
chapter 12

DISCRETE PROBABILITIES

Probability theory is a fundamental tool in many domains and, in particular

computer science, where its main use is of course the average case analysis of
algorithms. Combinatorics allow us to count the number of elements of a set, to

count the number of operations of an algorithm on given data. However, when
the set or the data are subject to change, the number of elements or operations

can also change, and probabilities come into the picture to study average values,
the deviation with respect to these average values, etc. Probabilities are also used
in other areas in computer science, e.g.

• probabilistic algorithms: a random choice can be on average, or even almost
always, more efficient than computing the exact choice,

• modelling and simulation,

• queueing theory: for instance, study the average waiting time for accessing
the nerve-centres of a network,

• signal processing,

• probabilistic arguments sometimes allow us to prove properties of algorithms

which are not provable otherwise.

This chapter defines the notions of discrete probability distribution, conditional
probability distribution and independance, and random variables. The chapter

reviews Bayes’s rule and some applications, the weak law of large numbers, how
to use generating series to study random variables and the main properties of the

most common probability distributions.

We strongly recommend the following classic handbook:

William Feller, Probability Theory, Vol. 1, John Wiley, New York (1968).
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12.1 Generalities

12.1.1 Terminology

Probability theory studies randomness; e.g.:

• the outcome of a coin-tossing game,
• the number of daily calls through a telephone switchboard,

• the waiting time for accessing a network,
• the length of the life span (without breakdowns) of an operating system.

Probability theory describes a mathematical model for such random experiments,
where ‘random’ means ‘depending on chance’.

12.1.2 Sample spaces

The first basic notion is the notion of trial, or sample point or observation: a trial
is the outcome of a random experiment; such an outcome is denoted by ω and the
set of all possible trials is traditionally denoted by Ω and called the sample space

i.e.: each outcome obtained in a possible experiment will correspond to a unique
element ω in Ω. The fulfillment of the random experiment is thus reduced to the

random choice of ω in Ω. Of course, different experiments will lead to different
sets Ω.

Remark 12.1 Note that the same ‘experiments’ in the intuitive sense may
correspond to different random experiments according to what we are interested

in. For instance, assuming a coin-tossing game with a dime and a quarter, and
assuming that the coins never fall on their edges:

• If we are interested in the outcome Heads or Tails, the sample space will be
the set of possible outcomes, i.e. Ω = {HH,HT, TH, TT}.
• If we are interested in the number of Heads, the sample space will be
Ω = {0, 1, 2}.
• If we are interested in the concordance of the outcomes, i.e. in the value of
the predicate ‘both coins fell on the same side’, we will have Ω = {Agreement,

Disagreement}.

Example 12.2

1. Consider the random experiment consisting of rolling a pair of dice (we will

often use this example); the possible outcomes are pairs of integers ω = (x, y),
with 1 ≤ x, y ≤ 6; the sample space is thus the set Ω = {1, 2, . . . , 6}2.
2. In the case of the random experiment consisting of counting the number of

daily calls through a telephone switchboard, the possible outcomes are: {1, 2, . . . ,
n, . . .}. The sample space will thus be Ω = IN.
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12.1.3 Events

The second basic notion is the notion of event, i.e. an event whose fulfillment

depends upon the outcome of a random experiment. We will thus represent an
event A by the set of outcomes of the experiments fulfilling it, and we will identify

A = {ω / A occurs if ω is the outcome of the experiment} .

Example 12.3

1. When throwing two dice, event A: ‘the total score is ≥ 10’ is represented in
Ω = {1, . . . , 6}2 by the set of pairs (x, y) such that x+ y ≥ 10, i.e.

A = {(4, 6), (5, 6), (6, 6), (5, 5), (6, 5), (6, 4)} .

2. When counting the number of phone calls, event A: ‘the switchboard can

put through at most 5000 daily calls’ is represented by A = {n ∈ IN/n ≤ 5000}.

12.1.4 Relations among events

We briefly describe the logical operations which can be performed on events;
events being represented by subsets of the sample space Ω, these logical operations

will correspond to the usual set-theoretical operations, up to the terminology.
Each event A is associated with its complementary event, denoted by Ac (or

¬A, or A): event Ac occurs if and only if A does not occur, and is represented in
Ω by the complement of the subset representing A.

Example 12.4 In throwing two dice, the event ‘the total score is less than 10’

is represented in Ω = {1, . . . , 6}2 by the 30 (= 36 − 6) pairs (x, y) such that
x+y < 10, which is the complement of the set A representing the event ‘the total

score is ≥ 10’.

For each pair of events A1 and A2, event ‘A1 and A2’ (resp. ‘A1 or A2’)
occurs if and only if both A1 and A2 occur (resp. either A1 or A2 or both occur).

In the space Ω, A1 and A2 (resp. A1 or A2) is represented by the intersection
(resp. the union) of A1 and A2. Subsequently, we will denote A1 and A2 (resp.

A1 or A2) by A1 ∩ A2 (resp. A1 ∪ A2). The impossible event, denoted by ∅, is
represented by the empty set in Ω. Two events A1 and A2 are said to be mutually

exclusive if and only if A1 ∩ A2 = ∅; if A1 and A2 are mutually exclusive, then
A1 and A2 is impossible, and A1 or A2 is denoted by A1 +A2 (disjoint union).
Events {An / n ∈ IN} are said to be mutually exclusive if they are pairwise

mutually exclusive. The sure event, which always occurs whatever the outcome
of the experiment, is represented by Ω. Finally, event A is said to imply event

B if, whenever A occurs, B also occurs, i.e. the subset of Ω representing A is
contained in the subset of Ω representing B.
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Example 12.5 Consider again the tossing of two dice. Define the two events

A1 ‘the total is ≥ 10’, and A2 ‘the total is < 10’. These two events are mutually
exclusive and event ‘A1 or A2’ is sure. (In general, if two events A1 and A2 are
mutually exclusive, the event ‘A1 or A2’ is not sure.)

A set {An / n ∈ IN} of mutually exclusive events such that Ω = ∪n∈INAn is said

to be a partition of Ω . Summing up, the correspondence between probabilistic
and set-theoretic terminologies is shown in the following table:

Probabilistic terminology Set-theoretic terminology Notation

Sure event Whole space Ω

Impossible event Empty set ∅

Complementary event Complementary subset Ac (A, ¬A)

And Intersection ∩
Or Union ∪
Mutually exclusive events Disjoint subsets A1 ∩A2 = ∅

Partition Partition
∑

Ai = Ω,

with Ai ∩Aj = ∅

Implication Inclusion A ⊆ B

12.2 Probability spaces

12.2.1 Probability space

We have seen that a random experiment can be described by a set Ω (the sample

space), and a class T of subsets of Ω (the subsets representing events). When
Ω is not denumerable, T cannot be the set P(Ω) of all subsets of Ω: P(Ω) will

indeed contain too many pathological subsets which cannot represent natural
events. In order to properly represent the notion of event a class T of subsets
should, 1. contain the sure event Ω, 2. be stable by complement, 3. be stable by

denumerable unions and intersections, which gives:

Definition 12.6 A class T of subsets of Ω is said to be a tribe if it satisfies

(i) Ω ∈ T ,

(ii) A ∈ T =⇒ Ac ∈ T ,

(iii) ∀n ∈ IN , An ∈ T =⇒
⋃

n∈IN An ∈ T .
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Condition (iii) is called the σ-additivity principle, or the additivity principle if

An, n = 1, . . . , p is finite. A tribe is also called a σ-algebra, or a σ-additive class
or a countably additive class.

Remark 12.7 T = P(Ω) always satisfies conditions (i)–(iii); often, for a finite
or denumerable Ω, we will have T = P(Ω).

Remark 12.8 Since T is stable by complementation and denumerable union,
it also is stable by denumerable intersection, indeed

⋂

n∈IN

An =

(

⋃

n∈IN

Ac
n

)c

.

A pair (Ω, T ) formed by a set and a tribe on this set gives a model describing

random experiments and the corresponding events. However, the goal of prob-
ability theory is not simply to find a descriptive model, but mainly to supply a
tool for computing quantitative evaluations. That is what we will now do.

The notion of probability corresponds intuitively to the notion of ‘likelihood
or frequency of realization’ of an event A during a sequence of repetitions of a

random experiment in which A may (or may not) occur. If N is the number
of repetitions of a random experiment and NA the number of realizations of A

during a sequence ofN experiments, the ratioNA/N tends to become stable when
N grows. The probability of A is the limit of the ratio NA/N when N → ∞.

(This notion will appear again in the law of large numbers.) Some properties are
satisfied by the mapping A 7→ NA/N :

(i) 0 ≤ NA/N ≤ 1,
(ii) if A1, . . . , AN are mutually exclusive,

NA1∪···∪An
/N = NA1

/N + · · ·+NAn
/N .

Hence the following definition.

