Reduction Rules and Equations for the \s-calculus

Equations :
tlz/ully/v] =c tly/v][z/u) ify ¢ fv(u) & x ¢ £v(v)
Reduction Rules :

(Az.t) u —p  tlz/u]
zlz/u —SVar U

[r/u] et ifx ¢ fv(t)

(t w)[z/v] —app,  (tlz/v] u[z/v])  ifx e fv(t) &x € f(u)
(t u)fz/v] —app,  (tulz/v]) ife ¢ fv(t) &z e fv(u)
(t w)[z/v] —app,  (tx/v] ) ifexefv(t) &z ¢ fv(u)
(Ay.t)[z/v] —amb Az /0] ify ¢ £v(v)
tiz/ully/v] —comp,  Hy/vV][x/uly/v]] ify e fv(u) &y € fv(t)
tla/ully/v] —comp, [z /uly/v]] ify e fv(u) &y ¢ fv(t)

Let s = {Var, Gc, App;, App,, Apps, Lamb, Comp, , Comp, }.

From \s-calculus to MELL Proof-Nets

Translating types
A* = A
(A= B)" = ?((4%)*)% B

Translating terms

if A is atomic
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TALT,AF tlz/u] : A) where
I,T,z:B+-t: A&T,A+u:B
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Translating reduction

Theorem 0.1 Let s be a As-typed term.

1.
2.

3.

Ifs=c s, thenT(s) ~p T(s).
If 5 = app, Lamb 8, then T(s) ~g T(s').

If 5 —(8,5)\ {Apps.Lamb} s, then T(s) %;/E Clr(s)].

Proof. The proof proceeds by induction on —»s. We first show that cases where
s —»s 8 is an external reduction step, for which we consider all the root reduc-
tion/equivalence cases.

e For s = tlz/u]ly/v] =c tly/v][z/u] = &', wherey ¢ fv(u) & = ¢ fv(u),

we show here the case z € fv(t) & y € £v(t), all the other ones being similar.
Thus I' - s : A comes from yyy, Do, Do, Ty 2 Byy 0 D F ¢ @ Aand
Ttuws Dws Duw, T B w2 B and Ty, Ty, T, Ty B v 0 D, where Ty :=
fv(t)Nfv(u)NEv(u), Ty := £v(E)NEv(u)\fv(v), Ty := £v(t)NEv(v)\£v(u),
Tyo = fy(u) NEv(v) \ £v(t), Ty == fv(t) \ y \ = \ fv(u) \ fv(v), Ty =
fv(u) \ £v(t) \ £v(v) and I, := £v(v) \ £v(¢) \ £v(u).

The proof-net T'(s) ~p T(s’) is given by

T, ik, TR T

For s = (Az.t) u —p tlz/u] = ¢’ with ILT, A F (Az.t) u : A coming from

ILT F Xzt : B — Aand,A + u : B, where I' := fv(\z.t) N fv(u),
= fv(Az.t) \ fv(u) and A := fv(u) \ fv(\z.t). We show here the case

x € £v(t), the case z ¢ £v(t) being similar.

We can verify that 7'(s) (on the left) reduces to 7'(s") (on the right) in exactly

two steps so that C[_] is empty, i.e. T'(s) —g-@—rax-cut ().

For s = z[z/u] —var u = §', coming fromz : Az : Aand A+ u : A where
A := fv(u). We can verify that T'(s) (on the left) reduces to T'(s’) (on the right)

in exactly two steps so that C[] is empty, i.e. T'(s) —3-p ax-cat 1 (5')-

For s = t[z/u] —¢c t, withz ¢ £v(t), coming fromII,T' -¢: Aand T, A b w:
B, where T := fv(t) N fv(u), I := £v(t) \ fv(u) and A := £fv(u) \ £v(t). We
can verify that T(s) =,y C[T(s)], where C[] contains all the weakenings
wires for 7A*L.

