
chapter 5

LOGIC

In the present chapter we introduce some notions of logic (propositional calculus

and predicate calculus). Logic is the cornerstone of mathematical reasoning; it is
widely used within computer science. In addition to formalizing reasoning rules,
logic also highlights the distinction between formal manipulations of strings of

symbols and their meanings or interpretations.

The notions of logic introduced are basic. They aid proofs of program cor-
rectness (termination, loop invariants, etc.), and also the design of programs in

general and, in particular, programs written in languages such as PROLOG that
are directly derived from the predicate calculus.

In this chapter, we define propositional and predicate calculus, their syntax

and their semantics, and a proof system that is sound and complete for each. We
prove in detail the completeness theorem for propositional logic. We illustrate

predicate calculus by showing how Herbrand models characterize the satisfiability
of Horn clauses; this is the basis of the semantics of languages such as PROLOG.

We recommend in the strongest possible terms the following handbook, which
is delivered together with a software program (for Macintosh or PC) of exercises

and computer aided learning:

Jon Barwise, John Etchemendy, The Language of First-order Logic: Tarski’s
world, 2nd edition, CSLI lecture notes no 23, Stanford (1991).

We also recommend:

René Lalement, Computation as Logic, Prentice Hall, London (1993).

Anil Nerode, Richard Shore, Logic for Applications, Springer-Verlag, Berlin (1993).

Raymond Smullyan, What is the Name of this Book?, Prentice Hall, London
(1978).

67

68 5. Logic

5.1 Remarks on mathematical reasoning

A proposition is an assertion which is either true or false, but not both: for
instance ‘2 + 2 = 5’ is a false proposition, ‘p =⇒ p’ is a true proposition. On the

other hand, a formula states a property of an object or a relation between objects,
and may take the value true or false after values are assigned to the objects; for

instance, ‘2 + 2 = x’ takes the value true if we assign value 4 to x, and takes the
value false for any other assignment to x, and ‘p =⇒ q’ may take values true or
false according to the values assigned to p and q. A formula which is always true

is called a theorem.
Let p and q be two propositions concerning the same objects. We say that p

implies q, denoted by ‘p =⇒ q’, if, whenever p is true, q is also true: p =⇒ q is a
theorem whose hypothesis is p and whose conclusion is q; the converse of p =⇒ q

is q =⇒ p, which is usually not a theorem (see Exercise 5.2).

Example 5.1 Verify the truth of the following theorems (whose converses are

false):

• a = a′ and b = b′ =⇒ a+ b = a′ + b′, where a, a′, b, b′ are integers,

• A ∩B = C =⇒ C ⊆ A and C ⊆ B,
• A ∪B = C =⇒ A ⊆ C and B ⊆ C.

5.1.1 Some useful facts

(a) Implication is transitive: [(p =⇒ q) and (q =⇒ r)] =⇒ (p =⇒ r). This

transitivity is the basis of deductive arguments.
(b) The negation of proposition p is denoted by p̄ or ¬p. An implication p =⇒ q

and the contrapositive implication q̄ =⇒ p̄ or (¬q =⇒ ¬p) are two different ways
of stating the same theorem. This fact is the basis of proofs by contradiction,

where in order to prove p =⇒ q, we assume p and q̄ and we deduce a contradiction.
(c) The following propositions are equivalent:

(i) p =⇒ q and q =⇒ p,
(ii) p =⇒ q and p̄ =⇒ q̄,
(iii) p ⇐⇒ q,

(iv) p̄ ⇐⇒ q̄.
For instance, in order to prove: ab = 0 ⇐⇒ (a = 0 or b = 0) on IR, it suffices

to prove: ab 6= 0 ⇐⇒ (a 6= 0 and b 6= 0).
(d) Modus ponens rule: [p and (p =⇒ q)] =⇒ q.

Exercise 5.1 Verify that the modus ponens rule is equivalent to the modus tollens

rule
[¬q and (p =⇒ q)] =⇒ ¬p ,

i.e. that we can prove the modus tollens rule from the modus ponens rule, and vice-
versa. ♦

Remarks on mathematical reasoning 69

5.1.2 Some confusions to be avoided

(a) While p =⇒ q and the contrapositive implication ¬q =⇒ ¬p are indeed two
different ways of asserting the same fact, the converse implication q =⇒ p usually

asserts a totally different fact.

(b) If ¬q =⇒ ¬p is true, and q is true, p is not necessarily true. We refer to

Section 5.1.1 (b) for the explanation of this fact.

(c) If p =⇒ q is false, this usually does not imply that the converse q =⇒ p is
true. Compare this with the fact that A 6⊇ B usually does not imply that A ⊆ B.

Exercise 5.2

1. Let:
p = ‘it rains’ ,

q =‘there are clouds’ .

Write the implication p =⇒ q together with its contrapositive, its converse and the
contrapositive of its converse. Which implications are true?
2. We consider the formulas

p =
(

∀x ∈ A , ∃y ∈ B , P (x, y)
)

and

q =
(

∃y ∈ B , ∀x ∈ A , P (x, y)
)

,

where:
• A is the set of men,
• B is the set of women and
• P (x, y) means ‘y loves x’.

What can be said of p =⇒ q? Of its converse? ♦

5.1.3 Propositional calculus versus predicate calculus

The initial motivation of logic is the modelling of mathematical reasoning. This
needs a clear distinction between syntax (the language, the formulas) and se-

mantics (the interpretation of the language, the truth values true or false of
formulas). The case of propositional calculus is the simplest case because the

variables, i.e. propositions, can take only one of the two values true or false.
First, we study propositional calculus in Section 5.2. However, propositional

calculus is not able to model all mathematical reasonings: for instance, we can-
not express in propositional calculus the existence of an object having a given
property. Predicate calculus can express the properties of objects or the relations

between objects, and can formalize mathematical reasoning. We study predicate
calculus in Section 5.3.

70 5. Logic

5.2 Propositional calculus

In the remainder of this chapter, logic and its language will be the object of our
study. Logic is omnipresent in mathematics as a tool for proofs, and as such is

an element of the meta-language. In the present chapter we will therefore try to
distinguish between the symbols of the logical language as an object of study and

the symbols of the logical language as a tool of the meta-language. For instance,
we will denote by ⊃ the implication, considered as a formal symbol of the logical
language, and by =⇒ the implication that is just a notation for the word ‘implies’

with its intuitive meaning.
One of the fundamental goals of logic is to write correct proofs. In order to

reach that goal, the concept of consequence is essential: when can we safely
assert, with no possibility of error, that a formula is consequence of a set of

premises? In Section 5.2.2 we will define a notion of semantical consequence,
in Section 5.2.3 establish a notion of provability or syntactical consequence and,
finally, in Section 5.2.4, show that both notions coincide.

5.2.1 Syntax: formulas

Let P = {p, p′, q, q′, . . .} be a set of propositional symbols and let ⊃, ¬ and left
and right parentheses be symbols.

Definition 5.2 A propositional formula is a string of symbols from P ∪
{⊃,¬, (,)} defined by:

1. every propositional symbol of P is a formula,
2. if F is a formula then ¬F is a formula,

3. if F and F ′ are two formulas then (F ⊃ F ′) is a formula and
4. every formula is obtained by repeating a finite number of times the applica-

tions of steps 1–3.

Z
Note that Definition 5.2 is an example of an inductive definition of a set.

We have already seen such definitions in Chapter 3, and will see others later
(see Chapter 7).

Z
Formulas are strings of symbols. They have no meaning whatsoever for
the time being. The assignment of a meaning, i.e. a value ‘true’ or ‘false’

to a formula, constitutes the semantics of the formula and will be studied in
Section 5.2.2.

Let σ be a mapping, called a substitution, from the set of propositional symbols
P to the set of formulas. The formula σ(F) obtained by substitution from formula

F is defined by:

• if F = p ∈ P then σ(F) = σ(p),

Propositional calculus 71

• if F = ¬F ′ then σ(F) = ¬σ(F ′) and

• if F = (F1 ⊃ F2) then σ(F) = (σ(F1) ⊃ σ(F2)).

Example 5.3 Let σ be the substitution defined by σ(p) = q and σ(q) = (p ⊃ q).
Then σ(p ⊃ q) = (q ⊃ (p ⊃ q)).

Definition 5.4 A sequent is a pair (F , F) where F is a finite set of formulas

and F is a formula.

The intuition is that a sequent formalizes the notion of logical consequence: if
all premises of the sequent are true, i.e. if all formulas of F are true, then its

conclusion, formula F , is true.

5.2.2 Semantics: interpretation of formulas

Let F be a formula and let I be a mapping from the set of propositional symbols

to the Boolean algebra IB = {1, 0}, equipped with its operations +, ‘.’ denoting
product, and (see Definition 4.2). The Boolean constants ‘true’, ‘false’, here

identified by 1 and 0, are sometimes also denoted by tt, ff or T, F .
We define the truth value I(F) of formula F in I by:

• if F = p ∈ P then I(F) = I(p) ∈ IB ;

• if F = ¬F ′ then I(F) = I(F ′) ;
• if F = (F1 ⊃ F2) then I(F) = I(F1) + I(F2).

If I(F) = 1, we say that F is true in I. I is called an interpretation, and we also

say that I(F) is the interpretation of formula F .

Exercise 5.3 Let us define F ∧ F ′ def
= ¬(F ⊃ ¬F ′) and F ∨ F ′ def

= ¬F ⊃ F ′.
1. Write the tables giving the truth values of ∧,∨,⊃. Deduce that

I(F ∧ F ′) = I(F).I(F ′) and I(F ∨ F ′) = I(F) + I(F ′) .

2. Show that

I
(

Fn⊃ (Fn−1⊃ (· · · (F1⊃ F) · · ·))
)

=I(Fn) + I(Fn−1) + · · ·+ I(F1) + I(F)

=I
(

¬Fn ∨ (¬Fn−1 ∨ (· · · ∨ (¬F1 ∨ F) · · ·))
)

.

Deduce that
I
(

Fn⊃ (Fn−1⊃ (· · · (F1⊃ F) · · ·))
)

= I
(

(Fn ∧ (Fn−1 ∧ (· · · ∧ (F2 ∧ F1)) · · ·))⊃ F
)

. ♦

Definition 5.5 Let F be a formula. We say that

• F is valid, or that F is a tautology, if for all I, I(F) = 1,
• F is satisfiable, if there exists an I such that I(F) = 1 and

• F is unsatisfiable, if for all I, I(F) = 0.

72 5. Logic

Example 5.6 p ∧ ¬p is unsatisfiable; p ∨ ¬p is a tautology; p ∧ (p ⊃ q) is

satisfiable but is not valid.

Exercise 5.4 Verify that F is unsatisfiable if and only if ¬F is valid. ♦

Definition 5.7 A sequent (F , G) is true in I if

(∀F ∈ F , I(F) = 1) =⇒ I(G) = 1.

A sequent (F , G) is valid if it is true in I for each I, i.e. (∀F ∈ F , I(F) = 1) =⇒
I(G) = 1. We write F |= G to denote the fact that sequent (F , G) is valid.

This definition formalizes the notion of semantical consequence.

Exercise 5.5

1. Show that formula G is true (resp. valid) in I if sequent (∅, G) is true (resp. valid)
in I.
2. Are the following sequents valid?

• (∅, (p ⊃ q)),
• ({p, (p ⊃ q)}, q). ♦

Proposition 5.8 If σ is a substitution and if F |= G is a valid sequent, then

σ(F) |= σ(G) is a valid sequent.

