
chapter 3

RECURSION AND INDUCTION

Inductive and recursive definitions are the construction of finite objects from
other finite objects, according to some given rules. Inductive definitions also

provide us with a way of grasping infinite objects defined by recursive definitions:
indeed, since only finite objects can be handled by computer science, such infinite

objects are studied via sequences of finite approximations; usually, the finite
approximations are also defined by an inductive definition.

Inductive proofs enable one to reason about inductively defined objects. Be-
cause computer science makes extensive use of such objects, this chapter is essen-

tial. For instance, recursive definitions constantly occur in data structures and in
the conception of recursive programs (in functional languages such as LISP, but
also in logic programming and PROLOG). The proofs of such recursive programs

are then inductive proofs, as are the proofs of termination of iterative programs
(sometimes called top–down induction).

However, the various induction principles are not stated in detail in textbooks
(to our knowledge); this is why we cannot recommend any handbook for the

present chapter.
In this chapter we review the two basic induction principles on the integers:

the induction principle and the complete induction principle. We introduce the
notion of definition of a set by induction and we show how to prove properties of
sets defined by induction. As a special case, we introduce the concept of ‘set of

terms’ which is a major tool in computer science. Finally, we present the concept
of closure, which is a general way of looking at inductive definitions.

35

36 3. Recursion and induction

3.1 Reasoning by induction in IN

3.1.1 First induction principle

In IN, the first induction principle, also called the mathematical induction prin-

ciple, is a most useful way of reasoning. We will use both terminologies ‘proof
by induction’ and ‘proof by mathematical induction’ for proofs using this first

induction principle.

Theorem 3.1 Let P (n) be a predicate (a property) depending on the integer

n. If both the following conditions hold:

(B) P (0) is true, and
(I) ∀n ∈ IN, the implication

(
P (n) =⇒ P (n+ 1)

)
is true,

then ∀n ∈ IN, P (n) is true.

(B) is called the basis step of the induction and (I) is called the inductive step

(or sometimes ‘going from n to n+1’). Here we give a direct proof of this result,
but it is worth while noting that it can also be justified by using Proposition 3.11

and the inductive definition of IN given in Example 3.9.
Proof. By contradiction. We consider the set

X = {k ∈ IN /P (k) is false}.

If X is non-empty, it has a least element n. By condition (B), n 6= 0. Thus n− 1
is an integer and n− 1 6∈ X, namely, P (n− 1) is true. Using (I), we then obtain:
P (n) is true, which contradicts n ∈ X. Therefore, X is empty, and this proves

the theorem. ⊓⊔

Z
(I) does not assert that P (n + 1) or P (n) hold, but only that if P (n) is
true, then P (n+ 1) must be true. Only after proving (I) and (B) can we

conclude that, for all n ≥ 0, P (n) is true. Usually the basis (B) is easy to prove,
and the difficult part is the inductive step (I). However, one should not forget to
prove the basis (B), otherwise one will obtain false results; for instance, we verify

immediately that ∀n ≥ 0, (n > 10 =⇒ n+ 1 > 10). It is none the less false that
∀n ≥ 0, n > 10. (See also Exercise 3.6.)

Remark 3.2 We can prove a slightly more general form of Theorem 3.1 simi-

larly. Let n0 be an integer greater than or equal to 0, if both following conditions
hold:

(Bn0
) P (n0) is true, and

(In0
) ∀n ≥ n0, the implication

(
P (n) =⇒ P (n+ 1)

)
is true,

then ∀n ≥ n0, P (n) is true.

Reasoning by induction in IN 37

Example 3.3 We wish to compute the sum Sn = 1 + 2 + · · · + n. We note

that 2S1 = 2 = 1 × 2, 2S2 = 2 + 4 = 2 × 3, 2S3 = 2 + 4 + 6 = 3 × 4. We then
conjecture that ∀n > 0, 2Sn = n(n + 1). We prove this by induction. Let P (n)
be the property ‘2Sn = n(n+ 1)’, we verify that

(B) 2S1 = 1× 2,
(I) Let n ≥ 1. We assume P (n). We have

2Sn+1 = 2Sn + 2(n+ 1) = n(n+ 1) + 2(n+ 1) = (n+ 1)(n+ 2),

hence P (n+ 1) is true.

We can then conclude that ∀n ≥ 1, P (n).

Exercise 3.1 Adopting the convention that ∀r ∈ IR, r0 = 1, prove by induction that:

1. ∀r ∈ IR, ∀n ∈ IN, Sn =

n∑

i=0

ri =

{
n+ 1 if r = 1,
rn+1 − 1

r − 1
if r 6= 1.

