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Abstract

The hitting time of a classical random walk (Markov
chain) is the time required to detect the presence of – or
equivalently, to find – a marked state. The hitting time
of a quantum walk is subtler to define; in particular, it
is unknown whether the detection and finding problems
have the same time complexity. In this paper we define
new Monte Carlo type classical and quantum hitting
times, and we prove several relationships among these
and the already existing Las Vegas type definitions. In
particular, we show that for some marked state the two
types of hitting time are of the same order in both the
classical and the quantum case.

Further, we prove that for any reversible ergodic
Markov chain P , the quantum hitting time of the
quantum analogue of P has the same order as the
square root of the classical hitting time of P . We also
investigate the (im)possibility of achieving a gap greater
than quadratic using an alternative quantum walk. In
doing so, we define a notion of reversibility for a broad
class of quantum walks and show how to derive from
any such quantum walk a classical analogue. For the
special case of quantum walks built on reflections, we
show that the hitting time of the classical analogue is
exactly the square of the quantum walk.

Finally, we present new quantum algorithms for
the detection and finding problems. The complexities
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of both algorithms are related to the new, potentially
smaller, quantum hitting times. The detection algo-
rithm is based on phase estimation and is particularly
simple. The finding algorithm combines a similar phase
estimation based procedure with ideas of Tulsi from his
recent theorem [19] for the 2D grid. Extending his re-
sult, we show that for any state-transitive Markov chain
with unique marked state, the quantum hitting time is
of the same order for both the detection and finding
problems.

1 Introduction

Many classical randomized algorithms are based on ran-
dom walks, or Markov chains. Some use random walks
to generate random samples from the Markov chain’s
stationary distribution, in which case the mixing time
of the Markov chain is the complexity measure of inter-
est. Others use random walks to search for a “marked”
state in the Markov chain, in which case the hitting time
is of interest. In recent years, researchers studying quan-
tum walks have attempted to define natural notions of
“quantum mixing time” [15, 5, 2] and “quantum hitting
time” [6, 18, 13] and to develop quantum algorithmic
applications to sampling and search problems.

A few years ago, Ambainis [4] designed a dis-
crete quantum walk algorithm for a basic and well-
studied problem—the “element distinctness problem”.
Following this, quantum walk algorithms were discov-
ered for triangle finding [14], matrix product verifica-
tion [7], and group commutativity testing [12]. All of
these are “hitting time” applications involving quan-
tum walk search on Johnson graphs—highly-connected
graphs whose vertices are subsets of a fixed set and
whose edges connect subsets differing by at most two
elements. Quantum walk algorithms for the generic spa-
tial search problem [1] were given by Shenvi et al. [17]
on the hypercube, and by Childs and Goldstone [8] and
Ambainis et al. [6] on the torus. Szegedy [18] showed
that for any symmetric Markov chain and any subset M
of marked elements, we can detect whether or not M is
nonempty in at most (of the order of) the square-root of
the classical hitting time. To achieve this goal, Szegedy
defined the quantum analogue of any symmetric Markov
chain. Later Magniez et al. [13] extended this to define



the quantum analogue of the larger class of irreducible
Markov chains.

Largely unresolved by Szegedy’s work is the ques-
tion: with what probability does the algorithm output
a marked state, as opposed to merely detecting that
M is nonempty? (He gave a partial solution, for state-
transitive Markov chains, in the same piece of work.)
This issue was addressed in its full generality by Mag-
niez et al. [13], who gave an algorithm which finds a
marked state with constant probability but whose com-
plexity may be more than the square root of the clas-
sical hitting time. Indeed, for the

√
N ×

√
N grid

their bound is Θ(N) whereas the classical hitting time
is Θ(N logN). The algorithms of Ambainis et al. [6],
Szegedy [18], and Childs and Goldstone [8] perform bet-
ter on the grid if there is a unique marked state: they
find the marked state in time O(

√
N · logN). (The case

of multiple marked elements may be reduced to this
case at the cost of a polylog factor in run-time.) For
some time it remained unclear if one could do better,
until Tulsi [19] showed how to find a unique marked el-
ement in time O(

√
N logN). His algorithm seems to be

something of a departure from previous quantum walk
algorithms, most of which have been analyzable as the
product of two reflections à la the Grover algorithm [10].
The 2D grid was the canonical example of a graph on
which it was unknown how to find a marked state quan-
tumly with the same complexity as detection. Tulsi’s re-
sult thus raises the question: is finding ever any harder
than detection?

In this paper we address several questions related to
classical and quantum hitting times. In the literature
on Markov chains, hitting time is usually defined as
the complexity of the natural Las Vegas algorithm for
finding a marked element by running the chain. We
first give an alternative definition based on the Monte
Carlo version of the same algorithm. To our knowledge,
this variant of the hitting time has not been considered
previously. We show that for some marked state, the
two hitting times are of the same order (Theorem 2.2).

Within the setting of abstract search algorithms
presented by Ambainis et al. [6], we introduce quan-
tum analogues of the two classical hitting times (Def-
inition 3.2). The analogue of the Las Vegas version
was already present in Szegedy’s work [18], whereas the
other is new. Unlike in the classical case, detection and
finding are substantially different problems in quantum
computing. We address both problems here.

For the detection problem, we introduce a new
algorithm Detect based on phase estimation which is
similar to the approach of Magniez et al. [13]. Our
algorithm can detect the presence of a marked element
in the starting state. The advantages of this algorithm

are its simplicity and the fact that its complexity is
related to the new Monte Carlo type quantum hitting
time (Theorem 3.3). This is an improvement over
the Szegedy detection algorithm whose complexity is
related to the potentially larger Las Vegas quantum
hitting time.

We then present a variant of the above algorithm,
called Rotate, which can be used for the more diffi-
cult problem of finding, and whose complexity is also
related to the Monte Carlo type quantum hitting time
(Theorem 3.5). This improves the finding algorithm
due to Ambainis et al. whose complexity was character-
ized by a potentially larger quantity, the inverse of the
smallest eigenphase of the search algorithm. Our algo-
rithm is also simpler. Combining Rotate with the ideas
in the Tulsi algorithm for the 2D grid, we can find a
marked element with constant probability and with the
same complexity as detection for a large class of quan-
tum walks—the quantum analogue of state-transitive
reversible ergodic Markov chains.

