
chapter 7

RECURRENCES

Recurrence relations define sequences of numbers. They can be obtained

• either by inductive reasoning as we have already seen in examples in Chapter

3,

• or by strategies which divide a size n problem into smaller problems (of size

≤ n−1), each of which can be solved more easily in general; e.g. strategies of the
type ‘divide and conquer’, solving problems by dichotomy. Several such examples

will be studied below.

In the present chapter we will study some methods for explicitly finding the
sequences of numbers defined by such relations.

This chapter is mainly devoted to linear recurrences for which there exist
classical mathematical theories explaining how and why these recurrences can

be explicitly solved. Linear algebra (vector spaces, matrices, eigenvectors and
eigenvalues) is one of these theories. Its knowledge is assumed for the proof of

Proposition 7.14. For fundamentals about algebra we suggest

C. Norman, Undergraduate Algebra, Oxford University Press, Oxford (1986).

Bartel Leenert Van der Waerden, Algebra, Frederick Ungar Publishing Company,
New York (1970).

We recommend the following handbooks:

Gilles Brassard, Paul Bratley, Algorithmics: Theory and Practice, Prentice Hall,

London, (1988).

Ronald Graham, Donald Knuth, Oren Patashnik, Concrete Mathematics, Addi-
son-Wesley, London (1989).

Donald Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,
London (1973).

Chung Laung Liu, Introduction to Combinatorial Mathematics, Mc Graw-Hill,

New York (1968).
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122 7. Recurrences

7.1 Introduction: examples, generalities

7.1.1 Examples

The present section consists of a list of examples showing how recurrence relations
are obtained, what forms they can take, and gives some ideas on how to solve

them.

Example 7.1 (Number of binary trees with n nodes) The binary trees stud-

ied here can possibly be empty, which is not the case for the trees studied in
Chapter 10. Recall (see Example 3.9, 5) that binary trees B labelled by the

alphabet {a} are recursively defined by

• ∅ is a binary tree, namely, ∅ ∈ B (basis),
• if bl and br are binary trees then (a, bl, br) is also a binary tree (inductive
step of the recursive definition).

We can define the number n(b) of nodes of a binary tree b similarly by recurrence

• tree ∅ has no node, namely n(∅) = 0,
• n((a, bl, br)) = 1 + n(bl) + n(br).

We can evaluate the number bn of binary trees with n nodes as follows. A tree
with n nodes can be represented by

a
/ ∖

fl fr

where fl (the left child) is a tree with k nodes and fr (the right child) is a tree

with n− k − 1 nodes.
We will evaluate the number bn of binary trees with n nodes by induction, and

we will notice that

• b0 = 1 (the empty tree ∅ is the only tree with 0 nodes),

• bn =
∑n−1

k=0 bk × bn−1−k: this equality follows from the fact that in order to
obtain a tree with n nodes it is necessary (and sufficient) to consider all possible
binary trees of the form (a, bl, br) with bl (resp. br) a binary tree with k (resp.

n − k − 1) nodes; there are bk possibilities for bl, and bn−k−1 possible choices
for br, thus bk × bn−k−1 possible choices for b, and this holds for all possible ks.

Hence, we have the recurrence relation

bn =
n−1
∑

k=0

bk × bn−1−k . (7.1)
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We see that in this case, bn is defined in terms of b0, b1, . . . , bn−1: this is one of

the most complex cases of recurrence relations that we will encounter.

Exercise 7.1 Recall that in a binary tree a node is said to be internal if it has either
a non-empty right child, or a non-empty left child or both. Let bn be the number of
binary trees with n internal nodes.

1. Compute b0, b1, b2.
2. Find a recurrence relation giving bn. ♦
Exercise 7.2 Let Σ = {a1, a2, . . . , ak} be an alphabet with k elements; recall that the
binary trees BIN labelled by Σ are defined inductively by
• ∅ is a binary tree,
• if x ∈ Σ, bl ∈ BIN , br ∈ BIN , then (x, bl, br) ∈ BIN .
The depth p(b) of a binary tree is defined by:
• p(∅) = 0,

• p
(

(x, bl, br)
)

= 1 + sup{p(bl), p(br)}.
Give recurrence relations defining

1. the number un of binary trees Un of depth less than or equal to n (in terms of
un−1). (Computing un is not required.)
2. the number vn of binary trees ABn of depth exactly n (in terms of vn−1 and of
the uis for i ≤ n). (Computing vn is not required.) ♦

Example 7.2 The Fibonacci numbers are defined by the recurrence relation

Fn+1 = Fn + Fn−1 , (7.2)

with initial conditions F0 = 0, F1 = 1.

Exercise 7.3 n lines are drawn on a plane; they intersect and thus delimit a certain
number of bounded regions and of infinite regions. What is the maximum possible
number of bounded regions determined? ♦
Exercise 7.4 n overlapping circles in the plane are assumed to intersect pairwise in
two points, with neither tangential nor triple points. Show that the number of regions
thus defined in the plane is determined by the recurrence relation

n > 1, rn = rn−1 + 2(n− 1) , (7.3)

with r1 = 2. ♦

Example 7.3 Binary search to determine the maximum in a list of n elements:

in order to find the maximum in a length n list, we divide it into two lists of
length n/2 (assuming n of the form 2k), we find the maximum of each one of

the two lists, then we compare these two maxima. If tn is the required time for
finding the maximum of a length n list, we have

tn = 2tn/2 + 1 , t2 = 1 . (7.4)

(We assume that the unit of time complexity is the cost of a comparison, hence
t2 = 1.)

Exercise 7.5 Compute tn defined in Example 7.3. ♦
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Example 7.4 Let fh(k) be the maximum number of leaves on a tree of height

h where each node has at most k children. f1(k) = 1, since a tree of height 1 is
reduced to a single node being both root and leaf. We immediately check that

fh(k) = kfh−1(k) . (7.5)

See also Chapter 10.

Exercise 7.6 Compute sp = 1 − 2 + · · · + (2p − 3) − (2p − 2) + (2p − 1) − 2p, for
p ∈ IN. ♦

Example 7.5 The following recurrence relations are useful for studying the
complexity of Quicksort (see Section 14.1):

p2 = 3, and for n > 2, pn = n+ 1 + pn−1 , (7.6)

a0 = b0 = a1 = b1 = c0 = c1 = 0, and ∀n ≥ 2 ,

an ≤ cn ≤ bn ,

an = n− 1 + 2/n
n−1
∑

k=1

ak and bn = n+ 1 + 2/n
n−1
∑

k=1

bk . (7.7)

7.1.2 Generalities, classification

In the preceding section we saw various recurrence relations. They were all of the

form
un = f(n, {u0, u1, . . . , un−1)}) , n ∈ J ⊆ IN ,

with initial conditions enabling us to start the recurrence. Several methods are
available for solving them but we must first determine the type of the recurrence

relation. To this end, we have three orthogonal classification criteria.