Proof. If I is an interpretation, we define the interpretation Iσ by Iσ(p) = I(σ(p)).

We deduce that Iσ(F) = I(σ(F)).
Let I be an interpretation such that for all F ′ in σ(F), I(F ′) = 1. We thus have

for all F in F , I(σ(F)) = Iσ(F) = 1. Because F |= G, Iσ(G) = I(σ(G)) = 1. ⊓⊔

Proposition 5.9 {Fn, . . . , F1} |= F if and only if

∅ |= Fn ⊃ (Fn−1 ⊃ (· · · (F1 ⊃ F) · · ·)).

Proof. It suffices to show that F ∪ {F} |= G if and only if F |= (F ⊃ G), and
the result will follow by induction on n. We have I(F ⊃ G) = 1 if and only if

I(F) = 1 =⇒ I(G) = 1.
Let I be an interpretation. We have

(I(F ′) = 1 for all F ′ ∈ F) and I(F) = 1 =⇒ I(G) = 1

if and only if
(

I(F ′) = 1 for all F ′ in F
)

=⇒ I(F ⊃ G) = 1. ⊓⊔

We will often write F , F |= G instead of writing F ∪ {F} |= G.

Exercise 5.6 We can associate a formula φ((F , G)) with a sequent S = (F , G) in the
following fashion:

• If S = (∅, G), then φ(S) = G.
• If S = ({F} ∪ F , G) and φ((F , G)) = F ′, then φ(S) = (F ⊃ F ′).

Show that sequent S = (F , G) is true in I if and only if φ(S) is true in I. ♦

Propositional calculus 73

Proposition 5.10

1. F |= F if and only if F |= ¬¬F ; F , F |= G if and only if F ,¬¬F |= G .

2. If F |= ¬(F ⊃ F ′) then F |= F and F |= ¬F ′ .

3. If F , (F ⊃ F ′) |= G then F , F ′ |= G, F ,¬G |= ¬F ′, and F ,¬G |= F .

4. If F ,¬(F ⊃ F ′) |= G then F ,¬G,F |= F ′ .

Proof.

1. It is straightforward that I(F) = I(¬¬F).

2. Let I be such that for all G in F , I(G) = 1. Then I(F ⊃ F ′) = 0 and thus
I(F) = 1 and I(F ′) = 0. Hence, I(¬F ′) = 1.

3. Let I be such that for allH in F , I(H) = 1. If I(F ′) = 1, then I(F ⊃ F ′) = 1

and thus I(G) = 1. If I(G) = 0, then I(F ⊃ F ′) = 0, whence I(F ′) = 0 and
I(F) = 1.

4. Let I be such that for all H in F , I(H) = 1. If I(G) = 0 and I(F) = 1
then it must also be the case that I(F ′) = 1. Otherwise, I(F ⊃ F ′) = 0,

I(¬(F ⊃ F ′)) = 1, and I(G) = 1, a contradiction. ⊓⊔

5.2.3 Logical proofs

Definition 5.11 A sequent (F , F) is said to be provable, denoted by F ⊢ F ,
if it is built from a finite number of the following rules:

• use of a hypothesis rule: F ∈ F =⇒ F ⊢ F ,

• augmentation of the hypotheses: if G /∈ F and F ⊢ F then F ∪ {G} ⊢ F ,

• detachment rule (or modus ponens): if F ⊢ (F ⊃ F ′) and if F ⊢ F then

F ⊢ F ′,

• synthesis rule (or hypothesis withdrawal): if F , F ⊢ F ′ then F ⊢ (F ⊃ F ′),

• double negation rule: F ⊢ F if and only if F ⊢ ¬¬F ,

• proof by contradiction rule: if F , F ⊢ F ′ and F , F ⊢ ¬F ′, then F ⊢ ¬F .

This definition formalizes the notion of logical consequence for propositional cal-
culus.

Z
Provable sequents are characterized only by manipulations of strings of sym-
bols, in contrast with valid sequents, which are characterized by their inter-

pretation.

A proof of a provable sequent F ⊢ F is a finite sequence of provable sequents
Fi ⊢ Fi, the last of which is F ⊢ F , such that any sequent in this sequence is

obtained by applying the above rules to preceding sequents in the sequence. The
first sequent of a proof must thus be obtained by the use of a hypothesis.

74 5. Logic

Example 5.12 We omit brackets for explicit sequents.

1. p ⊢ p (use of a hypothesis)
∅ ⊢ (p ⊃ p) (synthesis)

2. p, q ⊢ p (hypothesis)
p ⊢ (q ⊃ p) (synthesis)
∅ ⊢

(

p ⊃ (q ⊃ p)
)

(synthesis)

3. (i) (p ⊃ q),¬q, p ⊢ ¬q (hypothesis)
(ii) (p ⊃ q),¬q, p ⊢ p (hypothesis)
(iii) (p ⊃ q),¬q, p ⊢ p ⊃ q (hypothesis)
(iv) (p ⊃ q),¬q, p ⊢ q (modus ponens on (ii) and (iii))
(v) (p ⊃ q),¬q ⊢ ¬p (contradiction on (i) and (iv))
(vi) (p ⊃ q) ⊢ (¬q ⊃ ¬p) (synthesis)

4. p,¬p,¬q ⊢ p (hypothesis)
p,¬p,¬q ⊢ ¬p (hypothesis)
p,¬p ⊢ ¬¬q (contradiction)
p,¬p ⊢ q (double negation)
p ⊢ (¬p ⊃ q) (synthesis)

5. p ⊢ p (hypothesis)
∅ ⊢ (p ⊃ p) (synthesis)
p ⊢ (p ⊃ p) (augmentation)
∅ ⊢ p ⊃ (p ⊃ p) (synthesis)

Proposition 5.13 F , F ⊢ G if and only if F ,¬¬F ⊢ G.

Proof.

1. F , F ⊢ G
F ⊢ (F ⊃ G) (synthesis)
F ,¬¬F ⊢ (F ⊃ G) (augmentation)
F ,¬¬F ⊢ F (hypothesis + double negation)
F ,¬¬F ⊢ G (modus ponens)

2. F ,¬¬F ⊢ G
F ⊢ (¬¬F ⊃ G) (synthesis)
F , F ⊢ (¬¬F ⊃ G) (augmentation)
F , F ⊢ ¬¬F (hypothesis + double negation)
F , F ⊢ G (modus ponens) ⊓⊔

Propositional calculus 75

Proposition 5.14 F , F ⊢ G if and only if F ,¬G ⊢ ¬F .

Proof. We prove that if F , F ⊢ G, then F ,¬G ⊢ ¬F .

1. F , F ⊢ G
2. F , F,¬G ⊢ G (augmentation)
3. F , F,¬G ⊢ ¬G (hypothesis)
4. F ,¬G ⊢ ¬F (contradiction)

Conversely, a similar proof shows that if F ,¬G ⊢ ¬F then F , F ⊢ G. ⊓⊔

Proposition 5.15 If σ is a substitution and F ⊢ F , then σ(F) ⊢ σ(F).

Proof. By induction. Let (Fi ⊢ Fi)i=1,...,n be a proof of F ⊢ F . Then
(

σ(Fi) ⊢
σ(Fi)

)

i=1,...,n
is a proof of σ(F) ⊢ σ(F).

(B) σ(F1) ⊢ σ(F1) is a provable sequent since, because (F1, F1) is the first se-

quent of a proof, F1 ∈ F1 and thus σ(F1) ∈ σ(F1).
(I) We assume that

(

σ(Fi) ⊢ σ(Fi)
)

i=1,...,k
is a proof. We show by structural in-

duction over the form of the rules in Definition 5.11 that (σ(Fi) ⊢ σ(Fi))i=1,...,k+1

is a proof.
• If Fk+1 ⊢ Fk+1 is obtained by the use of a hypothesis rule, σ(Fk+1) ⊢
σ(Fk+1) is also obtained by the use of a hypothesis.
• If Fk+1 ⊢ Fk+1 is obtained by augmentation of the hypotheses from

Fi ⊢ Fi then Fk+1 = Fi ∪ {G} and Fk+1 = Fi, and thus
σ(Fk+1) = σ(Fi) ∪ {σ(G)} and σ(Fk+1) = σ(Fi).

– If σ(G) /∈ σ(Fi), then σ(Fk+1) ⊢ σ(Fk+1) is obtained by aug-
mentation of the hypotheses.
– If σ(G) ∈ σ(Fi), then we will have two identical sequents:

deleting the second one will again yield a proof.
• If there exist i, j ≤ k such that Fi = Fj = Fk+1, Fj = (Fi ⊃ Fk+1),

i.e. Fk+1 ⊢ Fk+1 is obtained by modus ponens, then

σ(Fi) = σ(Fj) = σ(Fk+1) and σ(Fj) =
(

σ(Fi) ⊃ σ(Fk+1)
)

,

and σ(Fk+1) ⊢ σ(Fk+1) is also obtained by modus ponens.
• We proceed in the same way for the other rules. ⊓⊔

Proposition 5.16

{F1, . . . , Fn} ⊢ F if and only if ∅ ⊢ (F1 ⊃ (F2 · · · (Fn ⊃ F) · · ·)).

Proof. It suffices to show that F , F ⊢ G if and only if F ⊢ F ⊃ G.
The ‘only if’ direction is true because of the synthesis rule. For the opposite

direction, if F ⊢ F ⊃ G then F , F ⊢ F ⊃ G by augmentation of the hypotheses,
F , F ⊢ F by the use of a hypothesis rule and F , F ⊢ G by modus ponens. ⊓⊔

76 5. Logic

5.2.4 Syntax and semantics

We will show that valid sequents and provable sequents coincide.

Theorem 5.17 (Soundness) Every provable sequent is valid.

Proof. By induction on the lengths of proofs. It suffices to show that each appli-

cation of one of the rules given in Definition 5.11 generates only valid sequents
from valid sequents. To this end, it suffices to verify that each rule of the form

‘if S1, . . . , Sn, then S’ of Definition 5.11 is valid, i.e. that if S1, . . . , Sn are valid
sequents, then S is also a valid sequent.

• If F ⊢ G is obtained by use of a hypothesis, then G ∈ F , and if for any F ′

in F , if I(F ′) = 1, then I(G) = 1, and thus F |= G.
• If F ∪ {F} ⊢ G is obtained by augmentation of the hypotheses, then F 6∈ F
and F ⊢ G. By the induction F |= G, and thus

(∀F ′ ∈ F ∪ {F}, I(F ′) = 1) =⇒ (∀F ′ ∈ F , I(F ′) = 1) and

(∀F ′ ∈ F , I(F ′) = 1) =⇒ I(G) = 1.

Hence F , F |= G.
• If F ⊢ G is obtained by modus ponens, then F ⊢ (F ⊃ G), F ⊢ F , and by

the induction hypothesis F |= (F ⊃ G), F |= F ; then,
(

for all F ′ ∈ F , I(F ′) = 1
)

implies I(F ⊃ G) = 1 and I(F) = 1, whence I(G) = 1, and thus F |= G.
• If F ⊢ G is obtained by synthesis, then G = (F ⊃ F ′), F , F ⊢ F ′, and by

the induction hypothesis F , F |= F ′. If for all H ∈ F , I(H) = 1, then
– if I(F) = 1, I(F ′) = 1 and I(F ⊃ F ′) = 1 and

– if I(F) = 0, I(F ⊃ F ′) = 1.
Hence F |= (F ⊃ F ′).