As in the classical case, for some marked elements
the two types of the quantum hitting time are of the
same order (Fact 3.3 and Theorem 3.6). For any
reversible ergodic Markov chain P , we prove that the
quantum hitting time of the quantum analogue of P is
of same order as the square root of the classical hitting
time of P (Theorem 3.7). Moreover, for the Las Vegas
hitting times they are exactly the same.

Finally, we investigate the (im)possibility of achiev-
ing a greater than quadratic gap using some other quan-
tum walk. For this we consider general quantum walks
on the edges of an undirected graph G; these were de-
fined, for example, in the survey paper of Ambainis [3],
see also [16]. We define a quite natural notion of re-
versibility for general quantum walks. We conjecture
that for any reversible quantum walk U2 on an undi-
rected graph G, there exists a reversible ergodic Markov
chain P on G such that for every marked state, the
quantum hitting time of U2 is at most the square root
of the classical hitting time of P . We are able to prove
this in the special case of quantum walks built on re-
flections (Theorem 3.8), thus elucidating the necessity
of going beyond the reflections framework for super-
quadratic speed-up. Our proof introduces a classical
analogue of such quantum walks which might be of in-
dependent interest (Definition 3.5). Curiously, the clas-
sical analogue is reversible if and only if the quantum
walk is reversible (Lemma 3.4).

2 Classical hitting times

Let P be an ergodic and reversible Markov chain over
state space X = {1, . . . , n}, which we identify with
its transition probability matrix. We suppose that



the eigenvalues of P are nonnegative, by replacing P
with (P + I)/2 if necessary. More generally, one may
also assume that the eigenvalues of P are at least α,
where α ∈ [0, 1), by replacing P with ((1− α)P + (1 +
α)I)/2 if necessary. We make this further assumption
when needed, for instance in Section 4. Let π denote
the stationary distribution of P . Let P−z be the
(n− 1)× (n− 1) matrix we get by deleting from P the
row and column indexed by z. Similarly, for a vector
v, we let v−z stand for the vector obtained by omitting
the z-coordinate of v.

Claim 2.1. The eigenvalues of P−z are all in the in-
terval [κn, 1), where κn is the smallest eigenvalue of P .

Proof. The proof globally proceeds along the lines of
the proof of Lemma 8 in [18]. For x ∈ X let ex
denote the characteristic vector of x. Let w1, . . . , wn
be the eigenvectors of P with associated eigenvalues
1 = κ1 ≥ . . . ≥ κn > 0. Let v be an arbitrary
eigenvector of Pz with eigenvalue λ. Since P is ergodic,
‖Pz‖ < 1, therefore λ < 1. We show that λ ≥ κn. This
is obviously true if λ = κk for some k; let us suppose
that this is not the case.

Let w be the vector obtained from v by augmenting
it with a 0 in the z-coordinate. We express both w
and ez in the eigenbasis of P : let w =

∑n
k=1 γkwk and

ez =
∑n
k=1 δkwk. Then wP = λw + νez for some real

number ν. Moreover, ν 6= 0; otherwise w would have
been an eigenvector of P , meaning that λ = κk, which
contradicts our supposition. For k = 1, . . . , k, we have
κkγk = λγk + νδk. Since w and ez are orthogonal, we
also have

∑n
k=1 γk δ̄k = 0. Therefore

∑n
k=1

|δk|2
κk−λ = 0.

The statement then follows since the left hand side of
the above equation would be positive if λ were less than
κn.

Definition 2.1. For z ∈ X, the z-hitting time of P ,
denoted by HT(P, z), is the expected number of steps the
chain P takes to reach the state z when started in the
initial distribution π.

It is well known that the z-hitting time of P is given by
the formula HT(P, z) = π†−z(I − P−z)−1u−z, where u is
the all-ones vector. Simple algebra shows that

π†−z(I − P−z)−1u−z =
√
π−z

†(I − S−z)−1√π−z,

where √
π−z is the entry-wise square root of

π−z and S−z is the “symmetrized form” S−z =√
Π−zP−z

√
Π−z

−1
of P−z with Π−z = diag(πx)x 6=z.

The matrices P−z and S−z have the same spectrum
since they are similar. Let {vj : j ≤ n− 1} be the set of
normalized eigenvectors of S−z where the eigenvalue of

vj is λj = cos θj with 0 < θj ≤ π/2. By reordering the
eigenvalues we can suppose that 1 > λ1 ≥ . . . ≥ λn−1 ≥
0. If √π−z =

∑
j νjvj is the decomposition of √π−z in

the eigenbasis of S−z then the z-hitting time satisfies:

HT(P, z) =
∑
j

ν2
j

1− λj
.

When 0 < θ ≤ π/2 then 1 − θ2/2 ≤ cos θ ≤ 1 − θ2/4.
Therefore we can approximate the hitting time with
another expectation that is very closely related to the
analogous quantum notion. More precisely, let Hz be
the random variable which takes the value 1/θ2j with
probability ν2

j , and 0 with probability 1 −
∑
j ν

2
j . We

denote the expectation of Hz by E[Hz]. Then we have
2 E[Hz] ≤ HT(P, z) ≤ 4 E[Hz].

In the definition of the hitting time the Markov
chain is used in a Las Vegas algorithm: we count
the (expected) number of steps to reach the marked
element without error. We can also use the chain as an
algorithm that reaches the marked element with some
probability smaller than 1, leading to a Monte Carlo
type definition. Technically, to be able to underline the
analogies between the classical and quantum notions,
we define the hitting time with error via the random
variable Hz.

Definition 2.2. For z ∈ X and for 0 < ε < 1, the
ε-error z-hitting time of P , denoted by HTε(P, z) is
defined as

HTε(P, z) = min {y : Pr[Hz > y] ≤ ε}.

Observe that for all z, if ε ≤ ε′ then HTε′(P, z) ≤
HTε(P, z). We first show that the use of Hz for the
definition of the Monte Carlo hitting time is indeed
justified (proof in full version). For this, let us denote by
hε(P, z) the smallest integer k such that the probability
that the chain does not reach z in the first k steps is at
most ε.