• First, the type of the function f , which can be
– a linear combination, as in the case of relations (7.2), (7.3), (7.4),

(7.5), (7.6), (7.7), having constant coefficients ((7.2), (7.3), (7.4), (7.5)), or
coefficients depending on n ((7.7)); the recurrence relation is then said to be

linear ;
– a polynomial, as in the case of relation (7.1); the recurrence relation

is then said to be polynomial ;
• Second, the set of ups needed to compute un

– if we need un−1, . . . , un−k to compute un, the recurrence relation is
said to be of degree k, and then J ⊆ {n /n ≥ k}. Relation (7.2) is of degree
2, (7.3), (7.5), (7.6) are of degree 1.
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– if we need u0, . . . , un−1 to compute un, the recurrence relation is said

to be complete, and then J = {n /n ≥ 1}. For instance, relation (7.1) is
complete, and so are relations (7.7).

– if we only need un/a with a constant, a ∈ IN, a > 1, to compute un,
the recurrence relation is then said to be a partition recurrence; in that case

J = {n / a divides n}. For instance, relation (7.4) is of this type. Usually,
partition recurrences are obtained by dividing a size n problem into one or

more smaller problems, hopefully simpler to solve, e.g. using dichotomic
methods, and more generally strategies of the type ‘divide and conquer’.

• Third, the fact that function f does or does not have parameters and terms

other than multiples of the ujs, j < n.

– if f depends only on the ujs, j < n, the recurrence relation is said to
be homogeneous: e.g. recurrences (7.1), (7.2), (7.5).

– if f depends on terms other than the ujs, most often the recurrence
relation will be of the form un = f({up / p < n}) + g(n), the recurrence

is said to be non-homogeneous and g(n) is called its right-hand side: e.g.
recurrences (7.3), (7.4).

Let vn = f({vp / p < n}), n ∈ J ⊆ IN, be a recurrence relation. Solving

this recurrence consists of finding a sequence (ui)i≥0 such that ∀n ∈ J , un =
f({up / p < n}). Among the solutions, we are interested in those satisfying

initial conditions, given by a set of values {ai / i ∈ I}, where I is a subset of IN.
A sequence (ui)i≥0 satisfies the initial conditions if ∀n ∈ I, un = an.

Many useful and systematic methods are available for solving linear recurrences
of finite degree, whether homogeneous or not. Some methods are available in the

case of partition recurrences, though to a lesser extent. Finally, for polynomial
or complete recurrences, the solution is more complex, and will involve more

elaborate tools such as generating series and differential equations. We will study
some examples in Chapter 8 (generating series).

Proposition 7.6 Let vn = f({vp / p < n}) be a recurrence relation; assume

that f is a mapping (i.e. its domain is the whole set IN);

• if the recurrence is complete, and if u0 is given, the recurrence has at least
one solution.

• if the recurrence is of degree k, and if we are given the initial values u0, . . . , uj ,

j < k, the recurrence has at least one solution.

• if the recurrence is a partition recurrence of the form vn = f(vn/a), and if
we are given u0, . . . , uj , j < a, the recurrence has at least one solution.

Proof. Verify, by induction on n, the property P (n): ∃u0, u1, u2, . . . , un, satisfy-
ing the given recurrence; assume, for instance, that f is complete, and that u0 is
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given. Then,

• u0 exists since it is given, and u0 trivially satisfies the recurrence;

• assume u0, . . . , un−1 satisfying the recurrence exist, and let un = f(u0, . . . ,
un−1); un satisfies the recurrence by construction; we have thus shown the exis-

tence of u0, . . . , un satisfying the recurrence, hence the induction hypothesis and
the result.

The cases when f is a linear or a partition recurrence are similar. ⊓⊔

Remark 7.7 A solution may not exist if the initial conditions are too demand-
ing, e.g. initial values u0, . . . , uk+p, where uk, . . . , uk+p, are incompatible with

the recurrence relation in the case of a linear recurrence of degree k.

Exercise 7.7 Find examples of non-solvable recurrences. ♦
In spite of the preceding remark, the problem of the existence of the solutions will
in general not occur for the recurrences obtained in cost or complexity evaluations.
The problem of uniqueness of solution is more complex.

Proposition 7.8 Let vn = f({vp / p < n}) be a recurrence relation, then its
solution un is uniquely defined if

• f is a recurrence of degree k and u0, . . . , uk−1 are given,

• f is a complete recurrence and u0 is given,
• f is a partition recurrence of the form vn = f(vn/a) and all the uis such that
i < a or i ≥ a and a does not divide i are given.

Proof. The existence of a sequence (un)n≥0 satisfying the given conditions follows
from Proposition 7.6.

Let (un)n≥0 and (u′
n)n≥0 be two solutions of vn = f({vp / p < n}), n ∈ J ,

both satisfying the given initial conditions. Show by induction on n the property
P (n) : un = u′

n for all n. We will use the second induction principle: we must

thus prove that

∀n ∈ IN,
(

∀l < n, P (l)
)

=⇒ P (n) . (7.8)

Since (un)n≥0 and (u′
n)n≥0 satisfy vn = f({vp / p < n}), ∀n ∈ J , it is clear that

∀n ∈ J,
(

∀l < n, ul = u′
l

)

=⇒ un = u′
n .

Moreover, since (un)n≥0 and (u′
n)n≥0 satisfy the same initial conditions {ai /

i ∈ I}, we have ∀i ∈ I, ui = u′
i. Hence,

∀n ∈ I ∪ J,
(

∀l < n, ul = u′
l

)

=⇒ un = u′
n .

It can easily be seen that, in all three considered cases, I ∪ J = IN, hence (7.8),
then ∀n, un = u′

n and thus the solution is unique. ⊓⊔
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Remark 7.9 Combining the first two clauses of Proposition 7.6 with the corre-

sponding clauses of Proposition 7.8, we obtain necessary and sufficient conditions
for the existence and uniqueness of the solutions of recurrence relations of degree
k and complete recurrences.

Exercise 7.8 Find examples of non-unique solutions for various types of recurrence.
♦

Remark 7.10 The condition implying uniqueness of the solution of partition
recurrences is quite restrictive. Usually, we will thus try to obtain the uniqueness

more simply:
• either by restricting the domain and computing the uns on a subset of IN.

• or by finding only estimates of the solutions, namely, by studying the asymp-
totic behaviour of the solutions instead of the exact solutions themselves (see

Example 9.17).

Example 7.11 Consider the partition recurrence un = bun/a+ d(n). Assuming
u1, un is uniquely defined on

S = {n = ak / k ∈ IN} .