• If F ⊢ G is obtained by double negation, then F |= G if and only if F |= ¬¬G
(because I(G) = I(¬¬G)).

• If F ⊢ G is obtained by a proof by contradiction, then G = ¬F , and by the
induction hypothesis F , F |= F ′ and F , F |= ¬F ′. If for all H ∈ F , I(H) = 1,
then I(F) = 1 cannot occur (otherwise we would have I(F ′) = I(¬F ′) = 1, a

contradiction). Hence, we must have I(F) = 0 and thus F |= G. ⊓⊔

Theorem 5.18 (Completeness) Every valid sequent is provable.

Proof. Let us define the weight of a sequent as the sum of the number of ¬
symbols and twice the number of ⊃ symbols occurring in this sequent. We argue

by induction on the weight of a sequent.

• If the weight of a sequent is zero, then this sequent can be written
{p1, · · · , pn} |= p.

Propositional calculus 77

If p /∈ {p1, · · · , pn}, then the interpretation I defined by I(pi) = 1, I(p) = 0 shows

that this sequent is not valid. We thus have p ∈ {p1, ..., pn}, and the sequent is
provable by use of a hypothesis rule.

• Let thus F |= F have weight n+ 1.

(a) If F = ¬¬F ′ then F |= F ′ and, because that sequent has weight n− 1, then
by the induction hypothesis F ⊢ F ′ and thus F ⊢ ¬¬F ′ by double negation.

(b) If F is not of the form ¬¬F ′ and contains at least one symbol ⊃ then
F = (F ′ ⊃ F ′′) or F = ¬(F ′ ⊃ F ′′).

(b.1) If F = (F ′ ⊃ F ′′) then F |= (F ′ ⊃ F ′′) implies F , F ′ |= F ′′. The last
sequent has weight n− 1, and so we obtain F ⊢ (F ′ ⊃ F ′′) (synthesis rule).

(b.2) If F = ¬(F ′ ⊃ F ′′), then as we have seen, F |= ¬(F ′ ⊃ F ′′) implies

F |= F ′ and F |= ¬F ′′. These sequents have weight ≤ n, and hence F ⊢ F ′

and F ⊢ ¬F ′′. We thus have:

F , (F ′ ⊃ F ′′) ⊢ F ′ (augmentation)
F , (F ′ ⊃ F ′′) ⊢ ¬F ′′ (augmentation)
F , (F ′ ⊃ F ′′) ⊢ (F ′ ⊃ F ′′) (hypothesis)
F , (F ′ ⊃ F ′′) ⊢ F ′′ (modus ponens)
F ⊢ ¬(F ′ ⊃ F ′′) (contradiction)

(c) If F is not of the form ¬¬F ′ and contains no ⊃ symbol then F = r or

F = ¬r. Since F ,¬¬F |= G if and only if F , F |= G, we may assume that the
elements of F have one of the four following forms: p,¬p, (F1 ⊃ F2),¬(F1 ⊃ F2).

(c.1) If F contains a formula ¬(F1 ⊃ F2) then

F ′,¬(F1 ⊃ F2) |= F

implies F ′,¬F, F1 |= F2. We can apply the induction hypothesis: F ′,¬F, F1 ⊢
F2. Hence:

F ′,¬F ⊢ (F1 ⊃ F2) (synthesis)
F ′,¬F,¬(F1 ⊃ F2) ⊢ (F1 ⊃ F2) (augmentation)
F ′,¬F,¬(F1 ⊃ F2) ⊢ ¬(F1 ⊃ F2) (hypothesis)
F ′,¬(F1 ⊃ F2) ⊢ F (contradiction

+ double negation)

(c.2) If F contains a formula (F1 ⊃ F2) then F ′, (F1 ⊃ F2) |= F implies
F ′,¬F |= F1 (Proposition 5.10, 3) and F ′, F2 |= F which have weight ≤ n.

78 5. Logic

We can apply the induction hypothesis: F ′,¬F ⊢ F1 , F ′, F2 ⊢ F . Hence:

1. F ′,¬F ⊢ F1

2. F ′, F2 ⊢ F
3. F ′, (F1 ⊃ F2),¬F ⊢ ¬F (hypothesis)
4. F ′ ⊢ (F2 ⊃ F) (synthesis on 2)
5. F ′, (F1 ⊃ F2),¬F ⊢ (F2 ⊃ F) (augmentation on 4)
6. F ′, (F1 ⊃ F2),¬F ⊢ F1 (augmentation on 1)
7. F ′, (F1 ⊃ F2),¬F ⊢ (F1 ⊃ F2) (hypothesis)
8. F ′, (F1 ⊃ F2),¬F ⊢ F2 (modus ponens 6,7)
9. F ′, (F1 ⊃ F2),¬F ⊢ F (modus ponens 5,8)
10. F ′, (F1 ⊃ F2) ⊢ F (contradiction on 3, 9,

+ double negation)

(c.3) The problem is thus reduced to the case in which F contains only

formulas of the form p or ¬p. Let us write F in the form F+ ∪F− with F+

equal to the set of formulas of F of the form ‘p’, and F− the set of formulas

of the form ‘¬p’. Let P+ be the set of all propositional symbols occurring in
F+ and let P− be the set of all propositional symbols occurring in F−.

(c.3.1) If P+ ∩ P− 6= ∅ then F = F ′, p,¬p ; we deduce

F ,¬F ⊢ p

F ,¬F ⊢ ¬p

}

and thus F ⊢ F .

(c.3.2) We assume that P+ ∩ P− = ∅, and we let r be the proposi-
tional symbol occurring in F .

(c.3.2.1) If r 6∈ P+ ∪P−, we could find an interpretation I true on F
and false on F which is impossible.

(c.3.2.2) If r ∈ P+, then any interpretation true on F verifies I(r) = 1.

As we then have I(F) = 1, then F = r by necessity and F ⊢ r by use
of a hypothesis.

(c.3.2.3) If r ∈ P−, then any interpretation true on F verifies I(r) = 0.

Thus F = ¬r and F ⊢ ¬r by use of the hypothesis. ⊓⊔

Grouping together Theorem 5.17 and Theorem 5.18, we deduce the following
corollary.

Corollary 5.19 F |= F if and only if F ⊢ F .

Propositional calculus 79

5.2.5 Additional logical connectors

In propositional logic we can also use the connectors ∧ (and) and ∨ (or).

Formulas are then defined by the additional rule: if F and F ′ are formulas

then (F ∧ F ′) and (F ∨ F ′) are formulas.

The interpretation of these formulas is defined by adding, see Exercise 5.3,

I(F ∧ F ′) = I(F) . I(F ′),

I(F ∨ F ′) = I(F) + I(F ′),

so that

I(F ∧ F ′) = I(¬(F ⊃ ¬F ′)),

I(F ∨ F ′) = I(¬F ⊃ F ′).

Similarly, the definitions of provable sequents are extended by adding the rules:

• if F ⊢ F and F ⊢ F ′ then F ⊢ (F ∧ F ′),

• if F ⊢ (F ∧ F ′) then F ⊢ F ,

• if F ⊢ (F ∧ F ′) then F ⊢ F ′,

• if F , G ⊢ F and F ,¬G ⊢ F ′ then F ⊢ (F ∨ F ′),

• if F , F ⊢ G and F , F ′ ⊢ G then F , (F ∨ F ′) ⊢ G.

We deduce the following proposition.

Proposition 5.20

1. (F ∧ F ′) ⊢ ¬(F ⊃ ¬F ′) ,

2. ¬(F ⊃ ¬F ′) ⊢ (F ∧ F ′) ,

3. (F ∨ F ′) ⊢ (¬F ⊃ F ′) ,

4. (¬F ⊃ F ′) ⊢ (F ∨ F ′) .

Proof. We prove in detail 2 and 3; 1 and 4 are simpler, and we just sketch their
proofs.

1. (F ∧ F ′) , (F ⊃ ¬F ′) ⊢ F ′ (third rule for ∧)

(F ∧ F ′) , (F ⊃ ¬F ′) ⊢ F (second rule for ∧)

(F ∧ F ′) , (F ⊃ ¬F ′) ⊢ (F ⊃ ¬F ′) (hypothesis)

(F ∧ F ′) , (F ⊃ ¬F ′) ⊢ ¬F ′ (modus ponens)

(F ∧ F ′) ⊢ ¬(F ⊃ ¬F ′) (contradiction)

2. ¬(F ⊃ ¬F ′) , ¬F ′ ⊢ (F ⊃ ¬F ′) (augmentation of p ⊢ (q ⊃ p),

see Example 5.12, 2)

¬(F ⊃ ¬F ′) , ¬F ′ ⊢ ¬(F ⊃ ¬F ′) (hypothesis)

¬(F ⊃ ¬F ′) ⊢ F ′ (contradiction)

80 5. Logic

¬(F ⊃ ¬F ′) , ¬F ⊢ ¬(F ⊃ ¬F ′) (hypothesis)

¬(F ⊃ ¬F ′) , ¬F , F , F ′ ⊢ ¬F (hypothesis)

¬(F ⊃ ¬F ′) , ¬F , F , F ′ ⊢ F (hypothesis)

¬(F ⊃ ¬F ′) , ¬F , F ⊢ ¬F ′ (contradiction)

¬(F ⊃ ¬F ′) , ¬F ⊢ (F ⊃ ¬F ′) (synthesis)

¬(F ⊃ ¬F ′) ⊢ F (contradiction + double negation)

¬(F ⊃ ¬F ′) ⊢ (F ∧ F ′) (first rule for ∧)

3. F ′ ⊢ (¬F ⊃ F ′) (Example 5.12, 2)

F , ¬F , ¬F ′ ⊢ F (hypothesis)

F , ¬F , ¬F ′ ⊢ ¬F (hypothesis)

F , ¬F ⊢ ¬¬F ′ (contradiction)

F , ¬F ⊢ F ′ (double negation)

F ⊢ (¬F ⊃ F ′) (synthesis)

(F ∨ F ′) ⊢ (¬F ⊃ F ′) (second rule for ∨)

4. (¬F ⊃ F ′) , ¬F ⊢ F ′ (twice hypothesis + modus ponens)

(¬F ⊃ F ′) , F ⊢ F (hypothesis)

(¬F ⊃ F ′) ⊢ F ∨ F ′ (first rule for ∨) ⊓⊔

We now define the transformation η which suppresses the symbols ∧ and ∨ from
a formula:

η(p) = p,
η(¬F) = ¬η(F),
η(F ⊃ F ′) = (η(F) ⊃ η(F ′)),
η(F ∧ F ′) = ¬(η(F) ⊃ ¬η(F ′)),
η(F ∨ F ′) = (¬η(F) ⊃ η(F ′)).

It is easy to see that F |= F if and only if η(F) |= η(F) and, using the preceding

property, we show that if η(F) ⊢ η(F) is a provable sequent which can be proved
without the rules concerning ∧ and ∨, then F ⊢ F is a provable sequent that can

be proved using these rules.
Similarly, we can introduce the equivalence symbol ≡ whose interpretation is

given by:

I(F ≡ F ′) = 1 if and only if I(F) = I(F ′) .

Propositional calculus 81

So that I(F ≡ F ′) = I
(

(F ⊃ F ′) ∧ (F ′ ⊃ F)
)

.