Definition 12.9

1. Let T be a tribe in Ω. A probability distribution P on (Ω, T ) is a mapping

P : T −→ [0, 1] such that
(i) ∀A ∈ T , 0 ≤ P (A) ≤ 1,

(ii) P (Ω) = 1,
(iii) if (An)n∈IN is a family such that: for all i, j in IN, Ai, Aj ∈ T and Ai∩Aj =
∅, then

P

(

⋃

n∈IN

An

)

=
∑

n∈IN

P (An) .
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2. When Ω is denumerable and T = P(Ω), one can substitute for the above

conditions ∀ω ∈ Ω, 0 ≤ P (ω) ≤ 1, P (A) =
∑

ω∈A P (ω) and
∑

ω∈Ω P (ω) = 1,
where P (ω) is an abbreviation for P ({ω}).

Exercise 12.1 Verify that in case 2 of the preceding definition, the mapping P : P(Ω)
−→ [0, 1] defined by P (A) =

∑

ω∈A
P (ω) is a probability distribution. ♦

If Ω is a finite space and T = P(Ω), the uniform distribution on Ω is often

considered: it gives each elementary event ω the same probability, p =
1

|Ω|
, since

∑

ω∈Ω P (ω) =
∑

ω∈Ω p = |Ω|p = 1 must hold. Each sample point ω is said to

be equally probable, and the uniform distribution corresponds to the intuitive

notion of ‘random choice’. We then have, for all events A, P (A) =
|A|

|Ω|
(the ratio

of the number of favourable cases to the total number of cases).

Example 12.10 Consider again the tossing of two dice, and endow the sample
space Ω with the uniform distribution. Each possible outcome ω= (x, y) has

probability 1/36, and event A =‘the total is ≥ 10’ has probability P (A) = 6/36 =
1/6.

If Ω is an infinite space there can no longer be a uniform distribution.

In all cases, Ω finite or infinite, an event A is said to be

• almost sure if it occurs almost surely, i.e. P (A) = 1,

• almost impossible if it almost surely will not occur, i.e. P (A) = 0.

Example 12.11 Consider the random experiment consisting of tossing a coin

till Tails turns up, then stopping. The space Ω is described by the sequence of
outcomes, where Tails (resp. Heads) is abbreviated in T (resp. H).

Ω = {T,HT,HHT, . . . ,HnT, . . . ,HHH · · ·} = Ω′ ∪ {HHH · · ·} .

Assume that, throwing the coin once, we have P (T ) = p and P (H) = q = 1− p,

with 0 < p < 1. Then P (HnT ) = qnp (this will be formally proved later on), and

∑

ω∈Ω′

P (ω) =
∑

n∈IN

qnp = p
∑

n∈IN

qn =
p

1− q
= 1.

The event A = HHH · · · , i.e. an infinite sequence of Heads as outcome, is a
logically possible event, corresponding to a non-empty subset of P(Ω), but it is
almost impossible since P (A) = 0.

Let us conclude with some useful formulas
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Proposition 12.12

(i) For A1, . . . , An mutually exclusive events,

P (A1 ∪ · · · ∪An) =

n
∑

i=1

P (Ai) .

(ii) ∀A,B, P (A ∪B) = P (A) + P (B)− P (A ∩B).

(iii) ∀A, P (Ac) = 1− P (A).

(iv) ∀A,B, A ⊆ B =⇒ P (A) ≤ P (B).

(v) ∀A1, . . . , An , P (∪n
i=1Ai) ≤

∑n
i=1 P (Ai).

(vi) Let (An)n∈IN be a monotone increasing sequence, i.e. ∀n, An ⊆ An+1, then
P (∪n∈INAn) = limn→∞ P (An).

(vii)Let (An)n∈IN be a monotone decreasing sequence, i.e. ∀n, An+1 ⊆ An, then

P (∩n∈INAn)=limn→∞ P (An).

The proof is straightforward.

Proposition 12.13 Let A1, . . . , An be events, we have

P (∪n
i=1Ai) =

n
∑

k=1

(−1)k−1
∑

i1<···<ik

P (Ai1 ∩ · · · ∩Aik) .

Proof. This result is proved in the same way as Proposition 6.13 (counting tech-
niques). ⊓⊔

Exercise 12.2 Two (not so good) snipers A and B take aim at a target. A hits the
target with probability 1/4 and B hits the target with probability 2/5. What is the
probability that the target is hit? ♦

12.3 Conditional probabilities and independent events

12.3.1 Intuition

Let us start with an introductory example. Consider a space Ω consisting of
a population of N = |Ω| people, with uniform distribution; the corresponding

experiment is the ‘random’ choice of an individual. Among the N people, let H
be the subset of men and D be the subset of colourblind people. Let De (resp.

He) be the event: ‘the chosen person is colourblind (resp. male)’; we have

P (De) =
|D|

|Ω|
and P (He) =

|H|

|Ω|
.
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Assuming now that we are only interested in the subpopulation of males, and that

we randomly choose one man, the probability that he is colourblind is
|H ∩D|

|H|
,

i.e. the probability of being colourblind for men. It is denoted by P (De/He),
and we say: ‘probability of De assuming (or given, or on the hypothesis) He’.

In the present example, we have P (De/He) =
P (De ∩He)

P (He)
because

|H ∩D|

|H|
=

( |H ∩D|

|Ω|

)/( |H|

|Ω|

)

.

We will see that this situation can be generalized to any subpopulation defined

by an arbitrary event A. We can always consider a probability distribution re-
stricted to the set of sample points satisfying event A; we then say the ‘conditional

probability given A’.

12.3.2 Definitions

Definition 12.14 Let (Ω, T , P ) be a probability space and A an event having
a positive probability; the conditional probability of event B given A is defined

by

P (B/A) =
P (A ∩B)

P (A)
. (12.1)

Proposition 12.15 The mapping B 7→ P (B/A) is a probability distribution
on the space (Ω, T ), for each choice of the conditioning event A.

Proof. We check that

(i) 0 ≤ P (B/A) ≤ 1, since P (A ∩B) ≤ P (A),

(ii) P (Ω/A) =
P (Ω ∩A)

P (A)
=

P (A)

P (A)
= 1,

(iii) for each family (Bi)i∈IN of mutually disjoint subsets, the family
(Bi ∩A)i∈IN is also formed of mutually disjoint subsets, thus:

P
(

(∪i∈INBi)/A
)

=
P
(

∪i∈IN (Bi ∩A)
)

P (A)
=
∑

i∈IN

P (Bi ∩A)

P (A)

=
∑

i∈IN

P (Bi/A) . ⊓⊔

Remark 12.16

(1) Equation (12.1) is often used in the form P (A ∩B) = P (B/A)P (A).
(2) Let (Ω,P(Ω)) be a finite space together with the uniform distribution, and

A ⊆ Ω be such that |A| 6= 0, then P (B/A) =
|B ∩A|

|A|
, i.e. the uniform distribu-

tion restricted to A.



234 12. Discrete probabilities

Example 12.17 We again return to Example 12.11: toss a coin till the first

Tails occurs. Let B be the event : ‘the first Tails occurs after at least three
tosses’, and A: ‘Tails does not occur at the first toss’; note that B ⊆ A. Recall
that p = P (T ) and q = P (H), where Tails (resp. Heads) is abbreviated to T

(resp. H). We have

P (B) =
∑

n≥2

qnp = q2p
1

1− q
and P (A) =

∑

n≥1

qnp = qp
1

1− q
,

hence

P (B/A) =
P (A ∩B)

P (A)
=

P (B)

P (A)
= q .

Example 12.18 Consider families with two children. Letting F (resp. M) stand

for girl (resp. boy), and denoting the children by decreasing age, the sample space
is Ω = {MM,MF,FM,FF}; Ω is endowed with the uniform distribution. Let
A be the event ‘there is at least one boy’ and B the event ‘there are two boys’.

Assuming there is at least one boy, we compute the probability that there are two
boys: A = {MM,MF,FM} and B = {MM} = A ∩B, hence P (B/A) = 1/3.

Equation (12.1) can be generalized as follows

Proposition 12.19 (generalization) Let A1, . . . , An be arbitrary events in

(Ω, T ), then

P (A1 ∩ · · · ∩An) = P (A1)P (A2/A1)P (A3/A1 ∩A2) · · ·P (An/A1 ∩ · · · ∩An−1) ,

provided that we define the right-hand side to be 0 as soon as one of its factors

is 0.

Proof. By induction on n;

• Basis: for n = 2 we come across the definition of conditional probabilities

when P (A1) 6= 0, and the result is clear when P (A1) = 0.