We will solve this recurrence by letting vk = uak ; vk is then defined by v0 = u1

and vk+1 = bvk + d(ak+1). We reduced the problem to that of solving a linear

recurrence of degree 1, which will be treated in the next section.

Example 7.12 Let the partition recurrence un = 2un/2 (corresponding, for

instance, to a binary merge-sort), with u1 = 1. Then un is uniquely determined
on S = {n = 2k / k ∈ IN}; but, for n /∈ S we can no longer uniquely determine
un, i.e. for n = 2kv with v odd we will have un = 2kuv, namely, un will be

determined up to the coefficient uv.

Exercise 7.9 Solve the recurrence relation
∀n ≥ 1, un = 3

∑n−1

k=0
uk + 1. ♦

7.2 Linear recurrences

7.2.1 Linear homogeneous recurrences with constant coefficients

A linear homogeneous recurrence relation of degree k with constant coefficients
is defined by an equation of the form

∀n ≥ k , un = a1un−1 + · · ·+ akun−k . (7.9)
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Method of the characteristic polynomial

Definition 7.13 Let the characteristic polynomial of the recurrence (7.9), be

defined by

P (r) = rk − a1r
k−1 − · · · − ak−1r − ak

and the characteristic equation of the recurrence (7.9), be defined by

rk = a1r
k−1 + · · ·+ ak−1r + ak . (7.10)

Proposition 7.14

(i) The set of solutions of equation (7.9) is a vector space of dimension k.

(ii) 1. If P (r) has k pairwise distinct roots r1, . . . , rk, then the k sequences

{rni / n ∈ IN}, i = 1, . . . , k, are a basis of the vector space of the solutions
of (7.9), and any solution of (7.9) is of the form un =

∑k
i=1 λir

n
i , where the

λis are determined by the initial values u0, . . . , uk−1.

2. If the roots of P (r) are rj , such that for j = 1, . . . , p, with p < k,

each rj is a multiple root of multiplicity mj , then the k sequences {(rnj )n∈IN,
(nrj

n)n∈IN, . . . , (n
mj−1rnj )n∈IN, j = 1, . . . , p} are a basis of the vector space

of solutions of (7.9); any solution of (7.9) will be of the form

un =

p
∑

i=1

Pj(n)r
n
j ,

where Pj(n) is a polynomial of degree ≤ mj − 1.

Note that the first case is an instance of the second case, with p = k and mj = 1.

Proof.

(i) Clearly, if un and vn are solutions of (7.9), any linear combination wn =
λun + µvn is also a solution of (7.9); thus the set of solutions forms a vector

space. This vector space is of dimension k at most because giving u1, . . . , uk

suffices to uniquely determine un. Lastly, this vector space is of dimension k,

since k linearly independent sequences can be found; for j = 1, . . . , k, consider
the sequences u1, . . . , uk, where the initialization of uj is defined by

for i = 1, . . . , k, uj
i =

{

1 if i = j,
0 otherwise.

Then the k sequences u1, . . . , uk define a set of k linearly independent sequences.
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(ii) Assume that r is a root of (7.10), then, clearly, un = rn is a solution of the

recurrence relation, with the initial conditions ui = ri for i = 0, . . . , k − 1.
• thus, in the case when the rjs are pairwise distinct it is simple to verify
that the k sequences u1, . . . , uk, where uj is defined by the initial conditions

uj
i = rij for i = 0, . . . , k− 1, form a basis of the vector space of the solutions:

these are indeed k linearly independent solutions since the determinant

det

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1
r1 r2 . . . rk
...

...
...

rk−1
1 rk−1

2 . . . rk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

j<i

(ri − rj)

is non-zero (Vandermonde’s determinant). Any solution of (7.9) is thus a
linear combination of the solutions u1, . . . , uk.

• Assume now that rj is a root of multiplicity mj of the characteristic
equation P (r) = rk−(a1r

k−1+· · ·+ak−1r+ak) = 0, and check that themj se-

quences (rnj )n∈IN, (nr
n
j )n∈IN, . . . , (n

mj−1rnj )n∈IN are all solutions of (7.9). For
the sequence (rnj )n∈IN, it is straightforward since rj is a root of the character-

istic polynomial P (r). For the other sequences (nrnj )n∈IN, . . . , (n
mj−1rnj )n∈IN

we need a result from algebra (Lemma 7.15).

For any n ≥ k and p ≥ 0, let Qn,p(r) be the polynomial

Qn,p(r) = nprn −
(

a1(n− 1)prn−1 + a2(n− 2)prn−2

+ · · ·+ ak−1(n− k + 1)prn−k+1 + ak(n− k)prn−k
)

.

We prove by induction on n that there exist polynomials Rn,p,i(r) such that

for i = 0, . . . , p

Qn,p(r) =

p
∑

i=0

Rn,p,i(r)P
(i)(r) , (E)

where P (i) is the ith derivative of P .
(B) If p = 0, Qn,0(r) = rn−kP (r); we thus let Rn,0,0(r) = rn−k.
(I) We assume that (E) is true for p and note that

Qn,p+1(r) = rQ′
n,p(r)

= r

p
∑

i=0

(

R′
n,p,i(r)P

(i)(r) +Rn,p,i(r)P
(i+1)(r)

)

,

{

Rn,p+1,0(r) = rR′
n,p,0(r)

Rn,p+1,p+1(r) = rRn,p,p(r)
hence

Rn,p+1,i(r) = r
(

R′
n,p,i(r) +Rn,p,i−1(r)

)

.and for 0 < i ≤ p,
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Hence the induction hypothesis and (E).

From (E) and Lemma 7.15 we deduce that Qn,p(rj) = 0 for p < mj ;
this implies that (nprnj )n∈IN is a solution of (7.9).

The solutions thus obtained are linearly independent because the de-

terminant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 ... 0 1 ...
r1 r1 r1 ... r1 r2 ...
r21 2r21 22r21 ... 2m1−1r21 r22 ...
...

...
...

...
...

rk−1
1 (k − 1)rk−1

1 (k − 1)2rk−1
1 ... (k − 1)m1−1rk−1

1 rk−1
2 ...

1 0 0 ... 0
rp rp rp ... rp
rp 2r2p 22r2p ... 2mp−1r2p
...

...
...

...
rk−1
p (k − 1)rk−1

p (k − 1)2rk−1
p ... (k − 1)mp−1rk−1

p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is equal to

(

∏

1≤j≤p

r
(mj

2
)

j

)(

∏

1≤j<i≤p

(ri − rj)
mimj

)

and is non-zero (the ris

are non-zero and assume distinct values).
The general solution of (7.9) is again a linear combination of the

solutions (nkjrnj )n∈IN, j = 1, . . . , p, kj = 0, . . . ,mj − 1, which form the basis
of the vector space. ⊓⊔

Lemma 7.15 If r is a root of multiplicity m of P (x), then r is also a root of
P ′(x), . . . , P (m−1)(x), where P (k)(x) is the kth derivative of P .

