to the countable family
Sn = {Sn | S ∈ S} of subsets of Bn. We thus build recursively a sequence
(Xi)i∈ω of infinite subsets of ω with ki = min(Xi), such that

1. Xi+1 ∈ [Xi/ki]
∞;

17
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2. for all i ∈ ω we have

Ski |Xi+1 ⊆ Blocks(Bki)|Xi+1.

Set X0 = M , and suppose that the sequence is defined up to i. Then
let ki = minXi and consider the front Bki . Its tree-rank is strictly smaller
than the tree-rank of B. We consider the family Ski of subsets of Bki . By
our induction hypothesis there exists Xi+1 ∈ [Xi/ki]

∞ such that Ski |Xi+1 ⊆
Blocks(Bki)|Xi+1.

We can then set X = {ki | i ∈ ω}.
To see that X satisfies the Claim, let ki ∈ X and S ∈ S. Since X/ki ⊆ Xi+1

we have
(S|X)ki = Ski |X = Ski |X/ki = Ski |Xi+1|X/ki.

Hence by Lemma 3.10, Ski |Xi+1 ∈ Blocks(Bki)|Xi+1 implies

Ski |Xi+1|X/ki ∈ Blocks(Bki)|Xi+1|X/ki = Blocks(Bki |X/ki).

Finally,
{{ki} ∪ s | s ∈ (S|X)ki} = (S|X)↑ ki

is a block of B|X by Lemma 3.9.

Figure 1: A block of the barrier [ω]2.

By the Claim, there is no loss of generality in assuming that B is a front on
M and that for all m ∈M and all S ∈ S we have S↑m ∈ Blocks(B).

We fix an enumeration {Si | i ∈ ω} of S. By applying repeatedly Nash-
Williams’ Theorem we can build a sequence N0 ⊇ N1 ⊇ N2 ⊇ · · · of infinite

18
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subsets of M such that for i ∈ ω Ni+1 ⊆ Ni/min(Ni) and for all j ≤ i the set
Sj|Ni = Sj ∩B|Ni is either empty or equal to B|Ni.

For all i ∈ ω set ki = minNi and set N = {k0, k1, . . .}. We claim that for
all S ∈ S we have S|N is a block of B|N . To see this let Sj ∈ S. We have
{ki | j ≤ i} ⊆ Nj. We can partition B|N as

B|N =

(
j−1⋃
i=0

B↑ ki |N

)
∪B|{ki | j ≤ i}.

We also have

Sj|N =

(
j−1⋃
i=0

Sj
↑ ki |N

)
∪ Sj|{ki | j ≤ i}.

On the one hand, Sj
↑ ki ∈ Blocks(B) and thus Sj

↑ ki |N belongs to Blocks(B|N)

by Lemma 3.10. On the other hand Sj|{ki | j ≤ i} is either empty or equal to
B|{ki | j ≥ i}, and thus is a block of B|N . Therefore Sj|N is a block of B|N
as a finite union of blocks of B|N .

We can now come to the main result of this section, which is Theorem 1.1
of the Introduction.

Theorem 3.13. Let B be a front on some infinite subset M ⊆ ω. For all f :
B → 2ω there exists an infinite N ⊆M such that the restriction f : B|N → 2ω

is uniformly continuous.

Proof. Applying Theorem 3.12 to S = {f−1(C) | C is clopen in 2ω} yields a
infinite N for which f |N : B|N → X satisfies for all clopen set C that

(f |N)−1(C) = f−1(C) ∩B|N = f−1(C)|N ∈ Blocks(B|N).

Therefore f |N is uniformly continuous by Proposition 3.2.

4 The space of ideals of a wqo

We present the space of ideals of a wqo Q as endowed with the topology
induced from the generalised Cantor space 2Q. Recall that the clopen subsets
of 2Q are finite unions of sets of the form

N(F,G) = {P ⊆ Q | F ⊆ Q ∧G ∩Q = ∅}

for F,G ∈ [Q]<∞. The clopen ⊆-upsets of 2Q, i.e. the clopen subsets C such
that P ∈ C and P ⊆ P ′ implies P ′ ∈ C, are the finite unions of sets of the
form 〈F 〉 = N(F, ∅). For q ∈ Q we write 〈q〉 instead of 〈{q}〉.
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4.1 The space of ideals of a wqo

The results of this subsection come from [PS06, BPZ07]. In order to keep our
exposition self-contained we nonetheless provide proofs.

