
chapter 2

ORDERED SETS

In this chapter we study binary relations which will be used extensively in the
remainder of the book.

Ordered sets play a fundamental role, similar to the role of metric spaces,
because they allow the comparison of two or more objects. Ordered sets will be

used in most of the subsequent chapters (Chapter 3, Chapter 4, Chapter 9, etc.).
We define order relations and ordered sets, mappings between ordered sets

and special elements such as minimal and maximal elements, upper and lower
bounds. We study well-founded sets which form the general framework in which

we can use proofs by induction. Finally, we study complete sets and monotone
functions on complete sets, which form the basis of the semantics of programming
languages.

The following book is very complete and at the same time quite readable:

Garrett Birkhoff, Lattice theory, AMS, 3rd edition, Rhode Island (1979).

2.1 Order and preorder relations

2.1.1 Orders and strict orders

Definition 2.1 An order relation or ordering is a reflexive, antisymmetric and
transitive relation. A strict ordering is an irreflexive and transitive relation.

Remark 2.2

1. If R is a strict ordering on a set E, then the relation R∪ IdE is an ordering
on E. Conversely, if R′ is an ordering, R′ \ IdE is a strict ordering.

2. If R is an antisymmetric and transitive relation, then the relation R ∪ IdE
is an ordering and the relation R \ IdE is a strict ordering.

Orderings are usually denoted by ≤, and strict orderings are denoted by <.
By the preceding remark, it is easy to derive an ordering from the corresponding
strict ordering and the converse, i.e.
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18 2. Ordered sets

• x ≤ y is equivalent to x < y or x = y,

• x < y is equivalent to x ≤ y and x 6= y.

2.1.2 Total orderings and partial orderings

If ordering R verifies ∀e, e′ ∈ E, e 6= e′ =⇒
(

e R e′ or e′ R e
)

, then R is

called a total ordering. Otherwise R is called a partial ordering.

Example 2.3

(i) The usual ordering on real numbers is a total ordering.

(ii) The divisibility relation on integers is a partial ordering (a ≤div b if and
only if there exists c such that b = ac).

(iii) Inclusion on P(E) is a partial ordering if |E| > 1 and a total ordering if
|E| ≤ 1.

In the next example, we define common orderings on the free monoid A∗ (see

Definition 1.15).

Example 2.4

(i) The prefix ordering is a partial ordering on the monoid A∗ that is defined

as follows. String u = u1 . . . un is a prefix of string v = v1 . . . vm if n ≤ m and
∀i ≤ n, ui = vi.

(ii) We assume that alphabet A has a total ordering ≤. The lexicographic or-

dering � is a total ordering on the monoid A∗ that is defined as follows. Let
u = u1 . . . un and v = v1 . . . vm be two strings. u ≺ v if

• either u is a prefix of v,

• or u and v coincide up to letter k, uk+1 6= vk+1 and uk+1 ≤ vk+1,
with 0 ≤ k < inf(n,m).

2.1.3 Preorders

Definition 2.5 A preorder relation is a transitive relation.

Example 2.6 Let E = Pf (IN) be the set of finite subsets of IN. Each subset
X contains a least element, denoted by inf(X), and a greatest element, denoted

by sup(X). We define the relation R on E by: X R X ′ if and only if inf(X) ≤
inf(X ′) and sup(X) ≤ sup(X ′). It is easy to see that this relation is transitive
and reflexive. But it is not antisymmetric because

(

X R X ′ and X ′ R X
)

implies

inf(X) = inf(X ′) and sup(X) = sup(X ′), but not necessarily X = X ′.
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Proposition 2.7 If R is a preorder relation on E then IdE ∪ (R ∩ R−1) is an

equivalence relation.

Note that the relation ≡R = IdE ∪ (R ∩ R−1) can be translated by e ≡R e′ if

and only if either e = e′ or
(

e R e′ and e′ R e
)

.
Proof. The relation IdE ∪ (R ∩ R−1) is obviously reflexive and symmetric. We
show that it is transitive, i.e. that

(IdE ∪ (R ∩ R−1))2 ⊆ IdE ∪ (R ∩ R−1).

We see that (IdE ∪ (R ∩ R−1))2 is equal to IdE ∪ (R ∩ R−1) ∪ (R ∩ R−1)2.
Because R ∩ R′ is the intersection of two transitive relations, it is also transitive

(see Exercise 3.5) and thus (R ∩ R−1)2 ⊆ (R ∩ R−1). ⊓⊔

Example 2.8 If we consider the preorder R of Example 2.6, the equivalence

relation defined in Proposition 2.7 is

X
(

IdE ∪ (R ∩ R−1)
)

X ′

if and only if inf(X) = inf(X ′) and sup(X) = sup(X ′).

Let R be a preorder relation on E and let E be the associated equivalence. On
the factor set E/ E of E by E , we can define the relation R′ by [e]E R′ [e′]E if
and only if e R e′. This definition does not depend on the choice of the elements

e and e′ within their equivalence class, because if e E e1 and e′ E e′1, then e R e′

if and only if e1 R e′1.

