
chapter 13

FINITE MARKOV CHAINS

The theory of Markov chains is used in

• modelling and simulation,
• queueing theory: for instance, the study of the average waiting time for
accessing the nerve-centres of a telematic network,

• robotics, to model the moves of the robot depending on its environment,
• signal theory.

The theory of Markov chains is based on conditional probabilities. We mainly
study finite Markov chains whose underlying sample probability space is finite.

In this chapter, we define finite Markov chains, their transition matrices and
their graphs. We then show how the graph of a finite Markov chain can be used

to study its properties.

We recommend in the strongest possible terms the following handbook:

William Feller, Probability Theory, Vol. 1, John Wiley, New York (1968).

We also recommend:

Dean Isaacson, Richard Madsen, Markov Chains Theory and Applications, John
Wiley, New York (1976).

13.1 Introduction

Up to now we have mainly studied independent experiments. For instance, a

sequence of trials en that independently produce as results elements of the same
trial space Ω yields a sequence of independent random variables Xn; we then

have, by the independence, that

P
(

(X0, . . . , Xn) = (ω0, . . . , ωn)
)

= P (X0 = ω0) · · ·P (Xn = ωn) = p0 · · · pn

(see the binomial distribution corresponding to a coin-tossing game).
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262 13. Finite Markov chains

In the present chapter we will study the simplest possible generalization of this

notion in which the result of the nth trial, Xn = ω, no longer has a fixed prob-
ability p(ω), independent of the trials e0, . . . , en−1, but, rather, a conditional
probability, completely determined by the result of the (n− 1)th trial en−1. We

associate with each pair ωi, ωj the probability pij , which represents the proba-
bility that Xn = ωj given that Xn−1 = ωi, and we assume that this probability

is the same for all possible ns. We will thus have the following, assuming for
instance that at the initial moment P (X0 = ωj) = qj :

P
(

(X0, X1) = (ωi, ωj)
)

= qipij ,

P
(

(X0, X1, X2) = (ωi, ωj , ωk)
)

= qipijpjk .

The situation is often summed up by saying, inaccurately, that: ‘the result of the
nth trial depends only on the result of the (n−1)th trial’. Actually, the nth trial

depends (via the (n− 1)th trial) on the (n− 2)th trial, which in turn depends on
the (n− 3)th one, etc.

Indeed, it is more accurate, but also more cumbersome, to say that the whole
past of the sequence of trials can be coded, for conditioning its future evolution,
in the knowledge of its present state. Formally, we have

P (Xn+1 = ωn+1 /Xn = ωn, . . . , X0 = ω0) = P (Xn+1 = ωn+1 /Xn = ωn) ,

with, moreover, for all k > 0,

P (Xn+k+1 = ω /Xn+k = ω′) = P (Xn+1 = ω /Xn = ω′).

13.2 Generalities

13.2.1 Definitions

In this chapter we will adopt the usual notations for Markov chains, even though

they are slightly different from the notations used in Chapter 12.
The trial space Ω = {E1, . . . , Er} is finite, and its elements E1, . . . , Er are

called the states of the system; we will abbreviate E1, . . . , Er to 1, . . . , r when
no ambiguity can occur. A sequence (Xn)n∈IN of random variables will be repre-
sented by a sequence of states of Ω, the nth state of the sequence representing the

value of the random variable (Xn). The result xn of the nth trial (or the value
xn of the nth random variable) will be called the state of the system at time n.

(Xn)n∈IN is a Markov chain if the conditional probabilities at time n,

pij = P (Xn+1 = Ej /Xn = Ei) ,

do not depend on n. The formal definition follows.
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Definition 13.1 A sequence of random variables (abbreviated r.v.’s) (Xn)n∈IN

with values ranging over a finite set Ω = {E1, . . . , Er} is a Markov chain* if and
only if it satisfies the following equivalent conditions:

(i) P (Xn+1 = Ein+1
/X0 = Ei0 , ..., Xn = Ein) = P (Xn+1 = Ein+1

/Xn = Ein) and

∀k > 0 ∀n > 0 P (Xn+k+1 = E /Xn+k = E′) = P (Xn+1 = E /Xn = E′).

(ii) P (X0 = Ei0 , X1 = Ei1 , . . . , Xn = Ein) = qi0pi0i1pi1i2pin−1in , where ∀i, qi =
P (X0 = Ei) is the initial probability distribution, and ∀i, j, n, pij = P (Xn+1 =

Ej /Xn = Ei) is the conditional probability of obtaining the result Ej given that
the preceding result is Ei.

