From λ -terms to MELL Proof-Nets

Reduction rules and equations for MELL Proof-Nets

See

http://www.pps.univ-paris-diderot.fr/~kesner/enseignement/mpri/ll/RE-MELL-proofnets.pdf

Recall that...

Two forms for atomic formulae : p and p.

Negation of formulae is defined as follows:

$$p^{\perp} \qquad \quad := \quad p \qquad \qquad p^{\perp} \qquad \quad := \quad p$$

$$(A \otimes B)^{\perp} := A^{\perp} \otimes B^{\perp} \quad (A \otimes B)^{\perp} := A^{\perp} \otimes B^{\perp}$$

$$(?A)^{\perp} \quad := \quad !A^{\perp} \qquad \quad (!A)^{\perp} \qquad := \quad ?A^{\perp}$$

2

Reduction relation for MELL Proof-Nets

Let us consider :

$$\begin{array}{lcl} E & = & A \cup B \\ \\ CE & = & \{Ax\text{-}cut, \otimes\text{-}\otimes, w\text{-}b, d\text{-}b, c\text{-}b, b\text{-}b\} \\ \\ R & = & CE \cup \{\mathtt{U}, \mathtt{V}\} \end{array}$$

The reduction relation on MELL proof-nets is generated by the reduction rules ${\cal R}$ and congruence axioms ${\cal E}$:

$$p \rightarrow_{R/E} p'$$
 iff $\exists p_1, p_2 \ p \sim_{E} p_1 \rightarrow_{R} p_2 \sim_{E} p'$

3

Termination properties of proof-nets

(Girard)

The reduction system generated by the reduction rules CE is SN.

(DiCosmo-Guerrini)

The reduction system generated by the reduction rules $CE \cup V$ modulo the axioms E is SN.

(Polonovski)

The reduction relation R/E is SN.

Translating λ s-Reduction on Typed Terms

Theorem [From λ s to MELL] Let $\Gamma \vdash_{\lambda s} t : A$ and $t \to_{\lambda s} t'$, then $T(\Gamma \vdash_{\lambda s} t : A) \to_{R/E}^* C[T(\Gamma' \vdash_{\lambda s} t : A)]$ for some $\Gamma' \subseteq \Gamma$ and some MELL-context made only of weakenings.

- Which λ s-steps are strictly/weakly translated?
- How SN for λs -typed terms can be concluded from SN for MELL Prof-Nets?

From simply typed λ s-terms to MELL Proof-Nets

Translate types and type derivations as follows:

http://www.pps.jussieu.fr/~kesner/enseignement/mpri/ 11/lambdas-proofnets2.pdf

The σ -equivalence in λ -calculus

$$(\lambda x.\lambda y.U)V \equiv \sigma_1 \quad \lambda y.(\lambda x.U)V \quad \text{if } y \notin FV(V)$$

 $(\lambda x.UV)W \equiv \sigma_2 \quad ((\lambda x.U)W)V \quad \text{if } x \notin FV(V)$

Lemma If $t \equiv_{\sigma} t'$, then $t \equiv_{\beta} t'$.

Theorem [Regnier'90] If $t \equiv_{\sigma} t'$, then $\eta_{\beta}(t) = \eta_{\beta}(t')$.

6

5

The σ -equivalence in calculi with ES

$$(\lambda y.U)[x/V] \quad \equiv \quad \lambda y.U[x/V] \quad \text{ if } y \notin FV(V)$$

$$(UV)[x/W] \equiv U[x/W]V \quad \text{if } x \notin FV(V)$$