Proof. By induction on k, we prove that, if r is a root of multiplicity m of P (x),
then, for 1 ≤ k ≤ m− 1, r is also a root of multiplicity m− k of P (k)(x).

(B) r is a root of multiplicity m of P (x) implies that P (x) = (x − r)mQ(x),

with Q(x) a polynomial such that r is not a root of Q(x). Since P ′(x) = m(x−
r)m−1Q(x) + (x− r)mQ′(x) = (x− r)m−1

(

mQ(x) + (x− r)Q′(x)
)

, r is a root of

multiplicity m− 1 of P ′(x).
(I) The inductive step is similar: for any k < m− 1, we can check that if r is a

root of multiplicity m− k of P (k)(x), then r is a root of multiplicity m− k− 1 of
P (k+1)(x). ⊓⊔

Exercise 7.10 Find the solutions of the recurrence relation

un = 5un−1 − 8un−2 + 4un−3, n ≥ 3 ,
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with the initial conditions u0 = 0, u1 = 1, u2 = 2. ♦

Exercise 7.11 Let Σ = {a, b} and let B be the subset of Σ∗ defined inductively by

(B) a ∈ B , b ∈ B,
(I) w ∈ B =⇒ (abw ∈ B, baw ∈ B).

1. Write six elements of B.
2. Prove: w ∈ B =⇒ |w| odd (|w| denotes the length of w). Is the converse true?
3. Let un = card{w / w ∈ B and |w| = n}. Compute u1 and u2. Find a recurrence
relation for un and solve it. ♦

Exercise 7.12 Let Σ = {a, b, c, d} and let

L = {w ∈ Σ∗ / ab is not a factor of w}
= {w ∈ Σ∗ / 6 ∃w1, w2 ∈ Σ∗ with w = w1abw2} .

∀n ≥ 0, let

Ln = L ∩ Σn,

un = |Ln| ( the cardinality of Ln) .

Recall that Σn consists of the length n words on the alphabet Σ.

1. Compute L0, L1, L2, u0, u1, u2.
2. Find a necessary and sufficient condition for a word w = xw′, with x ∈ Σ, to be in
Ln.
3. Express Ln in terms of Ln−1 and Ln−2; deduce that the recurrence defining un is
given by un = 4un−1 − un−2.
4. Compute un.
5. Also compute vn = |L′

n| with L′

n = L′ ∩ Σn and

L′ = {w ∈ Σ∗ /w has neither ab nor ac as factor} . ♦

Exercise 7.13 Let

un = aun−1 + bun−2 (7.11)

be a linear homogeneous recurrence of degree 2 with constant coefficients whose associ-
ated polynomial r2 − ar− b has two conjugate complex roots ce−it and ceit. Show that
the general solution of (7.11) is of the form un = λcn cos(nt) + µcn sin(nt). ♦

Exercise 7.14 Solve the recurrence relations

1. ∀n ≥ 2, un = un−1 − 2un−2.
2. ∀n ≥ 2, un = un−1 − 2un−2 + 4. ♦

Exercise 7.15 Solve the following recurrences:

1. ∀n ≥ 2, 2un = 3un−1 − un−2.
2. ∀n ≥ 2, un = 4un−1 − 4un−2. ♦



132 7. Recurrences

Matrix method

Another method for solving linear homogeneous recurrences with constant coef-
ficients is available: the matrix method. Consider again the recurrence relation
(7.9) (page 127)

∀n ≥ k , un = a1un−1 + · · ·+ akun−k . (7.9)

It can be rewritten as









un

un−1

...
un−k+1









=









a1 a2 . . . ak−1 ak
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0









×









un−1

un−2

...
un−k









= M ×









un−1

un−2

...
un−k









.

We deduce, by multiplication,









un

un−1

...
un−k+1









= Mn−k ×









uk

uk−1

...
u1









,

whence the following computation method: assume that M has k distinct eigen-
values, let r1, . . . , rk be the eigenvalues of M and let N be the associated eigen-

vectors matrix such that

M = N ×









r1 0 . . . 0
0 r2 . . . 0
...

...
...

0 0 . . . rk









×N−1 ,

then









un

un−1

...
un−k+1









= N ×









rn−k
1 0 . . . 0
0 rn−k

2 . . . 0
...

...
...

0 0 . . . rn−k
k









×N−1 ×









uk

uk−1

...
u1









,

namely, in order to compute the general solution of (7.9), it is enough to diago-
nalize M as follows:
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• Find the eigenvalues of

M =













a1 a2 . . . ak−1 ak
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0













;

this can be done by writing that the following determinant is equal to zero

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 − r a2 . . . ak−1 ak
1 −r . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 −r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which is precisely equal to P (r) up to the plus or minus sign.

• Determine the eigenvector’s matrix from M to its diagonal form.

The matrix method also applies for solving simultaneous linear homogeneous

recurrences of degree 1 with constant coefficients; consider, for instance, the re-
currence relations

un = a1un−1 + a2vn−1 + a3wn−1 ,

vn = b1un−1 + b2vn−1 + b3wn−1 ,

wn = c1un−1 + c2vn−1 + c3wn−1 .

They can be written in the form





un

vn
wn



 =





a1 a2 a3
b1 b2 b3
c1 c2 c3



×





un−1

vn−1

wn−1



 = M ×





un−1

vn−1

wn−1



 .

We deduce, by multiplication,





un

vn
wn



 = Mn−1 ×





u1

v1
w1



 ,

which is solved as previously.

Exercise 7.16 Solve the recurrences

1. ∀n ≥ 1,
{

un = 4un−1 + 2vn−1,
vn = −3un−1 − vn−1,



134 7. Recurrences

with u0 = a, v0 = b.

2. ∀n ≥ 1,

{

un = u4
n−1v

2
n−1,

vn = 1
u3
n−1vn−1

,

with u0 = a > 0, v0 = b > 0. ♦
Exercise 7.17 Let Σ = {0, 1}. Interpret a word f in Σ∗ as the binary representation of
an integer. For instance, 101 represents 5, 1101 represents 13. Let Li = {f ∈ 1 ·Σ∗ / f ≡
i[3]}, i = 0, 1, 2, otherwise stated,

Li = {f ∈ Σ∗ / f starts with 1 and f ≡ i modulo 3}, i = 0, 1, 2 .

For all n ≥ 1, let:
un = |L0 ∩ Σn|
vn = |L1 ∩ Σn|
wn = |L2 ∩ Σn|

1. Compute u1, v1, w1 and u2, v2, w2.
2. If f ∈ Li in which set is the word f0? In which set is the word f1? Deduce that
un+1 = un + vn, vn+1 = un + wn, wn+1 = wn + vn.
3. Compute un, vn, wn. ♦

Method of the generating series

Finally, the third method for solving linear recurrences consists of generating

series. Consider a sequence un defined by the recurrence relation (7.9), and
define the series u(z) =

∑

n≥0 unz
n , called the generating series associated with

the sequence un. We will compute the generating series, and deduce the uns.