• Inductive step: assuming the result true for n, let us prove it for n+ 1:

(i) P (A1 ∩ · · · ∩An+1) > 0, then we also have P (A1 ∩ · · · ∩An) > 0, and
thus by the definition of conditional probabilities

P (A1 ∩ · · · ∩An+1) = P (A1 ∩ · · · ∩An)P (An+1/A1 ∩ · · · ∩An)

by the induction hypothesis we can replace P (A1 ∩ · · · ∩ An) by P (A1)
P (A2/A1)P (A3/A1 ∩A2) · · ·P (An/A1 ∩ · · · ∩An−1), hence the result.
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(ii) P (A1 ∩ · · · ∩An+1) = 0. Note that the sequence

pi = P (A1 ∩ · · · ∩Ai)

is monotone decreasing; hence

(ii.1) either P (A1) 6= 0, and ∃i ∈ {2, . . . , n+1} , P (A1∩· · ·∩Ai−1) >
0 and P (A1 ∩ · · · ∩ Ai) = 0; but then P (Ai/A1 ∩ · · · ∩ Ai−1) = 0 by

the definition of conditional probabilities, and the right-hand side is
thus 0.

(ii.2) or P (A1) = 0, and both sides are 0. ⊓⊔

Exercise 12.3 An urn contains b black balls and r red balls; k random drawings are
performed, k < r, with the following rule: if a black ball is drawn it is replaced, if a
red ball is drawn c black balls are added. What is the probability of drawing k red
balls? ♦

Exercise 12.4 Message passing. Consider passing a message ‘yes’ or ‘no’ in a pop-
ulation. Each person passes the message he/she received with probability p and the
opposite message with probability q = 1 − p. Let Xn be the message received by the
nth individual In. Assume that I0 passes ‘yes’ to I1. What is the probability that In
receives ‘yes’? ♦

Example 12.20 (Samplings without replacement) An urn contains N > 2 balls,

b black balls and r red balls, b+ r = N . Two balls are drawn and not replaced.
What is the probability of drawing two red balls? Let C be the event: ‘two red

balls were drawn’, A1 be the event: ‘the first drawn ball is red’ and A2: ‘the

second ball is red’. We clearly have P (A1) =
r

N
, P (A2/A1) =

r − 1

N − 1
and

P (C) = P (A1 ∩A2) = P (A1)P (A2/A1) =
r × (r − 1)

N × (N − 1)
.

This should be likened to the notion of arrangement without repetitions of Chap-
ter 6.

12.3.3 Bayes’s rule

It is frequently easier to evaluate conditional probabilities for an event B than
to compute its probability P (B). This happens if e.g. the experiment upon
which event B depends can be split into partial successive experiments, and if

the probability of each partial experiment depends on the outcomes of preceding
experiments; see Exercise 12.4 and Exercise 12.6 (probability of causes). There

are tools enabling us to deduce P (B) and P (An/B) from the P (B/An)s, and
that is what we will now show.
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Lemma 12.21 (Total probabilities) Let (Ω, T ,P) be a probability space, and

let (Ak)k∈IN be a partition; for any event B, we have

P (B) =
∑

k∈IN

P (B/Ak)P (Ak) .

Proof. Since (Ak)k∈IN forms a partition, we have ∪k∈INAk = Ω; then

P (B) = P (B ∩ Ω) = P
(

B ∩ (∪k∈INAk)
)

=
∑

k∈IN

P (B ∩Ak) (since the B ∩Aks are pairwise disjoint)

=
∑

k∈IN

P (B/Ak)P (Ak). ⊓⊔

This rule can be extended to the case when some P (Ak)s are 0, by attributing

an arbitrary value to P (B/Ak) and letting P (B/Ak)P (Ak) = 0.

Exercise 12.5 (Polya’s urn model) An urn contains b black balls and r red balls.
A ball is randomly drawn. It is replaced, and, moreover, c balls of the same colour
are added. A new random drawing is performed and the whole procedure is iterated.
Let Xn ∈ {B,R} = Ω be the colour of the ball drawn at the nth drawing. Prove by
induction on n that P (Xn = B) = b/(b+ r) for all n. ♦

The next theorem is known as Bayes’s rule for the probability of causes.

Theorem 12.22 Letting (Ω, T , P ) be a probability space, (An)n∈IN a partition
and B an event with positive probability, we have

P (An/B) =
P (An)P (B/An)

∑

k∈IN P (Ak)P (B/Ak)
.

Proof. By the definition of conditional probabilities

P (An/B) =
P (An ∩B)

P (B)
=

P (An)P (B/An)

P (B)

and, by the preceding lemma, P (B) =
∑

k∈IN P (Ak)P (B/Ak) , hence

P (An/B) =
P (An)P (B/An)

∑

k∈IN P (Ak)P (B/Ak)
. ⊓⊔

Exercise 12.6 (Probability of causes) Let Ui, for i = 1, 2, be two urns containing ri
red balls and bi black balls. One urn is randomly chosen, and a ball is drawn from it.
Assuming a red ball was drawn, what is the probability that it comes from urn 1? ♦
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Exercise 12.7 Let A and B be two machines producing, respectively, 100 and 200
objects. A (resp. B) produces 5% (resp. 6%) of flawed objects. Given a flawed object,
what is the probability that it was manufactured by A? ♦

Exercise 12.8 A city is divided into three areas. During a poll, the repartition of
votes for candidate C was as shown in the following table.

Area Weight of the Score of C

number area in voters in the area

(%) (%)

1 30 40

2 50 48

3 20 60

1. What is the probability that a randomly chosen voter voted for C?
2. Given that e voted for C, what is the probability that e is from area 3? ♦

12.3.4 Independent events

Definition 12.23 Two events A and B in (Ω, T , P ) are independent if and
only if they satisfy the following equivalent conditions:

(i) P (B/A) = P (B),
(ii) P (A/B) = P (A),

(iii) P (A ∩B) = P (A)P (B).

That these three conditions are equivalent follows immediately from the equality

P (A ∩B) = P (B/A)P (A) = P (A/B)P (B).

Proposition 12.24

1. If A and B are independent, the pairs of events (A,Bc), (Ac, B) and (Ac, Bc)
are also independent.

2. If A and B are independent, we have:
P (A ∪B) = P (A) + P (B)− P (A)P (B).

Proof. Check, for instance, that (Ac, B) and (Ac, Bc) are independent. We have

P (Ac ∩B) + P (A ∩B) = P (B)

P (Ac ∩B) = P (B)− P (A ∩B) = P (B)− P (A)P (B)

= P (B)
(

1− P (A)
)

= P (B)P (Ac);

P (Ac ∩Bc) = 1− P (A ∪B) = 1− P (A)− P (B) + P (A)P (B)

= P (Ac)− P (B)
(

1− P (A)
)

= P (Ac)
(

1− P (B)
)

= P (Ac)P (Bc). ⊓⊔
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Example 12.25 Return to Example 12.2 and the tossing of two dice.

(i) Events A = ‘the first die is a one’, and B = ‘the second die is even’, are
independent since P (A) = 1/6, P (B) = 1/2 and P (A ∩B) = 1/12 = P (A)P (B).

Note that A and B are not disjoint, since A ∩B = {(1, 2), (1, 4), (1, 6)} 6= ∅.
(ii) Events A = ‘the first die is a one’, and B = ‘the first die is even’ are disjoint,
but not independent since P (A) = 1/6, P (B) = 1/2 and P (A ∩ B) = 0 6=
P (A)P (B). In general, disjoint events are never independent, unless one of them
has probability 0.

Z
Remember from this example that the notions of disjoint events and of
independent events are orthogonal.

Exercise 12.9 Consider events A = ‘there is at most one girl in a family’, and B =
‘there are both boys and girls’; check that events A and B are independent if the
underlying space Ω3 is the set of families with three children, but A and B are not
independent in the space Ω2 of families with two children; Ω2 and Ω3 are endowed with
the corresponding uniform probabilities. ♦

Exercise 12.10 A poll among the students on a course gave the following outcomes:

(a) 2/3 of the students say they like maths, and among them:
• 70% would rather take an exam without notes,
• 20% are in favour of prohibiting smoking.

(b) 1/3 of the students say they do not like maths, and among them:
• 20% would rather take an exam without notes,
• 90% are in favour of prohibiting smoking.

Let M,D,F be the events:
• M= liking maths,
• D= in favour of taking an exam without notes,
• F= in favour of prohibiting smoking,

and M,D,F the complementary events.
Given that a student likes maths, events D and F are independent. Similarly, given

that a student does not like maths, events D and F are independent.
1. Compute P (M), P (D/M), P (F/M), P (M), P (D/M), P (F/M), P (D/M),
P (D/M), P (F/M), P (F/M).
2. Given that student e would rather take an exam without notes and is in favour of
prohibiting smoking, what is the probability that this student likes maths? ♦

One can generalize the notion of independent events to sets of events.

Definition 12.26 Let A1, . . . , An be events in (Ω, T , P ). A1, . . . , An are mutu-

ally independent if and only if they satisfy the following equivalent conditions

(i) For all combinations 1 ≤ i1 < · · · < ik ≤ n we have

P (Ai1 ∩ · · · ∩Aik) = P (Ai1) · · ·P (Aik) .
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(ii) For 1 ≤ k ≤ n − 1, and for all combinations (i, i1, . . . , ik) of k + 1 pairwise

distinct integers among {1, . . . , n} we have

P (Ai/Ai1 ∩ · · · ∩Aik) = P (Ai) .