By Definition 13.1 we will thus have

1. ∀i, qi ≥ 0 and
∑r

i=1 qi = 1,

2. ∀i∀j, pij ≥ 0 and
∑r

k=1 pik = 1.

Exercise 13.1 Show that, conversely, the qis and the pijs satisfying 1 and 2 above,
with 1 ≤ i, j ≤ r, each define a Markov chain. ♦

13.2.2 Examples

We will see an example, a counterexample, and a model equivalent to the notion

of Markov chain.

Example 13.2 Message passing. Consider passing a message ‘yes’ or ‘no’ in a
population. Each individual forwards the message received with probability p and

the opposite message with probability 1 − p. Let Xn be the message forwarded
by the nth individual. We have:

P (Xn+1 =‘yes’ /Xn =‘yes’) = P (Xn+1 =‘no’ /Xn =‘no’) = p,

P (Xn+1 =‘yes’ /Xn =‘no’) = P (Xn+1 =‘no’ /Xn =‘yes’) = 1− p.

* Here we do not use the usual terminology, where a Markov chain is defined by the
single property:

P (Xn+1 = Ein+1
/X0 = Ei0 , . . . , Xn = Ein) = P (Xn+1 = Ein+1

/Xn = Ein)

= pinin+1
(n) ,

i.e. P (Xn+1 = Ein+1
/ Xn = Ein) can depend on n. The chains that we will consider

are in fact the special case of the general Markov chains, when P (Xn+1 = Ein+1
/Xn =

Ein) = pij does not depend on n. Such chains are usually called homogeneous Markov
chains.
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These four equalities allow us, if we are given the probability distribution of

the initial message, to fully describe the message passing. We see that only the
message Xn forwarded by the nth individual affects Xn+1, and that it is not
useful to memorize the whole preceding history of the message. The (Xn)n∈INs

form a Markov chain, with Ω = {‘yes’,‘no’}. Let E1 = {‘yes’} and E2 = {‘no’};
then p11 = p, p12 = 1− p, p21 = 1− p, p22 = p.

Exercise 13.2 The notations are as in Example 13.2. Assume, moreover, that q1 =
P (X0 = ‘yes’ ) = q2 = P (X0 = ‘no’ ) = 1/2.

1. Show by induction on n that all the r.v.’s Xn have the same probability distribution
as X0.

2. Are the r.v.’s Xn independent? ♦

Example 13.3 We now exhibit an example of a non-Markovian chain: the
Polya urn model. An urn contains b black balls and r red balls. A ball is drawn

at random. It is replaced and, moreover, c balls of the colour drawn are added.
A new random drawing is performed and the whole process is iterated. Let

Xn ∈ {B,R} = Ω be the colour of the ball drawn at the nth drawing. The
sequence (Xn)n≥1 is not a Markov chain. We thus have:

P (X3 = B /X2 = B) =
b+ c

b+ r + c
,

P (X3 = B /X2 = B,X1 = B) =
b+ 2c

b+ r + 2c
.

Exercise 13.3 Return to the Polya urn model of Example 13.3 and recall that P (Xn =

B) =
(

b/(b+ r)
)

for all n (see Exercise 12.5).
1. For what values of c is the sequence (Xn)n∈IN defined in Example 13.3 a Markov
chain?

2. Let Yn be the r.v. giving the number of black balls in the urn at time n. Is the
sequence (Yn)n∈IN a Markov chain? ♦

Example 13.4 Markov chains as urn models. Any Markov chain can be rep-
resented as an urn model as follows: if Ω = {E1, . . . , Er}, r urns are available;

each urn contains a fixed number of balls marked E1, . . . , Er. In the jth urn,
the probability of drawing a ball marked Ek is pjk. At the initial trial, an urn is
chosen according to the probability distribution qj . From that chosen urn, a ball

is drawn at random, and if it is marked Ej , the next drawing is made from the
jth urn, and so on. The sequence Xn of the drawn markings is a Markov chain.

We thus see that Markov chains can be modelled by urns.



Generalities 265

13.2.3 Transition matrices

A Markov chain is thus characterized by

• on the one hand, the conditional probabilities pij , 1 ≤ i, j ≤ r, where pij is
the probability of a state i given that the state j occurred at the preceding trial,

and is called the transition probability from i to j and

• on the other hand, the initial probability distributions qi, 1 ≤ i ≤ r.

The pijs form the transition matrix P

P =









p11 p12 . . . p1r
p21 p22 . . . p2r
...

...
. . .

...
pr1 pr2 . . . prr









and verify

∀i, j, pij ≥ 0 and ∀i,

r
∑

k=1

pik = 1. (13.1)

A matrix verifying (13.1) is called a stochastic matrix.