Exercise 2.1 Prove that R′ does not depend on the choice of the elements e and e′

within their equivalence class. ♦

Proposition 2.9 The relation R′ is antisymmetric and transitive; R′ is an
ordering if R is reflexive and R′ is a strict ordering if R is irreflexive.

Proof. R′ is transitive, because [e]E R′ [e′]E and [e′]E R′ [e′′]E imply e R e′

and e′ R e′′, and hence e R e′′. It is antisymmetric because
(

[e]E R′ [e′]E and

[e′]E R′ [e]E
)

implies
(

e R e′ and e′ R e
)

. Thus (e, e′) ∈ (R ∩ R−1) ⊆ E , and
hence [e]E = [e′]E .

R′ is reflexive (resp. irreflexive) if R is reflexive (resp. irreflexive). ⊓⊔

This ordering R′ will be called the factor ordering of the preorder R.

Example 2.10 Again with the preorder of Example 2.6, the factor set of E =
Pf (IN) can be identified with the set of pairs (a, b) of integers such that a ≤ b.

On this set the ordering R′ is defined by (a, b) R′ (a′, b′) if and only if a ≤ a′ and
b ≤ b′.

Exercise 2.2 Let R be a preorder relation. Show that the relation R† defined by
x R† y if and only if x = y or (x R y and y R x), where R denotes the complementary
of relation R (see Section 1.4.3), is an ordering. ♦
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2.2 Ordered sets

Definition 2.11 An ordered set (E,≤) is a set E together with an ordering ≤ .

The same set E can be equipped with different orderings. We then have different
ordered sets.

Example 2.12 The set of integers IN can be equipped with the usual ordering
or with the divisibility ordering of Example 2.3.

2.2.1 Monotonic mappings

Definition 2.13 Let (E1,≤1) and (E2,≤2) be two ordered sets. A mapping f
from E1 to E2 is said to be monotonic, or monotone, if

∀x, y ∈ E1, x ≤1 y =⇒ f(x) ≤2 f(y).

f is also said to be a homomorphism from the ordered set (E1,≤1) to the ordered
set (E2,≤2).

(E1,≤1) and (E2,≤2) are said to be isomorphic if there is a bijection b between

E1 and E2 with the property that both b and b−1 are monotone.

Example 2.14

1. If two ordered sets (E1,≤1) and (E2,≤2) have the same underlying set,
namely, if E1 = E2, then the inclusion ≤1⊆≤2, i.e. ∀x, y, x ≤1 y =⇒ x ≤2 y,

holds if and only if the identity mapping from E1 to E2 is monotone.

2. In order for a bijection to be an isomorphism, monotonicity is not suffi-
cient; for instance, the identity mapping from (IN,≤div) to (IN,≤) is a monotone

bijection but it is not an isomorphism.

2.2.2 Totally ordered sets

An ordered set (E,≤) is said to be totally ordered if ≤ is a total ordering, i.e. if

∀x, y, x 6= y =⇒ x ≤ y or y ≤ x. Otherwise, i.e. if ∃x, y, x 6= y, x 6≤ y and
y 6≤ x, it is said to be a partially ordered set or poset. Let (E,≤) be a partially
ordered set. A linear extension of (E,≤) is a totally ordered set (E,≤t) with the

same underlying set such that ≤⊆≤t.

Theorem 2.15 Let (E,≤) be an ordered set. It has at least one linear exten-
sion, and ≤ is equal to the intersection of all its linear extensions.

This theorem will not be proved in the general case.

Exercise 2.3 Prove the statement of Theorem 2.15 for the case when E is finite. ♦
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2.2.3 Products of ordered sets

Let (E1,≤1) and (E2,≤2) be two ordered sets. The direct product of these two
ordered sets is (E1 × E2,≤) with the ordering ≤ defined by (x1, x2) ≤ (y1, y2) if

and only if x1 ≤1 y1 and x2 ≤2 y2.

Remark 2.16

1. The ordering on the direct product is also called the product ordering.

2. We can define orderings on E1 × E2 other than the product ordering; for
instance, we can define (x1, x2) ≤

′ (y1, y2) if and only if y1 ≤1 x1 and x2 ≤2 y2.

Exercise 2.4

1. Show that the projections πi from E1 × E2 onto Ei are monotonic.
2. Show that if |E1| ≥ 2 and |E2| ≥ 2, E1 × E2 is not totally ordered even when E1

and E2 are.
3. Show that the direct product is associative and commutative up to isomorphism
(i.e. the mapping b from E1 × E2 to E2 × E1 associating (x2, x1) with (x1, x2) is an
isomorphism). ♦

The lexicographic product of (E1,≤1) by (E2,≤2) is (E1×E2,≤) with (x1, x2) ≤
(y1, y2) if and only if x1 < y1 or (x1 = y1 and x2 ≤ y2).