2. ∀r ∈ IR, ∀n ∈ IN, Tn =

n∑

i=0

iri =

{
n(n+ 1)/2 if r = 1,
nrn+2 − (n+ 1)rn+1 + r

(r − 1)2
if r 6= 1. ♦

Exercise 3.2

1. Show that ∀n ≥ 1, Sn = 13 + 33 + · · ·+ (2n− 1)3 = 2n4 − n2.

2. Compute Tn =

n∑

k=1

1

4k2 − 1
for all n ≥ 1. ♦

Exercise 3.3 We consider the polynomial with real-valued coefficients

P (x) =
1

3
x3 + ax2 + bx.

1. Find a and b such that ∀x ∈ IR, P (x + 1) − P (x) = x2. We assume that this
property holds in the remainder of the exercise.
2. Show that ∀n ∈ IN, P (n) is an integer.

3. ∀n ≥ 0, let Sn =

n∑

k=0

k2. Show that

∀n ≥ 0, Sn = P (n+ 1) =
n(n+ 1)(2n+ 1)

6
. ♦

Notation We will write p | n to denote the fact that p divides n, where p and n
are integers.

Exercise 3.4 Let n ≥ 1 and let A ⊆ {1, 2, . . . , 2n} be such that |A| ≥ n + 1. Show
that there exist two distinct integers a and b in A such that a | b. ♦

Exercise 3.5 Let R be a binary relation on a set E. Let

R0= IdE , Ri+1= R.Ri.

38 3. Recursion and induction

Show that ∀i, j ≥ 0, Ri+j= Ri.Rj . ♦

Exercise 3.6 We consider the properties P (n): ‘9 | 10n − 1’ and Q(n): ‘9 | 10n + 1’.

1. Show that ∀n ∈ IN, P (n) =⇒ P (n+ 1) and Q(n) =⇒ Q(n+ 1).
2. Find the values of n for which P (n) (resp. Q(n)) is true. ♦

Exercise 3.7 Find the error in the following proof by induction. Let P (n) be the
property ‘in any group consisting of n individuals, all the people are of the same age’.

(B) P (1) is clearly true.
(I) Let n be such that P (n) is true. Let G be a group of n+ 1 individuals numbered
from 1 to n + 1. Let G1 (resp. G2) be the group consisting of the n first (resp. last)
individuals in G. Since P (n) is true, all the people of G1 (resp. G2) are of the same age.
Moreover, individual number n is a member of both G1 and G2. Thus all the people of
G are of the same age as individual number n, and this proves P (n+ 1).

We hence deduce that ∀n ≥ 1, P (n). ♦

3.1.2 Second induction principle

In the first induction principle (see Theorem 3.1), the truth of P (n+1) depends

only upon that of P (n), i.e. if proposition P is true at step n it is also true at
step (n+ 1). More complex cases may occur, where in order to establish that P

is true at step (n + 1) we have to explicitly use the fact that P is true at steps
0, 1, . . . , n−1, n. In such a case, it is more convenient to use the second induction

principle, which is stated as follows.

Theorem 3.4 Let P (n) be a property depending on the integer n. If the

following proposition is verified:

(I′) ∀n ∈ IN,
((

∀k < n, P (k)
)

=⇒ P (n)
)
,

then ∀n ∈ IN, P (n) is true.

This second induction principle is a consequence of Theorem 2.31 because the
usual ordering on IN is a well ordering (see Section 2.4).

Remark 3.5

1. The fact that the second induction principle has no basis step may seem

suspicious; in fact, the basis step is ‘hidden’ in (I′). Indeed, verifying (I′) implies
proving that for n = 0

(
∀k < 0, P (k)

)
=⇒ P (0). But

(
∀k < 0, P (k)

)
is true

because there is no negative integer k < 0, hence we must prove that P (0) is true.
Here we see a typical instance of reasoning with the empty set:

(
∀k < 0, P (k)

)

can be rewritten as
(
k < 0 =⇒ P (k)

)
, or, since there is no negative integer

k < 0 in IN,
(
k ∈ ∅ =⇒ P (k)

)
, which is true because k ∈ ∅ is always false; more

generally, any ‘empty’ statement of the form
(
∀x ∈ ∅, P (x)

)
always holds.

Reasoning by induction in IN 39

2. As for the first induction principle, we may start from any integer n0. We

must then check that:

(I′n0
) ∀n ≥ n0,

((
∀k ∈ {n0, . . . , n− 1}, P (k)

)
=⇒ P (n)

)

and deduce ∀n ≥ n0, P (n).