Theorem 2.1. For all z and ε, we have

hε(P, z) ≤
(

4 ln
2
ε

)
HTε/2(P, z), and

HTε(P, z) ≤ 1
2
hε/3(P, z).

How much smaller than the Las Vegas hitting time
can the Monte Carlo hitting time be? The following
results state that for some z they are of the same order
of magnitude.

Theorem 2.2. We have the following inequalities be-
tween the two notions of hitting time:



• For all z and ε, HTε(P, z) ≤ 1
2ε HT(P, z).

• There exists z such that for all ε < 1/2,
HT(P, z) ≤ 4 HTε(P, z).

Proof. The first statement simply follows from the
Markov inequality and from the relation E[Hz] ≤
HT(P, z)/2. For the second statement, let z be an
element such that ν2

1 ≥ 1/2. The existence of such
an element is assured by Lemma 8 in [18]. Then
HT(P, z) ≤

∑
j 4ν2

j /θ
2
j ≤ 4/θ21 ≤ 4HTε(P, z).

3 Quantum hitting times

3.1 Two notions of quantum walk. Let U = U2U1

be an abstract search algorithm as in [6], where U1 =
I−2|µ〉〈µ| for a “target vector” |µ〉 with real entries, and
U2 is a real unitary matrix with a unique 1-eigenvector
|φ0〉. Without loss of generality we always assume that
|φ0〉 has real entries. The state |µ〉 is the quantum
analogue of the state z which we seek in the classical
walk P , U2 the analogue of P , and |φ0〉 the analogue of
the stationary distribution π.

The abstract search algorithm usually starts with
state |φ0〉, and iterates U several times in order to
get a large deviation from |φ0〉. In this paper, we
prefer to start with a slightly different initial state.
The general behavior of the abstract search algorithm
remains unchanged by this. We replace the starting
state |φ0〉 by |φ̃0〉 = |φ0〉−〈φ0|µ〉|µ〉, the (unnormalized)
projection of the 1-eigenvector |φ0〉 of U2 on the space
orthogonal to |µ〉. This substitution was first considered
in [18], and corresponds to first making a measurement
according (|µ〉, |µ〉⊥). If the measurement outputs |µ〉
we are done. Otherwise we run the abstract search
algorithm.

This choice of the initial state is motivated by the
results in Section 3.4 which relate quantum hitting time
to classical hitting time. All other results in this paper
remain valid if we keep |φ0〉.

Ambainis et al. characterized the spectrum of U in
term of the decomposition of |µ〉 in the eigenvector basis
of U2. One of their results is:

Theorem 3.1. ([6]) Let U2 be a unitary matrix with
real entries and a unique 1-eigenvector |φ0〉. Let |µ〉 be
a unit vector with real entries, and let U1 = I − 2|µ〉〈µ|.
Let U = U2U1.

• If 〈φ0|µ〉 = 0, then |φ̃0〉 = |φ0〉 and U |φ̃0〉 = |φ̃0〉.

• If 〈φ0|µ〉 6= 0, then U has no 1-eigenspace.

Thus one can use U in order to detect if 〈φ0|µ〉 6=
0. Indeed, in that case, after a certain number T of
iterations of U on |φ̃0〉, the state moves far from the

intial state |φ̃0〉. Such a deviation caused by some
operator V (in our case V = UT , i.e., U iterated T
times) is usually detected by phase estimation with a
single bit of precision. The latter operation requires the
use the controlled operator c-V and is better known
as the control test or the Hadamard test . Namely
observe that (H ⊗ I)(c-V )(H ⊗ I)|0〉|ψ〉 = 1

2 |0〉(|ψ〉 +
V |ψ〉) + 1

2 |1〉(|ψ〉 − V |ψ〉). Therefore a measurement
of the first register gives outcome 1 with probability
‖|ψ〉 − V |ψ〉‖2/4.

Szegedy [18] designed a generic method for con-
structing an abstract search algorithm given a (classi-
cal) Markov chain. Let P = (pxy) be an ergodic Markov
chain over state space X = {1, . . . , n} with stationary
distribution |π〉. The time-reversal P ∗ of this chain is
defined by equations πyp∗yx = πxpxy. The chain P is
reversible if P = P ∗.

The quantum analogue of P may be thought of as a
walk on the edges of the original Markov chain, rather
than on its vertices. Thus, its state space is a vector
subspace of H = CX×X . For a state |ψ〉 ∈ H, let Πψ =
|ψ〉〈ψ| denote the orthogonal projector onto Span(|ψ〉),
and let ref(ψ) = 2Πψ− Id denote the reflection through
the line generated by |ψ〉, where Id is the identity
operator on H. If K is a subspace of H spanned by
a set of mutually orthogonal states {|ψi〉 : i ∈ I},
then let ΠK =

∑
i∈I Πψi be the orthogonal projector

onto K, and let ref(K) = 2ΠK − Id be the reflection
through K. Let A = Span(|x〉|px〉 : x ∈ X) and
B = Span(|p∗y〉|y〉 : y ∈ X) be vector subspaces of H,
where

|px〉 =
∑
y∈X

√
pxy |y〉 and |p∗y〉 =

∑
x∈X

√
p∗yx |x〉.

Define similarly for any z ∈ X the subspaces A−z =
Span(|x〉|px〉 : x ∈ X \ {z}) and B−z = Span(|p∗y〉|y〉 :
y ∈ X \ {z}).

Definition 3.1. ([18, 13]) Let P be an er-
godic Markov chain. The unitary operation
W (P ) = ref(B) · ref(A) defined on H is called the
quantum analogue of P ; and the unitary operation
W (P, z) = ref(B−z) · ref(A−z) defined on H is called
the quantum analogue of P−z.

The unitary operation SWAP is defined by
SWAP|x〉|y〉 = |y〉|x〉. When P is reversible, the con-
nection between the quantum walk of Szegedy and the
quantum walk of Ambainis et al. is made explicit by the
following fact.