Exercise 13.4 Sentry.
Assume that a sentry watches over a square stronghold having four turrets in the

following way: he starts at random by one of the turrets and after each five-minute
interval tosses a coin and goes to the first turret on his left (if TAILS turns up) or to
the first turret on his right (if HEADS turns up).

1. Formalize the problem.
2. Let Xn be the number of the turret chosen as the nth watchtower, n = 0, 1, . . . .
Show that Xn is a Markov chain. What is the transition matrix? ♦

Exercise 13.5 Let (Xn)n∈IN be a Markov chain with transition matrix P . Let

Ln =















P (Xn = 1)
...

P (Xn = i)
...

P (Xn = r)















be the column describing the probability distribution of Xn.

1. Express Ln+1 in terms of P and Ln.
2. Deduce Ln in terms of P and of the probability distribution L0 of X0.
3. Give a necessary and sufficient condition ensuring that all the Xns have the same
probability distribution. ♦
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Exercise 13.6 Let (Xn)n∈IN be a Markov chain.

1. Show that the following properties are equivalent:
(i) There exists a k such that Xk and Xk+1 are independent.
(ii) The columns of P are constant.
(iii) For each k, Xk and Xk+1 are independent.
(iv) ∀n, (X0, . . . , Xn) are independent.

2. What is the distribution of Xn when the conditions of 1 are satisfied? ♦

13.2.4 Properties

In the sequel, Xn will denote a Markov chain with values in Ω = {E1, . . . , Er}.

Let q
(n)
i = P (Xn = Ei) be the (unconditional) probability that the chain is in

state i at time n, and let

p
(n)
ij = P (Xn = Ej /X0 = Ei)

be the conditional probability of a transition from Ei to Ej in exactly n steps.

Let us first state five simple lemmata about conditional probabilities that will
be quite useful when computing with Markov chains.

Lemma 13.5 P (A ∩B /C) = P (A/B ∩ C)× P (B /C).

Lemma 13.6 P (A ∩B /A) = P (B /A).

Lemma 13.7 q
(n)
i =

∑r

j=1 qjp
(n)
ji , ∀i = 1, . . . , r.

Lemma 13.8

(i) ∀k ≥ 0, ∀i, j = 1, . . . , r , p
(n)
ij = P (Xn+k = Ej /Xk = Ei) .

(ii) ∀n ≥ 0, ∀i, j = 1, . . . , r , the p
(n)
ij can be computed recursively by

p
(1)
ij = pij

p
(n+1)
ij =

r
∑

k=1

pik p
(n)
kj .

(iii) The p
(n)
ij are the coefficients of the matrix Pn (the transition matrix P mul-

tiplied by itself n times).

Remark 13.9 All the matrices Pn are stochastic matrices.
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Lemma 13.10 (Markov property)

P (Xn+1 = Ein+1
, . . . , Xn+k = Ein+k

/X0 = Ei0 , . . . , Xn = Ein)

= pinin+1
· · · pin+k−1in+k

= P (X1 = Ein+1
, . . . , Xk = Ein+k

/X0 = Ein).

Proof. By induction on k.

1. If k = 1, it is simply the definition of Markov chains.

2. Assume that the result holds for k ≤ k0. Let

B = (Xn+1 = Ein+1
, . . . , Xn+k0

= Ein+k0
)

and A = Xn+k0+1 = Ein+k0+1
. We then have, by Lemma 13.5,

P (Xn+1 = Ein+1
, . . . , Xn+k0

= Ein+k0
, Xn+k0+1 = Ein+k0+1

/X0 = Ei0 , . . . , Xn = Ein)

= P (Xn+k0+1 = Ein+k0+1

/X0 = Ei0 , . . . , Xn = Ein , Xn+1 = Ein+1
, . . . , Xn+k0

= Ein+k0
)

× P (Xn+1 = Ein+1
, . . . , Xn+k0

= Ein+k0
/X0 = Ei0 , . . . , Xn = Ein).

We thus obtain, applying the induction hypothesis once with k = 1 and once

with k = k0,

P (Xn+1 = Ein+1
, . . . , Xn+k0

= Ein+k0
, Xn+k0+1 = Ein+k0+1

/X0 = Ei0 , . . . , Xn = Ein)

= pin+k0
in+k0+1

× pinin+1
· · · pin+k0−1in+k0

= P (X1 = Ein+k0+1
/X0 = Ein+k0

)

× P (X1 = Ein+1
, . . . , Xk = Ein+k

/X0 = Ein).