Let Q be any qo. We embed Q, or more precisely the po associated with Q,
inside the Cantor space 2Q via q 7→ ↓ q. We have Q ⊆ I(Q) ⊆ Down(Q). We
denote by Q the closure of Q in 2Q through the above identification.

Lemma 4.1. Let Q be a qo. The set Down(Q) is closed, and Q is dense in
I(Q) so I(Q) = Q holds.

Proof. The set Down(Q) of ≤-downward closed subset of Q is closed in 2Q

since
Down(Q) =

⋂
p≤q

〈q〉{ ∪ 〈p〉.

Let I be an ideal of Q and let N(F,G) be any basic neighbourhood of I in
2Q for F,G ∈ [Q]<∞. Since I is directed and nonempty, F ⊆ I implies that
there exists q ∈ I with F ⊆ ↓ q. Since I is downward closed, G∩ I = ∅ implies
G ∩ ↓ q = ∅. Therefore ↓ q ∈ N(F,G). Hence I ∈ Q.

Lemma 4.2. If Q is a wqo, then I(Q) is closed in 2Q and therefore Q = I(Q).

Proof. For F ⊆ Q let F ↑ denote the set of upper bounds of F , i.e. F ↑ =⋂
q∈F ↑ q = {p ∈ Q | ∀q ∈ F q ≤ p}. Since Q has the finite basis property, for

all F ∈ [Q]<∞ there exists G ∈ [Q]<∞ such that F ↑ = ↑G. Therefore⋃
p∈F ↑
〈p〉 =

⋃
r∈G

〈r〉

is clopen as a finite union of clopen.
Now we can see that

I(Q) ={I ∈ Down(Q) | ∀F ∈ [Q]<∞(F ⊆ I → ∃p ∈ F ↑(p ∈ I)}

= Down(Q) ∩
⋂

F∈[Q]<∞

(
〈F 〉{ ∪

⋃
r∈F ↑
〈p〉
)
.

is closed.

Recall that a point x of a topological space X is isolated in X if the singleton
{x} is open. A limit point of a topological spaceX is a point that is not isolated,
i.e. for every neighbourhood U of x there is a point y ∈ U with y 6= x. A
topological space with no isolated points is perfect. On the other extreme, a
topological space is called scattered if it admits no perfect subspace.

For wqo’s have the additional property:
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Proposition 4.3 ([PS06]). Let Q be wqo. The space I(Q) is scattered, compact
and its isolated points coincide with the principal ideals.

Proof. We first show that Down(Q) is scattered. Let X ⊆ Down(Q) be non
empty. Since Q is wqo, then Down(Q) is well founded and there exists D
which is ⊆-minimal in X. Then for a finite F with ↑F = Q \D observe that
N(∅, F ) ∩X = {D} showing that D is isolated in X.

We now show that for I ∈ I(Q), I is isolated iff I is principal. If I is isolated,
{I} is open, and since Q is dense in I(Q), I = ↓ q holds for some q ∈ Q and I
is principal. Conversely for q ∈ Q let F be a finite basis for Q \ ↓ q. We have
N({q}, F ) ∩ I(Q) = {↓ q}.

Remark 4.4. As a topological ordered space, the space I(Q) of ideals of
a wqo is dual under Priestley duality to the bounded distributive lattice
(Down(Q),⊆). From this point of view one directly gets that any order preserv-
ing map between wqos extends to a continuous order preserving map between
the corresponding ideal spaces.

4.2 Extending supersequences into the ideals

We now turn to showing that any map from a front to a wqo restricts on a
front to a uniformly continuous map, which therefore extends continuously to
the space of ideals.

However Theorem 3.13 makes essential use of the metrisability of the codomain.
In order to apply this result we need to show that if Q is wqo then for every
countable subset P of Q the topological closure of P inside I(Q) is metrisable,
in fact we show it is isomorphic to the ideal space of P .

Since the association of the topological space of ideals to any wqo is actually
functorial, the following lemma should come as no surprise.