3. On IN, the two induction principles are equivalent (i.e. each can be shown to
be valid from the other), but (see Section 2.4) only the second induction principle

can be generalized to more general ordered sets.

Exercise 3.8 Verify that the two induction principles entail the same properties on
IN, i.e. that, if P (n) is a property depending on the integer n, P verifies (I′) if and only
if P verifies (B) and (I). The two induction principles thus have the same power on IN;
we will say that they are equivalent on IN. ♦

Example 3.6 The second principle is simpler to use when the property of the

elements at step n involves simultaneously the property of the elements at steps
n−1, n−2, . . ., etc. For instance, we can quite easily show that any integer n ≥ 2
can be written as a product of primes. Denote by P (n) the property ‘n can be

written as a product of primes’; it suffices to verify (I′2), see Remark 3.5 (2). Let
n ≥ 2. Assume ∀k ∈ {2, . . . , n− 1}, P (k). Two cases can occur:

• n is a prime. Then n can clearly be written as a product of primes (a single

prime is also considered as a product).

• n is not a prime. Then we can write n = ab, where a and b are two integers
between 2 and n − 1. P (a) and P (b) are true by hypothesis, and so we deduce

that n can also be written as the product of the decompositions of a and b.

Exercise 3.9

1. Show that ∀n ∈ IN, (n+ 1)2 − (n+ 2)2 − (n+ 3)2 + (n+ 4)2 = 4.
2. Deduce that any integer m can be written as sums and differences of squares
12, 22, . . . , n2 for an n, i.e.

∀m ∈ IN, ∃n ∈ IN, ∃ε1, . . . , εn ∈ {−1, 1}, m = ε11
2 + ε22

2 + · · ·+ εnn
2.

(Hint: first show the result for m ∈ {0, 1, 2, 3}.) ♦

Exercise 3.10 Let A∗ be the free monoid on the alphabet A (see Definition 1.15).
Show that ∀u, v ∈ A∗, u · v = v · u ⇐⇒ ∃w ∈ A∗, ∃p, q ∈ IN: u = wp and v = wq. ♦

Exercise 3.11 Let A∗ be the free monoid on the alphabet A (see Definition 1.15 and
Example 2.4). A language is a subset of A∗. If L1 and L2 are two languages of A∗, we
define their concatenation by:

L1 · L2 = {u · v / u ∈ L1 , v ∈ L2} .

40 3. Recursion and induction

Language concatenation is an associative operation with unit {ε}. We can then define
the powers of language L as follows:

L0 = {ε} and ∀n ∈ IN, Ln+1 = Ln · L = L · Ln.

Finally, the star of language L is the submonoid of A∗ generated by L, i.e.

L∗ =
⋃

n∈IN

Ln.

Let L and M be two languages on A∗ such that ε 6∈ L. Show that in P(A∗), the
equation X = L ·X ∪M has as its unique solution the language L∗ ·M . ♦

3.2 Inductive definitions and proofs by
structural induction

In the present section, we introduce inductive definitions of sets and functions
and proofs by induction on inductively defined structures.

3.2.1 Inductively defined sets

Quite often in computer science subsets are inductively (recursively) defined. In
particular, many data structures may be so defined. Intuitively, the inductive def-
inition of a subset X of a set explicitly gives some elements of the set X together

with ways of constructing new elements of X from already known elements. Such
a definition will hence have the following intuitive generic form:

(B) Some elements of the set X are explicitly given (basis of the recursive defi-
nition).

(I) The other elements of the set X are defined in terms of elements already in

the set X (inductive steps of the recursive definition).

Formally, we have the following definition.

Definition 3.7 Let E be a set. An inductive definition of a subset X of E

consists of giving:

• a subset B of E and

• a set K of operations Φ:Ea(Φ) −→ E, where a(Φ) ∈ IN is the arity (or rank)

of Φ.

X is defined as the least set verifying the following assertions (B) and (I):

(B) B ⊆ X.

(I) ∀Φ ∈ K, ∀x1, . . . , xa(Φ) ∈ X, Φ(x1, . . . , xa(Φ)) ∈ X.

Inductive definitions and proofs by structural induction 41

The set thus defined is

X =
⋂

Y ∈F

Y ,

where F = {Y ⊆ E / B ⊆ Y , and Y verifies (I) with X replaced by Y }.

Henceforth, we modify assertions (B) and (I) slightly, and we denote an induc-

tive definition by the form

(B) x ∈ X (∀x ∈ B),

(I) x1, . . . , xa(Φ) ∈ X =⇒ Φ(x1, . . . , xa(Φ)) ∈ X (∀Φ ∈ K).