Fact 3.1. Let z ∈ X and |µ〉 = |z〉|pz〉. Let U2 =
SWAP · ref(A) and U1 = I − 2|µ〉〈µ|. If P is reversible
then (U2U1)2 = W (P, z). In particular, the unitary



operators U = U2U1 and W (P, z) are diagonal in the
same orthonormal basis.

3.2 Phase estimation and quantum hitting
time. Let U be a unitary matrix with real entries.
The potential eigenvalues of U are then 1, −1, and
pairs of conjugate complex numbers (eiαj , e−iαj ) with
0 < αj < π, for 1 ≤ j ≤ J , for some J .

Let |ψ〉 be a vector with real entries and of norm at
most one. Then |ψ〉 uniquely decomposes as

(3.1) |ψ〉 = δ0|w0〉+
∑

1≤j≤J

δj(|w+
j 〉+ |w

−
j 〉)+δ−1|w−1〉,

where δ0, δ−1, δj are reals, |w0〉 is a unit eigenvector
of U with eigenvalue 1, |w−1〉 is a unit eigenvector with
eigenvalue −1, and |w+

j 〉, |w
−
j 〉 are unit eigenvectors

with respective eigenvalues eiαj and e−iαj , and |w−j 〉 =

|w+
j 〉.

We now describe a procedure whose purpose is to
detect the state |ψ〉 has a component orthogonal to
the 1-eigenspace of U . In the context of the abstract
search algorithm, this is equivalent to 〈φ0|µ〉 6= 0. The
idea, similar to the approach of Magniez et al. [13], is
to apply the phase estimation algorithm of Kitaev [11]
and Cleve et al. [9] to U .

Theorem 3.2. ([11, 9]) Given an eigenvector |v〉 of
a unitary operator U with eigenvalue eiα, the corre-
sponding phase α ∈ (−π, π] can be determined with
precision ∆ and error probability at most 1/3 by a
circuit Estimate. If |v〉 is a 1-eigenvector of U ,
then Estimate determines α = 0 with probability 1.
Moreover, Estimate makes O(1/∆) calls to the con-
trolled operator c-U and its inverse, and it contains
O((log 1/∆)2) additional gates.

Based on the circuit Estimate, we can detect the
presence of components orthogonal to the 1-eigenspace
in an arbitrary state |ψ〉.

Detect(U,∆, ε) — Input: |ψ〉
1. Apply Θ(log(1/ε)) times the phase estimation

circuit Estimate for U with precision ∆ to the
same state |ψ〉.

2. If at least one of the estimated phases is nonzero,
ACCEPT.
Otherwise REJECT.

Let QH be the random variable which takes the
value 1/αj with probability 2δ2j , the value 1/π with
probability δ2−1, and the value 0 otherwise. Observe
that in the following lemma, and in the analysis of all

our algorithms, the probabilities in fact sum to ‖ψ‖2,
since |ψ〉 is not necessarily normalized, and has norm at
most 1.

Lemma 3.1. Assume that Pr[QH > 1/∆] ≤ ε. Then
the procedure Detect(U,∆, ε) accepts |ψ〉 with probabil-
ity ‖ψ‖2− δ20 −O(ε), and moreover with probability 0 if
|δ0| = ‖ψ‖. In addition, the number of applications of
c-U is O(log(1/ε)/∆).

Proof. Let us first assume that Estimate can compute
the eigenphase of any eigenvector with certainty. This
assumption is in fact valid when |δ0| = ‖ψ‖. Then the
procedure Detect rejects exactly with probability δ20 .

Assume now that Pr[QH > 1/∆] ≤ ε, and |δ0| <
‖ψ‖. First observe that Estimate with precision ∆
uses 1/∆ applications of c-U . Then the precision ∆
in Estimate ensures a nonzero approximation of an
eigenphase ±αj with probability at least 2/3 provided
that αj ≥ ∆. By hypothesis, the contribution of these
eigenphases has squared Euclidean norm 2

∑
j δ

2
j . The

success probability is then amplified to 1 − O(ε) by
checking that all the O(log(1/ε)) outcomes of Estimate
are nonzero. For the special case of eigenphase 0, whose
contribution has squared Euclidean norm δ20 , Estimate
gives approximation 0 with probability 1.

The contribution of the other eigenphases has
squared Euclidean norm less than ε in the vector |ψ〉.
Therefore the overall acceptance probability is ‖ψ‖2 −
δ20 −O(ε).

In the case of quantum walk, the above theorem
justifies the following definitions of quantum hitting
times. Let U be some abstract search U2U1, where
U1 = I−2|µ〉〈µ|, starting from state |φ̃0〉 = |φ0〉−a0|µ〉,
where a0 = 〈µ|φ0〉. We now set |ψ〉 = |φ̃0〉. Again, QH
is the random variable which takes the value 1/αj with
probability 2δ2j , the value 1/π with probability δ2−1, and
0 otherwise.

Definition 3.2. The quantum |µ〉-hitting time of U2

is the expectation of QH , that is

QHT(U2, |µ〉) = 2
∑
j

δ2j
αj

+
δ2−1

π
.

For 0 < ε < 1, the quantum ε-error |µ〉-hitting time of
U2 is defined as

QHTε(U2, |µ〉) = min{y : Pr[QH > y] ≤ ε}.

Using Theorem 3.1, Lemma 3.1 and our definition
of quantum hitting time, we directly get:



Theorem 3.3. For every T ≥ max {1,QHTε(U2, |µ〉)},
the procedure Detect(U, 1/T, ε) accepts |φ̃0〉 with prob-
ability ‖φ̃0‖2 − O(ε) if 〈φ0|µ〉 6= 0, and accepts with
probability 0 otherwise. Moreover the number of appli-
cations of c-U is O(log(1/ε)× T ).

If one would like to deal only with normalized states,
and to come back to the original starting state |φ0〉, we
can encapsulate the projection to the space orthogonal
to |µ〉 into our algorithm such as in the following main
procedure, and deduce its behavior from the above
theorem.

MainDetect(U2, |µ〉,∆, ε) — Input: |ψ〉
1. Make a measurement according (|µ〉, |µ〉⊥).