Remark 12.27 It is not enough to check that the Ai are pairwise independent,
nor that P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An). Consider, for instance, the exper-

iment consisting of throwing a die and looking at the outcome; Ω = {1, 2, . . . , 6}
with the uniform probability. Let A be ‘the outcome is ≤ 3’, B be ‘the outcome
is even’ and C be ‘the outcome is not divisible by 3’. P (A) = P (B) = 1/2,

P (C) = 2/3. A ∩ B ∩ C = {2}, hence P (A ∩ B ∩ C) = 1/6 = P (A)P (B)P (C);
but A, B, C are not independent since P (A ∩B) = 1/6 6= P (A)P (B).

Exercise 12.11 Find an example of three events A,B,C, pairwise independent, such
that P (A ∩B ∩ C) 6= P (A)P (B)P (C). ♦

Exercise 12.12 Let the set Ω consist of the eight vertices of a cube constructed on
the three unit vectors of origin 0 in a Cartesian space. Each vertex is identified by its
three coordinates i, j, k ∈ {0, 1}. The probability distribution is defined by

P (ω) =

{

0 if i+ j + k is even,
1

4
otherwise.

1. Prove that this indeed defines a probability distribution.
2. Show that the three events: A = {i = 0}, B = {j = 0}, C = {k = 0} are pairwise
independent.
3. Are events A ∩B and C independent? ♦

12.3.5 Product spaces

Product probability distributions correspond to the notion of repeated random
experiments or of a combination of several random experiments. Consider a se-

quence (ω1, . . . , ωn) of random experiments, ωi ∈ Ωi, for
i = 1, . . . , n, and study the global experiment ω = (ω1, . . . , ωn).

Z
ω ranges over Ω = Ω1 × · · · × Ωn. It is natural to endow Ω with a tribe T
of subsets such that all events A consisting of events A1, . . . , An are in T ;

however, this seemingly simplest choice for T which is the set-theoretical product
of the Ti is not suitable, because it is not a tribe. We have to choose the least

possible tribe T which is generated by this product and which we will denote by
T =

∏n
i=1 Ti. Lastly, we will define a probability distribution P on (Ω, T ).
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Definition 12.28 Let (Ωi, Ti, Pi) be denumerable probability spaces with Ti =
P(Ωi) for i = 1, . . . , n. The product space (Ω, T , P ) is defined by

• Ω =
∏n

i=n Ωi,

• T =
∏n

i=1 Ti, and thus T is the least tribe containing A1 × · · · × An for all

Ai ⊆ Ωi , i = 1, . . . , n ,

• P (ω1, . . . , ωn) = P1(ω1)× · · · × Pn(ωn) , ∀(ω1, . . . , ωn) ∈ Ω .

Exercise 12.13 Prove that the above-defined P is indeed a probability distribu-
tion. ♦

The same definition can be given for the product of an infinite number of
sample spaces.

This definition implicitly assumes that the sequence of represented trials (ω1,
. . . , ωn) are independent, and that is by far the most frequent case in life (repeti-

tions of experiments, sampling populations, etc. . . ). Without the independence
hypothesis, the only condition that can be demanded of P is that ∀Ai ∈ Ti,

P (Ω1 × · · · × Ωi−1 ×Ai × Ωi+1 × · · · × Ωn) = Pi(Ai) (12.2)

and this condition is not enough to determine P , as shown by the next example.

Example 12.29 Let (Ωi, Ti, Pi), i = 1, 2 be defined by Ω1 = Ω2= {0, 1},
T1 = T2 = P(Ω1), and let P1 = P2 be defined by P1(0) = P2(0) = P1(1) = P2(1)
= 1/2 . We can define two probability distributions P and Q on (Ω1×Ω2, T1×T2)

P ((0, 1)) = P ((1, 0)) = P ((0, 0)) = P ((1, 1)) = 1/4 ,

Q((1, 0)) = Q((0, 1)) = 1/2 , Q((0, 0)) = Q((1, 1)) = 0 ,

P and Q both satisfy (12.2); P is a product distribution corresponding to two

independent trials.

Example 12.30 (Repeated independent trials. Bernoulli trials) Let (Ω, T , P )

be the sample space associated with an experiment. Repeat this experiment n
times, independently, i.e. the outcome of the ith experiment does not depend

upon experiment number j, j 6= i. Then, the probability distribution associated
with the n successive experiments will be described by the product (Ωn, T n, Pn).

For instance, consider n successive tosses of a coin. We represent Tails by 0
and Heads by 1, and identify {Tails, Heads} by IB; with these conventions, the

sample space corresponding to the coin-tossing game is IB = {0, 1}, T = P(IB),
and P (0) = P (Tails) = p, P (1) = P (Heads) = q with p + q = 1. The space
corresponding to n successive tosses is (IBn,P(IBn), P ) where P is defined for



Random variables 241

ω ∈ IBn by P (ω) = pkqn−k if |ω|0 = k and |ω|1 = n− k, and where |ω|i denotes
the number of occurrences of i in ω . A sequence of n trials as given above is
called a sequence of Bernoulli trials.

Exercise 12.14 Construct the sample space corresponding to n repeated independent
trials, where each trial has possible outcomes ri, i = 1, . . . , k, with P (ri) = pi and
p1 + · · ·+ pk = 1. ♦

Example 12.31 (Samplings with replacement) An urn contains r red balls and
b black balls; a ball is drawn and replaced. The experiment is repeated n times:

then the probability of drawing a red ball k times and a black ball (n− k) times
is

(

r

r + b

)k(
b

r + b

)n−k

.

This can be likened to the notion of permutations with repetitions of Chapter 6.

The product spaces are useful in modelling genetics (Mendel’s laws), in relia-

bility studies (life span before breakdowns, etc.) for systems.

12.4 Random variables

12.4.1 Definitions

First note that the same experiment, when repeated, does not give the same result

each time. This variability is described with random variables. A random variable
is a function whose value depends upon the outcome of a random experiment,

i.e. a function defined on a random space.

Example 12.32 Return to the example of the tossing of two dice: the sum S

of the scores of the tossing of the dice is a random variable. Indeed, if ω = (m,n)
is the pair of scores of the toss of the dice, we can write S(ω) = m + n for

ω = (m,n), 1 ≤ m,n ≤ 6.

Definition 12.33 Let (Ω, T , P ) be a sample space. A discrete random variable
(abbreviated to r.v.) on (Ω, T , P ) is a mapping X: Ω −→ D, D denumerable,

D ⊆ IR, such that ∀d ∈ D, X−1(d) ∈ T .

The condition we demand is that the inverse image of an element of D be

in T : this condition is required in order to be able to speak of the probability
that X assumes the value d. This probability will be denoted by P (X−1(d)), or

P (X = d).
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Example 12.34 A mapping which is not a random variable. Let the exper-

iment consist of throwing a die; let Ω = {1, 2, 3, 4, 5, 6}, let the tribe T =
{Ω, ∅,Even,Odd}, where Even = {2, 4, 6}, Odd = {1, 3, 5} and consider the sam-
ple space (Ω, T , P ), where P (Ω) = 1, P (∅) = 0, P (Even) = P (Odd)= 1/2. Define

X: Ω −→ IR by

X(1) = X(3) = 4 , X(2) = X(4) = 6 , X(5) = X(6) = 11 ,

then X is not a random variable because X−1(4) = {1, 3} is not in the tribe T .

Proposition 12.35 Let X: Ω −→ D be an r.v. on (Ω, T , P ); X defines a
probability distribution PX on (D,P(D)) by

PX(d) = P (X = d) = P (X−1(d))

for d ∈ D. PX is called the probability distribution of X.
We also define the distribution function of X

FX(d) = P (X < d) = P (X−1]−∞, d[) =
∑

d′<d

PX(d′) .

Remark 12.36 X defines the probability distribution PX , but PX , conversely,
does not determine X, as shown by the following example. Let X and Y be two

r.v.’s IB −→ IB ⊆ IR, having the same distribution

P (X = 0) = P (X = 1) = P (Y = 0) = P (Y = 1) = 1/2 .

Different pairs X,Y will satisfy this requirement, for instance:

• P1(X = x, Y = y) = 1/4 , ∀x, y ∈ IB .

• P2(X = x, Y = y) = 1/2 , for x 6= y, and P2(X = x, Y = x) = 0 for x ∈ IB.
In the first case (P1), X and Y are independent, in the second case (P2), X and
Y are dependent, but in both cases X and Y have the same distribution. Giving

the distribution of X is thus not enough to fully describe all characteristics of X.