The same computation with n = 0 shows that

P (X1 = Ein+1
, . . ., Xk0

= Ein+k0
, Xk0+1 = Ein+k0+1

/X0 = Ei0)

= pin+k0
in+k0+1

× pinin+1
· · · pin+k0−1in+k0

= P (X1 = Ein+k0+1
/X0 = Ein+k0

)

× P (X1 = Ein+1
, . . . , Xk = Ein+k0

/X0 = Ein),

and hence the inductive step and the result. ⊓⊔

Lemma 13.10 states that the probability that a Markov chain which went

through the states Ei0 , . . . , Ein goes on through the states Ein+1
, . . . , Ein+k

is
the same as the probability that a chain starting at time 0 from state Ein then

goes through the states Ein+1
, . . . , Ein+k

.
Lemma 13.10 has several immediate consequences for expressing properties of

Markov chains.
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Corollary 13.11 Let E be a state of a Markov chain. Then

P (Xn+1 6= E, . . . ,Xn+k 6= E,Xn+k+1 = E /X0 = Ei0 , . . . , Xn = Ein)

= P (X1 6= E, . . . ,Xk 6= E,Xk+1 = E /X0 = Ein).

Exercise 13.7

1. Prove Corollary 13.11.
2. Show that, similarly: P (Xn+1 ∈ A1, . . . , Xn+k ∈ Ak /X0 = Ei0 , . . . , Xn = Eik )
= P (X1 ∈ A1, . . . , Xk ∈ Ak /X0 = Eik ).
3. Show, finally: P (Xn+1 ∈ A1, . . . , Xn+k ∈ Ak /X0 ∈ A′

0, . . . , Xn−1 ∈ A′

n−1, Xn =
Eik ) = P (X1 ∈ A1, . . . , Xk ∈ Ak /X0 = Eik ). This last equality can be called the
generalized Markov property. ♦

13.3 Classification of states

Many properties of Markov chains are intrinsic: this means that they depend

only on the transition probabilities (i.e. on the transition matrix), and they do
not depend on the starting point of the chain (i.e. on the initial probability
distribution). This is true for the properties studied in the present section.

13.3.1 Irreducible chains

We shall say that state Ej can be reached from state Ei if and only if there exists

an n such that p
(n)
ij > 0. In other words, if there is a strictly positive probability

of reaching Ej from Ei.

Definition 13.12 A non-empty set of states C is said to be closed if no state

outside C can be reached from any state Ei in C, i.e. C is closed if and only if
∀Ei ∈ C and ∀Ej /∈ C, pij = 0.
If the singleton C = {Ei} is closed, the state Ei is said to be absorbing. A

Markov chain is irreducible if there exists no closed set other than the set of all
states.

Lemma 13.13 If C is closed, then ∀n, p
(n)
ij = 0.

Proof. Straightforward by induction on n. ⊓⊔

Lemma 13.14 Let C be a closed set; let PC (resp. Pn
C) be the matrix de-

duced from P (resp. Pn) by deleting from P (resp. Pn) all rows and columns

corresponding to the states Ej /∈ C. Then
1. for all n, Pn

C = (PC)
n and

2. the sequence Pn
C is a sequence of stochastic matrices.

This lemma intuitively means that we have a Markov chain on C which can be

studied per se via the matrix Pn
C , i.e. independently of the states outside C.
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Proposition 13.15 A chain is irreducible if and only if any state can be reached

from any other state.

Proof. The ‘if’ part is straightforward because if there were a closed set C ⊆
/
Ω,

then the states of the complement C = Ω−C of C would not be reachable from
the states of C.

As for the ‘only if’ part, we reason by contradiction and assume that there
exist states Ei and Ej such that Ej is not reachable from Ei. Then, the least
closed set C containing Ei cannot contain Ej , and thus C is a closed set strictly

contained in the set of all states, C ⊆
/
Ω, a contradiction. ⊓⊔

13.3.2 Classification of states

A state Ei is said to be persistent (or recurrent) if the probability that the system

starting from Ei eventually returns to Ei is equal to 1. Otherwise, it is said to be
transient.

For all i, j in {1, . . . , r}, let f
(n)
ij = P (A

(n)
ij ), where A

(n)
ij = ‘the system starting

from Ei reaches Ej for the first time after exactly n steps’. Let fij =
∑∞

n=1 f
(n)
ij

(assuming f
(0)
ij = 0). Then fij is the probability that the system starting from Ei

eventually reaches Ej . We thus have

Ei persistent ⇐⇒ fii = 1

and

Ei transient ⇐⇒ fii < 1 .