2. If the measurement outputs |µ〉, ACCEPT.
Otherwise apply Detect(U,∆, ε).

Corollary 3.1.For every T ≥ max {1,QHTε(U2, |µ〉)},
the procedure MainDetect(U2, |µ〉, 1/T, ε) accepts |φ0〉
with probability 1−O(ε) if 〈φ0|µ〉 6= 0, and accepts with
probability 0 otherwise.

When the abstract search is built on the quantum
analogue of a reversible Markov chain P and |µ〉 =
|z〉|pz〉 for some z, we use the following terminology:

• The quantum z-hitting time of P is QHT(P, z) =
QHT(SWAP · ref(A), |z〉|pz〉);

• For 0 < ε < 1, the quantum ε-error z-hitting time
of P is QHTε(P, z) = QHTε(SWAP·ref(A), |z〉|pz〉).

With different, more technical arguments, Szegedy
proved results similar to Theorem 3.3 albeit with the
parameter QHT(P, z) for symmetric Markov chains:

Theorem 3.4. ([18]) When t is chosen uniformly at
random in {1, 2, . . . , dQHT(P, z)e}, then the expectation
of the deviation ‖(W (P, z))t|φ̃0〉 − |φ̃0〉‖ is Ω(‖φ̃0‖).

Under certain assumptions, Ambainis et al. [6] have a
similar result in terms of the smallest eigenphase of
U2U1.

Suppose we wish to not only detect if 〈µ|φ0〉 6= 0,
but also to map |ψ〉 to |µ〉. Then we are led to a
procedure different from Detect. One possibility is
to try to use U in order to move |ψ〉 to an orthogonal
state that is closer to |µ〉.

Definition 3.3. The U -rotation of |ψ〉 is defined as
δ0|w0〉 +

∑
j δj(|w

+
j 〉 − |w

−
j 〉) + δ−1|w−1〉, where the

decomposition of |ψ〉 in terms of the orthonormal set
of eigenvectors

{
|w+
j 〉, |w

−
j 〉
}

of U is given by Eq. (3.1).

Fact 3.2. If |ψ〉 is orthogonal to both the 1-eigenspace
and the (−1)-eigenspace of U , then the U -rotation of
|ψ〉 is orthogonal to |ψ〉.

This operation can be implemented efficiently by
the following procedure with further assumptions on U .
Namely, we would like U to avoid having any eigenvalue
close to −1. This is naturally the case when we consider
the quantum analogue of a reversible Markov chain
whose eigenvalues are all positive.

Rotate(U,∆, ε) — Input: |ψ〉
1. Apply Θ(log(1/ε)) times the phase estimation

circuit Estimate for U with precision ∆ to the
same state |ψ〉.

2. If the majority of estimated phases are negative
Perform a Phase a Flip.

Otherwise do nothing.

3. Undo the Phase Estimations of Step 1.

Theorem 3.5. Assume that all eigenvalues eiα of U
satisfy |α| ≤ π/2. Then for every T ≥ QHTε(U2, |µ〉),
the procedure Rotate(U, 1/T, ε) maps |φ̃0〉 to a state
at Euclidean distance O(

√
ε ) from the U -rotation of

|φ̃0〉. Moreover, the number of applications of c-U is
O(log(1/ε)× QHTε(U2, |µ〉)).

Proof. The proof follows the same argument as in
Theorem 3.3.

3.3 Comparison between QHT and QHTε. We
assume henceforth that 〈φ0|µ〉 6= 0; otherwise, the
problem is trivial—by our definition QHTε(U2, |µ〉) =
QHT(U2, |µ〉) = 0.

The Markov inequality immediately implies the
following relationship between these two measures:

Fact 3.3. For all U2, |µ〉, and ε,

QHTε(U2, |µ〉) ≤ 1
ε

QHT(U2, |µ〉).

The other direction requires a closer look at the spectral
decomposition of U2U1. In this section, we again
follow the framework of the abstract search algorithm
U = U2U1. The eigenvalues of U2 different from 1 are
either −1 or they appear as complex conjugates e±iθj ,
where θj ∈ (0, π). For convenience, we assume that
θ−1 = π, 0 = θ0 ≤ θ1 ≤ θ2 ≤ . . ., and we always use
index j for positive integers. Recall that both |µ〉 and
the 1-eigenvector |φ0〉 of U2 have real entries. Writing
|µ〉 in the eigenspace decomposition of U2 we get

|µ〉 = a0|φ0〉+
∑
j

aj
(
|φ+
j 〉+ |φ−j 〉

)
+ a−1|φ−1〉,



where |φ−1〉 is a (−1)-eigenvector of U2, and |φ±j 〉 are
e±iθj -eigenvectors of U2 such that a−1 and aj are real,
|φ−1〉 has real entries, and |φ−j 〉 = |φ+

j 〉. Since |φ0〉 has
real entries, a0 is also real.

Ambainis et al. [6] (see also Tulsi [19]) show the
following relation between the spectrum of U2 and that
of U .

Lemma 3.2. ([6, 19]) The eigenvalues e±iα of the op-
erator U are solutions of the equation:

a2
0 cot

α

2
+
∑
j

a2
j

(
cot
(
α+ θj

2

)
+ cot

(
α− θj

2

))
− a2
−1 tan

α

2
= 0.

The corresponding unnormalized eigenvectors |wα〉 =
|µ〉+ i|w′α〉 satisfy 〈µ|w′α〉 = 0 and |w′α〉 equals

a0 cot
α

2
|φ0〉

+
∑
j

aj

(
cot
(
α− θj

2

)
|φ+
j 〉+ cot

(
α+ θj

2

)
|φ−j 〉

)
− a−1 tan

α

2
|φ〉.

As in the classical case, we are only able to up-
per bound QHT by QHTε for some particular target
states |µ〉. Therefore, we consider in the following
lemma (proof in full version) an arbitrary set of or-
thonormal vectors M = {|µz〉} whose span contains
|φ0〉. In the case of the quantum analogue of a Markov
chain P as in Definition 3.1, a natural choice for |µz〉
is |z〉|pz〉 for some z in the state space of the Markov
chain. Recall that |φ̃0〉 = |φ0〉 − a0|µ〉.
Lemma 3.3. Let M = {|µz〉} be a set of orthonormal
vectors with real coefficients in the standard basis, such
that |φ0〉 ∈ Span(M). For every z, let αz be the smallest
positive real number α such that e±iα are eigenvalues of
the operator U = U2(I − 2|µz〉〈µz|). Then there exists
z such that the length of the projection of |φ̃0〉 onto the
subspace generated by |wαz 〉 and |w−αz 〉 is at least 1/

√
2.