Exercise 5.7 We consider the set of formulas as an algebra equipped with the binary
operations ∧,∨,⊃ and with the unary operation ¬. Is the equivalence relation ⇐⇒
defined by F ⇐⇒ F ′ if and only if I(F ≡ F ′) = 1 a congruence? ♦

The proof rules associated with the equivalence symbol ≡ are:

• if F ⊢ (F ≡ F ′) then F ⊢ (F ⊃ F ′) and F ⊢ (F ′ ⊃ F),
• if F ⊢ (F ⊃ F ′) and F ⊢ (F ′ ⊃ F) then F ⊢ (F ≡ F ′),

or in other words:

F ⊢ (F ≡ F ′) if and only if F ⊢ ((F ⊃ F ′) ∧ (F ′ ⊃ F)) .

The ‘meta-logical’ use of symbol ⇐⇒ can then be formalized by: F ⇐⇒ F ′ if and

only if (F ≡ F ′) is a valid formula, or in other words if and only if ⊢ (F ≡ F ′).
The operations ∨ and ∧ enjoy associativity, commutativity, and distributivity

properties similar to those of Boolean algebras:

1. Distributivity of ∧ over ∨: F ∧ (G ∨H) ⇐⇒ (F ∧G) ∨ (F ∧H).
2. Distributivity of ∨ over ∧: F ∨ (G ∧H) ⇐⇒ (F ∨G) ∧ (F ∨H).

3. Associativity of ∧: F ∧ (G ∧H) ⇐⇒ (F ∧G) ∧H.
4. Associativity of ∨: F ∨ (G ∨H) ⇐⇒ (F ∨G) ∨H.

5. Commutativity of ∧: F ∧G ⇐⇒ G ∧ F .
6. Commutativity of ∨: F ∨G ⇐⇒ G ∨ F .

The associativity properties allow us to omit parentheses.
The following equivalences are quite useful:

F ⊃ G ⇐⇒ ¬F ∨G ,

F ⊃ G ⇐⇒ ¬G ⊃ ¬F ,

¬(F ⊃ G) ⇐⇒ F ∧ ¬G ,

F ≡ G ⇐⇒ (F ⊃ G) ∧ (G ⊃ F) ,

F ≡ G ⇐⇒ (F ∧G) ∨ (¬G ∧ ¬F) .

Exercise 5.8 A logician tells his son: ‘if you don’t eat porridge, you won’t watch
television’; the son eats porridge, and is sent straight to bed. What was the error which
caused him to expect watching television after dinner? ♦

Exercise 5.9

1. A logician, who is assumed to always tell the truth, is interviewed about his feelings,
and says both the following statements:

(a) I love Mary or I love Anne.
(b) If I love Mary, then I love Anne.

82 5. Logic

What can you conclude: does he love Mary, Anne or both?

2. Assume the same logician had answered the question: ‘Is it true that if you love
Mary, then you love Anne?’ by both of the following statements:

(a) If it’s true, then I love Mary.
(b) If I love Mary, then it’s true.

What would you conclude? ♦

5.2.6 Deductive systems

In order to define provable sequents we defined manipulation rules for strings of

symbols. There are other systems of rules that can obtain the same result.

First, we say that formula F is provable if and only if ∅ ⊢ F is a provable
sequent. By the preceding theorems, a formula is provable if and only if it is

valid.

We will now show an example of another way of proving formulas containing
only propositional symbols and the symbols ⊃ and ¬. The formulas that we

can prove with rules will be called ‘logical theorems’ (to distinguish them from
provable formulas).

Let p, q, r be three arbitrary propositional symbols.

(i) The following three formulas, called axioms, are logical theorems:

• (p ⊃ (q ⊃ p)),

• ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))),

• ((¬p ⊃ ¬q) ⊃ ((¬p ⊃ q) ⊃ p)).

(ii) If σ is a substitution and if F is a logical theorem, then σ(F) is a logical
theorem.

(iii) If F and (F ⊃ F ′) are logical theorems, then F ′ is a logical theorem.

(ii) and (iii) are rules of inference; (iii) is called the modus ponens rule.

A deduction of formula F from the set of formulas F is a finite sequence of
formulas F1, F2, . . . , Fn such that

• Fn is identical to F

• for each i ≤ n,

– either Fi is one of the axioms (i),

– or Fi ∈ F ,

– or Fi can be deduced from the preceding Fjs by an application of one
of the rules (ii) or (iii).

Formula F is a logical theorem if and only if there is a deduction of F from the
empty set of formulas F = ∅.

It is easy to see that every logical theorem is a valid formula (and thus a
provable formula); this shows the soundness of the system for deducing logical

First order predicate calculus 83

theorems. Conversely, we can show the completeness of the system, i.e. that

every valid formula is a logical theorem. The completeness is harder to prove.
Using other systems of rules, we might define other sets of provable formulas

which may or may not coincide with valid formulas.

Deductive systems are systems of rules which enable us to define sets of formulas
included in the set of valid formulas.

5.3 First order predicate calculus

A ‘predicate’ is an assertion about objects that may be true or false according
to the objects to which it is applied. For instance, ‘to be an even number’ is true

when applied to ‘2’ and false when applied to ‘3’. A predicate can also be applied
to several objects, for instance ‘to be less than’. This assertion is true for the
pair (2,3) and false for the pair (3,2).

Predicate calculus enables us to build complex statements from predicates.
For instance, ‘every prime number strictly greater than 2 is odd’, which will be

formally written as

∀x
(

Prime(x) ∧ x > 2
)

=⇒ odd (x) .

Such complex statements may also be true or false.

5.3.1 Syntax: first order formulas

Let G be a set of function symbols . With each symbol f of G is associated

an arity (or rank) ρ(f) ∈ IN. If ρ(f) = 0, then f is called a constant. Let
C = {a, b, . . . , a′, b′, . . . , a1, b1, . . .} ⊂ G be the set of constants.
Let R be a set of relational symbols . With each symbol R of R is associated

an arity (or rank) ρ(R) ∈ IN. If ρ(R) = 0, then R is also called a propositional
symbol.

Let X = {x, y, . . . , x′, y′, . . . , x0, y0, x1, y1, . . .} be a set of variables.
Define the language L = R ∪ G. We also consider the symbols ⊃,¬,∧,∨ of

propositional logic, and two symbols ∀ and ∃, called universal and existential
quantifiers, together with both parentheses and the comma.

Recall that the set T of terms built on G ∪X is inductively defined by:

(B) C ∪X ⊆ T ,

(I) for any n-ary f in G, and for any t1, . . . , tn in T , f
(

t1, . . . , tn
)

∈ T .

A ground term is a variable-free term, i.e. a term built on G.

First order formulas on L are inductively defined by:
• If R is an arity n relational symbol, and if t1, . . . , tn ∈ T , then R(t1, . . . , tn)
is a formula, called an atomic formula.

84 5. Logic

• If F and F ′ are formulas, then ¬F , (F ⊃ F ′), (F ∧ F ′), and (F ∨ F ′) are

formulas.

• If F is a formula and x is a variable, then ∀xF and ∃xF are formulas.

Example 5.21

1. F = (∀x∃yR(x, y) ⊃ ∃xR′(x, y, a)).

2. Because R may contain arity 0 relational symbols, propositional calculus
is a ‘subcalculus’ of predicate calculus. Every propositional formula is thus a
first order formula because, on the one hand, propositional symbols are arity 0

relational symbols and, on the other hand, all other symbols of propositional
calculus are also symbols of predicate calculus.

Definition 5.22 An occurrence of a variable x in a formula F is a pair (x, n)
such that the nth symbol of F is x and the (n− 1)th symbol is neither ∀ nor ∃.

Example 5.23 (x, 8) and (x, 17) are the two occurrences of x in the above

formula F , (x, 7) and (x, 14) are not occurrences: (x, 7) because the 7th symbol
of F is not an x, and (x, 14) because the 14th symbol of F , which indeed is an

x, is quantified by ∃.

Let F be a formula. The set SF (F) of the subformulas of F is the set of pairs

(n, F ′) with n ∈ IN and where

• F ′ is a consecutive sequence of symbols from F which is itself a formula,

• n is the occurrence of the first symbol of F ′ in F .

Example 5.24 The subformulas of

(∀x∃yR(x, y) ⊃ ∃xR′(x, y, a))

are (1, F) , (2, ∀x∃yR(x, y)) , (4, ∃yR(x, y)) , (6, R(x, y)) , (13, ∃xR′(x, y, a)),

and (15, R′(x, y, a)) .

Formulas can be represented by trees; for instance the formula

(∀x∃yR(x, y) ⊃ ∃xR′(x, y, a))

is represented by the tree t depicted in Figure 5.1.

With each node of t labelled by a relational symbol, a quantifier, or one of

the symbols ⊃,¬,∧,∨, is associated a subtree t′ of t; each subtree t′ represents a
subformula of F . The subformulas of (∀x∃yR(x, y) ⊃ ∃xR′(x, y, a)) are depicted
in Figure 5.2.

First order predicate calculus 85

∃ x

R'

x y a
R

x y

R'

x y a

∀x

∃y

R

x y

∃y

R

x y

⊃

∀x

∃y

R

x y

∃ x

R'

x y a

Figure 5.1

86 5. Logic

⊃

∀x

∃y

R

x y

∃ x

R'

x y a

Figure 5.2

An occurrence (x, n) of x in F occurs in subformula (p, F ′) of F if and only if
p ≤ n ≤ p+ |F ′|, where |F ′| denotes the number of symbols of F ′.

Example 5.25 (x, 8) occurs in (1, F), in (2, ∀x∃yR(x, y)), in (4, ∃yR(x, y)) and
in (6, R(x, y)).

(y, 19) occurs in subformulas (1, F), (13, ∃xR′(x, y, a)), and (15, R′(x, y, a)).

Definition 5.26 An occurrence (x, n) of variable x in formula F is said to be
bound if it occurs in a subformula (p,QxF ′), where Q ∈ {∀, ∃}. Otherwise it is

said to be free.

Variable x is said to be free in formula F if it has at least one free occurrence.

Example 5.27 In Example 5.21, occurrences (x, 8), (x, 17) and (y, 10) are bound;
occurrence (y, 19) is free.

Exercise 5.10 What are the free variables and the free occurrences of variables in the
following formulas:

• ∃x
(

logician(x)∧astute(x)
)

,

•
(

∃x logician(x)
)

∧astute(x). ♦

First order predicate calculus 87

Let f(F) be the set of free variables of F .

Proposition 5.28

• f(R(t1, . . . , tn)) = {ui / ui ∈ X and ui occurs in R(t1, . . . , tn)},
• f(¬F) = f(F),
• f(F ⊃ F ′) = f(F ∧ F ′) = f(F ∨ F ′) = f(F) ∪ f(F ′) and

• f(∀xF) = f(∃xF) = f(F)\{x}.

Proof. Simple: by structural induction on F (see Proposition 3.11). ⊓⊔

5.3.2 Semantics : Interpretation of formulas

Let R be a set of relational symbols and G a set of function symbols. Let L be

the language L = R∪G. The language L will have many possible interpretations,
each tailored for some domain of discourse. In order to interpret the language L
we must specify the domain of discourse, together with the intended meanings of
the predicate and function symbols; this is done by defining an L-structure.

Definition 5.29 An L-structure is a triple S = 〈E, γ, h〉, where

• E is a non-empty set,
• γ is a mapping associating with each R ∈ R a subset γ(R), also denoted by

RS , of E
ρ(R) and

• h is a mapping associating with each f ∈ G a function h(f) = fS from Eρ(R)

to E. (With each constant a ∈ C, h associates an element h(a) = aS of E.)