Exercise 12.15 We state some properties of distribution functions that can be verified
as an exercise:
1. F is monotone.
2. limx→−∞ F (x) = 0, limx→∞ F (x) = 1. ♦

Definition 12.37 Let X and Y be two r.v.’s X: Ω −→ D and Y : Ω −→ D′.
The function P(X,Y )(d, d

′) = P (X = d, Y = d′) is a probability distribution on

(D ×D′,P(D ×D′)), called the joint distribution of the r.v.’s X and Y .
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Remark 12.38 (X = d, Y = d′) is an abbreviated notation for the intersection

X−1(d) ∩ Y −1(d′) which is an event of the tribe T of Ω.

Given the joint distribution of (X,Y ) we can determine the distributions of
X and Y (called marginal distributions); by noting that event X = d can be

split into a disjoint union: (X = d) =
∑

d′∈D′(X = d, Y = d′), thus PX(d) =
∑

d′∈D′ P(X,Y )(d, d
′). Conversely, the marginal distributions of X and Y do not

determine the joint distribution of (X,Y ), except when the r.v.’s X and Y are
independent (see below). The joint distributions P(X,Y ) and Q(X,Y ) described by
the tables given below (see Example 12.29) are different but they correspond to

the same marginal distribution PX = PY = QX = QY .

P(X,Y ) x 0 1

y

0 1/4 1/4

1 1/4 1/4

Q(X,Y ) x 0 1

y

0 0 1/2

1 1/2 0

Exercise 12.16 Check that for the r.v.’s X,Y the joint distribution P(X,Y ) and Q(X,Y )

of the above example (see Example 12.29) are indeed probability distributions, and
similarly for the marginal distributions PX and QX . ♦

Example 12.39 Let X,Y be two r.v.’s assuming values in IB = {0, 1}. Assume
that the joint distribution of (X,Y ) is given by

P(X,Y )(0, 0) =
1

8
, P(X,Y )(1, 0) =

3

8
,

P(X,Y )(0, 1) =
2

8
, P(X,Y )(1, 1) =

2

8
.

The marginal distributions PX and PY of X and Y are given by

PX(0) =
∑

y∈IB

P(X,Y )(0, y)

= P (X = 0, Y = 0) + P (X = 0, Y = 1) =
3

8
,

and similarly,

PX(1) =
5

8
, PY (0) = PY (1) =

1

2
.
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Definition 12.40 (Independence of r.v.’s) Let X and Y be two r.v.’s defined

on the same sample space and assuming values in D and D′. X and Y are said
to be independent if and only if they verify the following equivalent conditions:

(i) ∀A ⊆ D, ∀A′ ⊆ D′, the events (X ∈ A) and (Y ∈ A′) are independent,

where X ∈ A is an abbreviation for X−1(A).

(ii) The joint distribution of (X,Y ) is the product of the marginal distributions

of X and Y .

(iii) ∀d ∈ D, ∀d′ ∈ D′, P (X = d, Y = d′) = P (X = d)P (Y = d′).

(iv) ∀d ∈ D, ∀d′ ∈ D′, P (X = d/Y = d′) = P (X = d).

The implications and equivalences (i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv) are straight-

forward; to show (iv) =⇒ (i) it is enough to compute P (X ∈ A, Y ∈ A′).

Example 12.41

(i) The r.v.’s X and Y of Example 12.39 are not independent, because, e.g.
PX(0) = 3/8, PY (0) = 4/8, but P(X,Y )(0, 0) = 1/8 6= (3/8)× (4/8).

(ii) Consider the tossing of two dice, and let X be the score of the first die,
and Y the score of the second die. X and Y are two r.v.’s defined on

(

Ω =

({1, . . . , 6})2,P(Ω)
)

together with the uniform distribution into {1, . . . , 6}. X
and Y are easily seen to be independent, since ∀i, j, 1 ≤ i, j ≤ 6, we have

P (X = i, Y = j) = 1/36 = (1/6)× (1/6) = P (X = i)× P (Y = j) .

Exercise 12.17 Let X and Y be two independent r.v.’s, X: Ω −→ D ⊆ IR and
Y : Ω −→ D′ ⊆ IR, and f and g two arbitrary functions from IR into IR; we can define
by composition two new r.v.’s f(X) = f ◦X and g(Y ) = g ◦ Y ; are the r.v.’s f(X) and
g(Y ) independent? ♦

Exercise 12.18 Let W be an r.v. assuming values 1,2,3 with the same probability.
Let X, Y and Z be three independent r.v.’s, each with the same distribution as W . Let
U = X + Y , V = X − Z.

1. What are the values assumed by U and by V ? What are the distributions of U
and V ?

2. Write the table giving the probability distribution of the pair (U, V ). Are the r.v.’s
U and V independent? ♦

Exercise 12.19 How would you define the independence of n r.v.’s ? ♦
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Proposition 12.42 Let X : Ω −→ D and Y : Ω −→ D′ be two independent

r.v.’s defined on the same sample space and assuming values in D and D′. Let
f : D −→ E and g : D′ −→ E′ be two functions; then f(X) : Ω −→ E and
g(Y ) : Ω −→ E′ are two independent r.v.’s.

Proof.

P (f(X) = e, g(Y ) = e′) = P (X ∈ f−1(e), Y ∈ g−1(e′))

= P (X ∈ f−1(e))P (Y ∈ g−1(e′))

= P (f(X) = e)P (g(Y ) = e′) . ⊓⊔

12.4.2 Mean and variance of a random variable

We wish to simplify the representation of an r.v. We can say, loosely, that the
mean of an r.v. represents the average value of this r.v., and that its variance,

or its standard deviation, gives a measure of the error in approximating the r.v.
by its mean. For instance, if in a population consisting of n families, we have

exactly nk families with k children, then Pk = nk/n represents the probability
that a ‘randomly’ chosen family have exactly k children, and the average number

of children per family will be 1/n(
∑

k≥0 knk); if we define the r.v. X as being
the number of children of a ‘randomly’ chosen family, then 1/n(

∑

k≥0 knk) =
∑

k≥0 k(nk/n) =
∑

k≥0 kPk, represents the average value of X, i.e. the mean of

X. The formal definition follows.

Definition 12.43 Let X be an r.v.; the mean (also called expectation, average

or expected value) of X is defined by

E(X) =
∑

ω∈Ω

X(ω)P (ω) =
∑

d∈D

dP (X = d) , (12.3)

provided that this sum is defined.

Example 12.44 Return to Example 12.39. We have E(X) = 5/8, and sim-

ilarly E(Y ) = 1/2. Lastly, we can define the mean of (X,Y ) by E((X,Y ))
= (E(X), E(Y )) and we obtain E((X,Y )) = (5/8, 1/2).

Exercise 12.20 Let Ω be a sample space and A ⊆ Ω; recall that the characteristic
function χA of A is a mapping χA: Ω −→ IB ⊆ IR defined by

χA(x) =
{

1 if x ∈ A,
0 otherwise.

1. Under what condition is χA an r.v.?
2. Check that, in this case, E(χA) = P (A). ♦
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Example 12.45 A computation of the average complexity of an algorithm A
is the computation of a mean. Let d1, . . . , dk be all the data of size n, P (di) the
probability of datum di and X(di) the complexity of A on the datum di. The
average complexity of A on data of size n is then given by the mean of the r.v.

X i.e. E(X) =
∑k

i=1 P (di)X(di).

Proposition 12.46 Let X and Y be two r.v.’s: X: Ω −→ A ⊆ IR and
Y : Ω −→ B ⊆ IR; we have

(i) X ≤ Y =⇒ E(X) ≤ E(Y ),

(ii) E(aX + bY ) = aE(X) + bE(Y ),
(iii) E is linear.

X + Y (resp aX) is the r.v. defined by (X + Y )(ω) = X(ω) + Y (ω) (resp.
(aX)(ω) = aX(ω)).

Proof. It is straighforward to show that E(aX) = aE(X); similarly (i) is imme-

diate. To check that E(X+Y ) = E(X)+E(Y ), a computation of multiple sums
is necessary; assume X: Ω −→ A, Y : Ω −→ B, and X + Y : Ω −→ D.

E(X + Y ) =
∑

i∈D

iP (X + Y = i) =
∑

i∈D

∑

x+y=i

iP (X = x, Y = y)

=
∑

x∈A,y∈B

(x+ y)P (X = x, Y = y)

=
∑

(x,y)∈A×B

xP (X = x, Y = y) +
∑

(x,y)∈A×B

yP (X = x, Y = y)

=
∑

x∈A

x

(

∑

y∈B

P (X = x, Y = y)

)

+
∑

y∈B

y

(

∑

x∈A

P (X = x, Y = y)

)

=
∑

x∈A

xP (X = x) +
∑

y∈B

yP (Y = y). ⊓⊔

Remark 12.47 The mean of an r.v. is not always defined: consider X: Ω −→ D,

where Ω = IN, T = P(IN) and

P (X = x) =

{

1/2n+1 if x = 2n,
0 otherwise.