Exercise 2.5

1. Show that the lexicographic product of two ordered sets is an ordered set.
2. Show that this product is not commutative, i.e. (E1 ×E2,≤) is not isomorphic to
(E2 × E1,≤).
3. Show that the lexicographic product of total orderings is a total ordering. ♦

2.2.4 Ordered subsets, chains and antichains

Let (E,≤) be an ordered set. A subordered set of (E,≤) is an ordered set (E′,≤′)

such that E′ ⊆ E and ≤′ = ≤ ∩(E′ × E′), i.e. ∀x, y ∈ E′, x ≤′ y if and only if
x ≤ y.

A chain of E is a totally ordered subset of E. A chain is maximal if it is not
strictly included in another chain.

An antichain E′ of E is a subset of E such that

≤ ∩ (E′ × E′) = IdE′ .

In other words, any two elements of an antichain are incomparable, because if
they are in the ordering then they must be equal. An antichain is maximal if it
is not strictly included in any other antichain.

Exercise 2.6

1. If (E,≤) is a totally ordered set then its only antichains are singletons.
2. Show that the intersection of a chain and an antichain has at most one element. ♦
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A left segment is a subset E′ of E such that

y ∈ E′ and x ≤ y =⇒ x ∈ E′.

An interval [x, y], with x 6= y and x ≤ y, is the subset

{z / x ≤ z and z ≤ y} .

An ordered set is locally finite if all its intervals are finite.

Example 2.17 For the usual ordering on numbers, IN is locally finite and Q is

not.

Exercise 2.7 Show that the interval [x, y] is empty if and only if x 6≤ y . ♦

We say that x is covered by y if interval [x, y] contains only x and y. This relation
will be denoted by x ≺ y.

Exercise 2.8 Show that if interval [x, y] is finite then there exists an element of this
interval covering x. ♦

Proposition 2.18 If (E,≤) is locally finite then ≤ = ≺∗.

Exercise 2.9 Prove Proposition 2.18. ♦

2.3 Upper and lower bounds

Definition 2.19 Let E′ be a subset of an ordered set (E,≤). An element x of

E is an upper bound of E′ (resp. lower bound) if ∀y ∈ E′, y ≤ x (resp. x ≤ y).

We denote by Maj(E′) the set of upper bounds of E′ and by Min(E′) the set of

lower bounds of E′. It is easy to see that Maj(∅) = Min(∅) = E.

Proposition 2.20 Maj(E′)∩E′ and Min(E′)∩E′ each have at most one element.

Proof. Assume that Maj(E′) ∩ E′ contains two distinct elements x and y. We

thus have x ≤ y and y ≤ x, a contradiction.

The proof is similar for Min. ⊓⊔

If Maj(E′) ∩ E′ is non-empty then the unique element of this set is called the

greatest element or maximum of E′. Similarly, if Min(E′)∩E′ is non-empty then
its unique element is called the least element or minimum of E′.
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Proposition 2.21 Let E′ be a subset of E and let z ∈ E. The following three

conditions are equivalent:

(i) z is the greatest element of E′.
(ii) z ∈ E′ and ∀x ∈ E′, x ≤ z.

(iii) z ∈ E′ and z is the least element of Maj(E′).

The least element of E′ has a similar characterization.

Proof.

(i) =⇒ (ii): If z is the greatest element of E′, then z ∈ E′ and z ∈ Maj(E′),
and thus (ii) is true.
(ii) =⇒ (iii): ∀x ∈ E′, ∀y ∈ Maj(E′), x ≤ y, and thus E′ ⊆ Min(Maj(E′)).

Hence z ∈ E′ ∩Maj(E′) ⊆ Min(Maj(E′))∩Maj(E′) and z is the least element of
Maj(E′).

(iii) =⇒ (i): The least element of Maj(E′) is in Maj(E′), and thus z ∈ E′ ∩
Maj(E′). ⊓⊔

Z
Let E′ be a subset of E. An element x of E′ is said to be maximal in E′ if

∀y ∈ E′, y ≥ x =⇒ y = x or, equivalently, y 6= x =⇒ y 6≥ x. If E′

has a greatest element, this greatest element is its unique maximal element, but

the converse is false (see Exercise 2.10).
We define the minimal elements of a subset E′ similarly.

Example 2.22 IN has a minimal element which is its least element (it is 0), but

it has no maximal element.

Exercise 2.10

1. Show that if a subset E′ of E has a unique maximal element, this element is not
necessarily the greatest element of E′.
2. What can you say if E is totally ordered? ♦

Definition 2.23 An element x is the least upper bound of a subset E′ of an

ordered set E if

(

∀y ∈ E′, y ≤ x
)

and
(

∀z ∈ E, ((∀y ∈ E′, y ≤ z) =⇒ x ≤ z)
)

.

Similarly, an element x is the greatest lower bound of a subset E′ of an ordered
set E if

(

∀y ∈ E′, x ≤ y
)

and
(

∀z ∈ E, ((∀y ∈ E′, z ≤ y) =⇒ z ≤ x)
)

.