Note that, here, E0 has, by definition, a single element (for the same reason as

n0 = 1!). Hence, P(E0) has only two subsets ∅ and E0 and may be identified
with the Boolean algebra with two elements.

A valuation v is a mapping from the set of variables to E. Two valuations v
and v′ are congruent on a subset Y of X, which is denoted by v =

Y
v′, if: for all

x ∈ Y , v(x) = v′(x).

Definition 5.30

(i) If t is a term and v a valuation, we define v∗(t) ∈ E by:
• If t = a ∈ C, then v∗(t) = aS .
• If t = u ∈ X, then v∗(t) = v(u).

• If t = f(t1, . . . , tn), then v∗(t) = fS(v
∗(t1), . . . , v

∗(tn)).
(ii) If F is a formula and v a valuation, F can be assigned a unique truth value

v̄(F) ∈ IB defined by:
• If F = R(t1, . . . , tn), then v̄(F) = 1 if and only if

(

v∗(t1), . . . , v
∗(tn)

)

∈
RS . Note that if R has arity 0, then

v̄(F) =

{

1 if RS 6= ∅,
0 if RS = ∅.

88 5. Logic

• v̄(¬F) = v̄(F).

• v̄(F ⊃ F ′) = 1 if and only if v̄(F) ≤ v̄(F ′).
• v̄(F ∧ F ′) = 1 if and only if v̄(F) = 1 and v̄(F ′) = 1.
• v̄(F ∨ F ′) = 1 if and only if v̄(F) = 1 or v̄(F ′) = 1.

• v̄(∀xF) = 1 if and only if for all v′ such that v′ =
X−{x}

v, we have

v̄′(F) = 1.

• v̄(∃xF) = 1 if and only if there exists v′ such that
v′ =

X−{x}
v and v̄′(F) = 1.

(iii) Two formulas F and F ′ are equivalent if, for any L-structure S and for any
valuation v, v̄(F) = v̄(F ′). We write F ≈ F ′.

This semantics agrees with the semantics already given for propositional calcu-
lus. We have seen in Example 5.21 that any formula F of propositional calculus

is a formula of predicate calculus. If S is an L-structure, the restriction I of S
to propositional symbols is a mapping from these propositional symbols to the

Boolean algebra, and is thus an interpretation in the sense of propositional cal-
culus; and we indeed have for any propositional formula F that I(F) = v̄(F)
for any valuation v with values in S. In short, interpretations I that we have

considered for propositional logic can be obtained as restrictions of L-structures.

Proposition 5.31 ∀xF ≈ ¬∃x¬F .

Proof.

v̄(∀xF) = 0 ⇐⇒ there is a v′ such that v′ =
X−{x}

v and v̄′(F) = 0

⇐⇒ there is a v′ such that v′ =
X−{x}

v and v̄′(¬F) = 1

⇐⇒ v̄(∃x¬F) = 1

⇐⇒ v̄(¬∃x¬F) = 0 . ⊓⊔

Proposition 5.32 Let Y be the set of variables having a free occurrence in F .

If v =
Y
v′, then v̄(F) = v̄′(F).

Proof. For this proof we use the fact that if Y ′ ⊆ Y then v =
Y
v′ =⇒ v =

Y ′

v′.

The proof is by induction on the structure of F .
• Basis. If F = R(t1, . . . , tn) then f(F) = {ui / ui ∈ X, and ui occurs in some
tj}, and if v =

f(F)
v′ then v̄(F) = v̄′(F).

• Inductive step.
– If F = (F1 ⊓⊔ F2) with ⊓⊔ ∈ {⊃,∧,∨}, we use the induction hypothe-

sis: because f(Fi) ⊆ f(F), we have that v =
f(F)

v′ =⇒ v =
f(Fi)

v′.

First order predicate calculus 89

– If F = ∃xF ′, then f(F) = f(F ′)−x. Let v1 =
f(F)

v2. If v̄1(∃xF
′) = 1,

there exists v′1 =
X−{x}

v1 such that v̄′1(F
′) = 1. Let v′2 be defined by

v′2(y) =

{

v2(y) if y 6= x,
v′1(x) otherwise.

We have v′2 =
X−{x}

v2. As f(F) ⊆ X − x,

v′2 =
f(F)

v2 =
f(F)

v1 =
f(F)

v′1 ,

and as v′2(x) = v′1(x), v
′
2 =

f(F)∪{x}
v′1. Because f(F ′) ⊆ f(F) ∪ {x}, we have

that v̄′2(F
′) = v̄′1(F

′) = 1, and hence v̄2(∃xF
′) = 1.

– If F = ∀xF ′, then f(F) = f(F ′)− x = f(¬∃x¬F ′), and hence

v1 =
f(F)

v2 =⇒ v̄1(¬∃x¬F
′) = v̄2(¬∃x¬F

′)

=⇒ v̄1(∀xF) = v̄2(∀xF). ⊓⊔

Remark 5.33 If a formula F contains no occurrence of a free variable (in which
case it is said to be a closed or ground formula or a sentence), then its truth

value in S does not depend on the valuation. Indeed, for any v, v′, we have v=
∅
v′,

and hence for any v, v′, v̄(F) = v̄′(F). This occurs if F is a propositional logic
formula.

Exercise 5.11 In Aristotle’s syllogisms, assertions about properties P and Q of indi-
viduals frequently occur in the following forms:
(i) All P s are Qs.

(ii) Some P s are Qs.

(iii) No P is a Q.

(iv) Some P s are not Qs.

Translate these assertions into predicate calculus formulas by introducing the predi-
cates P (x) and Q(x). ♦

Exercise 5.12 Show that if x is not free in F , then
v̄(∀xF) = v̄(∃xF) = v̄(F). ♦

Definition 5.34 A formula F is said to be

• satisfiable in S if there exists a valuation v such that v̄(F) = 1,
• satisfiable if there exist a structure S and a valuation v such that v̄(F) = 1,

• valid in S if for all v, v̄(F) = 1 and
• universally valid if it is valid in all L-structures.

90 5. Logic

Example 5.35

1.
(

(¬∃xP (x)) ⇐⇒ ∀x(¬P (x))
)

is universally valid.
If x and y are real numbers, and S is the structure associated with IR, then

x ≤ x+ y is satisfiable in S but it is not valid in S.

Let F = R(x, z)∧Q(x, y, z). Consider the structure S = (IN, RIN, QIN), defined
by RIN = {(n,m) / n < m} and QIN = {(n,m, p) / n+m = p}. F is satisfiable in

S (let, for instance, v(x) = v(y) = 1, v(z) = 2), but F is not valid in S (let for
instance v(x) = v(z) = 1, v(y) = 0).

2. (Examples are given with the PROLOG terminology.) Let R = {male,
female} be a set of two unary predicates. Then

A =
(

(¬ male(x)) =⇒ female(x)
)

is satisfiable but not valid, whilst

C =
(

(

(¬male(x)) =⇒ female(x)
)

∨
(

¬male(x) ∧ ¬female(x)
)

)

is valid.

Exercise 5.13 Let S = 〈E, {R,=}〉 be a set equipped with a relation R and a predicate
= that we assume to be interpreted as equality. Write a formula that is valid in S if
and only if R is a (total) ordering. ♦

Exercise 5.14

1. Is ∃y∀x r(x, y) ≈ ∀x∃y r(x, y) valid for a binary predicate r? Same question for
(∃yp(y)) ∧ (∃yq(y)) ≈ (∃y(p(y) ∧ q(y))), with p and q unary predicates. Give a proof if
the answer is yes, a counterexample if the answer is no.
2. Show that

∃y∀x
(

p(x) ∧ q(y)
)

≈ ∀x∃y
(

p(x) ∧ q(y)
)

,

for unary predicates p and q. ♦

As for propositional logic we define sequents.

Definition 5.36 A sequent (F , F) is valid in S, denoted by F |=
S

F , if

for any v,
(

(for all G in F , v̄(G) = 1) =⇒ (v̄(F) = 1)
)

.

A sequent is universally valid, denoted by F |= F , if it is valid in all Ss.

Proposition 5.37

{F1, . . . , Fn} |=
S

F if and only if ∅ |=
S

(F1 ⊃ (F2 ⊃ · · · (Fn ⊃ F) · · ·)).

First order predicate calculus 91

Proposition 5.38 If F |=
S

F and if x is not free in any formula of F , then

F |=
S

∀xF .

Proof. Let v be a valuation such that for any G ∈ F v̄(G) = 1. Let v′ be any
valuation such that v′ =

X−{x}
v. Since x never has a free occurrence in F , for any

G ∈ F we also have v̄′(G) = 1 and thus v̄′(F) = 1. Since this is true for any
v′ =

X−{x}
v, we have that v̄(∀xF) = 1. ⊓⊔

Let F be a formula and let x be a variable. Let t be a term. Let F [x := t] be
the formula where all free occurrences of x have been replaced by t. F [x := t]

is said to be an instance of F ; if F [x := t] is a formula without variables, then
it is said to be a ground instance of F . If x has no free occurrence in F , then

F [x := t] = F .
Let u be a term. We will say that u is substitutable for x in F if u is a ground

term or if u is such that any occurrence of a variable in u is free in F [x := u].

Example 5.39 Let F =
(

∀yR(x, y, z)
)

∨
(

∀zR′(z)
)

, where R,R′ are relational

symbols. u is substitutable for x in F if and only if y does not occur in u. For
example y is not substitutable for x in F because F [x := y] =

(

∀yR(y, y, z)
)

∨
(

∀zR′(z)
)

and occurrence (y, 5) becomes bound. Similarly let f be a function
symbol, f(y, z) is not substitutable for x in F , but f(x, z) is substitutable for x

in F .

From now on, when we write F [x := u], we will implicitly assume that u is
substitutable for x in F .

Proposition 5.40 Let x be a variable and let u be a term substitutable for x
in F . Let v be a valuation. Let v′ be defined by:

v′(y) =

{

v(y) if y 6= x,
v∗(u) if y = x.

Then v̄′(F) = v̄(F [x := u]).

Proof. By induction on the construction of F . ⊓⊔

Proposition 5.41

1. F |=
S

∀xF =⇒ F |=
S

F [x := u] ;

2. F |=
S

F [x := u] =⇒ F |=
S

∃xF .

Proof. Let v be such that for any G ∈ F , v̄(G) = 1. Let v′ be constructed as

previously in Proposition 5.40; we have v′ =
X−{x}

v and v̄′(F) = v̄(F [x := u]).

92 5. Logic

1. If F |=
S

∀xF then v̄(∀xF) = 1, and v̄′(F) = 1; thus v̄(F [x := u]) = 1 which

proves that F |=
S

F [x := u].

2. If F |=
S

F [x := u] then v̄′(F) = 1, and hence v̄(∃xF) = 1. ⊓⊔

5.3.3 Some particular formulas

We now give some identities of predicate calculus that are quite useful. In the

present section we abbreviate F ≈ G by F ⇐⇒ G to comply with the usual
notations when logic is used as meta-language and to increase readability; we
will also use the notation F =⇒ G to denote that F ⊃ G is universally valid, i.e.

that ∅ |= F ⊃ G.