Corollary 3.2. Let M = {|µz〉} be a set of real
orthonormal vectors such that |φ0〉 ∈ Span(M). For
all U2 there exists z such that for all ε ≤ 1/2,

QHTε(U2, |µz〉) =
1
αz
.

Theorem 3.6. Let M = {|µz〉} be a set of real or-
thonormal vectors such that |φ0〉 ∈ Span(M). For all
U2 there exists z such that for all ε ≤ 1/2,

QHT(U2, |µz〉) ≤ QHTε(U2, |µz〉).

Proof. This is a consequence of Corollary 3.2 since
QHT(U2, |µz〉) is by definition at most 1

αz
.

3.4 Quadratic detection speedup for reversible
chains. Let P be an ergodic Markov chain over state
space X = {1, . . . , n}. We further suppose that P
is a reversible Markov chain with positive eigenvalues,
otherwise we simply replace P with γP + (1 − γ)I, for
any γ < 1/2. Let z ∈ X.

Theorem 3.7. Assume that the eigenvalues of P are
all positive. Then we have the following relations:

• For all z, QHT(P, z) ≤
√

HT(P, z)/2.

• For all z and ε, QHTε(P, z) =
√

HTε(P, z).

Proof. We follow the notation introduced in Sections 2
and 3.1. Then |φ0〉 =

∑
x

√
πx |x〉|px〉, |µ〉 = |z〉|pz〉,

|φ̃0〉 =
∑
x∈X\{z}

√
πx |x〉|px〉. Let √π−z =

∑
j νjvj be

the decomposition of √π−z in the normalized eigenbasis
of P−z where the eigenvalue of vj is cos θj , with 0 < θ1 ≤
. . . ≤ θn−1 < π/2. Let vj [x] denote the x-coordinate
of the vector vj . We set |ξj〉 =

∑
x 6=z vj [x]|x〉|px〉

and |ζj〉 =
∑
y 6=z vj [y]|p∗y〉|y〉. Then |φ̃0〉 =

∑
j νj |ξj〉.

For every j, the vectors |ξj〉 and |ζj〉 generate an
eigenspace of W (P, z) that is also generated by two
normalized eigenvectors with eigenvalues respectively
e2iθj and e−2iθj . This argument is still true for SWAP ·
ref(A−z) when we divide the phases by 2, leading to
eigenvalues eiθj and e−iθj (cf. Fact 3.1). Since the length
of the projection of |φ̃0〉 to this eigenspace is ν2

j , we have

QHT(P, z) =
∑n−1
j=1

ν2
j

θj
= E[

√
Hz].

By the Jensen inequality we get

QHT(P, z) ≤
√

E[Hz] ≤
√

HT(P, z)/2.

The second relation above immediately follows from
QH 2 = Hz.

The same quadratic speed-up as above holds when there
are multiple marked elements in the state space X. The
search algorithm and its analysis are similar and are
omitted from this article.

3.5 On the quadratic speedup threshold. In this
section we consider a broad class of quantum walks
defined on undirected graphs. We are able to show
that for a special case of walks on graphs, the quadratic
speedup is tight.

Let X = {1, 2, . . . , n}. Our notion of quantum walk
can be seen as a walk on the edges of a given undirected
graph G(X,E). Let H(G) = Span(|xy〉 : (x, y) ∈ E)
be the Hilbert space that a quantum walk on G should
preserve. In the rest of this section, we only consider
operators and states inH(G) for some given G. Observe
that SWAP preserves H(G) since G is undirected.

We introduce a notion of reversibility that is justi-
fied by Lemma 3.4 below.



Definition 3.4. A quantum walk on an undirected
graph G = (X,E) is a unitary U2 = SWAP · F defined
on a subspace of H(G), where F is matrix with real
entries of the form F =

∑
x∈X |x〉〈x| ⊗ F x, and where

U2 has a single 1-eigenvector |φ0〉. The quantum walk
is reversible when SWAP(|φ0〉) = |φ0〉.

Observe that the definition implies that |φ0〉 can be
chosen with real entries. This definition of quantum
walk appears, for example, in the survey paper of
Ambainis [3], see also [16]. Szegedy considered for
F x a specific kind of reflection based on Markov chain
transition probabilities (see Section 3.1).

Definition 3.5. Let U2 = SWAP·F be a quantum walk
with unit 1-eigenvector |φ0〉 =

∑
x

√
πx|x〉|φx〉, where

πx ≥ 0 and |φx〉 is a unit vector with real entries. Then
the classical analogue P = (pxy) of U2 is defined as
pxy = 〈y|φx〉2.

Since |φ0〉 is a 1-eigenvector of SWAP · F we directly
state:

Fact 3.4. Let |ψx〉 = F x|φx〉. Then |φ0〉 =∑
x

√
πx|ψx〉|x〉.

Lemma 3.4. The classical analogue P of a quantum
walk U2 on G is a Markov chain on G with stationary
probability distribution π. Moreover, P is reversible if
and only if U2 is a reversible quantum walk.

Proof. First we show that P is a Markov chain on G.
For every x, we have∑

y

pxy =
∑
y

〈y|φx〉2 = ‖φx‖2 = 1.

Moreover pxy 6= 0 implies 〈y|φx〉 6= 0, which implies that
(x, y) ∈ E since |φ0〉 ∈ H(G).

Now we verify that π is a stationary probability
distribution. First, π is a probability distribution since
|φx〉 for all x ∈ X and |φ0〉 are unit vectors. That π is
a stationary probability distribution can be seen from
the following sequence of equalities which hold for every
y ∈ X:∑
x

πxpxy =
∑
x

〈xy|φ0〉2 by definition of P and |φ0〉

=
∑
x

πy〈x|ψy〉2 by Fact 3.4

= πy‖|ψy〉‖2 = πy.