If fii = 1, then the f
(n)
ii s for n ∈ IN form a probability distribution, and we can

define

µi =
∞
∑

n=1

nf
(n)
ii ,

which represents the average waiting time in order for a system starting from Ei

to come back to Ei (i.e. the mean of the r.v. T = number of the first return of
the chain to state Ei).

Exercise 13.8 We can compute the f
(n)
ij s recursively by the recurrence relation

p
(n)
ij =

∑n

k=1
f
(k)
ij p

(n−k)
jj . ♦

The definition and computation suggested in the above exercise are not very

simple. Fortunately, we have, for the case of finite Markov chains that are of
interest to us, a simple characterization of transient states, from which we will

also deduce a characterization of persistent states by noticing that any state is
either transient or persistent.
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Proposition 13.16 A state Ei of a Markov chain is absorbing if and only if it

satisfies either one the following equivalent conditions:

(i) pij =

{

1 if j = i,
0 if j 6= i.

(ii) P (Xn = Ei , ∀n / X0 = Ei) = 1, where (Xn = Ei , ∀n) denotes the event
X0 = X1 = · · · = Xn = · · · = Ei.

Exercise 13.9 Prove this result. ♦

Exercise 13.10 Prove that any absorbing state is persistent. ♦

The following results are immediate consequences of Proposition 13.29; we will

not prove them here.

Proposition 13.17 Ei is transient if and only if there exists an Ej such that
Ej can be reached from Ei and Ei cannot be reached from Ej .

Two states of a chain are of the same type if and only if either they are both

transient or they are both persistent. We have:

Theorem 13.18 All states of an irreducible chain are of the same type.

Theorem 13.19 If Ei is persistent, there exists a unique closed and irreducible

set C(Ei) containing Ei such that for any Ej , Ek in C(Ei) , fjk = fkj = 1. C(Ei)
is called the class of the persistent state Ei.

Thus, the system, starting from any state of C(Ei), will eventually reach an-

other state of C(Ei) and will never get out of C(Ei).

Corollary 13.20 A transient state cannot be reached from a persistent state.

From now on, we will assume a technical restriction enabling us to give a simple

classification of the states of a Markov chain: we will assume that all states are
aperiodic, i.e. that there exists no integer k > 1 such that p

(n)
ii 6= 0 if and only if

n is a multiple of k. We can then characterize transient (resp. persistent) states

by the following so-called ergodicity conditions. (This terminology stems from
the fact that an aperiodic persistent state of a finite Markov chain is said to be

ergodic.)

Theorem 13.21 Let Xn be a Markov chain all of whose states are aperiodic:

(i) Ei is transient if and only if

∞
∑

n=0

p
(n)
ii < ∞
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and in that case, ∀j ,
∑∞

n=1 p
(n)
ji < ∞.

(ii) Ei is persistent (or ergodic), if and only if

∞
∑

n=0

p
(n)
ii = ∞

and in that case µi < ∞; moreover, for all j ,

∞
∑

n=0

p
(n)
ij =

{

∞ if j ∈ C(Ei),
0 if j /∈ C(Ei),

and lim
n→∞

p
(n)
ji = fjiµ

−1
i .

The proof of this theorem is too complex to be given here, but it has many useful
consequences.

Definition 13.22 The potential matrix of a Markov chain is the matrix U =

(uij) defined by uij =
∑∞

n=0 p
(n)
ij , where U = (1 − P )−1 is the inverse of the

matrix 1− P .

Corollary 13.23 A state i of a Markov chain is persistent if and only if uii = ∞.

Proposition 13.24 Given a Markov chain Xn, we define the random variable

Ni =
∑∞

n=0 δni, where

δni =

{

1 if Xn = i,
0 if Xn 6= i.

Ni represents the number of occurrences of state i from time 0 (inclusive) on:

(i) If i is persistent, P (Ni = ∞ / X0 = i) = 1.

(ii) If i is transient, P (Ni < ∞ /X0 = i) = 1; Ni then has a geometric distribu-
tion and

∀k, P (Ni = k /X0 = i) = (1− fii)f
k−1
ii .

(iii) If i and j are transient, and i 6= j, P (Nj < ∞ / X0 = i) = 1; Nj then has

the distribution

∀k, P (Nj = k /X0 = i) = fij(1− fjj)f
k−1
jj .

Proof. We first show (iii).