Proposition 5.42

∀x (p(x) ∧ q(x)) ⇐⇒ ∀x p(x) ∧ ∀x q(x) .(i)

∃x (p(x) ∧ q(x)) =⇒ ∃x p(x) ∧ ∃x q(x) .(ii)

By duality between ∀ and ∃ we also have

∃x (p(x) ∨ q(x)) ⇐⇒ ∃x p(x) ∨ ∃x q(x) .(iii)

∀x p(x) ∨ ∀x q(x) =⇒ ∀x (p(x) ∨ q(x)) .(iv)

Z
The converses of rules (ii) and (iv), namely,

∃x p(x) ∧ ∃x q(x) =⇒ ∃x (p(x) ∧ q(x))

and

∀x (p(x) ∨ q(x)) =⇒ ∀x p(x) ∨ ∀x q(x) ,

are false (see Exercise 5.14).

Lastly, the following rules, written with the same conventions as above, are use-

ful for putting formulas in prenex form, i.e. with all quantifiers at the beginning
of the formula.

Proposition 5.43 Let ∗ ∈ {∨,∧}, let F be a formula, let x be a variable and
let G be a formula in which x has no free occurrence. We have:

(i) ¬∀xF ⇐⇒ ∃x¬F ¬∃xF ⇐⇒ ∀x¬F
(ii) (∀xF) ∗G ⇐⇒ ∀x (F ∗G) (∃xF) ∗G ⇐⇒ ∃x (F ∗G)

(iii) G ∗ (∀xF) ⇐⇒ ∀x (G ∗ F) G ∗ (∃xF) ⇐⇒ ∃x (G ∗ F)
(iv) (∀xF) ⊃ G ⇐⇒ ∃x (F ⊃ G) (∃xF) ⊃ G ⇐⇒ ∀x (F ⊃ G)
(v) G ⊃ (∀xF) ⇐⇒ ∀x (G ⊃ F) G ⊃ (∃xF) ⇐⇒ ∃x (G ⊃ F)

The proofs of the two preceding propositions are straightforward.

First order predicate calculus 93

5.3.4 Lexical variants

Let F be a formula. A lexical variant of F is a formula deduced from F by

renaming some bound variables. Formally:

Definition 5.44 F ′ is a lexical variant of F if one of the following holds:

• F = F ′.
• For Q ∈ {∀, ∃}, F = QxG and F ′ = QyG′[x := y], where G′ is a lexical

variant of G and y is not free in G′.
• F = ¬G, F ′ = ¬G′, and G′ is a lexical variant of G.

• For ⊓⊔ ∈ {⊃,∧,∨}, F = (F1 ⊓⊔ F2), F
′ = (F ′

1 ⊓⊔ F ′
2), and F ′

i is a lexical
variant of Fi.

Example 5.45 ∀zP (z, y) is a lexical variant of ∀xP (x, y), but neither ∀yP (y, y)
nor ∀zP (z, x) is.

Proposition 5.46 If F is a lexical variant of F ′ then f(F) = f(F ′), and for
any L-structure S and any valuation v in S, v̄(F) = v̄(F ′).

Proof. The first assertion is easy to prove. For the second one, it suffices to show

that if for all v, v̄(F) = v̄(F ′), then for all v, v̄(∃xF) = v̄(∃yF ′[x := y]) if y is
not free in F ′.

Let v be a valuation, and let V be the set of valuations v′ such that v′ =
X−{x}

v

and v′(x) = v′(y).

Because y is not a free variable of F ′, y is not a free variable of F either, and:
there exists v′ such that v′ =

X−{x}
v and v̄′(F) = 1 if and only if there exists v′

such that v′ ∈ V and v̄′(F) = 1.
Similarly, x is not a free variable of F ′[x := y], and thus: there exists v′ such

that v′ =
X−{x}

v and v̄′(F ′[x := y]) = 1 if and only if there exists v′ such that

v′ ∈ V and v̄′(F ′[x := y]) .
Hence v̄(∃xF) = v̄(∃yF ′[x := y]) is equivalent to: there exists v′ ∈ V such that

v̄′(F) = 1 if and only if there exists v′ such that v′ ∈ V and v̄′(F ′[x := y]) = 1.
Finally, we observe that this last equivalence is true. ⊓⊔

5.3.5 Prenex formulas

Definition 5.47 A formula F is said to be prenex if it is in the form

Q1x1Q2x2 . . . QnxnF
′ ,

where the Qis are quantifiers for i = 1, 2, . . . , n, and where F ′ is a formula without

quantifier.

94 5. Logic

Theorem 5.48 Any formula F is equivalent to a prenex formula G.

Proof. By structural induction on F we effectively build a prenex formula G

equivalent to F . The inductive assumption is that there exists a prenex formula
G equivalent to F .

• Basis. If F is in the form R(t1, . . . , tn), it is clear because F is prenex.

• Inductive step.
• If F is in the form ∀xF ′ (resp. ∃xF ′), with F ′ ≈ F ′′, where F ′′ is

prenex, then F ≈ ∀xF ′′ (resp. F ≈ ∃xF ′′), which is prenex.
• If F is in the form ¬F ′, with F ′ ≈ F ′′, F ′′ prenex and

F ′′ = Q1x1Q2x2 . . . QnxnG,

then, by Proposition 5.43 (i),

F ′ ≈ Q′
1x1Q

′
2x2 . . . Q

′
nxn¬G,

with Q′
i = ∀ if Qi = ∃ and Q′

i = ∃ if Qi = ∀.
• If F is in the form F1 ∗ F2, with ∗ ∈ {∨,∧}, we put F1 and F2 in
prenex form, and we apply Proposition 5.43 (ii) and (iii) in order to ‘pull’

the quantifiers to the beginning of the formula. We must, however, proceed
with care; if, for instance, F = F1 ∧ F2 ≈ (∀xF ′

1) ∧ F ′
2, with x free in F ′

2,

we must first rename variable x in F1 and replace x by a new variable z
occurring neither in F1 nor in F ′

2.

• If F is in the form F1 ⊃ F2, we put F1 and F2 in prenex form, and
we apply Proposition 5.43 (iv) and (v), possibly with renamings, to ‘pull’
quantifiers to the beginning of the formula. ⊓⊔

Exercise 5.15 Find a prenex formula equivalent to
∃xP (x) ∧ ∀x

(

∃yQ(y) ⊃ R(x)
)

. ♦

Exercise 5.16 We assume that:

(a) Programmers write programs for all those who do not write programs for them-
selves.
(b) No programmer writes programs for someone who writes programs for him(her)self.

We then notice the paradox: if a programmer writes a program for him(her)self, he/she
violates rule (b); if a programmer does not write programs for him(her)self, he/she
violates rule (a) because he/she does not write programs for someone who does not
write programs for him(her)self. How do you explain this paradox? (Hint: express the
requirements (a) and (b) by formulas F and G of predicate calculus, and show that
F ∧G implies that there is no programmer.) ♦

Herbrand’s theorem and consequences 95

5.4 Herbrand’s theorem and consequences

5.4.1 Theories and Models

Definition 5.49 A provable sequent is a sequent obtained by the rules for
propositional logic, extended by:

• If F ⊢ ∀xF then: F ⊢ F [x := t] (instantiation rule).
• If F ⊢ F and if x is not free in F , then: F ⊢ ∀xF (universal generalization

rule).
• F ⊢ ∃xF if and only if F ⊢ ¬∀x¬F (definition of ∃).

Z
The universal generalization rule does not apply if x is free in F . For in-

stance, p(x) ⊢ p(x) is provable, but p(x) ⊢ ∀xp(x) is not provable. This rule
is the formalization of the following reasoning: ‘if a property is true for an arbi-

trary object x then it is true for any x’; x is arbitrary means that no hypothesis
is made about x and that lack of knowledge about x is formally expressed by the

fact that x does not occur free in F .

Example 5.50

• If F , F ⊢ G and if x is not free in F and G then F , ∃xF ⊢ G. Indeed, we
have:

1. F , F ⊢ G
2. F ,¬G ⊢ ¬F (by Proposition 5.14)
3. F ,¬G ⊢ ∀x¬F (generalization)
4. F ,¬∀x¬F ⊢ G (by Proposition 5.14)
5. F , ∃xF ⊢ G (definition of ∃)

• ∃x∀yF ⊢ ∀y∃xF . Indeed, we have:

1. ∀yF , ∀x¬F ⊢ ∀yF (hypothesis)
2. ∀yF , ∀x¬F ⊢ F [y := y] (instantiation)
3. ∀yF , ∀x¬F ⊢ ∀x¬F (hypothesis)
4. ∀yF , ∀x¬F ⊢ ¬F [x := x] (instantiation)
5. ∀yF ⊢ ¬(∀x¬F) (contradiction on 2, 4

because F [y := y] = F [x := x] = F)
6. ∀yF ⊢ ∃xF (definition of ∃)
7. ∀yF ⊢ ∀y∃xF (universal generalization)
8. ∃x∀yF ⊢ ∀y∃xF

We detail steps 7 and 8 of the proof: because y is not free in ∀yF , universal

generalization applied to 6 gives ∀yF ⊢ ∀y∃xF , and because x is not free in
∀y∃xF , we have, by applying to 7 the sequent obtained in the first part of the

present example, ∃x∀yF ⊢ ∀y∃xF .

96 5. Logic

Theorem 5.51 (Soundness) If a sequent is provable then it is universally valid.

Exercise 5.17 Prove this theorem. ♦

Theorem 5.52 (Completeness) If a sequent is universally valid then it is

provable.

We will not give the proof of this theorem; rather, we will provide some ideas
behind the proof.

Definition 5.53 A theory is a set T of formulas such that for any finite subset
F of T , if F ⊢ F then F ∈ T .

A theory T is contradictory if there exists a formula F such that F ∈ T and
¬F ∈ T .

Example 5.54 Let F be a finite set of formulas. The set

Th(F) = {F / F ⊢ F}

is a theory.

Proposition 5.55 A theory T is contradictory if and only if it contains all
formulas.

Proof. Let G be a formula.

F,¬F,¬G ⊢ F

F,¬F,¬G ⊢ ¬F

}

hence F,¬F ⊢ G .

Thus G ∈ T . ⊓⊔

Proposition 5.56 F ⊢ F if and only if Th(F ∪ {¬F}) is contradictory.

Proof. If F ⊢ F , then:

F ,¬F ⊢ F

and F ,¬F ⊢ ¬F

}

=⇒ the theory F ∪ {¬F} is contradictory .

If Th(F ∪ {¬F}) is contradictory, F ,¬F ⊢ F and F ,¬F ⊢ ¬F , and hence
F ⊢ F . ⊓⊔

An L-structure S is a model of a (finite or infinite) set G of formulas if for any

v and for any F in G, we have v̄(F) = 1.
We denote by ∅ |=

S

G the fact that S is a model of G.

Herbrand’s theorem and consequences 97

Z
A set G of formulas is satisfiable if there exists an L-structure S and there

exists a valuation v such that for any F in G, we have v̄(F) = 1. A set G of
formulas has a model if there exists an L-structure S such that for any valuation
v and for any F in G, we have v̄(F) = 1. A set G of formulas which does not

have a model may thus be satisfiable: for example, the set F of formulas defined
in Remark 5.58 does not have a model, but it is satisfiable.

If a theory has a model, then it is not contradictory. The converse is one of

the fundamental theorems of logic. The proof of this theorem is quite long, so we
will not give it; we state the theorem.

Theorem 5.57 If F consists of closed formulas and Th(F) is not contradictory,

then F has a model.