Lemma 4.5. Let Q be wqo and P ⊆ Q. Then the topological ordered space
(I(P ),⊆) is isomorphic to the closure of P in I(Q).

Proof. We first prove that the map

ι : Down(P ) −→ Down(Q)

D 7−→ ↓QD

is an embedding.
To see it is injective, observe that for all D ∈ Down(P ), D = P ∩ ↓QD

holds.
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To see it is an order embedding, observe that monotonicity of the closure
operator D ⊆ D′ implies ↓QD ⊆ ↓QD′. Conversely, if ↓QD ⊆ ↓Q(D′), take
p ∈ D then p ∈ P ∩ ↓QD′ = D′.

To show it is an embedding, it is enough to prove that it is continuous, since
both spaces are compact Hausdorff. For the continuity, it suffices to show that
for all q ∈ Q the set ι−1{E ∈ Down(Q) | q ∈ E} is clopen in Down(P ). So let
q ∈ Q. Since P is wqo as a subset of a wqo, there exists a finite F ⊆ P such
that (↑Q q) ∩ P = ↑P F . Now we obtain

ι−1{E ∈ Down(Q) | q ∈ E} = {D ∈ Down(P ) | q ∈ ↓QD}
= {D ∈ Down(P ) | F ∩D 6= ∅}.

Indeed if q ∈ ↓QD then there is p ∈ D with q ≤ p. Thus p ∈ (↑Q q)∩P = ↑P F
and so there exists r ∈ F with r ≤ p. Hence since D is a downset we have
r ∈ D.

Conversely, if there exists r ∈ F ∩D then since (↑Q q) ∩ P = ↑P F we have
q ≤ r. It follows that q ∈ ↓QD.

We can thus identify Down(P ) as a subset of Down(Q). Under this identifi-
cation we obtain that I(P ), which is the closure of P in Down(P ), is also the
closure of P in Down(Q).

Observe that ifQ is a countable wqo, then I(Q) is a countable closed subset of
the Cantor space 2Q. Using the previous lemma, we obtain that Theorem 3.13
applies to maps from fronts into wqo, yielding Theorem 1.2 of the Introduction.

Theorem 4.6. Let B be a front on N and Q be wqo. For every map f : B → Q
there exists M ∈ [N ]∞ such that f |M : B|M → Q is uniformly continuous,
therefore extends uniquely to a continuous map f̄ : B → I(Q).

Proof. Let P = Im f . Then f : B → Q is uniformly continuous if and only
if f : B → 2Q is uniformly continuous iff f : B → P is uniformly continuous.
By Lemma 4.5, P is homeomorphic to I(P ). Since P is countable I(P ) is a
subspace of the Cantor space 2P , and we can apply Theorem 3.13.

5 Continuous extensions into the ideals

By the previous section, any map f : B → Q from a front into a wqo restricts
on a front B′ to a uniformly continuous map f ′ : B′ → Q. This map then
extends to a continuous map f ′ : B′ → I(Q). We now study such continuous
map going from the closure of a front into the space of ideals of a wqo.

Here is a crucial example.
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Example 5.1 (Rado’s poset). Let R be the poset [ω]2 ordered by

(m,n) ≤ (m′, n′) iff

{
m = m′ and n ≤ n′, or

n < m′.

We claim that I(R) = R ∪ {In | n ∈ ω} ∪ {>} where for all n ∈ ω In =⋃
n<k ↓(n, k) and > = R. We have (m,n) ≤ Ik iff m = k or n < k, and a ≤ >

for all a ∈ I(R). It is clear that each In and > are non principal ideals. We
show there are no other ideals. Let I be an ideal of R. First suppose for all
k ∈ ω there is an (m,n) ∈ I with k < m, then I = >. Suppose now that
there exists m = max{k | ∃l(k, l) ∈ I}. If there is infinitely many n such that
(m,n) ∈ I then I = Im. Otherwise I = ↓(m,n) for n = max{l | (m, l) ∈ I}.
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•

•
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•
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•
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· · ·

The barrier [ω]2 The po I(R)

Figure 2: A bad Cauchy supersequence in Rado’s poset.

It is clear that I(R) is not wqo. Now consider the supersequence id : [ω]2 →
R, which is the identity on the underlying sets. It is bad and one can show
that it is actually uniformly continuous.