For s = (t u)[z/v] —app, (t[x/v] ulz/v]) = &', withx € £v(t) & = € fv(u),
coming from I'tyy, Dty Tty Tty : D Et 2 B — A and Ty, Doy Dy Ty @
DFu:BandTyyy, Uiy, Dyw, I'y F v 0 D, where Iy, := £v(t)NEv(u)NEv(u),
T = £v(t) Nfv(u) \ @ \ £v(v), Ty = £v(t) N Ev(v) \ fv(u), Ty =
fv(u)NEv(v) \ £v(t), Ty := £v(t) \ £v(u) \ £v(v), Ty := £v(u) \ £v(¢) \ fv(v)
and Ty, := fv(v) \ £v(t) \ £v(u). The proof-net T'(s) is given by
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which reduces by —- to the proof-net

o For s = (t u)[z/v] —app, (tulz/v]) = ¢, witha ¢ fv(t) & 2 € fv(u
coming from Iy, Dyuy T, T'e = ¢ 0 B = A and Ty, Dy Dy Ty @ 0 D
w: Band Ty, Ty, Cuw, Ty = v 0 D, where Ty := £v(t) N fv(u) N fv(u
Ty = fu(t) Nfv(u) \ x \ £v(v), Ty = £v(t) N fv(v) \ £v(u), Ty
fv(u)Nfv(v) \ £v(t), Ty = £v(t) \ £v(u) \ £v(v), Ty := fv(u) \ £v(t) \ fv(v
and ', := £v(v) \ £v(t) \ £v(u). The proof-net T'(s) is given by
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which is equivalent via ~, to the proof-net 7'(s’)
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o For s = (t u)[x/v] —npp, (tfz/v] u) = &, with z € £v(t) & = ¢ fv(u),
coming from ¢y, Tey, Tew, T,z : D F ¢t 0 B — A and Ty, Doy Tuw, T F

w: Band Iy, [ty Dy, Ty F ot

D, where 'y, 1= fv(t) N fv(u) N fv(u),

Ty := fy(t) Nfv(u) \ 2\ £v(v), Ty = £v(t) N fv(v) \ fv(u), Ty =
fv(u)NEv(v) \ £v(t), Ty := £v(t) \ £v(u) \ £v(v), Ty := £v(u) \ £v(¢) \ fv(v)
and T, := £v(v) \ £v(t) \ £v(u). The proof-net T'(s) is given by
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which is equivalent via ~ g to the proof-net T'(s")



Tiuws Doy Ty, Ty + D F w2 B and Ty, Dy, T, Iy B v 2 D, where

Tiuo = £v(t) N fv(u) N fv(u), T = £v(t) Nfv(u) \ y \ £v(v), Ty =
‘ fv(t)NEv(v) \fv(u), Ty := fv(u)NEv(v) \£v(t), Ty := £v() \ £v(u)\fv(v),

A S I Ty :=1fv(u) \ £v(t) \ fv(v) and T, := £v(v) \ £v(¢) \ £v(u).

T
\K —t—F+—+—+
‘L%_l e " T This case is similar to App,. The proof-net 7'(s) is given by
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e For s = (Ay.t)[z/u] —ram Ay.tlr/u] = s, with x € fv(Ay.t), coming from
ILT,z:DF AXyt:B— CandI', A+ u:DwhereI' := fv(Ay.t) N fv(u)
and I := fv(Ay.t) \ = \ £v(u) and A := fv(u) \ £v(Ay.t). We show here the
case y € fv(t), the case y ¢ £v(t) being similar. We have exactly the same
interpretation T'(_) for both terms s and s’ which is given by the proof-net:

which reduces by — .- to the proof-net

Tt
T(u) Tv)
‘ ‘ ‘ ‘ !

e For s = (Ay.t)[z/u] —ram Ay.tlz/u] = ¢, where z ¢ £v(Ay.t), coming from
ILT F Ayt : B - CandT,A F u : D where I' := fv(\y.t) N fv(u)
and IT := fv(A\y.t) \ £v(u) and A := fv(u) \ £v(Ay.t). We show here the
case y € fv(t), the case y ¢ £v(t) being similar. We have exactly the same
interpretation 7'(-) for both terms s and s’ which is given by the following proof-
net.