The terminology ‘the’ least upper bound (resp. greatest lower bound) is justi-
fied because there is at most one least upper bound (resp. greatest lower bound).
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Indeed, the definition of the least upper bound (resp. greatest lower bound) of a

subset E′ of E is identical to the definition of the least element of Maj(E′) (resp.
the greatest element of Min(E′)). The least upper bound of subset E′ is thus an
upper bound of E′ that is less than all other upper bounds of E′, i.e. the least

upper bound of E′ is the least among the upper bounds of E′. Similarly, the
greatest lower bound of E′ is the greatest among the lower bounds of E′.

We denote by sup(E′) and inf(E′) the least upper bound and greatest lower
bound, respectively, when they exist.

Proposition 2.24 Let E′ be a subset of E.

(i) If z is the greatest element of E′, then z = sup(E′).
(ii) If sup(E′) ∈ E′, then sup(E′) is the greatest element of E′.

We have a similar result for the least element and the greatest lower bound of
E′.

Proof. This result is a consequence of Proposition 2.21:

(i) If z is the greatest element of E′, then z is the least element of Maj(E′). It
is thus the least upper bound of E′.

(ii) The least upper bound of E′ is the least element of Maj(E′). If it belongs
to E′ it is thus the greatest element of E′. ⊓⊔

Example 2.25

1. Let IN be ordered by the divisibility relation (see Example 2.3 and Exercise
2.17). For this ordering, the greatest lower bound of a set of two integers always
exists and is the greatest common divisor of these two integers. The least upper

bound also always exists and is their least common multiple.
2. The least upper bound and the greatest lower bound do not always exist.

Consider the set E = {a, b, c, d} ordered by : a ≤ c , a ≤ d , b ≤ c , b ≤ d . See
Figure 2.1.

a b

c d

Figure 2.1

Then {a, b} has neither a least upper bound nor a greatest lower bound; the same
holds for {c, d}.
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Example 2.26 Let P(E) be the set of subsets of E, ordered by inclusion. Let

Ei for i ∈ I be a family of subsets of E. The least upper bound of this family is
⋃

i∈I Ei and its greatest lower bound is
⋂

i∈I Ei.

Proposition 2.27 Let Ei, for i ∈ I, be a family of subsets of an ordered set

and let E′ =
⋃

i∈I Ei be its union. If each set Ei has a least upper bound (resp.
greatest lower bound) ei, and if the set {ei / i ∈ I} has a least upper bound (resp.

greatest lower bound) e, then e is the least upper bound (resp. greatest lower
bound) of E′.

Proof. We show this result only in the case of the least upper bound; the other

case is completely similar.
First, we show that e is an upper bound of E′. Let x be any element of E′. It

thus belongs to some Ei, and so x ≤ ei ≤ e.

Now we let z be any upper bound of E′ and show that e ≤ z. Because z is an
upper bound of E′, it also is an upper bound of Ei, for any i in I, and we have:

∀i ∈ I, ei ≤ z. Therefore, because e is the least upper bound of {ei / i ∈ I}, we
have that e ≤ z. ⊓⊔

2.4 Well-ordered sets and induction

Well-founded sets form the general framework in which we can use proofs by

induction. All induction principles stated in Chapter 3 are thus justified by the
present section.

Definition 2.28 An ordered set (E,≤) is said to be well founded if there is no

infinite strictly decreasing sequence of elements of E; ≤ is then said to have the
well-founded ordering property or to be a well founded ordering. A total ordering

≤ having the well-founded ordering property is called a well ordering.

We now prove an important characterization of well-founded ordered sets.

Proposition 2.29 An ordered set (E,≤) is well founded if and only if any

non-empty subset of E has at least one minimal element.

Proof. It is equivalent to show the contrapositive of this result, namely, that
(E,≤) has an infinite decreasing sequence if and only if there exists a non-empty

subset having no minimal element. Assume that there exists a strictly decreasing
infinite sequence (xn)n∈IN in E. The set X = {xn / n ∈ IN} is a non-empty subset

having no minimal element.
Conversely, assume that there exists a non-empty subset having no minimal

element. Because X has no minimal element, any element x of X is strictly larger
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than at least one other element y of X. Thus there exists a function f from X

to X verifying ∀x ∈ X, f(x) < x. (It suffices to choose one among the elements
y < x and to let f(x) = y.) Let x0 ∈ X (where X is non-empty by hypothesis).
For any integer n, we define xn = fn(x0). The sequence (xn)n∈IN is strictly

decreasing because ∀n ∈ IN, xn = f(xn−1) < xn−1. ⊓⊔

Example 2.30

1. The usual ordering is a well ordering on IN but not on ZZ.
2. IN2 equipped with the product order ≤ (see Section 2.2.3) is well founded.