Remark 5.58 Theorem 5.57 is false if non-closed formulas are allowed. Let
F = {∃xp(x) , ¬p(x)}; F is satisfiable: let S = 〈E, γ〉 with E = {0, 1}, and γ(p) =
pS defined by pS(0) = 0, pS(1) = 1, the valuation v(x) = 0 is such that v̄(F) = 1

for any F in F . F does not have a model: if a structure S′ is such that for any
valuation v, v̄

(

¬p(x)
)

= 1, then, for any valuation v, v̄
(

∃xp(x)
)

= 0. Nevertheless

Th(F) is not contradictory: otherwise, by Proposition 5.56, we would conclude
that ∃xp(x) ⊢ p(x), which is false because the sequent {∃xp(x) , p(x)} is not

universally valid, e.g. ∃xp(x) 6|=
S

p(x).

Let us deduce the completeness theorem from Theorem 5.57. We prove that if

F |= F then F ⊢ F .

1. First, we consider closed formulas: we will assume that F and F consist of
closed formulas, that F |= F , and that the sequent (F , F) is not provable. Then

F ∪ {¬F} is not contradictory and thus has a model S by Theorem 5.57. Any
valuation v thus verifies for any Fi ∈ F , v̄(Fi) = 1 and v̄(¬F) = 1. But, because

F |= F , the sequent (F , F) is valid in S and thus any valuation v verifying
v̄(Fi) = 1 for any Fi in F also verifies v̄(F) = 1, a contradiction.
2. Now, we will assume that F |= F , and that F = {F1, . . . , Fn} and F consist

of (not necessarily closed) formulas. F |= F and Proposition 5.37 imply that
∅ |= (F1 ⊃ (F2 ⊃ · · · (Fn ⊃ F) · · ·)). Let x1, . . . , xk be the free variables of

(F1 ⊃ (F2 ⊃ · · · (Fn ⊃ F) · · ·)); by Proposition 5.38, ∅ |= ∀x1 · · · ∀xk(F1 ⊃ (F2 ⊃
· · · (Fn ⊃ F) · · ·)).
(

∅ , ∀x1 · · · ∀xk(F1 ⊃ (F2 ⊃ · · · (Fn ⊃ F) · · ·))
)

thus is a universally valid se-
quent consisting of closed formulas, hence it is provable by case 1, and ∅ ⊢
∀x1 · · · ∀xk(F1 ⊃ (F2 ⊃ · · · (Fn ⊃ F) · · ·)). By the instantiation rule, ∅ ⊢ (F1 ⊃
(F2 ⊃ · · · (Fn ⊃ F) · · ·)). As in Proposition 5.16, we deduce that {F1, . . . , Fn} ⊢
F , hence the sequent (F , F) is provable. ⊓⊔

98 5. Logic

Exercise 5.18 Bernard and Christopher are members of the Alpine Club. Any mem-
ber of the Alpine Club is either a skier, or an alpinist or both. Alpinists do not like
rain, and skiers like snow. Christopher likes all that Bernard does not like, and does not
like all that Bernard likes (i.e. there are things that Bernard likes and that Christopher
does not like).

1. Express the requirements of the Alpine Club by a set F of formulas of predicate
calculus.
2. Can you find a model of F?
3. Can you prove that there is a member of the Alpine Club who is an alpinist and
not a skier (or vice versa)? ♦

5.4.2 Herbrand’s models

Let G be a set of functions whose set C of constants is non-empty. Let L be

the language L = R ∪ G. The Herbrand universe of L is the set of ground (i.e.
variable-free) terms built over G. The Herbrand universe is denoted by UH , which
is inductively defined by:

(B) C ⊆ UH ,

(I) for any n-ary f in G, and for any t1, . . . , tn in UH , f
(

t1, . . . , tn
)

∈ UH .

Because C is non-empty, UH is non-empty. (Indeed UH is empty if and only if C
is empty.)

An L-structure S = 〈E, γ, h〉 is a Herbrand structure if:

• E = UH , and

• h associates with each f ∈ G the function fS from U
ρ(f)
H to UH defined by

fS(t1, . . . , tn) = f(t1, . . . , tn), see Definition 3.14. (This implies that with each

constant a ∈ C, h associates the element a of UH .)

The definition of an L-structure (Definition 5.29) requires the domain of the
structure to be non-empty. Thus UH must be non-empty. This is why we require

C to be non-empty.

The Herbrand basis of L is the set BH of ground (i.e. variable-free) atomic
formulas, i.e. formulas of the form R(t1, . . . , tn) with R ∈ R and t1, . . . , tn in UH .

For a given language L, there is a single Herbrand universe, but on that Herbrand
universe numerous Herbrand structures can be defined; a Herbrand structure H

is defined by a Herbrand interpretation which is a subset I of the Herbrand basis
BH ; I specifies the atomic formulas which are true in H. Formally, I defines

H = 〈UH , γ, h〉 means that for t1, . . . , tn in UH and R ∈ R, (t1, . . . , tn) is in RH

if and only if R(t1, . . . , tn) ∈ I. A Herbrand structure will thus be denoted by
H = 〈UH , I, h〉, or by H = 〈UH , I〉 or simply by I, since UH and h are uniquely

specified by the language.

Herbrand’s theorem and consequences 99

Example 5.59

1. Let L be the language L = {a, p, q} where a is a constant symbol and p, q
are nullary relational symbols. Then the Herbrand universe is {a}, the Herbrand
basis is the set BH = {p, q} and there are exactly four Herbrand structures

specified by I0 = ∅ , I1 = {p} , I2 = {q} , I3 = {p, q}.

2. Let L be the language L = {a, f, p, q} where p, q are unary relational sym-

bols, a is a constant symbol and f is a unary function symbol. Then the Herbrand
universe is UH = {a , f(a) , f2(a) , . . . , fn(a) , . . .} = {fn(a) / n ∈ IN}, the Her-

brand basis is the set BH = {p(t), q(t) / t ∈ UH} and the Herbrand structures are
specified by subsets I of BH ; for instance I0 = ∅ , I1 = BH , I2 = {p(a), p(f(a))} ,
I3 = {p(t) / t ∈ UH}, etc., specify Herbrand structures H0, H1, H2, H3, etc.

Proposition 5.60 For any L-structureA = 〈E, γ, h〉 there is a unique Herbrand
structure H and a unique mapping h∗:UH −→ E such that

(i) h∗
(

f(t1, . . . , tn)
)

= fA(h
∗(t1), . . . , h

∗(tn)) and

(ii) for t1, . . . , tn in UH , (t1, . . . , tn) ∈ RH ⇐⇒ (h∗(t1), . . . , h
∗(tn)) ∈ RA.

Proof. The uniqueness of the mapping h∗:UH −→ E follows from (i) and Propo-

sition 3.15; (ii) implies that the Herbrand structure on UH must be defined by
I = {R(t1, . . . , tn) ∈ BH / (h∗(t1), . . . , h

∗(tn)) ∈ RA}. ⊓⊔

Definition 5.61 Let F be a set of formulas of the language L and let H be a
Herbrand structure for L. H is said to be a Herbrand model of F if and only if

H is a model of F .

Example 5.62 Let L = {a, f, p, q}, let F = {p(a) , ∀x
(

p(x) ⊃ p(f(x))
)

}. I1
and I3 in Example 5.59, 2, define Herbrand models of F ; I0 and I2 in Example 5.59,

2, do not define Herbrand models of F ; any I = I3 ∪ {q(fk(a)) / k ∈ K ⊂ IN}
also defines a Herbrand model of F .

5.4.3 Herbrand’s theorem

Definition 5.63 A prenex formula is said to be universal if and only if it has
only universal quantifiers.

Theorem 5.64 (Herbrand’s theorem) Let L be a language with a non-empty
set C of constants, and let F be a set of closed universal formulas, then F has a

model if and only if F has a Herbrand model.

Proof. The ‘if’ direction is clear. For the ‘only if’ direction, assume that F
has a model S = 〈E, γ, h〉 and construct a Herbrand model for F . Let H be

100 5. Logic

the Herbrand structure defined by the following set I of atomic formulas in the

Herbrand basis:

I = {F ∈ BH / ∅ |=
S

F} .

We will prove that H is a Herbrand model of F . Because C is non-empty, UH

is non-empty, and with any valuation vH :X −→ UH we can associate a unique

valuation v = h∗ ◦ vH ,

v:X
vH−→ UH

h∗

−→ E ,

where h∗ is defined in Proposition 5.60. By structural induction on the formulas,

it can be shown that for any quantifier-free formula G, v̄H(G) = v̄(G). The
base case follows from Proposition 5.60 and the inductive step is straightforward.
We must prove that for any F = ∀x1 · · · ∀xnG in F , where G is a quantifier-free

formula, ∅ |=
H

F holds, i.e. for any valuation vH : {x1, . . . , xn} −→ UH , v̄H(G) = 1.

If vH is a valuation, v = h∗ ◦vH is a valuation into E, and since ∅ |=
S

F , v̄(G) = 1.

Hence, v̄H(G) = 1. ⊓⊔

Example 5.65 Herbrand’s theorem does not hold if F is not a set of universal
formulas. Let L = {a,R} with a a constant, R a unary relational symbol, and
let F = {R(a) , ∃x¬R(x)}. F has a model but F has no Herbrand model. The

structure S defined by E = {0, 1} with aS = 0 and 0 ∈ RS , 1 /∈ RS is a model of
F .

F has no Herbrand model. There are exactly two Herbrand structures on the

Herbrand universe UH = {a}, defined by, respectively, I0 = ∅ (i.e. RI0 = ∅ is
always false) and I1 = {R(a)} (i.e. RI1 = {a} is always true), neither of which is

a model of F .

Remark 5.66 Herbrand’s theorem holds if F is a set of formulas without
quantifiers. Indeed, if F (x) is not closed, S is a model of F (x) if and only if S is

a model of ∀xF (x).

In fact, Theorem 5.64 is a weakened form of Herbrand’s theorem which asserts
the following more general result.

Theorem 5.67 Let F be a set of closed universal formulas, either

• F has a Herbrand model or

• F does not have a model and, moreover, there are finitely many ground
instances of F whose conjunction is unsatisfiable.

The proof of Theorem 5.67 will not be given here.

Herbrand’s theorem and consequences 101

Herbrand’s theorem has many useful consequences in logic programming and

proof theory including:

• A satisfiable set F of universal formulas has a Herbrand model and so has a
model which is finite or countable.

• If the set F of universal formulas is unsatisfiable, then Theorem 5.67 directly
exhibits a finite set of unsatisfiable ground instances. Thus Theorem 5.67 gives
a method for effectively producing either a Herbrand model for F or a particular

finite counter-example to the existence of any model of F .
• Herbrand’s theorem implies the completeness of the resolution method; the

resolution method is based on the following idea: the formula F = ∃xG(x), where
G is quantifier-free, is a consequence of the set of universal formulas F if and only

if F ∪ {¬F} is unsatisfiable. F ∪ {¬F} is a set of universal formulas that can
be proved to be unsatisfiable by exhibiting a finite set of unsatisfiable ground

instances. It can be shown that exhibiting the unsatisfiable ground instances
also gives valuations v(x) = t such that F ⊢ G[x := t], which are called answer
substitutions.

• Herbrand’s theorem can be used to prove Theorem 5.52.