P (Nj = k /X0 = i) = P (Nj = k,
∑

m

Am /X0 = i) ,
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where Am = (Xm = j,Xm−1 6= j, . . . , X1 6= j,X0 = i) is the event ‘the system,

starting from the initial state i, visits state j for the first time at the mth step’.
We have the following, noting that the Ams form a partition for m ∈ IN:

P (Nj = k /X0 = i) = P (Nj = k,
∑

mAm /X0 = i)

=
∑

m

P (Nj = k,Am /X0 = i)

=
∑

m

P (Nj = k,Am /Am)× P (Am /X0 = i) (13.2)

=
∑

m

P (Am /X0 = i)× P (Nj = k /Am) (13.3)

=
∑

m

f
(m)
ij × P (Nj = k (13.4)

/Xm = j,Xm−1 6= j, . . . , X1 6= j,X0 = i)

=
∑

m

f
(m)
ij × P (Nj = k /X0 = j) (13.5)

= P (Nj = k /X0 = j)×
∑

m

f
(m)
ij

= P (Nj = k /X0 = j)× fij , (13.6)

where
(13.2) follows from Lemma 13.5 applied with A = Am, B = (Nj = k) and

C = (X0 = i),
(13.3) follows from Lemma 13.6 applied with A = Am and B = (Nj = k),

(13.4) follows from the definition of the f
(m)
ij s and

(13.5) follows from the generalized Markov property proved in Exercise 13.7.
A similar argument shows that

P (Nj = k /X0 = j) = fjj × P (Nj = k − 1, X0 = j /X0 = j)

= fjj × P (Nj = k − 1 /X0 = j)

= fk−1
jj × P (Nj = 1 /X0 = j)

= fk−1
jj × (1− fjj)

by noting that P (Nj = 1, X0 = j /X0 = j) = 1 − fjj is the probability that

the chain starting from the initial state i never comes back to that state. The
probability distributions given in (ii) and (iii) follow immediately.
We then check that

P (Ni < ∞ /X0 = i) =
∑

k≥1

P (Ni = k /X0 = i) =
∑

k≥1

fk−1
ii × (1− fii) = 1 . ⊓⊔
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Exercise 13.11 Show the following properties:

1. uij = E(Nj /X0 = i). For i 6= j, and i and j transient, uij thus represents the
average number of occurrences of j for a chain starting from the initial state i.
2. uij = fijujj .
3. If j is transient, then ∀i, E(Nj /X0 = i) < ∞. ♦

Corollary 13.25 The states of a Markov chain can be uniquely partitioned

into
Ω = T ∪ C1 ∪ · · · ∪ Ck ,

such that T consists of all the transient states, and each Ci is an irreducible closed
set of persistent states. If Ej is in Ci, then ∀Ek ∈ Ci, fjk = 1 and ∀Ek /∈ Ci,

fjk = 0. Moreover, any finite Markov chain has at least one persistent state, and
it is impossible that ∀Ej ∈ Ci, µj < ∞.

Proposition 13.26 Let Ei be a state of a Markov chain. The least irreducible

closed set C(Ei) containing Ei is

C(Ei) = {Ej / uij > 0}.

Consequently, a chain is irreducible if and only if ∀Ei, Ej , uij > 0; moreover, for
finite chains, we will have ∀Ei, Ej , uij = ∞.

The asset of the preceding characterizations and classifications is that they
are easily generalized to infinite Markov chains. Their liability is that they are
difficult to use. For finite Markov chains, there is a much simpler characterization

of transient and persistent states, via a graph associated with the Markov chain.
We must first recall some basic notions about graphs (see Chapter 10 for more

details).

13.3.3 Graph of a finite Markov chain

Strongly connected graphs were defined in Chapter 10, Section 10.1.7. It is easy
to see that a graph is strongly connected if it satisfies the following equivalent

conditions:

(i) Any two vertices x and y are on some circuit.

(ii) For any two vertices x and y, there exist both a path with origin x and target
y and a path with origin y and target x.

On the vertices of a graph, we can define an equivalence relation x ≡ y if and

only if
• either x = y,
• or x and y are on the same circuit.
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We check that ≡ is indeed an equivalence relation, where the equivalence classes

modulo ≡ form a partition of the set of vertices of the graph and are called
the strongly connected components of the graph. Note that the equivalence
classes modulo ≡ are the maximal strongly connected subgraphs of the graph,

and hence are called the strongly connected components. With each graph G
we can associate a reduced graph, whose vertices are the strongly connected

components of G and whose edges are defined as follows: there is an edge whose
origin is the strongly connected component C and whose target is the strongly

connected component C ′ if and only if there exists a vertex x ∈ C and a vertex
x′ ∈ C ′ such that (x, x′) is an edge of G (i.e. there is at least one edge going from

a vertex of C to a vertex of C ′). The reduced graph is, by construction, a graph
without circuits.

Proposition 13.27 Define on a graph without circuits the following relation:
x < y if and only if there exists a path going from x to y. The relation < is an
ordering.