7.2.2 Non-homogeneous linear recurrences with constant coefficients

Non-homogeneous linear recurrences are also called recurrences with a right-hand
side. They assume the general form

∀n ≥ k , un = a1un−1 + · · ·+ akun−k + b(n) . (7.12)

Proposition 7.16 The solutions of the equation (7.12) form an affine space of
dimension k, whose associated vector space is the set of solutions of the associated
homogeneous recurrence (7.9).

Proof. Let vn be a particular solution of (7.12); all other solutions v′n are of the

form v′n = vn + wn, where wn is a solution of the recurrence relation (7.9) (page
127)

wn = a1wn−1 + · · ·+ akwn−k . (7.9)
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Indeed, if we have

vn = a1vn−1 + · · ·+ akvn−k + b(n)

and

v′n = a1v
′
n−1 + · · ·+ akv

′
n−k + b(n) .

We deduce by subtraction that wn = v′n − vn satisfies

wn = a1wn−1 + · · ·+ akwn−k .

Conversely, it is clear that if wn is a solution of (7.9) and vn is a particular
solution of (7.12), un = wn + vn is also a solution of (7.12). ⊓⊔

Therefore, to obtain the general solution of (7.12), it ‘suffices’ to find a partic-
ular solution vn, then to solve the associated homogeneous recurrence (7.9), and
finally to add the general solution wn of (7.9) to a particular solution vn of (7.12).

The problem is that no systematic method for finding a particular solution vn
exists except for a special type of function b(n), which we will now study. First

study a simple example.

Example 7.17 Consider the recurrence relation

n ≥ 2, un = 2un−1 + 1/n , (7.13)

with u1 = 1. We easily verify that vn =
∑n

i=2 2
n−i/i is a particular solu-

tion of (7.13). Moreover, the associated homogeneous recurrence can be written
wn = 2wn−1, and its characteristic polynomial has the root r = 2; thus its gen-

eral solution is of the form λ2n, and the general solution of (7.13) is of the form
un = λ2n + vn; taking into account that u1 = 1 and v1 = 0, we obtain λ = 1/2,

hence un = 2n−1 +
∑n

i=2 2
n−i/i.

The generating series method also applies, see Section 8.2.

Method of the characteristic polynomial

This method can be applied when the ‘right-hand side’ b(n) of the non-homogene-
ous recurrence (7.12) is of the form

∑l
i=1 b

n
i Pi(n), where, for 1 ≤ i ≤ l, Pi(n) is

a polynomial in n, bi 6= 0, and the bis are distinct numbers.
Note that when the right-hand side of a linear recurrence relation is of the form

∑l
i=1 ci(n), the solution of

un = a1un−1 + · · ·+ akun−k +

l
∑

i=1

ci(n)
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is the sum of the solutions of the l recurrences

u(i)
n = a1u

(i)
n−1 + · · ·+ aku

(i)
n−k + ci(n) .

In practice, in order to solve a recurrence whose right-hand side is
∑l

i=1 b
n
i Pi(n) we will apply

• either the general method given in Proposition 7.18 below,

• or solve the l recurrences with right-hand sides bni Pi(n) separately.

Proposition 7.18 Let the recurrence relation be defined by

un = a1un−1 + · · ·+ akun−k +

l
∑

i=1

bni Pi(n) , (7.14)

where all the bis are distinct, and Pi(n) is a polynomial in n of degree di. Then
un is the solution of a linear homogeneous recurrence relation of degree q =

k +
∑l

i=1(1 + di),
un = c1un−1 + · · ·+ cqun−q ,

whose characteristic polynomial rq − c1r
q−1 − · · · − cq is

(

rk − a1r
k−1 − a2r

k−2 − · · · − ak
)

l
∏

i=1

(r − bi)
di+1 . (7.15)

Any solution of (7.14) is thus of the form un =
∑p

j=1 Qj(n)r
n
j , where rj is a root

of multiplicity mj of (7.15) and Qj(n) is a polynomial of degree mj − 1.

Preliminary remark. In order to simplify the notations in the proof, we assume
here that the polynomial zero is of degree −1. Indeed, if Z(n) is the polynomial

zero
un = a1un−1 + · · ·+ akun−k

= a1un−1 + · · ·+ akun−k +

l
∑

i=1

bni Z(n)

and we have

rk − a1r
k−1 − a2r

k−2 − · · · − ak =
(

rk − a1r
k−1 − a2r

k−2 − · · · − ak
)

l
∏

i=1

(r− bi)
0 .

Proof. We prove the proposition by induction on δ =
∑l

i=1(1 + di).

Basis. In the preliminary remark we saw that the result holds for δ = 0.
Inductive step. In order to prove that if it holds for δ then it also holds for

δ + 1, we note that δ > 0 implies that di ≥ 0 for at least one i, and we prove the
following property.
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Lemma 7.19 Let P (n) be a polynomial of degree d ≥ 0, and let Pi(n) be

a polynomial of degree di ≥ 0, for i = 1, . . . , l. Let b, b1, . . . , bl be non-zero
constants with b 6= bi, for all i = 1, . . . , l. The solution of

un = a1un−1 + · · ·+ akun−k + bnP (n) +
l
∑

i=1

bni Pi(n) (7.16)

is also the solution of

un = c1un−1 + · · ·+ ck+1un−k−1 + bnQ(n) +

l
∑

i=1

bni Qi(n) ,

with

• rk+1 − c1r
k − c2r

k−1 − · · · − ck+1 = (rk − a1r
k−1 − a2r

k−2 − · · · − ak)(r− b),
• the degree of Q(n) is d− 1,
• the degree of Qi(n) is di .

Proof. For n ≥ k + 1,

un = a1un−1 + · · ·+ akun−k + bnP (n) +
l
∑

i=1

bni Pi(n) ,

un−1 = a1un−2 + · · ·+ akun−k−1 + bn−1P (n− 1) +

l
∑

i=1

bn−1
i Pi(n− 1) ;

multiplying the second equality by b and subtracting it from the first equality,
we have

un − bun−1 = a1(un−1 − bun−2) + · · ·+ ak(un−k − bun−k−1)

+ bnQ(n) +
l
∑

i=1

bni Qi(n) , (7.17)

with Q(n) = P (n)− P (n− 1) ,

Qi(n) = Pi(n)−
b

bi
Pi(n− 1) .