The closure of [ω]2 in 2ω is just [ω]≤2 = [ω]2 ∪ [ω]1 ∪ {∅}. The continuous
extension id : [ω]≤2 → I(R) is simply given by id({m}) = Im and id(∅) =
>. Now the restriction of id to the barrier [ω]1 is a bad sequence in I*(R)
witnessing the fact that it not wqo. Hence this uniformly continuous bad
supersequence on R yields a bad supersequence in the non principal ideals of
R. We will see that this is always the case.
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5.1 Continuous extensions of supersequences

In Example 5.1, the continuous map from the closure of the barrier [ω]2 to
ideals of Rado’s poset enjoys interesting properties. Notably, the points of [ω]2

whose image is a non principal ideals form the closure of a barrier, namely
[ω]1. In fact, by shrinking, any continuous map enjoys such a canonical form
as we shall now see.

Let f : B → X be a map from the closure of a front B on some N ∈ [ω]∞

to a topological space X . We write

Λf = {s ∈ B | f(s) is not isolated in X}

for the closed set of B of those points whose image is a limit point. Observe
that if g is the restriction of f to the closure of a shrinkage of B, then Λg is a
shrinkage of Λf . Formally, for all M ∈ [N ]∞ we have Λf�(B|M) = Λf |M .

Recall that by Corollary 2.21, for all M ∈ [N ]∞ we have B|M = B|M and(
B
)
n

= Bn for all n ∈ N .
Here is Theorem 1.3 from the Introduction.

Theorem 5.2. Let B be a front on ω, X be a topological space and f : B → X
be a continuous map. For all N ∈ [ω]∞ there exists M ∈ [N ]∞ such that

1. Λf |M is either empty or the closure of a barrier on M .

2. for all s, t ∈ B|M if s 6∈ Λf |M and s v t then f(s) = f(t).

Proof. By induction on the tree-rank of B. The theorem is obvious for the
trivial barrier. We suppose it holds for all continuous maps from the closure
of a front with tree-rank strictly smaller than α > 0. Let B be a front on N
with rkB = α.

Claim. There exists X ∈ [N ]∞ such that for all k ∈ X the map

(B|X)k −→ X
s 7−→ f({k} ∪ s)

satisfies the requirements of the theorem.

Proof of the claim. We build by induction a sequence (Xi)i∈ω, with ki the min-
imum of Xi, such that for all i ∈ ω we have

1. Xi+1 ∈ [Xi/ki]
∞,

2. (Λf )ki |Xi+1 is either empty or the closure of a barrier on Xi+1;

24



R. Carroy and Y. Pequignot Wqo, Bqo and Ideals

3. for all s, t ∈ Bki |Xi+1, if {ki} ∪ s 6∈ Λf and s v t then f({ki} ∪ s) =
f({ki} ∪ t).

Set N = X0, and suppose Xi is built. The family Bki is a front on Xi/ki with
rk(Bki) < α, so we can use the induction hypothesis on the continuous map
fki : Bki → X defined by s 7→ f({ki} ∪ s), and we get Xi+1.

Setting now X = {k0, k1, . . .} we get that for all i ∈ ω X/ki ⊆ Xi+1 and
thus (

Λf�B|X

)
ki

= (Λf |X)ki = (Λf )ki |X/ki = (Λf )ki |Xi+1|X/ki

is either empty or the closure of a barrier on X/ki. Moreover let s, t ∈ B|Xki
with {ki} ∪ s 6∈ Λf and s v t. Then s, t ⊆ Xi+1 and thus f({ki} ∪ s) =
f({ki} ∪ t).

Therefore we can suppose without loss of generality that f : B → X is such
that for all n ∈ N the map

Bn −→ X
s 7−→ f({n} ∪ s)

satisfies the requirements of the theorem.
We now distinguish two cases

∅ 6∈ Λf : Since f is continuous we have f(∅) = limn∈N f({n}) and as f(∅) is iso-
lated in X there exists a M ∈ [N ]∞ such that f({m}) = f(∅) for all
m ∈M . Then for all m ∈M we have that {m} 6∈ Λf that is ∅ 6∈ (Λf ){m}.
Therefore (Λf ){m} is empty for all m ∈M and thus Λf |M is empty.