We now have all the tools needed for studying the classification of Markov

chains by means of graphs.

Definition 13.28 (Graph of a Markov chain) The transition matrix of a Markov

chain is represented by a directed graph G = (S,A), where S is a finite set
of vertices and A is the ‘edge’ relation on S. G is equipped with a labelling

l:A −→]0, 1], and is defined as follows:

• S = {E1, . . . , Er} = {1, . . . , r} = Ω.

• (i, j) ∈ A if and only if pij > 0, and in this case l((i, j)) = pij .

Exercise 13.12 We consider two urns U1 and U2. Initially, each urn contains five
balls. There are altogether (in urns U1 and U2) two black balls, four red balls, and four
green balls. At each step, a ball is drawn from each urn and replaced in the other urn.
Let Xn be the number of black balls in U1 after n swaps.

1. Check that the Xns form a Markov chain.
2. Draw the graph of the chain and write its transition matrix. Is the chain irre-
ducible?
3. Find the distribution of X0 in order for all the Xns to have the same distribution.
(Hint: refer to Exercise 13.5.) ♦

Exercise 13.13 Let U1 and U2 be two urns. Initially, each urn contains two black
balls and seven red balls. At each step, we draw a ball from each urn and replace it in
the other urn. Let Xn be the number of black balls in U1 at step n, i.e. after n swaps;
the initial state corresponds to n = 0.

1. Show that Xn is a Markov chain. What are its states? Compute the initial
probabilities qi = P (X0 = i).
2. Compute the transition probabilities of Xn. Deduce the transition matrix of the
chain.
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3. Draw the graph of the chain. Is the chain irreducible?

4. Let L(n) be the vector of the probabilities of the states of the chain at step n.
Compute L(0), L(1), and L(2). ♦

We have now a simple characterization of persistent and transient states.

Proposition 13.29

1. A Markov chain is irreducible if and only if its graph is strongly connected.

2. A state of a Markov chain is persistent if and only if its strongly connected
component is a maximal element for the order < on the reduced graph associated
with the graph of the Markov chain and defined in Proposition 13.27.

3. A state of a Markov chain is absorbing if and only if it is persistent and its
strongly connected component is reduced to that single state.

Example 13.30 Consider the Markov chain with transition matrix

P =



















1 0 0 0 0 0 0
0 0 0 1 0 0 0
2/3 0 0 1/3 0 0 0
0 0 0 1/2 1/2 0 0
0 0 1/4 0 0 3/4 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0



















The associated graph is described by Figure 13.1, where the strongly connected
components are circled with hyphenated lines: they are thus C1 = {1}, C2 = {2},

C3 = {3, 4, 5}, and C4 = {6, 7}

The associated reduced graph is described in Figure 13.2.

The persistent states are thus the states of C1 and C4; we can decompose the

set of states of the chain into S = T ∪ C1 ∪ C4, where C1 and C4 are the closed
irreducible sets of persistent states and T = C2 ∪C3 is the set of transient states.

State 1 is absorbing.

Exercise 13.14 Draw the graph of the Markov chain of Exercise 13.4. Which are the
absorbing, persistent, transient states? ♦
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13.3.4 Probability and average waiting time for absorption

Consider a Markov chain decomposed as S = T ∪C1 ∪ · · · ∪Ck. Assume that the
chain starts in state Ei. If Ei is a persistent state in Cj , the chain will remain

in Cj forever. If Ei is a transient state in T , then since the chain is finite, it will
(almost surely) after some finite time go in one of the irreducible closed sets of
persistent states Cj and will remain there forever. Then, for an arbitrary state Ei

in the set T = {Em /m = 1, . . . , p} of transient states, there arise the problems
of determining

1. the probability that, starting from Ei, the chain ends up in Cj (called the
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probability of ultimate absorption of Ei in Cj) and

2. the average waiting time after which this absorption occurs (called the aver-
age waiting time before absorption and corresponding to the average number of

steps before absorption).

In each sequence, let Cj be a closed irreducible set of persistent states. Let λin

be the probability that the chain, starting from Ei, is absorbed in Cj at the nth
step exactly, i.e.

λin = P (Xn ∈ Cj , Xk /∈ Cj ∀k < n / X0 = Ei) .

Then:

1. The probability λi of ultimate absorption of Ei in Cj is λi =
∑∞

n=1 λin.

2. The average waiting time before absorption is given by t =
∑∞

n=1 nλin.

Several methods are available for computing λin and λi , by which we can

deduce t.

1. We note that
∑

k∈Cj

p
(n)
ik = λi1 + λi2 + · · ·+ λin .