The recurrence (7.17) can be rewritten as

un = c1un−1 + · · ·+ ck+1un−k−1 + bnQ(n) +

l
∑

i=1

bni Qi(n) ,

with
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c1 = a1 + b

c2 = a2 − a1b

...

ck = ak − ak−1b

ck+1 = −akb ,

hence rk+1 − c1r
k − c2r

k−1 − · · · − ckr − ck+1 = rk+1 − a1r
k − a2r

k−1 − · · ·
− akr − brk + a1br

k−1 + · · ·+ akb = (rk − a1r
k−1 − a2r

k−2 − · · · − ak)(r − b).

It remains to prove: if P (n) is a polynomial of degree d ≥ 0, Q(n) = P (n) −
cP (n− 1) is a polynomial of degree d− 1 if c = 1, of degree d otherwise.

• If d = 0, P (n) is a constant k 6= 0, and Q(n) = k(1 − c) is 0 if and only if
c = 1.

• Otherwise, P (n) = knd + k′nd−1 +R(n) with k 6= 0, and R(n) of degree less
than or equal to d− 2. Then,

Q(n) = knd − ck(n− 1)d + k′nd−1 − ck′(n− 1)d−1 +R(n)− cR(n− 1).

Expanding (n − 1)d and (n − 1)d−1 by the binomial theorem and grouping

together the terms of degree less than or equal to d− 2 with R, we obtain

Q(n) = knd − ck(nd − dnd−1) + k′nd−1 − ck′nd−1 +R′(n) ,

which we simplify in ndk(1− c) + nd−1
(

k′(1− c) + ckd
)

+R′(n).

– If c = 1, Q(n) = nd−1kd + R′(n), and as k and d are non-zero, Q is
of degree d− 1.

– If c 6= 1, Q is of degree d. ⊓⊔

Using Proposition 7.18 we can solve non-homogeneous recurrences of the form
(7.14) in the same way as homogeneous recurrences.

Exercise 7.18 Let Σ = {a, b, c, d}. Let L ⊆ Σ∗ be the language containing no word
of the form ubvaw, with u, v, w in Σ∗ (namely, the letter a never occurs after the letter
b).

Compute by induction on n the number un of length n words in the language L. ♦
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Example 7.20 (cf. Exercise 7.4) Let the recurrence: un = 2un−1+1, for n > 1,

with u1 = 1. This recurrence is obtained by evaluating the time complexity of the
recursive algorithm for the tower of Hanoi puzzle*; un also represents the maximal
length of a preorder traversal in a binary tree of depth ≤ n (see Exercise 3.23).

It is a recurrence of the form (7.14) with l = 1, b1 = 1 and P1(n) = 1. The
characteristic equation is (r − 2)(r − 1) = 0 and the general solution of the

recurrence is un = λ1n + µ2n. We have u1 = λ + 2µ = 1; we need a second
condition to find λ and µ; we will use the recurrence and deduce u2 = 3; hence

λ+ 2µ = 1

λ+ 4µ = 3

and thus λ = −1, µ = 1, i.e. un = 2n − 1 for n ≥ 1, which was also obtainable

by a direct summation.

Exercise 7.19 Solve the recurrence un = un−1 + 2un−2 + (−1)n, n ≥ 2, with u0 =
u1 = 1 (studied in Section 8.2.2, by the generating series method). ♦
Exercise 7.20 Let the recurrence un+2 = 3un+1 − 2un + 4n, for all n ≥ 0 with the
initial conditions u0 = u1 = 0. Compute the general term un. ♦

Method of undetermined coefficients

To solve the recurrence (7.14) a slightly different method can be used, consisting

of

1. First finding a particular solution of the non-homogeneous recurrence, a

particular solution that must be of the form
∑l

i=1 b
n
i Qi(n) with

• deg(Qi) = deg(Pi) if bi is not a root of the characteristic polynomial

of the homogeneous recurrence associated with (7.14),
• deg(Qi) = deg(Pi) + mi if bi is root of multiplicity mi of the char-
acteristic polynomial of the homogeneous recurrence associated with (7.14).

The particular solution vn is found by the method of undetermined coef-
ficients, namely: in (7.14) substitute for vn a term

∑l
i=1 b

n
i Qi(n), where

the coefficients of the Qis are unknown, and determine these coefficients by
identifications.

* Recall that the tower of Hanoi puzzle consists of transferring n disks initially stacked
in decreasing order on a first peg to a second peg, initially empty, moving only one disk
at a time, and never moving a larger disk on top of a smaller one: on any peg the disks
will at any time be stacked in decreasing order throughout the whole transfer. To this
end a third peg, initially empty, is available; the idea is to transfer the n − 1 smaller
disks from peg 1 to peg 3, in time un−1, then to transfer the biggest disk from peg 1
to peg 2, where it will be at the right place, and to finally transfer the n − 1 smaller
disks from peg 3 to peg 2, in time un−1. All the disks will then be transferred, in time
un = 2un−1 + 1 for n > 1. Clearly when there is a single disk, a single manipulation
will do the job, and thus u1 = 1.
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2. Then finding the general solution un in the form un = vn + wn, where

wn is the general solution of the associated homogeneous recurrence, and the
coefficients of wn are determined by the initial conditions.

Example 7.21

1. Consider again the preceding example : un = 2un−1 + 1, with u1 = 1.
First look for a particular solution vn = λ1n, substituting the solution vn in the

recurrence gives λ = 2λ + 1 and λ = −1. Then look for the general solution in
the form: un = µ2n − 1, and for n = 1 that gives 2µ− 1 = 1, and thus µ = 1.

2. Let the recurrence: un = 2un−1 + n+ 2n, with the initial condition u1 = 0.
It is of the form (7.14) with b1 = 1, P1(n) = n, b2 = 2, P2(n) = 1; moreover,
the characteristic polynomial of the associated homogeneous recurrence is r = 2.

We must thus find a particular solution of the form vn = an + b + (cn + d)2n.
Plugging in the recurrence relation we obtain

an+ b+ (cn+ d)2n = 2a(n− 1) + 2b+ (c(n− 1) + d)2n + n+ 2n,

i.e. simplifying
0 = (a+ 1)n+ b− 2a+ 2n(1− c) .

This equality being true for all n we deduce a = −1, b = −2, c = 1 and we obtain

a particular solution vn = −2 − n + n2n for the equation un = 2un−1 + n + 2n.
We then try to find the general solution in the form un = vn + λ2n, since the

general solution of the homogeneous recurrence is wn = λ2n; taking into account
the initial conditions u1 = 0 we obtain u1 = −2 − 1 + 1 + 2λ = 0, hence λ = 1.
The solution of our recurrence is thus un = −2− n+ n2n + 2n.

We will note that the initial conditions are of no use to find the particular
solution vn.

7.2.3 Linear recurrences with parameters

There is no general method, except for some special cases; we will study one such
case, the linear recurrences of degree 1 with parameters. Consider the recurrence

relation
a(n)un = b(n)un−1 + c(n).