Indeed, any element of IN2 has a finite number of lower bounds. Consequently,
there can exist no strictly decreasing infinite sequence. More generally, it is easy

to see that the product of two well-founded sets is also well founded.
3. The lexicographic ordering � on IN2 is defined by (n,m) ≺ (n′,m′) if and

only if (n < n′) or (n = n′ and m < m′). We note that if n > 0 then (n,m)
has infinitely many lower bounds. For instance, ∀p ∈ IN, (n − 1, p) ≺ (n,m).

Nevertheless, the lexicographic ordering is a well ordering on IN2. Indeed, let X
be a non-empty subset of IN2, and let n = min{p ∈ IN /∃q ∈ IN, (p, q) ∈ X} and
m = min{q ∈ IN / (n, q) ∈ X}. We easily verify that (n,m) is the least element

of X.

Exercise 2.11 Let <1 be a well ordering on E1 and let <2 be a well ordering on E2;
we define the lexicographic product �′ of <1 and <2 on E1 ×E2 by (n,m) ≺′ (n′,m′)
if and only if (n <1 n′) or (n = n′ and m <2 m′). Verify that �′ is a well ordering on
E1 × E2 . ♦

The induction principle for well-founded sets is stated in the following theorem.

Theorem 2.31 Let (E,≤) be a well-founded set and let P be an assertion

depending on an element x of E. (P is called a predicate, see Chapter 5.) If the
following property is verified:

(I) ∀x ∈ E,
(

(

∀y < x, P (y)
)

=⇒ P (x)
)

,

then ∀x ∈ E, P (x).

Proof. Let X = {x ∈ E /P (x) is false}. If X is non-empty, X has a minimal
element x0. ∀y < x0, y /∈ X and thus P (y) is true. Using (I) we deduce that

P (x0) is true, which contradicts x0 ∈ X. Thus X = ∅, which means that ∀x ∈ E,
P (x) is true. ⊓⊔

Unfortunately, sets equipped with their natural orderings are not always well
founded. We have already seen that ZZ with the usual ordering is not well founded.

It is of course possible to define well-founded orderings and even well orderings
on ZZ, but these orderings are not very natural. For instance, a well ordering �
is defined on ZZ by using the usual ordering ≤ as follows:
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• ∀n > 0, ∀m > 0, n ≺ m ⇐⇒ n < m (� coincides with ≤ on IN).

• ∀n < 0, ∀m ≥ 0, n ≺ m (negative integers are less than positive ones).
• ∀n < 0, ∀m < 0, n ≺ m ⇐⇒ m < n (the inverse ordering on negative
integers).

Below we give yet another example where the usual ordering is not a well-

founded ordering.

Example 2.32 Let A be an alphabet with at least two letters a and b. The free

monoid A∗, together with the lexicographic ordering (see Example 2.4), is not
well founded. Indeed, (anb)n∈IN is a strictly decreasing infinite sequence. Thus,

proofs by induction on A∗ equipped with the lexicographic ordering will not be
valid.
On the other hand, A∗ equipped with the prefix ordering (Example 2.4) is well

founded. Finally, a well ordering on A∗ is defined by: x ≺ y if and only if

(|x| < |y|) or (|x| = |y| and x ≺ y in the lexicographic ordering).

Hence proofs by induction on A∗ using either the prefix ordering or the ordering
≺ will be valid.

2.5 Complete sets and lattices

2.5.1 Complete sets and continuous functions

Definition 2.33 An ordered set (E,≤) is said to be a lattice (resp. complete
lattice) if any finite subset (resp. any subset) of E has a least upper bound and

a greatest lower bound.

If E is a lattice, then the greatest lower bound of E is less than any element

of E; hence a lattice has a least element that is denoted by ⊥ and pronounced
‘bottom’. Similarly, a lattice has a greatest element that is denoted by ⊤ and

pronounced ‘top’.

Example 2.34 P(E) ordered by inclusion is a complete lattice.

Exercise 2.12

1. Show that an ordered set (E,≤) is a lattice if and only if any two-element subset
of E has a least upper bound and a greatest lower bound.
2. Show that an ordered set (E,≤) is a complete lattice if and only if any subset of
E has a least upper bound. ♦

Z
If an ordered set is a lattice, its least element ⊥ is also the least upper bound
of the empty set. Because the set Maj(∅) of upper bounds of the empty set
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is the whole of E, ⊥ is the least element of E.

Similarly, the greatest element ⊤ is also the greatest lower bound of the empty
set.

Definition 2.35 A mapping f from an ordered set (E1,≤1) to an ordered
set (E2,≤2) is said to be continuous (or, more precisely, sup-continuous) if it

preserves the least upper bounds of non-empty subsets. In other words, if the
subset E′ 6= ∅ has a least upper bound e = sup(E′), then f(E′) = {f(x) / x ∈ E′}
also has a least upper bound equal to f(e).

Remark 2.36 Since the least upper bound of the empty set is ⊥, the condition
‘f preserves the least upper bound of the empty set’ is simply f(⊥1) = ⊥2. This
is a very exacting requirement that we will not demand for a continuous function.