X is indeed an r.v. since
∑

n∈IN P (X = x) = 1, but E(X) is not defined since
∑

n∈IN 2n/2n+1 −→ ∞. In technical terms E(X) exists if and only if X is inte-
grable with respect to the measure PX .
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Proposition 12.48 Let X be an r.v. Ω −→ D and f : D −→ IR, then

Y = f(X) is an r.v., and E(Y ) =
∑

d∈D f(d)P (X = d), provided that this sum
is defined.

Proof. Let D′ = f(D), then:

E(Y ) =
∑

y∈D′

yP (Y = y) =
∑

y∈D′

yP (f(X) = y)

=
∑

y∈D′

y(
∑

{x∈D/f(x)=y}

P (X = x))

=
∑

y∈D′

(
∑

{x∈D/f(x)=y}

f(x)P (X = x))

=
∑

x∈D

f(x)P (X = x) . ⊓⊔

Definition 12.49 ∀n ≥ 1, we can define the nth moment of the r.v. X by

mn(X) =
∑

x∈D

xnP (X = x) = E(Xn),

provided that this sum is defined.

E(X) is the first moment of X. We now define the variance and standard

deviation of the r.v. X which, intuitively, measure the distance between X and
its mean E(X); i.e. they estimate the fluctuations of X around its mean.

Definition 12.50 Let X be an r.v. such that E(X) and E(X2) exist; the
variance of X is defined by

var(X) = E((X − E(X))2) = E(X2)− (E(X))2.

We define the standard deviation of X by σ(X) =
√

var(X).

It is straightforward to check that

E((X − E(X))2) = E(X2 − 2XE(X) + E(X)2)

= E(X2)− 2E(X)2 + E(X)2 = E(X2)− E(X)2,

by noting that E(X) is a constant; thus E(E(X)) = E(X).

Proposition 12.51 Let X be an r.v. and let a and b be constants. Then

var(aX + b) = a2var(X).

Proof. We have var(X + b) = var(X), hence the result. ⊓⊔
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Definition 12.52 Let X and Y be two r.v.’s; we define:

(i) the co-variance of X and Y by

Γ(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ) ,

(ii) the correlation coefficient of X and Y by

ρ(X,Y ) =
Γ(X,Y )

σ(X)σ(Y )
.

Proposition 12.53 Let X and Y be two independent r.v.’s, then

(i) E(XY ) = E(X)E(Y ),

(ii) var(X + Y ) = var(X) + var(Y ),

(iii) Γ(X,Y ) = ρ(X,Y ) = 0.

Remark 12.54 All converses are false, i.e. none of these conditions imply the

independence of the r.v.’s X and Y .

Proof. Check, for instance, that (i); (ii) and (iii) are straightforward consequences
of (i). Let X: Ω −→ A, Y : Ω −→ B, XY : Ω −→ D:

E(XY ) =
∑

xy∈D

xyP (X = x, Y = y)

=
∑

xy∈D

xyP (X = x)P (Y = y) (since X and Y are independent)

=
∑

x∈A

xP (X = x)(
∑

y∈B

yP (Y = y)) =
∑

x∈A

xP (X = x)E(Y )

= E(X)E(Y ) . ⊓⊔

Exercise 12.21

1. What are the means of the r.v.’s U and V defined in Exercise 12.18?
2. What is the correlation coefficient of the r.v.’s U and V defined in Exercise 12.18?

♦
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Example 12.55 Consider the two r.v.’s X,Y on (IN,P(IN)) assuming values in

IR, and such that

P (1, 0) = P (−1, 0) = P (0, 1) = P (0,−1) =
1

4

defines the joint distribution of (X,Y ). The marginal distributions are defined

by
PX(1) = PX(−1) = 1/4 PX(0) = 1/2 ,

PY (1) = PY (−1) = 1/4 PY (0) = 1/2 .

Thus PX = PY = P ′. This can be represented by the following tables:

P x -1 0 1
y

-1 0 1/4 0

0 1/4 0 1/4

1 0 1/4 0

P ′ x -1 0 1

1/4 1/2 1/4

We thus have E(X) = E(Y ) = 0. Similarly, E(XY ) = 0, thus also ρ(X,Y )= 0.

The r.v.’s X and Y thus satisfy all the conditions (i), (ii), (iii) of the preceding
proposition, but they are not independent, since, e.g.:

P (X = 1, Y = 0) = 1/4 and P (X = 1)P (Y = 0) = 1/8.

Exercise 12.22

1. Let Z be an r.v. having a geometric distribution (see Section 12.6.3) of ratio a
(0 < a < 1), i.e.

∀k ∈ IN∗, P (Z = k) = ak−1(1− a) .

(a) What is the mean of Z?
(b) Show that ∀k ∈ IN∗, P (Z ≥ k) = ak−1.

2. Let X and Y be two independent r.v.’s defined on (Ω, T , P ), and such that
X has a geometric distribution of ratio p, (0 < p < 1),
Y has a geometric distribution of ratio q, (0 < q < 1).

Define an r.v. T on (Ω, T , P ), by

∀ω ∈ Ω, T (ω) = inf(X(ω), Y (ω)) .

(a) Show that ∀k ∈ IN∗,

P (T = k) = P (X ≥ k)P (Y ≥ k)− P (X ≥ k + 1)P (Y ≥ k + 1) .

(Hint: P (T = k) = P (T ≥ k)− P (T ≥ k + 1).)
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(b) Show that T has a geometric distribution of ratio pq.
3. Consider a sequence (Xn)n≥1 of independent r.v.’s having the same geometric
distribution of ratio p, defined on (Ω, T , P ). Recall that (Xn)n≥1 is a sequence of
independent r.v.’s if and only if ∀n ≥ 1, X1, . . . , Xn are independent.

For all n ≥ 1, define an r.v. Tn on (Ω, T , P ) by

∀ω ∈ Ω , Tn(ω) = inf(X1(ω), . . . , Xn(ω)) .

(a) Show, by induction on n, that Tn has a geometric distribution of ratio pn.
(b) Show that limn→∞ P (Tn > 1) = 0. ♦

All the notions here introduced can be generalized to the case of an n-tuple
(X1, . . . , Xn) of r.v.’s defined on the same sample space. For instance,

Proposition 12.56 Let (X1, . . . , Xn) be a vector of n r.v.’s then

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) ,(i)

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn) + 2
∑

1≤i<j≤n

Γ(Xi, Xj) .(ii)

If, moreover, the n r.v.’s (X1, . . . , Xn) are independent (such that the distribution
of (X1, . . . , Xn) is the product of the distributions of the Xis, i = 1, . . . , n, i.e.

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) · · ·P (Xn = xn)), then

E(X1 · · ·Xn) = E(X1) · · ·E(Xn) ,(iii)

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn) .(iv)

Equalities (ii) and (iv) are true provided that the variances var(X1),. . . , var(Xn)
are finite.

Proof. (i) is straightforward; (iv) is a consequence of (ii); (iii) is easily proved by

induction on n. Let us check (ii); we have

X1 + · · ·+Xn − E(X1 + · · ·+Xn) = X1 + · · ·+Xn

− E(X1)− · · · − E(Xn)

=
n
∑

i=1

Xi − E(Xi) .

Hence,

(

X1 + · · ·+Xn − E(X1 + · · ·+Xn)
)2

=
n
∑

i=1

(

Xi − E(Xi)
)2

+ 2
∑

1≤i<j≤n

(

Xi − E(Xi)
)(

Xj − E(Xj)
)

.

Hence the result is proved by computing the mean. ⊓⊔
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12.4.3 Application to approximations

We will give results enabling us to bound the error in approximating an r.v. by
its mean.

Theorem 12.57 (Markov’s inequality) Let X: Ω −→ D ⊆ IR+ be a non-
negative r.v., having mean E(X) 6= 0, and let λ be a positive real number,

then

∀λ > 0 , P [X ≥ λE(X)] ≤
1

λ
. (12.4)

Proof. If 0 < λ ≤ 1, (12.4) is trivially true, since ∀A, P (A) ≤ 1. Assume λ > 1;
since X ≥ 0, we have

E(X) =
∑

x≥0

xP (X = x) ≥
∑

x≥λE(X)

xP (X = x) ,

hence

E(X) ≥ λE(X)
∑

x≥λE(X)

P (X = x) = λE(X)P (X ≥ λE(X)) . ⊓⊔

Theorem 12.58 (Chebyshev’s inequality) Let X be an r.v. such that E(X)
and var(X) are both defined; then, for λ > 0,

P (|X − E(X)| ≥ λ) ≤
1

λ2
var(X). (12.5)

Proof. Apply Markov’s inequality to the r.v. Y = (X − E(X))2, with

λ′ =
λ2

var(X)
; as E(Y ) = var(X), we obtain (12.5). ⊓⊔

Exercise 12.23 The average height of a population is 1.65 m and the standard devi-
ation is 0.04 m. Find an upper bound of the probability that the height of a randomly
chosen individual in this population is greater than or equal to 1.80 m. ♦

Exercise 12.24 Consider a coin-tossing game with an ideal coin, i.e. such that
P (Tails) = P (Heads) = 1/2. If Tails turns up, the player wins $1, if Heads turns
up, the player loses $1. Let Sn be the average algebraic ‘winnings’ after n tosses of the
coin. Determine an integer n such that the average winnings Sn are larger than −1/2

with a probability greater than or equal to
99

100
. Note that, if Xi represents the alge-

braic ‘winnings’ at the ith toss, X1, . . . , Xn are n independent r.v.’s with the common
distribution

P (Xi = 1) = P (Xi = −1) =
1

2
.