We can, without loss of generality, assume that a(n) = 1 (divide by a(n) which
is always 6= 0, otherwise the recurrence relation would not define un), and we are
thus back to

un = b(n)un−1 + c(n), n > 0.

Let f(n) =
∏n

i=1 1/b(i), and let the sequence (vn)n≥0 be defined by
vn = f(n)un, for n > 0, and v0 = u0. We verify that, ∀n > 0, vn satisfies
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the recurrence relation vn = vn−1+ f(n)c(n), which can be solved by summation

(the so called summation factors method); hence vn = v0 +
∑n

k=1 f(k)c(k), and
thus

un = (1/f(n))vn =

(

n
∏

i=1

b(i)

)(

u0 +
n
∑

k=1

f(k)c(k)

)

.

The summation factors method can also be applied with profit to some linear

recurrences with constant coefficients.

Example 7.22 Let un = un−1 + 2(n − 1), for n > 0, with u0 = 2. We obtain

un = 2 + 2(0 + 1 + 2 + · · ·+ (n− 2) + (n− 1)) = 2 + n(n− 1).

7.3 Other recurrence relations

Non-linear recurrences are less easy to solve. However, some techniques can be
applied, e.g. substitutions or image transformations.

7.3.1 Partition recurrences and substitutions

Recall that a partition recurrence is often obtained in a ‘divide and conquer’-type

algorithm, where a problem of size n is split into b subproblems of size n/a; if
un represents the cost of the solution of the size n problem, and c(n) the cost

of the creation and the utilization of the b subproblems of size a/n, we have the
recurrence relation, for n > 1,

un = bun/a + c(n). (7.18)

In order to solve this recurrence exactly, the domain is restricted to integers of the

form ak, and we apply the substitution vk = uak . We have uak = buak−1 + c(ak),
thus vk = bvk−1+ c(ak); hence a linear recurrence of degree 1, and we obtain (see
Section 7.2.3)

vk = bk

(

v0 +
k
∑

j=1

c(aj)/bj

)

= v0b
k +

k−1
∑

j=0

bk−j−1c(aj+1)

= v0b
k +

k
∑

j′=1

bj
′−1c(ak−j′+1) .
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Hence, as n = ak, and thus k = loga n,

un = v0b
loga n +

loga n
∑

j=1

bj−1c(n/aj−1) . (7.19)

Equality (7.19) will also allow us to evaluate the order of magnitude of un (see
Proposition 9.18).

Exercise 7.21 Solve the recurrence un = 4un/2 + n2, for n = 2k. ♦

Note that a sequence un can be considered as a mapping u: IN −→ C; the
substitution technique that we have just seen consists of transforming the domain

IN, namely, of composing u with a mapping f : IN −→ IN and considering the
recurrence v = u ◦ f . In the preceding example we had f(k) = 2k. It can also be
fruitful to transform the image of u, namely, to compose u with g: C −→ C, and

to consider the recurrence w = g ◦ u. We will give two such examples in the next
section.

7.3.2 Image transformations

Example 7.23 Consider the recurrence un = un−1 − unun−1, with u1 = 1.

Assume un 6= 0 ∀n, and divide by unun−1; We obtain
1

un−1
=

1

un
− 1 hence

1

un
=

1

un−1
+1. Let vn =

1

un
; this boils down to letting v = g ◦u with g(x) =

1

x
.

We then have v1 = 1 and vn = vn−1 + 1, hence vn = n and un = 1/n.

Example 7.24 Let the recurrence un = n(un/2)
2, with u1 = 6. Assume that

n = 2k and let vk = u2k . We deduce vk = 2kv2k−1 and v0 = 6. Now let wk =

log2 vk; we have wk = k+ 2wk−1 and w0 = log2 6. The characteristic polynomial
is (r − 2)(r − 1)2 = 0, and the general solution is of the form wk = a2k + b+ ck.

We easily obtain, using the equality wk = k + 2wk−1, that b = −2 and c = −1;
we obtain a = 3 + log2 3 by noting that w0 = 1 + log2 3 = a− 2. Hence , finally,

wk = (3 + log2 3)2
k − k − 2. Then, taking into account that v = 2wk and that

un = vlog
2
n, we obtain un = 23n−23n/n.

Exercise 7.22 Solve the following recurrence relations:

1. ∀n ≥ 2, un = 2
1

un−1

+
1

un−2

, with u0 = a and u1 = b.

2. ∀n ≥ 2, un =
√
un−1un−2 , with u0 = 1 and u1 = 2.

3. ∀n ≥ 2, un =
an

bn
=

an−1 + an−2

bn−1 + bn−2

, with u0 =
a0

b0
and u1 =

a1

b1
. ♦
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7.3.3 Complete recurrences

They can be solved either by using generating series tools (see Chapter 8 on
generating series), or by forming linear combinations of suitably chosen instances

of the recurrence relation (see Section 14.1.3 for an example).

7.4 Complements and examples

7.4.1 Operations on sequences

Z
A sequence is a mapping u: IN −→ C, conventionally extended into a map-

ping u:ZZ −→ C by letting un = 0 if n < 0 (or n < k0 ∈ ZZ if for technical
reasons the sequences must start with k0 6= 0). This convention is fundamental

in order for the results of the present section to hold. We can define various
operations on the sequences allowing ease of manipulation (addition, difference,
etc.). We give a short summary.

• E, the predecessor operation, is defined by

(Eu)n = un−1 and (Eu)0 = 0 .

• The product operation is defined by

(uv)n = unvn and (uv)0 = u0v0 .

• ∆, the difference operation, is defined by:

(∆u)n = un − un−1 =
(

(Id− E)u
)

n
and (∆u)0 =

(

(Id− E)u
)

0
= u0 ,

thus ∆ = Id − E. ∆ is linear, namely, ∆(λu + µv) = λ∆u + µ∆v, ∀λ, µ ∈ C.
Moreover, ∆(u ⋆ v) = (∆u) ⋆ v + (Eu) ⋆ (∆v).

• The ⋆ product operation, denoted by ⋆, different from the usual products
and in general non-associative, is defined by

(u ⋆ v)n = unvn − un−1vn−1 =
(

∆(uv)
)

n
and (u ⋆ v)0 = u0v0 .

• Σ, the summation operation, is defined by

(Σu)n = Σn
i=0ui .

We can verify the equalities

∆Σ = Σ∆ = Id

Σ[(∆u) ⋆ v] = u ⋆ v − Σ[(Eu) ⋆ (∆v)] (summation by parts).
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Example 7.25 Let k be fixed, and let un =
(

n
k

)

, then: (∆u)n =
(

n−1
k−1

)

; similarly

let vn = Ak
n, i.e. (v)n = (Ak

n)n∈IN,

• for k > 1, we have (∆v)n = (∆Ak
n)n = Ak

n −Ak
n−1 = kAk−1

n−1;

• ∆A1
n = 1, ∆A0

n = 0;
• for k < 0, let k = −l with l > 0, then letting

wn = Bk
n = n(n+ 1) · · · (n− k − 1);

we have:
(∆w)n = (∆Bk)n = −kBk−1

n .