Since in a complete lattice least upper bounds always exist, the continuity of
a mapping between two complete lattices is then simply expressed by:

f(sup(E)) = sup(f(E)) .

Exercise 2.13 Show that any continuous function is monotonic. ♦

Let C(E) be the set of left segments of E ordered by inclusion. Let i be the
mapping from E to C(E) defined by i(x) = {y ∈ E /y ≤ x}, and let i(E) be the

image of E by i.

Proposition 2.37 C(E) is a complete set. The mapping i is monotonic and is

an isomorphism between E and i(E).

Proof. In order for C(E) to be complete for inclusion, it suffices that any union
of left segments is a left segment, and this clearly holds.

If x ≤ y, it is clear that i(x) ⊆ i(y) and thus i is monotonic.
Conversely, if i(x) ⊆ i(y), then because x ∈ i(x) we have that x ∈ i(y) and

thus x ≤ y. Hence i(x) = i(y) implies x ≤ y and y ≤ x, and thus x = y. ⊓⊔

However, i is not always continuous, as shown by the next example.

Example 2.38 Let E = IN, together with the usual ordering. For n ∈ IN,
i(n) = {0, 1, . . . , n}, and the only left segment that is not of this form is the whole

of IN. We can thus identify C(IN) with the complete ordered set IN = IN ∪ {ω},
where ∀n ∈ IN, n < ω.

We may again consider the set C(IN) of left segments of IN which is equal to
{i(n) / n ∈ IN}∪{IN, IN}. The mapping i′ from IN to C(IN) is defined by ∀n ∈ IN,
i′(n) = {0, 1, . . . , n} and i′(ω) = IN. This mapping is not continuous. Indeed, in

IN the least upper bound of IN is ω, whilst in C(IN) the least upper bound of the
set {i′(n) / n ∈ IN} is IN.
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2.5.2 Fixed points of monotone functions

Let f be a mapping from a set E to itself. A fixed point of f is an element x of

E such that f(x) = x.

If E is an ordered set, the set of fixed points of f is a subordered set of E,
possibly empty. If this subset has a least element, this least element is called the
least fixed point of f , and if it has a greatest element, this greatest element is

called the greatest fixed point of f .

Theorem 2.39 If f is a monotone mapping from a complete ordered set to
itself, then f has a greatest fixed point.

Proof. We verify that f has a greatest fixed point. Let

X = {x ∈ E /x ≤ f(x)}

and let z = sup(X). By the definition of z, we have ∀x ∈ X, x ≤ z and hence,

since f is monotonic, f(x) ≤ f(z). As x ≤ f(x), f(z) is an upper bound of X,
and hence z ≤ f(z). We deduce that f(z) ≤ f(f(z)), and hence f(z) ∈ X and

thus f(z) ≤ z. It follows that z is a fixed point of f . If z′ is another fixed point,
then z′ ∈ X and thus z′ ≤ z. ⊓⊔

Theorem 2.40 If f is a continuous mapping from a complete ordered set to

itself, then f has a least fixed point. This least fixed point is equal to

sup({fn(⊥) / n ∈ IN}).

Proof. Let x = sup({fn(⊥) / n ∈ IN}). Because f is continuous,

f(x) = sup({fn+1(⊥) / n ∈ IN}),

and because ⊥ = f0(⊥) is the least element of E,

sup({fn+1(⊥) / n ∈ IN}) = sup({fn(⊥) / n ∈ IN}) = x,

which is thus a fixed point of f . If y is another fixed point of f , we first show

by induction that ∀n ∈ IN, fn(⊥) ≤ y; because ⊥ is the least element of E, ⊥ =
f0(⊥) ≤ y; if fn(⊥) ≤ y then fn+1(⊥) ≤ f(y) = y. Hence, x = sup({fn(⊥) / n ∈
IN}) ≤ y. ⊓⊔
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Theorem 2.41 If E is a finite ordered set having a least element ⊥, then for

any monotone function f from E to itself there exists k ≤ card(E) such that the
least fixed point of f is fk(⊥) .

Proof. Consider the sequence

⊥ , f(⊥) , f2(⊥) , . . . , fn(⊥) , . . . ,

which is increasing because f is monotone. If the sequence has two consecutive
equal elements then it is stationary:

f i(⊥) = f i+1(⊥) =⇒ f i+1(⊥) = f i+2(⊥)

and thus, by induction, ∀j ≥ i, f i(⊥) = f j(⊥) . In the |E| + 1 first elements of

this sequence, there must be two consecutive elements that are equal. We thus
have fk(⊥) = fk+1(⊥) for k ≤ |E|. The fact that fk(⊥) is less than any other

fixed point of f is proved as in the preceding theorem. ⊓⊔

Exercise 2.14

1. What is the value of f(⊥) if f preserves all least upper bounds?
2. If f(⊥) = ⊥, what is the least fixed point of f? ♦

Exercise 2.15 Consider P(E×E) ordered by inclusion. Let R be a binary relation on
E and let f be the mapping of P(E × E) to itself defined by
f(X) = IdE ∪R.X .