Sn is then defined by
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Sn =
X1 + · · ·+Xn

n
. ♦

We state below the weak law of large numbers. n successive repetitions of a

trial can be translated into a sequence Xn of independent r.v.’s with a common
distribution. Then, the average (in the arithmetical sense) of the values assumed

by the considered variables is likely to lie near the average (in the probabilistic
sense), i.e. the mean E(X), as n tends to infinity. We can use the weak law
of large numbers to determine the mean of X up to ε, by substituting it with

the arithmetical average of the Xn for n large. This justifies a posteriori the
definition of the mean E(X) of an r.v.

Theorem 12.59 (Weak law of large numbers) Let (Xn)n∈IN be mutually in-
dependent r.v.’s, with a common distribution of mean E and of variance σ2, let

Sn = X1 + · · ·+Xn, and ε > 0. Then

lim
n→∞

P

(

∣

∣

Sn

n
− E

∣

∣ ≥ ε

)

= 0 .

Proof. We have E

(

Sn

n

)

=
nE(X1)

n
= E, and var

(

Sn

n

)

=

n
∑

i=1

var

(

Xi

n

)

since

the r.v.’s are independent; let

var

(

Sn

n

)

= n
σ2

n2
=

σ2

n
.

Applying Chebyshev’s inequality we deduce

P

(

∣

∣

Sn

n
− E

∣

∣ ≥ ε

)

≤
σ2

nε2
. ⊓⊔

The above proof in fact gives a slightly more precise result. If we are able to find
an upper bound of σ2, then we will be able to determine the minimum number

n of experiments needed in order to substitute the arithmetic average
Sn

n
for the

mean E with an error less than ε.
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12.5 Generating functions

As we represented a sequence by a series (Chapter 8), we can represent an

integral-valued r.v. X by a series, since such an r.v. is characterized, for in-
stance, by the sequence

(

P (X = n)
)

n∈IN
. The advantage is that of giving us a

global representation of the r.v. together with its probability distribution and of
making the computations we may have to perform much easier.

Definition 12.60 Let X be an integral-valued r.v. X: Ω −→ IN. Letting

pn = P (X = n), define the generating function gX of X by the series

gX(z) =

∞
∑

n=0

pnz
n =

∞
∑

n=0

P (X = n)zn = E(zX) ,

gX will be denoted by g when there can be no ambiguity on X.

The last equality of this definition is a straightforward consequence of Propo-

sition 12.48. Indeed, zX is a new discrete r.v. obtained by composing X with
the function f : IN −→ IR defined by f(n) = zn.

Generating functions thus consist of generating series with non-negative coef-
ficients, and such that gX(1) =

∑∞
n=0 pn = 1.

The generating function of X enables us to characterize the mean and the
variance of X in a simple way.

Proposition 12.61 Let X be an integral-valued r.v. with generating function

g, then

(i) E(X) = g′(1),
(ii) var(X) = g′′(1) + g′(1)− (g′(1))2,

where g′ (resp. g′′) is the derivative (resp. the second derivative of g).

Proof.

(i) We have E(X) =
∑

n≥0 npn, or g
′(z) =

∑

n≥0 npnz
n−1.

(ii) Similarly, we have

var(X) = E(X2)− (E(X))2 =
∑

n≥1

n2pn − (E(X))2

=
∑

n≥1

n2pn − (g′(1))2.

Note that
g′′(1) =

∑

n≥2

n(n− 1)pn and g′(1) =
∑

n≥1

npn
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and deduce
∑

n≥1

n2pn = g′′(1) + g′(1) . ⊓⊔

The preceding proposition usually gives the simplest way of computing the
mean and the variance of an integral-valued r.v..

Exercise 12.25 The Dirichlet generating function of a probability distribution is de-
fined by

d(z) =
∑

n≥1

pn
zn

.

We thus have d(1) = 1. Let X be an r.v. such that P (X = n) = pn; compute E(X),
var(X) and E(logX) in terms of d(z) and of its derivatives. ♦

Proposition 12.62 Let X and Y be two independent integral-valued r.v.’s,

we have gX+Y (z) = gX(z)gY (z), where the product of the generating functions is
the product of convolution (or Cauchy product) defined for the generating series.

Proof. gX+Y (z) = E(zX+Y ) = E(zXzY ). We check that, if X and Y are two

independent r.v.’s, then zX and zY are also independent, since

P (zX = x, zY = y) = P (X = logz x, Y = logz y)

= P (X = logz x)P (Y = logz y)

= P (zX = x)P (zY = y) .

then, by Proposition 12.56, E(zXzY ) = E(zX)E(zY ), hence

gX+Y (z) = gX(z)gY (z). ⊓⊔

Proposition 12.63 Let X be an integral-valued r.v. and a ∈ IN, then gaX(z) =
gX(za).

Proof. gaX(z) = E(zaX) = E((za)
X
) = gX(za). ⊓⊔

Exercise 12.26 Directly prove the preceding result by explicitly computing the gen-
erating functions as a series. ♦

Exercise 12.27 Consider a coin-tossing game with probability p for Tails and proba-
bility q = 1− p for Heads. The r.v. S1 represents the number of tosses required before
the first Tails turns up, and the r.v. Sr represents the number of tosses required before
the rth Tails turns up.

1. Compute the distribution of S1 and the generating function of S1.
2. Compute the generating function of Sr. Note that Sr = X1 + · · ·+Xr, where the
Xis are mutually independent and have the distribution of S1 as common distribution.
3. Deduce the distribution of Sr, its mean and its variance. ♦
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Exercise 12.28 Let X1, . . . , Xn be independent r.v.’s with a common generating func-
tion g. Let U be an integral-valued r.v. independent of X1, . . . , Xn, with generating

function f and assuming values in 1, . . . , n. Let V be the r.v. V =
∑U

i=1
Xi.

1. Show that P (V = k) =
∑n

j=1
P (U = j)× P ((

∑j

i=1
Xi) = k).

2. Compute the generating function of the r.v. V in terms of f and g.
3. Compute the mean and the variance of V in terms of the mean and the variance
of U and Xi. ♦

12.6 Common probability distributions

In the present section we give the most usual discrete probability distributions,

together with their intuitive motivation, and the main results (mean, variance)
will be stated. Explicit computations will be left as exercises; the reader is also

advised to have a look at the many excellent handbooks of probability theory
(e.g. he/she should benefit by reading Feller, Vol. 1).

12.6.1 Bernoulli trials

These consist of the distribution of a coin-tossing game, with p = P (Tails),
q = 1− p = P (Heads). The corresponding r.v. is X: (IB,P(IB)) −→ IB. If we

identify Tails with 1 and Heads with 0 then X is defined by: P (X = 1) = p and
P (X = 0) = q. Its generating function is g(z) = pz+ q, E(X) = p, var(X) = pq.

Notation: The Bernoulli distribution is denoted B(p) and p is called the param-
eter.

12.6.2 Binomial distribution

n independent Bernoulli trials, with the common distribution B(p), are repeated.
We are interested in the total number k of ‘Tails’ produced (we also say 1, or

success, for ‘Tails’, and 0, or failure, for ‘Heads’); k is given by the r.v. Sn =
X1 + · · · + Xn, where the Xis are n Bernoulli r.v.’s with the same parameter

p. We thus have gSn
(z) = gX(z)n = (pz + q)n =

∑n
k=0

(

n
k

)

pkqn−kzk, by the
binomial theorem; hence P (Sn = k) =

(

n
k

)

pkqn−k, E(Sn) = np, var(Sn) = npq.

The binomial distribution is denoted by b(p, n).

Exercise 12.29 Let X and Y be two independent r.v.’s with binomial distributions
b(p,m) and b(p, n) of respective parameters (p,m) and (p, n). Let S = X + Y .

1. What is the distribution of S?
2. Let s be a possible value for S; the conditional distribution of X given that S = s
is defined by P (X = x /S = s), when x ranges over the possible values for X. Find the
conditional distribution of X given S. ♦

The binomial distribution is also obtained in sampling problems. Consider a
size N population, partitioned into n1 people of type 1 and n0 people of type 0,
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with
n1

N
= p,

n0

N
= q = 1− p .