Exercise 7.23 Let k be fixed, k > 1, compute ∆u where

un =
1

n(n+ 1) · · · (n+ k − 1)
. ♦

Example 7.26 Evaluation of the order of magnitude of the sum ΣH of the

harmonic numbers Hn. Recall that

Hn = 1 +
1

2
+

1

3
+ · · ·+

1

n
, H0 = 0.

We have (∆H)n =
1

n
, for n > 0.

Noting that (∆u)n = 1 for all n, a summation by parts with un = n + 1 and

vn = Hn gives

ΣH = Σ
(

(∆u) ⋆ H
)

= u ⋆ H − Σ(Eu) ⋆∆(H) ,

hence
(ΣH)n = (n+ 1)Hn − (Σ

n

n
)n = (n+ 1)Hn − n .

But Hn ∼ log n. This comes from the following remark: the function 1/x being
decreasing, we have the squeeze

1

n
>

∫ n+1

n

dx

x
>

1

n+ 1
, ∀n > 0;

thus considering the sequence of intervals [1, 2[, [2, 3[,. . . , [n, n+ 1[, we have

∫ n+1

1

dx

x
< Hn <

∫ n

1

dx

x
+ 1,

and thus
log(n+ 1) < Hn < log(n) + 1.

The situation is illustrated by Figure 7.1. Therefore (ΣH)n ∼ n log n.
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1

1 n+

/n

n 1

1

Figure 7.1

7.4.2 Applications: counting, Stirling numbers

Example 7.27 (Number of surjections of A in B) Let A,B be such that

|A| = a, |B| = b, a ≥ b, and let Sb
a be the number of surjections f :A −→ B. In

Proposition 6.14 we computed Sb
a by considering Ei = {f :A −→ B / i /∈ f(A)}

and by noting that f is non-surjective if and only if f ∈ ∪i∈BEi , which gave

Sb
a = ba −

( b
∑

p=1

(−1)p+1

(

b

p

)

(b− p)a
)

= ba −
(

b(b− 1)a + · · ·+ (−1)p+1

(

b

p

)

(b− p)a + · · ·+ (−1)bb
)

=

b
∑

p=0

(−1)p
(

b

p

)

(b− p)a.

We can also compute Sb
a by exhibiting a recurrence relation satisfied by Sb

a. Let

A = {1, . . . , a} and B = {1, . . . , b}. Let f|A−{a} be the restriction of f to A−{a}.
If f is surjective, then one of the two following conditions is realized:

• Either f ′ = f|A−{a} is surjective, and then f ′ is a surjection from {1, . . . , a−
1} onto B and there are b possibilities for choosing the image of a, thus there are

bSb
a−1 possible choices for f in this case.

• Or f ′ = f|A−{a} is not surjective. Let f(a) = j; since f is surjective, f ′′: (A−

{a}) −→ (B−{j}), also is surjective, and we thus have Sb−1
a−1 possible choices for

f ′′. Moreover there are b possible choices for the element j which we took out,
hence bSb−1

a−1 possible choices for f in that case.
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We finally obtain the recurrence relation

Sb
a = bSb

a−1 + bSb−1
a−1, 0 < b ≤ a, (7.20)

with the initial condition S1
1 = 1.

Example 7.28 (Number of partitions of A in b classes) Letting |A| = a ≥ b > 0,

we would like to determine the number P b
a of partitions of A of the form A =

A1 + · · ·+ Ab, namely, the Ais are b subsets of A, pairwise disjoint. To this end

we will use Sb
a that we just computed.

Recall the following theorem first.

Theorem 7.29 Let f :A −→ B be a surjection, and let ≡f be the equivalence
relation associated with f which is defined by x ≡f y if and only if f(x) = f(y).

f can be factored into f = i ◦ p, where p:A −→ A/≡f is the canonical projection
and i:A/≡f−→ B is an isomorphism.

Corollary 7.30 Sb
a = b!P b

a .

Proof. To each surjection f :A −→ B corresponds a partition of A in b classes of
equivalence according to the preceding theorem.
Conversely, if A = A1 + · · · + Ab is a partition of A, f(a) = i ⇐⇒ a ∈ Ai

defines a surjection A −→ B = {1, . . . , b}. Let p be an arbitrary permutation of
B, then p ◦ f :A −→ B is also a surjection corresponding to the same partition of

A. Thus each partition determines b! surjections. ⊓⊔

We can also also determine a recurrence relation satisfied by the P b
as. Let P

be a partition of A in b classes, and let α ∈ A.

• Either {α} (the singleton α) is a class of P on its own, and then the other

classes of P partition A−{α} in b−1 classes; there are thus P b−1
a−1 possible choices

for P in that case.
• Or {α} is not a class, but belongs to one of the b classes of P , and in that

case P partitions A−{α} in b classes, and there are b possible choices for putting
α in one of the classes, hence bP b

a−1 possible choices for P in that case. Finally,

we obtain
P b
a = bP b

a−1 + P b−1
a−1 , 0 < b ≤ a . (7.21)

Terminology: The P b
a are called Stirling numbers of the second kind. Stirling

numbers of the first kind satisfy the recurrence relation

Kb
a = (a− 1)Kb

a−1 +Kb−1
a−1 , 0 < b ≤ a . (7.22)
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The combinatorial interpretation of Kb
a is the following: Kb

a is the number of

permutations of a letters containing b cycles. A cycle in a permutation p of a
letters is a subset of n < a letters {α1, . . . , αn }, such that p(αi) = αi+1, for i < n
and p(αn) = α1 . By a case analysis similar to the preceding ones we obtain: let

α ∈ A, and let p be a permutation with b cycles;

• either α is invariant by p, namely, {α} is a cycle, and there are Kb−1
a−1 such

possibilities
• or α is not invariant, there are then Kb

a−1 possible choices of permutations

of a − 1 letters with b cycles, and a − 1 possible choices for inserting α in one
of the b cycles: if the b cycles have a1, a2, . . . , ab letters, respectively, we have

a1 + a2+ · · ·+ ab = a− 1 possibilities, hence (a− 1)Kb
a−1 possibilities altogether.

Stirling numbers have numerous applications in combinatorics: two simple exam-
ples are the expansion of the binomial coefficients in powers and, conversely, the

expression of powers in terms of the binomial coefficients; we have

x(x− 1) · · · (x− n+ 1) =

n
∑

k=1

(−1)n−kKk
nx

k,

xn =

n
∑

k=1

P k
n

(

x

k

)

k! .