Show that this mapping is continuous and that its least fixed point is R∗. ♦

2.5.3 Lattices

Definition 2.42 An ordered set is a lattice (see Definition 2.33 and Exercise
2.12) if any pair of elements has a least upper bound and a greatest lower bound.
We will sometimes denote by x⊔ y, instead of sup({x, y}), the least upper bound
of x and y, and by x ⊓ y their greatest lower bound.

Example 2.43 IN equipped with the divisibility ordering is a lattice. The binary
operations ⊔ and ⊓ are, respectively, the lcm (least common multiple) and the
gcd (greatest common divisor), ⊥ is 1, and ⊤ is 0. Indeed, 1 divides any number

n because 1n = n, and any number n divides 0 because n0 = 0.

Example 2.44 P(E) together with inclusion is a lattice. The binary operations
⊔ and ⊓ are, respectively, ∪ and ∩.

If E is a lattice, we may thus consider that E is a set equipped with two binary

operations ⊔ and ⊓.
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Proposition 2.45 The operations ⊔ and ⊓ have the following properties:

• idempotence: x ⊔ x = x and x ⊓ x = x.

• commutativity: x ⊔ y = y ⊔ x and x ⊓ y = y ⊓ x.

• associativity: (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z) and (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z).

• absorption: x ⊓ (x ⊔ y) = x = (y ⊓ x) ⊔ x.

Conversely, assume that on a set E there exist two binary operations ⊔ and ⊓
that have the four properties mentioned in the above proposition. Then we can
order E in such a way that x⊔y and x⊓y are, respectively, the least upper bound
and the greatest lower bound of x and y. It suffices to let x ≤ y if and only if

x ⊔ y = y, which, because of the absorption property, is equivalent to x ⊓ y = x:

x ⊔ y = y =⇒ x ⊓ (x ⊔ y) = x ⊓ y =⇒ x = x ⊓ y .

Since ⊔ is idempotent, ≤ is reflexive: from x ⊔ x = x we deduce that x ≤ x.

From the commutativity of ⊔, we easily deduce that ≤ is antisymmetric; x ≤ y
implies x ⊔ y = y; y ≤ x implies y ⊔ x = x; as x ⊔ y = y ⊔ x we have x = y.
Finally, the transitivity of ≤ is an immediate consequence of the associativity of ⊔:
x ≤ y =⇒ x⊔y = y; y ≤ z =⇒ y⊔z = z; hence z = (x⊔y)⊔z = x⊔(y⊔z) = x⊔z
and thus x ≤ z. Moreover, the least upper bound of x and y is indeed x ⊔ y: as

x ⊓ (x ⊔ y) = x, we have x ≤ (x ⊔ y), and for the same reasons, y ≤ (x ⊔ y); if
x ≤ z and y ≤ z, we have z = x⊔ z = y ⊔ z and thus z = z ⊔ z = x⊔ z ⊔ y, hence

x ⊔ y ≤ z. The fact that the greatest lower bound of x and y is x ⊓ y is proved
similarly.

From the associativity and the commutativity of ⊔ and ⊓, it immediately fol-

lows that in a lattice, any finite non-empty subset has a least upper bound and
a greatest lower bound. This can be proved by induction on the number of el-

ements of the finite subset by writing {e1, e2, . . . , en, en+1} as the union of two
sets {e1, e2, . . . , en} and {en+1} and by applying Proposition 2.27.

Exercise 2.16 Show that both operations ⊓ and ⊔ are monotone, i.e. if x ≤ x′ and
y ≤ y′ then x ⊓ y ≤ x′ ⊓ y′ and x ⊔ y ≤ x′ ⊔ y′. ♦

Definition 2.46 A lattice is said to be distributive if ⊓ and ⊔ distribute over

each other, i.e. if

(i) ∀x, y, z, x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) and

(ii) ∀x, y, z, x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z).

These two conditions are indeed equivalent. If (i) is true, then (ii) is true. To
show this, let us compute

(x ⊓ y) ⊔ (x ⊓ z).
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By (i), this can be written

((x ⊓ y) ⊔ x) ⊓ ((x ⊓ y) ⊔ z).

By using the absorption property, we obtain

x ⊓ ((x ⊓ y) ⊔ z)

and, by again applying (i),

x ⊓ ((x ⊔ z) ⊓ (y ⊔ z)).

By the associativity of ⊓, this is equal to

(x ⊓ (x ⊔ z)) ⊓ (y ⊔ z)

and, by again using the absorption property, this is equal to

x ⊓ (y ⊔ z).

The converse implication is proved similarly.

Example 2.47 P(E) is a distributive lattice.

Example 2.48 Assume E contains three elements a, b and c pairwise incom-

parable, a least element ⊥ and a greatest element ⊤, see Figure 2.2.

a b c

Figure 2.2

It is a lattice because

∀x, y ∈ {a, b, c} , x 6= y , x ⊓ y = ⊥ and x ⊔ y = ⊤.