We randomly choose, n successive times, a person from the entire population

(sampling with replacement); if S is the number of people drawn of type 1, the
distribution of S is a binomial distribution, i.e.

P (S = k) = b(p, n)(k) =

(

n

k

)

pkqn−k .

Exercise 12.30 Check by a direct combinatorial computation that

P (S = k) = b(p, n)(k). ♦

We can generalize the case of samplings in a population of N people partitioned
into

• n1 individuals of type 1,

• n2 individuals of type 2,

• . . .

• nr individuals of type r,

with n1 + · · · + nr = N and ∀i = 1, . . . , r:
ni

N
= pi. Choose a sample with

replacement of n individuals; let Xi for i = 1, . . . , n, be the r.v. representing the
type of the individual obtained at the ith drawing. We have P (Xi = j) = pj .

If Si, i = 1, . . . , r, is the r.v. representing the number of individuals of type i
obtained in the sample, we have:

P (S1 = k1, . . . , Sr = kr) =
n!

k1! · · · kr!
pk1

1 · · · pkr

r .

Indeed, each sequence (x1, . . . , xn) contains ki elements of type i, with k1 + · · ·
+ kr = n, and it has pk1

1 · · · pkr

r probability of occurring. Moreover, there are n!

ways of permuting (x1, . . . , xn), but among those n! ways, the ki! permutations
of the ki elements of type i give the same result, for i = 1, . . . , r.

For r = 2, we again find the binomial distribution. We verify that ∀i, Si has a

binomial distribution b(pi, n).

The distribution of (S1, . . . , Sk) is called the multinomial distribution with

parameters p1, . . . , pk.

Exercise 12.31

1. Check that Si has a binomial distribution. For r = 2, what is the co-variance
Γ(S1, S2)?
2. Generalize the generating functions in order to be able to represent the distribution
of (S1, . . . , Sr). (Hard.) ♦
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12.6.3 Geometric distribution

Let (Xk)k≥1 be a sequence of independent r.v.’s with a Bernoulli distribution,

and X the r.v. representing the number of tosses necessary for the first ‘Tails’ to
turn up. Then, for all k ≥ 1

P (X = k) = P (X1 = · · · = Xk−1 = 1, Xk = 0) = pk−1q .

We say that X has a geometric distribution (or Pascal distribution). We have

the generating function

g(z) =
1− p

1− zp
=

q

1− zp
,

hence
E(X) =

p

q
, var(X) =

p

q2
.

Exercise 12.32 What is the sample space on which X is defined? ♦

Exercise 12.33 A coin is tossed till two successive identical outcomes appear.

1. What is the probability that n tosses are necessary?
2. What is the probability that the experiments stop before the sixth toss?
3. What is the probability that an even number of tosses is necessary? ♦

12.6.4 Hypergeometric distribution

This can be obtained with sampling problems (sampling without replacement).

Consider, as in 2, a size N population, consisting of ni individuals of type i,

i = 1, . . . , r, n1 + · · ·+ nr = N ,
ni

N
= pi.

Choose a subset of n individuals from the population (sampling without re-
placement) at the same time. Let Si be the number of type i individuals among

those chosen, i = 1, . . . , r. We verify that

P (S1 = k1, . . . , Sr = kr) =

(

n1

k1

)

· · ·
(

nr

kr

)

(

N
n

) .

for r = 2, we obtain the hypergeometric distribution denoted by H(N,n1, n),
defined by

P (S1 = k) =

(

n1

k

)(

N−n1

n−k

)

(

N
n

) ,

with E(S1) = np1 , var(S1) = np1(1− p1)
(N − n

N − 1

)

= np1p2

(N − n

N − 1

)

.

Note that in the case of a sampling with replacement, we obtain the same mean,
but a slightly larger variance, namely, np1p2, see Section 12.6.2.
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Exercise 12.34

1. Compute E(S1) and var(S1) when r = 2. Let Xi for i = 1, . . . , n, be the r.v.
assuming values in {1, 2} and representing the type of the individual obtained at the
ith drawing. We have S1 = χ1 + · · ·+ χn, where

χi = χ(Xi=1) =
{

1 if the person chosen at the ith drawing is of type 1,
0 otherwise.

2. Now let r be arbitrary; show that ∀j = 1, . . . , r, Sj has a distribution H(N,nj , n).
Deduce E(Sj) and var(Sj). ♦

Asymptotic behaviour

(a) For a fixed n, if N → ∞ and
n1

N
→ p, then H(N,n1, n) → b(p, n). Indeed,

P (S1 = k) =

(

n1

k

)(

N−n1

n−k

)

(

N
n

) =

(

n

k

)

(

N−n
n1−k

)

(

N
n1

)

=

(

n

k

)

n1(n1 − 1) · · · (n1 − k + 1)

×
(N − n1)(N − n1 − 1) · · · (N − n1 − n+ k + 1)

N(N − 1) · · · (N − n+ 1)
.

Let
p =

n1

N
, q = 1− p ,

P (S1 = k) =

(

n

k

)

Np(Np− 1) · · · (Np− k + 1)

×
Nq(Nq − 1) · · · (Nq − n+ k + 1)

N(N − 1) · · · (N − n+ 1)

∼

(

n

k

)

pk(1− p)n−k when n → ∞.

The intuition is as follows: for a fixed n, if N → ∞, a drawing without re-

placement of n individuals in a very large population is close to a drawing with
replacement; thus, on these asymptotic conditions, the hypergeometric distribu-

tion is close to the binomial distribution.
(b) If n, n1, N go to infinity and n

n1

N
→ λ, then

lim
n→∞

P (S = k) = e−λλ
k

k!
.

Exercise 12.35 Verify this result. ♦
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12.6.5 Poisson distribution

This is the distribution we have just obtained. An r.v. X : Ω −→ IN has a

Poisson distribution with mean λ, denoted by p(λ), if P (X = k) = e−λλ
k

k!
,

∀k ∈ IN, with λ > 0. The generating function of X is given by:

g(z) =
∑

n≥0 e
−λzn

λn

n!
= eλ(z−1).

Hence we will deduce E(X) = λ, var(X) = λ.

Proposition 12.64 Let X and Y be two independent r.v.’s with Poisson dis-
tributions with parameters λ and µ; then X + Y has a Poisson distribution with

parameter λ+ µ.

Proof. Straightforward, since the generating function gX+Y of X +Y is gX+Y =
gXgY . ⊓⊔

Proposition 12.65 (Poisson approximation) Let Sn be an r.v. with a binomial
distribution b(pn, n). Assume that n goes to infinity, with limn→∞ npn = λ,

0 < λ < 1, then limn→∞ P (Sn = k) = e−λλ
k

k!
.

Proof. Letting qn = 1− pn, check the result by induction on k.

• Basis: k = 0; then, if n → ∞,

P (Sn = 0) = qnn = (1− pn)
n =

(

1−
λ

n
+ ε

(

λ

n

))n

−→ e−λ.

• Inductive step: assume that P (Sn = k) → e−λλ
k

k!
for n → ∞.

P (Sn = k + 1)

P (Sn = k)
=

n− k

k + 1
×

pn
qn

→
λ

k + 1
when n → ∞.

(Note that pn → 0 and qn → 1 for n → ∞.) Thus

P (Sn = k + 1) → e−λ λk+1

(k + 1)!
when n → ∞. ⊓⊔

Corollary 12.66 For n ‘large’ and p ‘small’ a Poisson distribution with param-
eter np approximates the binomial distribution b(p, n).
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12.6.6 Uniform distribution

Recall for the sake of completeness the uniform distribution: on a finite subset A
of IN it is defined by the uniform probability on A:

P (X = n) =

{

1

|A|
if n ∈ A,

0 otherwise.

Its generating function is
∑

n∈A

zn

|A|
;

E(X) =
1

|A|
(
∑

n∈A

n) , var(X) =
1

|A|
(
∑

n∈A

n2)− (E(X))2 .

Exercise 12.36 Let X and Y be two r.v.’s such that the joint distribution of (X,Y )
is given, for all (m,n) ∈ IN2, such that m ≥ n, by

P (X = n, Y = m) =
λm

n!(m− n)!
e−2λ.

1. Show that the joint distribution of (X,Y ) is completely determined.
2. Find the probability distributions of X and of Y . Are X and Y independent?
3. Find the probability distribution of Y − X and the joint distribution of
(X,Y −X). Show that the r.v.’s X and Y −X are independent.
4. What are the co-variance Γ(X,Y ) and the correlation coefficient of ρ(X,Y )? ♦

Exercise 12.37 A telephone switchboard receivesN daily calls. The r.v. N is assumed
to have a Poisson distribution with mean λ. Among these N calls, there are Z wrong
numbers, and each number among the N numbers has the probability p of being wrong.

1. Find the probability distribution of (Z,N).
2. Find the probability distribution of Z.
3. Find the probability distribution of N conditioned by Z.
4. Compute the correlation coefficient of ρ(N,Z). ♦