which reduces by —-p to the proof-net

e For s = t[z/ully/v] —comp, tly/v]z/uly/v]] = &', withy € fv(t) &y €
fv(u). We show here the case © € fv(t), the case © ¢ fv(t) being similar.
Thus, I' + s : A comes from T4y, Dy T, Ty 2 Byy 0 D F t 2 Aand
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o 5 = t[z/ul[y/v] —comp, tlr/uly/v]] = s, withy ¢ fv(t) &y € fv(u). We

show here the case = € £v(t), the case = ¢ £v(t) being similar. Thus, I' - s

c A

comes from [y, Uy, Ui, U,z 0 B E ¢ 2 Aand Uy, Dy o, sy = D

w : Band Ty, Dy, Ty, Ty B v 0 D, where Ty := £v(¢) N £v(u) N £v(

)
T = £v(t) NEv(u) \ y \ £v(v), Ty, = £v(t) N Ev(v) \ fv(ug, Tuo :
t

fv(u) NEv(v) \ £v(t), Ty == £v(t) \ fv(u) \ £v(v), Ty := £v(u) \ £v(¢) \ fv
and Ty, := fv(v) \ fv(t) \ fv(u).
This case is similar to App,. The proof-net T'(s) is given by
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which reduces by —- to the proof-net




We now consider the cases where s — s ¢’ is an internal reduction step.

e If s =¢ s’ ors ~— App, Lamb s’ then the property trivially holds since ~z is a
congruence.

If 5 —Bs\ (appy Lamn) 8’ I8 Av.t — Az.t’ ort uw — ¢' wor t[z/u] — t'[x/u]
coming from ¢ — ¢/, then we obtain T'(t) HE/E C[T ()] by ih. and the
property holds by the fact that the context C'[ | of weakening wires surrounding
T'(t") can also be considered as a context of weakening wires surrounding 7°(s”).

If s —Bs\ {ppy Lamv} 8’ IS u t — w ¢’ or u[z/t] — ulz/t'] coming from ¢t — ¢',
then we obtain T'(t) %;/ﬁ C[T ()] by i.h. and the property holds by the
fact that the context C[ ] of weakening wires surrounding 7'(¢") can be pushed
outside the box containing 7'(¢") by using the rule —y in order to obtain a context
of weakening wires surrounding 7'(s).

Remark that the only case where we get a non empty context in Lemma 0.1 is when
simulating the rule Gc. This is because Gc is the only rule which looses free variables,
all the other ones preserve the same set of free variables.

Corollary 0.2 (SN for \s-typed terms) [fT" =)o t : A, thent € SN ys.

Proof. We can apply the abstract theorem 0.3 : £ is C, R is the relation —ppp. Lanb
(for which we can trivially show that —app_ 1amb / =¢ is well-founded), R is the rela-
0N —res\ {App, .Lanb}» K is the relation given by the translation T(_), S is the reduction
relation R/E on MELL proof-nets (which is well-founded Polonovski), and properties
(ES), (WS), (SS) hold by Lemma 0.1. .

An abstract theorem

Theorem 0.3 Let O and P be two sets. Let Ry, Rz be two relations on O x O, S be
a relation on P x P, K a relation C O x P and & an equivalence relation on O such
that R1 /€ is well-founded. Suppose also

(ES) t Et' and t K T impliest’ KT
(WS) t Ry t' and t K T implies there is T' such thatt' K T' and T S* T’
(SS) t Ry t' and t K T implies there is T' such thatt' K T" and T St T'

Then, if t K T and S is a well-founded relation on T, then (R1 U R2)/E is well-
founded on t.

Proof. Suppose (R1UR3)/€ is not well-founded on ¢. Since Ry /€ is well-founded
by hypothesis, there is an infinite sequence on O where Ro /& occurs infinitely many
times so it is of the form

t...(RafE)t1...(Re/E) ta...(Ra/E) ti ...

that is,

t <R1/g)* ERLE tl(R1/5>* E Ry gtz(Rl/g)* EREL;. ..

Butt; K Tj and t;(R1/€)* € Ra € t;4+1 imply, by (ES), (WS) and (SS) , that there
is Tjyq st tjr1 KTy 1 and T St Tjy1. Thus, there are T, T3, ..., T;,... € P such
that t1 K T1,t2 K T, ..., t; K T}, ... and the following infinite S-reduction sequence
exists

TSYTT ST, 8T ...8TT; ...

This leads to a contradiction with the fact that S is well-founded on 7. .