Hence, when n goes to infinity,

λi = lim
n→∞

∑

k∈Cj

p
(n)
ik ,

which we can obtain by studying the matrix

P ′ = lim
n→∞

Pn.

2. We can also write that the first passage in Cj occurs at step n if at step n−1

the system was still in T and if it goes from T to Cj at step n. Thus

λin =
∑

m∈T

p
(n−1)
im (

∑

k∈Cj

pmk) ,

which defines a direct computation of λin in terms of the elements of the sub-
matrix of transient elements and of its powers; the latter computation can be
simpler than the former one.
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3. Finally, we can write that the first passage in Cj occurs at step n if the first

step took us to a transient state m and if, starting from m, we have reached Cj

after n− 1 steps exactly. This gives

λin =
∑

m∈T

pimλm(n−1) , ∀n > 1,

and summing on n,

λi − λi1 =
∑

m∈T

pimλm, with λi1 =
∑

k∈Cj

pik . (13.7)

We thus obtain a system of |T | = card(T ) linear equations in the unknowns

λ1, . . . , λ|T |, and we can show that this system has a unique solution.

Exercise 13.15 Show that when k = 1, i.e. when there is a single closed irreducible
set Ck, it is the case that ∀i , λi = 1. ♦

4. Note, finally, that we can use the generating functions and their partial

fraction expansions in order to compute the transition probabilities in n steps
p
(n)
ij and deduce λin and λi.

We introduce the generating functions Zi = Pij(z) =
∑∞

n=0 p
(n)
ij zn and show

that they are solutions of a linear equation system of the form Zi−z
∑r

k=1 pijZj =

bi. The solutions Zi of such a system are rational functions that are decomposed
into partial fractions and then expanded into geometric power series in order to
obtain the coefficients p

(n)
ij of Zi. (See Feller.)

Exercise 13.16 We represent the curriculum for a student on a two-year course by
a Markov chain defined as follows: the success probabilities at both the first-year and
second-year final exams are p; the failure probabilities at both the first-year and second-
year final exams are q; the probability of dropping out of the course at the end of each
year is r; we have p + q + r = 1. The states of the Markov chain are the two years of
study denoted by 1 and 2, together with a ‘drop-out’ state denoted by a and a ‘success’
state denoted by s. The average student will doubtless be interested in the probability
of success and the average waiting time for reaching success. These are computed in 4
and 7 below.

1. Draw the graph of the chain and give the transition matrix. (States may be rep-
resented by {1, 2, a, s}, where 1 and 2 represent the first and second years, and a and s
represent ‘drop-out’ and ‘success’.)
2. Is the chain irreducible? What are the transient (resp. absorbing, persistent)
states?
3. Let λn

i,t for i = 1, 2 and t = a, s be the probabilities that the chain, given that it
started from initial state i, reaches state t (with t ∈ {a, s}) for the first time at step n,
i.e. λn

i,t = P (X0 = i,X1 6= t, . . . , Xn−1 6= t,Xn = t /X0 = i). Compute the probability
that the chain, given that it started from the initial state i, reaches state a (resp. s) for
the first time at time n+ 1 in terms of the λn

i,ts.
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4. Let λi,t for i = 1, 2 and t = a, s be the probabilities that the chain, given that it
started from initial state i, ends up in t (with t ∈ {a, s}). Compute the ultimate absorp-
tion probabilities λi,t in terms of the data p, q, r. Compute these ultimate absorption
probabilities assuming p = 0.6 , q = 0.3 , and r = 0.1.
5. Let M be the matrix

M =

(

q p
0 q

)

.

Show by induction on n that, ∀n ≥ 0,

Mn =

(

qn nqn−1p
0 qn

)

(with the conventions that 00 = 1 and that M0 =

(

1 0
0 1

)

). Deduce the values of the

λn
i,ts for i = 1, 2, t = a, s and n ∈ IN.

6. Compute the generating function of the random variable Ni giving the number of
years of study before leaving the course, assuming that the student started at year i,
with i = 1, 2. Ni , equivalently, represents the time needed in order for the chain, given
that it started from initial state i, to reach either one of the states in the set {s, a}.
Deduce the average number mi of years of study in order for a student who started at
year i, with i = 1, 2, to leave the course.
7. Compute the average number ms

i (resp. ma
i ) of years of study ending with final

success (resp. final failure) for a student who started at year i, with i = 1, 2. Compute
these average waiting times assuming p = 0.6, q = 0.3 and r = 0.1.
8. In this example, what is the intuitive meaning of the Markov chain hypothesis? ♦