∅ ∈ Λf : There exists X ∈ [N ]∞ such that either for all k ∈ X {k} 6∈ Λf or for all
k ∈ X {k} ∈ Λf .

In the former case, we have that Λf |X = {∅} and so we can set M = X
which meets the conditions.

In the latter case, for all k ∈ X the set (Λf |X)k is the closure of a
barrier B(k) on X/k. The family

L =
⋃
k∈X

{{k} ∪ s | s ∈ B(k)}

is a front on X, so by Theorem 2.15 there exists M ∈ [X]∞ such
that L|M is a barrier on M . We have that

Λf |M = L|M = L|M

is the closure of the barrier L|M on M . This M meets the require-
ments.
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5.2 A proof of Pouzet’s conjecture

We need a result on the convergence of sequences in the space of ideals of a
wqo. Recall that for a sequence (En)n∈ω of subsets of a set Q we have the
usual relations ⋂

n∈ω

En ⊆
⋃
i∈ω

⋂
j≥i

Ej ⊆
⋂
i∈ω

⋃
j≥i

Ej ⊆
⋃
n∈ω

En.

Moreover,

Fact 5.3. The sequence (En)n∈ω converges to E in 2Q if and only if⋃
i∈ω

⋂
j≥i

Ej =
⋂
i∈ω

⋃
j≥i

Ej = E.

Proof. Suppose that E =
⋃

i∈ω
⋂

j≥iEj =
⋂

i∈ω
⋃

j≥iEj. We show that En →
E. Let F,G ∈ [Q]<∞ be such that E ∈ N(F,G). Since we have E =⋃

i∈ω
⋂

j≥iEj and F finite, F ⊆ Ej for all sufficiently large j. Since E =⋂
i∈ω
⋃

j≥iEj and G is finite, G ∩ Ej = ∅ for all sufficiently large j. Hence
Ej ∈ N(F,G) for all sufficiently large j and therefore En → E.

Conversely, suppose that En → E for some E ⊆ Q. If q ∈ E, then q ∈ Ej

for all sufficiently large j and thus q ∈
⋃

i∈ω
⋂

j≥iEj. Now if q 6∈ E then
q 6∈ Ej for all sufficiently large j and thus q 6∈

⋂
i∈ω
⋃

j≥iEj. Therefore E =⋃
i∈ω
⋂

j≥iEj =
⋂

i∈ω
⋃

j≥iEj.

We found the following ingenious observation, inside a proof, in [Rad54].

Lemma 5.4 (Rado’s trick). Let Q be a wqo and let (f(n))n∈ω ⊆ Down(Q).
Then there exists an infinite subset N of ω such that⋃

n∈N

f(n) =
⋃
i∈N

⋂
j∈N/i

f(j).

Proof. Towards a contradiction suppose that for all infinite N ⊆ ω we have⋃
i∈N

⋂
j∈N/i

f(j) ⊂
⋃
n∈N

f(n).

We construct a ⊂-descending chain (Di)i∈ω in Down(Q). We build recursively
a sequence (Ni)i∈ω of infinite subsets of ω, and set Di =

⋃
i∈Ni

f(i).
Set N0 = ω and suppose we have defined Nk ∈ [ω]∞. Let n0 ∈ Nk minimal

such that there exists qk ∈ f(n0) \
⋃

i∈Nk

⋂
j∈Nk/i

f(j). Then for all i in Nk
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there exists ji ∈ Nk/i such that qk 6∈ f(ji). Setting ni+1 = jni
we obtain an

infinite set Nk+1 = {n0, n1, n2, . . .} we have

qk ∈
⋃
j∈Nk

f(j) \
⋃

j∈Nk+1

f(j).

The sequence (Dk)k∈ω is strictly decreasing for the inclusion, contradicting the
fact that Q is wqo.

In the topological setting, Rado’s trick states that the space of downsets of
a wqo enjoys a much stronger property than sequential compactness as states

Proposition 5.5. Let (Dn)n∈ω be a sequence downsets of a wqo Q. Then there
exists an infinite N ⊆ ω such that (Dn)n∈N converges to

⋃
n∈N Dn in 2Q.