Remark 3.8 The set F is non-empty because it contains E; indeed, E clearly
verifies (B) (B ⊆ E) and (I). Moreover, if subsets of a set verify a condition then
their intersection also verifies that condition. Indeed, let Y be a set of subsets Y of

E verifying (B) and (I), and let Z =
⋂

Y ∈Y Y . Since B is included in any set Y of
Y, B is also included in Z =

⋂
Y ∈Y Y and hence Z verifies (B); if x1, . . . , xa(Φ) ∈

Z, then for any Y ∈ Y, x1, . . . , xa(Φ) ∈ Y , whence Φ(x1, . . . , xa(Φ)) ∈ Y , and
hence Φ(x1, . . . , xa(Φ)) ∈ Z and Z verifies (I). Thus

⋂
Y ∈F Y , where F is the

above-defined set of subsets of E, is indeed the least subset of E verifying the
conditions (B) and (I).

Note that, in general, many sets verify these conditions. Consider, for instance,

the conditions:

(B) 0 ∈ P ,

(I) n ∈ P =⇒ n+ 2 ∈ P .

There are infinitely many subsets of IN verifying these properties : IN, IN \ {1},
IN \ {1, 3}, IN \ {1, 3, 5}, etc., are such subsets. The subset P defined by (B) and
(I) is not among them because it consists of the set of even integers.

We consider now examples of inductive definitions.

Example 3.9

1. The subset X of IN inductively defined by

(B) 0 ∈ X,

(I) n ∈ X =⇒ n+ 1 ∈ X,

is identical to IN. (B) and (I) thus constitute an inductive definition of IN.

2. The subset X of the free monoid A∗ (see Definition 1.15) inductively defined

by

(B) ε ∈ X,

(I) u ∈ X =⇒ ∀a ∈ A, u · a ∈ X,

is identical to A∗. (B) and (I) thus constitute an inductive definition of A∗.

42 3. Recursion and induction

3. Let A = {(,)} be the alphabet consisting of two parentheses (left and right).

The set D ⊆ A∗ of strings of balanced parentheses, the so-called Dyck language,
is defined by

(B) ε ∈ D,

(I) if x and y belong to D, then (x) and xy also belong to D.

4. Let E be the set of expressions all of whose subexpressions are included in

parentheses and which are formed from identifiers in a set A and the two operators

+ and ×. E is the subset of
(
A ∪ {+,×, (,) }

)∗

inductively defined by

(B) A ⊆ E,

(I) if e and f are in E then (e+ f) and (e× f) are also in E.

We note that in computer science syntactic definitions are almost always induc-
tive. We often use the BNF (Backus–Naur Form) notation for describing them.

For instance, the set E is defined by

E :: = A | (E + E) | (E × E) ,

where the symbol ‘|’ is read ‘or’.

5. The set BT of labelled binary trees on the alphabet A is the subset of(
A ∪ {∅ , (,) , , }

)∗

inductively defined by

(B) ∅ ∈ BT (the empty tree),

(I) l, r ∈ BT =⇒ ∀a ∈ A, (a, l, r) ∈ BT (the tree with root a, left child l

and right child r).

The set BT thus defined is a language on the alphabet A∪ {∅} ∪ {(} ∪ {)} ∪ {, }.
In general, we use a very intuitive graphical representation of trees. To simplify,

tree (a, ∅, ∅) will simply be denoted by a. For instance, the trees a, (a, a, b) ,(
a, ∅, (b, c, ∅)

)
and

(
a, (a, b, c), d

)
can be drawn as in Figure 3.1

a , ,

a

a d

b c

a

a b

a

b

c

,

Figure 3.1

Binary trees are extensively used in algorithmics.

Exercise 3.12 Let A be an alphabet. We recursively define the sets (BTn)n∈IN by

• BT0 = {∅},
• BTn+1 = BTn ∪ {(a, l, r) / a ∈ A, l, r ∈ BTn}.

Show that X =
⋃

n∈IN
BTn is the set BT of binary trees on alphabet A. ♦

Inductive definitions and proofs by structural induction 43

The preceding exercise illustrates a more general phenomenon. Indeed, in most

cases, the elements of an inductively defined set can be obtained from the basis
by applying finitely many inductive steps. We have the following theorem.

Theorem 3.10 If X is defined by the conditions (B) and (I), any element of
X can be obtained from the basis by applying finitely many inductive steps.