It is not distributive, because

a ⊓ (b ⊔ c) = a ⊓ ⊤ = a ,

while

(a ⊔ b) ⊓ (a ⊔ c) = ⊤ ⊓⊤ = ⊤.
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Definition 2.49 A lattice E is said to be complemented if

(i) it has a least element ⊥ and a greatest element ⊤, with ⊥ 6= ⊤ and

(ii) there exists a mapping ν from E to E such that

• ∀x ∈ E, x ⊓ ν(x) = ⊥ and

• ∀x ∈ E, x ⊔ ν(x) = ⊤.

Example 2.50

1. The lattice P(E) is complemented. Its least element is the empty set, its
greatest element is E and the mapping ν is the usual complement operation.

2. The lattice of Example 2.48 is complemented. Let ν(⊥) = ⊤, ν(⊤) = ⊥,

ν(a) = b, ν(b) = c and ν(c) = a.

Exercise 2.17 The set IN equipped with the divisibility ordering is a lattice.
1. Is it distributive?
2. Is it complemented? ♦

Exercise 2.18

1. Show that the set of equivalence relations on a set E is a lattice for inclusion.
2. Is it distributive?
3. Is it complemented? ♦

Exercise 2.19 Show that, in a complemented lattice,
ν(⊤) = ⊥ and ν(⊥) = ⊤. ♦

Exercise 2.20 Show that, in a complemented lattice, ∀x, ν(x) 6= x. ♦

Proposition 2.51 If a complemented lattice is distributive, there exists exactly

one operation of complement ν. This operation, moreover, verifies

(i) involution: ∀x, ν(ν(x)) = x,

(ii) De Morgan’s laws: ∀x, y, ν(x⊔ y) = ν(x)⊓ ν(y) and ν(x⊓ y) = ν(x)⊔ ν(y)

and

(iii) antimonotonicity: x ≤ y ⇐⇒ ν(y) ≤ ν(x).

Proof.

(i) We first show that in a distributive lattice with a least element and a greatest

element, we have the property

∀x, y, z, x ⊓ y = ⊥ and x ⊔ z = ⊤ =⇒ y ≤ z.

Indeed, z = z ⊔⊥ = z ⊔ (x⊓ y) = (z ⊔x)⊓ (z ⊔ y) = ⊤⊓ (z ⊔ y) = z ⊔ y, and thus
y ≤ z.



34 2. Ordered sets

Assume now that there exist two mappings ν and µ verifying

∀x ∈ E, x ⊓ ν(x) = ⊥ ,

∀x ∈ E, x ⊔ ν(x) = ⊤,

∀x ∈ E, x ⊓ µ(x) = ⊥ ,

∀x ∈ E, x ⊔ µ(x) = ⊤.

Because x ⊓ ν(x) = ⊥ and x ⊔ µ(x) = ⊤, we have that ν(x) ≤ µ(x). Similarly,

x ⊓ µ(x) = ⊥ and x ⊔ ν(x) = ⊤, and hence µ(x) ≤ ν(x) and thus µ(x) = ν(x).
Because ν(x) ⊓ x = ⊥ and ν(x) ⊔ ν(ν(x)) = ⊤, we have that x ≤ ν(ν(x)), and,

for similar reasons, ν(ν(x)) ≤ x.
(ii) In order to show the De Morgan’s laws, it suffices to show, taking into con-
sideration the uniqueness of the complement, that

1. (x ⊔ y) ⊓ (ν(x) ⊓ ν(y)) = ⊥ and (x ⊔ y) ⊔ (ν(x) ⊓ ν(y)) = ⊤ and
2. (x ⊓ y) ⊓ (ν(x) ⊔ ν(y)) = ⊥ and (x ⊓ y) ⊔ (ν(x) ⊔ ν(y)) = ⊤.

We show only the first identity; the second one can be proved similarly:

(x ⊔ y) ⊓ (ν(x) ⊓ ν(y)) = (x ⊓ ν(x) ⊓ ν(y)) ⊔ (y ⊓ ν(x) ⊓ ν(y)) = ⊥ ⊔⊥ = ⊥ .

(x ⊔ y) ⊔ (ν(x) ⊓ ν(y)) = (x ⊔ y ⊔ ν(x)) ⊓ (x ⊔ y ⊔ ν(y)) = ⊤ ⊓⊤ = ⊤.

(iii) To show the last equivalence, notice that

x ≤ y ⇐⇒ x = x ⊓ y ⇐⇒ ν(x) = ν(x ⊓ y) = ν(x) ⊔ ν(y)

⇐⇒ ν(y) ≤ ν(x). ⊓⊔

Example 2.52 The lattice of Example 2.48 is not distributive, and there indeed
exist at least two operations of complement. For instance µ(⊥) = ⊤, µ(⊤) = ⊥,

µ(a) = c, µ(b) = a, µ(c) = b.