For reversibility, observe that we similarly have
πxpxy = 〈xy|φ0〉2 and πypyx = 〈yx|φ0〉2 =
(〈xy|SWAP|φ0〉)2. P is reversible when these two ex-
pressions are equal for every x, y, which happens pre-
cisely when the quantum walk U2 is reversible.

Finally, we show that the quadratic speedup is
tight in the special case of walks for which all of the
unitaries F x are reflections. We state the result using
the notation above.

Theorem 3.8. Let U2 = SWAP · F be a reversible
quantum walk such that F x = 2|φx〉〈φx| − I, for all
x ∈ X. Then for all z and ε,

QHTε(U2, |z〉|φz〉) = QHTε(P, z) =
√

HTε(P, z).

Proof. Let U1 = I − 2|z〉〈z| ⊗ |φz〉〈φz|, for some fixed
z. Under the hypothesis of the theorem, (U2U1)2 is
a product of two reflections ref(A−z) and ref(B−z),
where A−z = Span(|x〉|φx〉 : x ∈ X \ {z}) and B−z =
Span(|φy〉|y〉 : y ∈ X \ {z}) = SWAP(A).

From [18], we know that the spectrum of
(U2U1)2 is completely defined by the discriminant
matrix D = A∗B, where A =

∑
x6=z|x〉|φx〉〈x|

and B =
∑
y 6=z|φy〉|y〉〈y|. We get that D =

(〈x|φy〉〈φx|y〉)x 6=z,y 6=z. The reversibility of U2 guar-
antees that 〈xy|π〉 = 〈yx|π〉, which implies that√
πx〈y|φx〉 = √πy〈x|φy〉. Since |φy〉 has real entries,

we have D =
√

ΠP−z
√

Π
−1

, where Π = diag(πx)x 6=z
and P−z is the matrix obtained from P by deleting the
row and column indexed by z.

Observe that this discriminant is exactly that of
the quantum analogue W (P, z). So W (P, z) and
(U2U1)2 are equal up to a basis change which maps∑
x

√
πx|x〉|px〉 to |φ0〉, |z〉|pz〉 to |z〉|φz〉, and therefore∑

x6=z
√
πx|x〉|px〉 to |φ̃0〉.

4 Finding with constant probability

In this section, we extend a technique devised by
Tulsi [19] for finding a marked state on the 2D grid
in time that is the square-root of the classical hitting
time. We prove that it may be applied to a larger class
of Markov chains and target states. The technique may
be combined with ideas developed in the earlier sections
to give an algorithm for the quantum analogue of an
arbitrary reversible ergodic Markov chain.

We use the notation of Section 3.1. In our applica-
tion, there is no (−1)-eigenvector of U2. Therefore the
marked state |µ〉 has the following decomposition in an
eigenvector basis of U2:

(4.2) |µ〉 = a0|φ0〉+
∑

1≤j≤J

aj(|φ+
j 〉+ |φ−j 〉),

where J is some positive integer. Last, we assume in
the rest of this section that 〈φ0|µ〉 6= 0.

Lemma 4.1. The vectors |µ〉 and |φ̃0〉 have the follow-
ing representation in the basis {|wα〉} consisting of the



eigenvectors of U = U2U1 as given by Lemma 3.2:
|µ〉 =

∑
α

1
‖wα‖2 |wα〉, and |φ̃0〉 =

∑
α
a0i cot(

α
2 )

‖wα‖2 |wα〉.

Proof. Any vector |ψ〉 may be expressed in the orthog-
onal basis {|wα〉} as |ψ〉 =

∑
α
〈wα|ψ〉
‖wα‖2 |wα〉. The first

equation now follows from 〈wα|µ〉 = (〈µ|−i〈w′α|)|µ〉 = 1.
By Lemma 3.2, 〈φ0|wα〉 = 〈φ0|(|µ〉 + i|w′α〉) =

a0+a0i cot α2 . The second equation follows by combining
the above with |φ̃0〉 = |φ0〉 − a0|µ〉.

Lemma 4.2. The inner product of the target state |µ〉
and the U -rotation of |φ̃0〉 is 2a0

∑
α>0

cot(α2 )

‖wα‖2 .

Theorem 3.7 shows that the quantum hitting time is
bounded by the square-root of the classical hitting time
when U2 is derived from a reversible Markov chain P ,
i.e., U2 = SWAP · ref(A) in the notation of Section 3.2.
This allows for the detection of marked elements (or
more generally for checking if 〈µ|φ0〉 6= 0) and also the
creation of the U -rotation of |φ̃0〉 in the stated time
bound. However, the overlap of the U -rotation of |φ̃0〉
with the target |µ〉 may be o(1). Tulsi [19] discovered a
technique, described below, to boost this overlap to Ω(1)
in the case of a quantum walk on the 2D grid.

Let θ ∈ [0, π/2). Let Rθ denote the rotation in C2

by angle θ:

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
,

and let |θ〉 = R†θ|0〉, and |θ⊥〉 = R†θ|1〉. Define
Uθ1 = |0〉〈0| ⊗ Id + |1〉〈1| ⊗ U1, and Uθ2 = (|θ〉〈θ| ⊗
(−Id) + |θ⊥〉〈θ⊥| ⊗ U2). Then Uθ1 = Id − 2|1〉〈1| ⊗
|µ〉〈µ|, meaning that the modified marked state is |1〉|µ〉.
Then the modified abstract search algorithm becomes:
T(U1, U2, θ) = Uθ2U

θ
1 . This is precisely the circuit

used by Tulsi: his rotation R̂θ = R†θ in our notation.
Tulsi [19] proved that the principal eigenvalue of the
operator above is closely related to that of the unitary
operator U2U1. We extend his findings in terms that
are more readily used in our context.

The eigenvalues of Uθ2 are the same as those of U2,
except for the addition of the new eigenvalue −1.
The eigenvectors corresponding to eigenvalues e±iθj are
now |θ⊥〉|φ±j 〉. Any state of the form |θ〉|ψ〉 is a −1
eigenvector of Uθ2 .