We now turn to the proof of the following theorem on better quasi-orders.
This is Theorem 1.5 from the introduction.

Theorem 5.6. Let Q be wqo. If I*(Q) is bqo, then Q is bqo.

Proof. We assume that Q is wqo and that I*(Q) is bqo. Let f be any map from
a barrier B on ω into Q. Shrinking B, we can assume by Theorem 4.6 that
f : B → Q uniquely extends to a continuous map f̄ : B → I(Q). By shrinking
further, we can assume by Theorem 5.2 that Λ = {s ∈ B | f(s) ∈ I*(Q)} is
either empty or the closure of a barrier C on, say, ω and that for s, t ∈ B with
s 6∈ Λ and s v t we have f(s) = f(t) ∈ Q. Observe that in particular for every
s ∈ C, we have on the one hand that s 6∈ B, and on the other hand for all
n ∈ ω/s we have s ∪ {n} ∈ B and f(s ∪ {n}) ∈ Q.

Λ = ∅: Then f : B → Q is constant and thus good.

C is trivial: Then, since Q is wqo, there is an M ∈ [ω]∞ such that the restric-
tion f̄ : [M ]1 → Q is perfect. Now pick any s, t ∈ B|M with s � t, we
have f(s) = f(min s) ≤ f(min t) = f(t).

C is non trivial: Then, since I*(Q) is bqo, there exists an M ∈ [ω]∞ such
that the restriction f̄ : C|M → I*(Q) is perfect. Choose any s′ ∈ C|M .
Since s′ ∪ {m} ∈ B|M for all m ∈M/s′ and s′ = limm∈M/s′ s∪ {m}, the
continuity of f̄ implies that f̄(s′) = limm∈M/s′ f̄(s′ ∪ {m}). By Propo-
sition 5.5 there is X ∈ [M/s′]∞ with f̄(s′) =

⋃
k∈X ↓ f̄(s′ ∪ {k}). Let

k0 = minX. There exists t′ ∈ C|M with t′ < ∗s
′ ∪ {k0} ∪X/k0. Neces-

sarily, ∗s
′ ∪ {k0} v t′ otherwise t′ ⊂ s′ contradicting the fact that C|M

is a barrier. Again, by Proposition 5.5 there is Y ∈ [M/t′]∞ such that
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f(t′) =
⋃

l∈Y ↓ f̄(t′ ∪ {l}). Since f̄ : C|M → Iω(Q) is perfect and s′ � t′,
we have that⋃

k∈X

↓ f̄(s′ ∪ {k}) = f̄(s′) ⊆ f̄(t′) =
⋃
l∈Y

↓ f̄(t′ ∪ {l}).

In particular, there exists l0 ∈ Y such that f̄(s′ ∪ {k0}) ≤ f̄(t′ ∪ {l0}).
Finally let t ∈ B with t′ ∪ {l0} v t and let s ∈ B be such that s <

s′ ∪ t ∪ M/t then necessarily s < s′ ∪ t otherwise B 3 t ⊂ s ∈ B.
Therefore we found s, t ∈ B with s � t and since s′ ∪ {k0} v s and
t′ ∪ {l0} v t we have

f(s) = f̄(s′ ∪ {k0}) ≤ f̄(t′ ∪ {l0}) = f(t).

In each case we conclude that f : B → Q is good. It follows that Q is bqo.

In [PS06], a stronger result is actually stated, namely: if Q is wqo and the
po Iω(Q) of ideals with cofinality ω is bqo, then Q is bqo.

To see that we have actually proved this stronger statement, remember that
I≤ω(Q) ∩ I*(Q) = Iω(Q) and note the following simple corollary to Proposi-
tion 5.5:

Fact 5.7. Let f : B → Q be a uniformly continuous map from a barrier into
a wqo. Then its unique continuous extension f̄ has image in I≤ω(Q).

Proof. Since B is a metrisable uniform space, every point of its completion
is the limit of a sequence. Let s ∈ B and let (sn)n∈ω ⊆ B converge to s.
Then by continuity of f̄ we have f̄(s) = limn∈ω f(sn). Then by Corollary 5.5
there exists a N ∈ [ω]∞ such that f̄(s) =

⋃
n∈N ↓ f(sn). Therefore f̄(s) has

countable cofinality.
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