Exercise 5.19 Find all Herbrand models of

F = {edge(a, b) , edge(b, c) , ∀x∀y
(

edge(x, y) ⊃ path(x, y)
)

,

∀x∀y
(

(edge(x, z) ∧ path(z, y)) ⊃ path(x, y)
)

} ,

where the language L consists of the constants a, b, c and the binary relational symbols
edge and path. With the PROLOG notations, F would be denoted by:

=⇒ edge(a, b)r1 :

=⇒ edge(b, c)r2 :

edge(X,Y) =⇒ path(X,Y)r3 :

edge(X,Z), path(Z, Y) =⇒ path(X,Y)r4 :

where universal quantifications are omitted and the comma denotes ∧. ♦

5.4.4 Skolemization

We have seen in Example 5.65 that Herbrand’s theorem does not hold for non-

universal formulas. This can be remedied by constructing, for each formula F , a
universal formula F ′ which is equisatisfiable with F : i.e. F is satisfiable if and

only if F ′ is satisfiable. (Note: F ′ will not be equivalent to F , see Exercise 5.21.)
Each formula

F = ∀x1 · · · ∀xn∃y1 · · · ∃ypG(x1, . . . , xn, y1, . . . , yp)

102 5. Logic

will be replaced by

F ′ = ∀x1 · · · ∀xnG(x1, . . . , xn, f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)) ,

where f1, . . . , fp are new function symbols, called Skolem functions. F ′ is called

a Skolemization of F .

Theorem 5.68 Let F be a closed formula in a language L; there exists a
universal formula F ′ in a language L′ = L ∪ {f1, . . . , fp}, where f1, . . . , fp are

new function symbols, such that F is satisfiable if and only if F ′ is satisfiable.

Proof. By Theorem 5.48 we may assume that F is in prenex form; assume

F = ∀x1...∀xn1
∃y1∀xn1+1...∀xn2

∃y2 · · · ∀xnp−1+1...∀xnp
∃yp∀xnp+1...∀xnG ,

where G is a formula without quantifiers. We add p new function symbols
f1, . . . , fp to L; for i = 1, . . . , p, each fi is of arity ni and depends on the xjs such

that ∀xj occurs before ∃yi in F . F ′ is the formula

F ′ = ∀x1 · · · ∀xnG[y1 := f1(x1, . . . , xn1
)] · · · [yp := fp(x1, . . . , xnp

)].

F is satisfiable if and only if F ′ is satisfiable. By induction on p it suffices to
prove Lemma 5.69. ⊓⊔

Lemma 5.69 F = ∀x1 · · · ∀xn∃yG is satisfiable if and only if F ′ = ∀x1 · · · ∀xn

G[y := f(x1, . . . , xn)] is satisfiable, where f is a new function symbol.

Exercise 5.20 Prove Lemma 5.69. ♦

Remark 5.70 F ′ will not be equivalent to F . See Exercise 5.21.

Exercise 5.21 Find Skolemizations of F = (∀xR(x)) ∨ (∃yR′(y)). ♦

Exercise 5.22 Find Skolemizations of F = (∀x∃yR(x, y)) ∨ ¬(∃x∀yR′(x, y)). ♦

When we are interested in the existence of a model for a formula, Skolemiza-
tion enables us to suppress all existential quantifiers. By Remark 5.66, models

of F (x1, . . . , xn) and models of ∀x1 · · · ∀xnF (x1, . . . , xn) coincide. We can thus
assume that all variables are universally quantified and omit the universal quan-

tifiers in the denotation of the formula: this is the usual notation for PROLOG.

Herbrand’s theorem and consequences 103

5.4.5 Horn clauses

Horn clauses are very useful examples of universal formulas. PROLOG and most

logic programming languages are based on Horn clauses.

Definition 5.71

(i) Literals are atomic formulas or their negations, i.e. formulas of the form
L = R(t1, . . . , tn) (positive literal), or of the form L = ¬R(t1, . . . , tn) (negative

literal).

(ii) A Horn clause is a universal formula of the form ∀x1 · · · ∀xp(L1 ∨ · · · ∨ Ln),
where the Lis are literals, and at most one of them is positive.

(iii) A program clause or definite clause is a Horn clause with exactly one positive
literal.

Thus, a Horn clause can be of one of the following three forms:

(i) ∀x1 · · · ∀xpA (positive clause or fact).

(ii) ∀x1 · · · ∀xp(¬A1 ∨ · · · ∨ ¬An ∨A), where A and the Ais are atomic formulas.

(iii) ∀x1 · · · ∀xp(¬A1 ∨ · · · ∨ ¬An), where the Ais are atomic formulas (negative

clause or goal).

Example 5.72 A PROLOG program consists of Horn clauses of the form (i)
or (ii), which are usually written in the form (omitting the universal quantifiers

and substituting a comma for ∧):

=⇒ A ,(i)

A1, . . . , An =⇒ A .(ii)

Example 5.73 The set F of formulas of Exercise 5.19 is a set of program
clauses. F can be written as F = {edge(a, b) , edge(b, c) , ∀x∀y

(

¬edge(x, y) ∨
path(x, y)

)

, ∀x∀y
(

¬edge(x, z) ∨ ¬path(z, y) ∨ path(x, y)
)

}, With the PROLOG
notations, F is denoted by:

=⇒ edge(a, b) ,r1 :

=⇒ edge(b, c) ,r2 :

edge(X,Y) =⇒ path(X,Y) ,r3 :

edge(X,Z), path(Z, Y) =⇒ path(X,Y) .r4 :

104 5. Logic

Theorem 5.74 A set P of program clauses has a least Herbrand model M =

〈UH , IM 〉 (i.e. a Herbrand model such that IM is contained in any other Herbrand
model IH).

Proof. Let P = {Ci / i ∈ J}, where each Ci is either of the form (i) or (ii). We
will prove that the intersection of all Herbrand models of P is itself a Herbrand

model of P . Let M be defined by

IM =
⋂

{IH / ∅ |=
IH

Ci , for all Ci ∈ P} ,

i.e. IM is the intersection of all the Herbrand models of P ; then ∅ |=
M

Ci for all

Ci ∈ P . We verify that all the clauses Ci of P are valid in M .

(i) If Ci is of the form ∀x1 · · · ∀xpA, then all ground instances of A are true in

all Herbrand models, hence they belong to all IHs, and also to IM , and thus they
are true in M .

(ii) If Ci is of the form ∀x1 · · · ∀xp(¬A1 ∨ · · · ∨ ¬An ∨ A), let C ′
i = (¬A1 ∨

· · · ∨ ¬An ∨ A), let v be a valuation v: {x1, . . . , xp} −→ UH and let, for B ∈
{A,A1, . . . , An}, v

∗(B) = B[x1 := v(x1)] · · · [xp := v(xp)] be the ground atom
obtained by substituting v(xi) for xi in B; then

• either there exists an Aj such that v∗(Aj) /∈ IM , and then v̄(¬Aj) = 1

and v̄(C ′
i) = 1.

• or for any Aj , v
∗(Aj) ∈ IM , and then, for any IH defining a Herbrand

model H of P : v∗(Aj) ∈ IH , and because H is a Herbrand model of P ,
we also have that v∗(A) ∈ IH , hence v∗(A) ∈ IM , and thus v̄(A) = 1 and

v̄(C ′
i) = 1.

Hence, for any valuation v: {x1, . . . , xp} −→ UH , v̄(C ′
i) = 1, and thus ∅ |=

M

Ci. ⊓⊔

Example 5.75 The least Herbrand model of the program P of Example 5.73 is

defined by

IM = {edge(a, b) , edge(b, c) , path(a, b) , path(b, c), path(a, c)} .

Remark 5.76

1. Any set P of program clauses also has a greatest Herbrand model M ′, which

is defined by the whole Herbrand basis BH . See also Exercise 5.28 (2).
2. A set F of universal formulas which are not Horn clauses may have several

minimal incomparable Herbrand models and as a result no least Herbrand model.
For example, let F = {∀x

(

p(x)∨q(x)
)

}, where L = {a, p, q}, a a constant symbol
and p, q unary relational symbols. Then UH = {a}, BH = {p(a) , q(a)}, and

Herbrand’s theorem and consequences 105

F has three Herbrand models, respectively defined by the subsets I1 = {p(a)},
I2 = {q(a)} and I3 = BH ; both models I1 and I2 are minimal (none is included
in the other one) and their intersection is the Herbrand interpretation defined by
IH = ∅, which is not a model of F .

Exercise 5.23 A set of formulas which are not universal may have minimal Herbrand
models. Find the minimal Herbrand models of the set of formulas F of Exercise 5.18.
♦

Exercise 5.24 Find the least Herbrand model of the set of program clauses P =
{∀x∀y

(

¬edge(x, y) ∨ path(x, y)
)

, ∀x∀y
(

¬edge(x, z) ∨ ¬path(z, y) ∨ path(x, y)
)

}. ♦

Exercise 5.25 Find the least Herbrand model of the set of program clauses P =
{i(a) , ∀x

(

i(s(x)) ∨ ¬i(x)
)

}, where L = {a, s, i}, a a constant symbol, s a unary
function symbol and i is a unary relational symbol. ♦

Exercise 5.26 Let P be a set of program clauses; P is a set of formulas, hence (see
Definition 5.53 and Example 5.54) Th(P) = {F / P ⊢ F} is a theory.

Show that {A ∈ BH /A ∈ Th(P)} defines the least Herbrand model of the set of
program clauses P . ♦

Exercise 5.27 Does any set F of Horn clauses have a least Herbrand model? ♦

There is a constructive proof of the existence of the least Herbrand model of a

set of program clauses, which is most useful in logic programming, and which is
given in the following exercise.

Exercise 5.28 Recall that a complete lattice is a lattice where every subset has a least
upper bound and a greatest lower bound. If f is a monotone mapping from a complete
lattice to itself, then we can prove as in Theorem 2.39 that f has a least fixed point
defined by e = inf{x ∈ E / f(x) ≤ x}.

Let P be a set of program clauses. Let P(BH) be the set of subsets of the Herbrand
basis BH . Then P(BH) when equipped with inclusion is a complete lattice. The least
element of P(BH) is ∅, its greatest element is BH , supi Ki = ∪iKi, infi Ki = ∩iKi.

The immediate consequence operator TP :P(BH) −→ P(BH) is defined by: TP (I) =
{A ∈ BH | there exists r = (B1, . . . , Bn =⇒ B) ∈ P, there exists a valuation s:X −→
UH such that, for i = 1, . . . , n , s∗(Bi) = Ai ∈ I , s∗(B) = A}. (s∗(B) = B[x1 :=
s(x1)] · · · [xp := s(xp)] (resp. s∗(Bi) = Bi[x1 := s(x1)] · · · [xp := s(xp)]) denotes the
ground atom obtained by substituting the term s(xk) for xk in B (resp. Bi), for any
variable xk ∈ X.)

In other words, TP (I) is the set of atomic formulas A, such that A1, . . . , An =⇒ A is
a ground instance of a clause r of P and, moreover, A1, . . . , An are in I.

1. Show that TP is monotone.
2. Let I be a Herbrand interpretation; show that I is a model of P if and only if
TP (I) ⊂ I.
3. Show that the least fixpoint of TP is the least Herbrand model of P .
4. Show that TP is continuous (i.e. for any increasing sequence K1 ⊂ K2 ⊂ · · · ⊂
Kn ⊂ · · · of P(BH), supi TP (Ki) = TP (supi Ki)).
5. Show that the least Herbrand model of P is defined by the basis

106 5. Logic

IM = sup({Tn
P (∅) / n ∈ IN}).

6. Show that, for any n ∈ IN, Tn
P (BH) is a Herbrand model of P .

Let K = inf({Tn
P (BH) / n ∈ IN}) .

7. Is K a model of P?
8. Is K a fixpoint of P? What can you say about the greatest fixpoint of P? ♦