Fact 4.1. The decomposition of |1〉|µ〉 in the eigenvec-
tor basis of Uθ2 is:

|1〉|µ〉 = cos θ |θ⊥〉

a0|φ0〉+
∑

1≤j≤J

aj(|φ+
j 〉+ |φ−j 〉)


− sin θ |θ〉|µ〉,

where the coefficients a0, aj are precisely those in
Eq. (4.2).

Lemma 4.3. The eigenvalues e±iαθ , of the opera-
tor T(U1, U2, θ) are solutions to the equation

a2
0 cot

x

2
+
∑
j

a2
j

(
cot
(
x+ θj

2

)
+ cot

(
x− θj

2

))
− tan2 θ tan

x

2
= 0.

The corresponding unnormalized eigenvectors |wα,θ〉 =
|1〉|µ〉+ i|w′α,θ〉 satisfy 〈1, µ|w′α,θ〉 = 0 and |w′α,θ〉 equals

cos θ |θ⊥〉
(
a0 cot

(
αθ

2

)
|φ0〉

+
∑
j

aj

(
cot
(
αθ − θj

2

)
|φ+
j 〉 + cot

(
αθ + θj

2

)
|φ−j 〉

))

+ sin θ |θ〉
(

tan
(
αθ

2

)
|µ〉
)
.

Proof. We apply Lemma 3.2 from Section 3.3 with
aθ0 = a0 cos θ, aθj = aj cos θ, aθ−1 = sin θ. Note that U2

does not have any (−1)-eigenvectors (by assumption),
but Uθ2 does.

The target vector in the modified algorithm
is |1〉|µ〉. The start state is chosen to be |φ̃0,θ〉 =
|θ⊥〉|φ̃0〉. The following are analogous to Lemmata 4.1
and 4.2:

Corollary 4.1. The vectors |1〉|µ〉 and |φ̃0,θ〉 have the
following representation in the basis {|wα,θ〉} consisting
of the eigenvectors of T(U1, U2, θ) as given by Corol-
lary 4.3:

|1〉|µ〉 =
∑
αθ

1
‖wα,θ‖2

|wα,θ〉, and

|φ̃0,θ〉 = (a0i cos θ)
∑
αθ

cot(α
θ

2 )
‖wα,θ‖2

|wα,θ〉.

Corollary 4.2. The inner product of the target state
|1〉|µ〉 and the T(U1, U2, θ)-rotation of |φ̃0,θ〉 is given by

the expression (2a0 cos θ)
∑
αθ>0

cot(α
θ

2 )

‖wα,θ‖2 .

We choose for the rest of this section θ ∈ [0, π/2]
such that tan θ = a0 cot(α1/2)/10. Let αθ1 be the
smallest positive eigenphase of the modified search
algorithm T(U1, U2, θ).

Lemma 4.4 (proof in full version) proves that αθ1
is of the same order as the principal eigenphase α1 of
the original algorithm U2U1. Lemma 4.5 (proof in full



version) is the final piece in our argument. It relates the
norm of the principal eigenvectors of the modified walk
to the norm of the original ones. Both lemmas extend
corresponding results by Tulsi in the case of the 2D grid,
and lead to the main result of this section.

Lemma 4.4. There is a unique eigenvalue phase αθ1
of the operator T(U1, U2, θ) in (0, α1]. Moreover,
cot(αθ1/2) ≤ 1.01 × cot(α1/2). Therefore if 0 ≤ α1 ≤
π/4, then 0.78× α1 ≤ αθ1 ≤ α1.

Lemma 4.5. ‖w±α1,θ‖ ≤ (3 cos θ)× ‖w±α1‖.

Theorem 4.1. Let ε > 0 be any constant. Suppose
that the squared length of the projection of the state |φ̃0〉
onto the principal eigenspace of U2U1 is bounded below
by 1− ε. Then, for every T ≥ QHTε(U2, |φ̃0〉)/0.78, the
procedure Rotate(T(U1, U2, θ), 1/T, 1/4) maps |φ̃0,θ〉 to
a state with constant overlap with the target state |1〉|µ〉.

Proof. First we prove that T = QHTε(Uθ2 , |1〉|µ〉)
is of the order of QHTε(U2, |µ〉). Let l =
2a2

0(cot2 α1
2 )/‖wα1‖2. We know that l ≥ 1 − ε. Us-

ing Lemma 4.1 we get that QHTε(U2, |µ〉) = 1/α1.
Moreover, by definition, T ≤ 1/αθ1. By Lemma 4.4,
T ≤ 1/(0.78α1) = QHTε(U2, |µ〉)/0.78. We now get
our conclusion by applying Corollary 4.2, Lemmata 4.4
and 4.5, and Theorem 3.5.

We combine the above theorem with Lemma 3.3 to
get our final result.

Corollary 4.3. Let P be a state-transitive reversible
ergodic Markov chain, and let z be any state. Set
|µ〉 = |z〉|pz〉, U1 = I − 2|µ〉〈µ|, and let U2 be
the quantum analogue of P . Then for every ε ≤
1/2 and T ≥ QHTε(U2, |φ̃0〉)/0.78, the procedure
Rotate(T(U1, U2, θ), 1/T, 1/4) maps |φ̃0,θ〉 to a state
with constant overlap with the target state |1〉|µ〉.

References

[1] S. Aaronson and A. Ambainis. Quantum search of
spatial regions. Theory of Computing, 1(4):47–79,
2005.

[2] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani.
Quantum walks on graphs. In Proceedings of the 33rd
ACM Symposium on Theory of Computing, pages 50–
59, 2001.

[3] A. Ambainis. Quantum walks and their algorithmic
applications. International Journal of Quantum Infor-
mation, 1:507–518, 2003.

[4] A. Ambainis. Quantum walk algorithm for Element
Distinctness. In Proceedings of the 45th Symposium on
Foundations of Computer Science, pages 22–31, 2004.

[5] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and
J. Watrous. One-dimensional quantum walks. In
Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 37–49, 2001.

[6] A. Ambainis, J. Kempe, and A. Rivosh. Coins make
quantum walks faster. In Proceedings of the 16th ACM-
SIAM Symposium on Discrete Algorithms, pages 1099–
1108, 2005.
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