Proof. We define the sets

• X0 = B,

• Xn+1 = Xn ∪ {Φ(x1, . . . , xa(Φ)) / x1, . . . , xa(Φ) ∈ Xn and Φ ∈ K}.

As in Exercise 3.12, we show by induction that ∀n ∈ IN, Xn ⊆ X, and we
deduce that Xω =

⋃
n∈INXn ⊆ X. The set of elements obtainable from the

basis by applying finitely many inductive steps is exactly Xω. We must now
show that Xω verifies (B) and (I). As B = X0 ⊆ Xω, Xω verifies (B). Let

Φ ∈ K and let x1, . . . , xa(Φ) ∈ Xω. Each xi belongs to a set Xni
⊆ Xω. Let

n = sup{n1, . . . , na(Φ)}. Then xi ∈ Xn, thus Φ(x1, . . . , xa(Φ)) ∈ Xn+1 ⊆ Xω, and
Xω verifies (I). ⊓⊔

3.2.2 Inductive prooofs

The induction principle is a generalization of the induction principle on the in-

tegers and is designed to prove the properties of inductively defined sets. The
proof by induction exactly follows the inductive definition of the set; this is why
it is also called proof by structural induction.

Proposition 3.11 Let X be an inductively defined set (see Definition 3.7),

and let P (x) be a predicate expressing a property of the elements x of X. If the
following conditions hold:

(B′′) P (x) is true for each x ∈ B, and

(I′′)
(
P (x1), . . . , P (xa(Φ))

)
=⇒ P

(
Φ(x1, . . . , xa(Φ))

)
for each Φ ∈ K,

then P (x) is true for any x in X.

Verifying (B′′) and (I′′) constitutes a proof by induction of property P on X.

Proof. Let Y be the set of xs such that P (x) is true. We have that B ⊆ Y
(
by

(B′′)
)
, and that Y verifies the inductive clauses (I) of the definition of X

(
by

(I′′)
)
; hence Y ⊇ X (see Definition 3.7). ⊓⊔

Remark 3.12 If we consider that the non-negative integers are defined as in

Example 3.9, the first induction principle on the integers corresponds to the above
definition. All the proofs by mathematical induction seen in Section 3.1 are hence

examples of proofs by induction according to the present definition.

44 3. Recursion and induction

Example 3.13 We show by induction that any string of the Dyck language

has as many left parentheses as right parentheses (see Example 3.9). For x in
D, we denote by l(x) (resp. r(x)) the number of left (resp. right) parentheses in
x. (The inductive definition of these functions is left to the reader.) Finally, let

P (x) be the property ‘r(x) = l(x)’. We prove by induction that P (x) holds for
any x in D.

(B) The only element of the basis is ε, and it satisfies P because

r(ε) = l(ε) = 0.

(I) Let x, y ∈ D be such that r(x) = l(x) and r(y) = l(y) and let z = xy. We
have that r(z) = r(x)+r(y) = l(x)+l(y) = l(z), and so P (z) is thus verified. The

case where z = (x) can be verified in the same way: r(z) = r(x) + 1 = l(x) + 1 =
l(z).

We deduce that ∀x ∈ D, l(x) = r(x).

Exercise 3.13 Characterization of the Dyck language. We use the notations of Ex-
amples 3.9 and 3.13. Show that D = L, where

L = {x ∈ A∗ / l(x) = r(x) and l(y) ≥ r(y) for any prefix y of x}. ♦

Exercise 3.14 Let BT be the set of binary trees and let h, n, f be the functions that
give the height (see Example 3.24), the number of nodes (nodes are also called vertices)
and the number of leaves of a tree respectively. Show that

1. ∀x ∈ BT , n(x) ≤ 2h(x) − 1,

2. ∀x ∈ BT , f(x) ≤ 2h(x)−1. ♦

Exercise 3.15 A binary tree is strict if it is non-empty and if it has no node with a
single non-empty child. For instance, the trees of the Figure 3.5 (page 51) are strict,
while the tree of the Figure 3.2 is non-strict.

a

b

d

c

Figure 3.2

1. Give a definition of the set SBT of strict trees.
2. Show that ∀x ∈ SBT , n(x) = 2f(x)− 1. ♦

Exercise 3.16 A binary tree is said to be balanced if for each node in the tree, the
difference between the heights of its left and right subtrees is at most 1. For instance,
Figure 3.3 represents balanced trees of height 3, 4, and 5. (The labels of nodes are not
represented.)

Terms 45

Figure 3.3

1. Give a definition of the set BBT of balanced binary trees.
2. We define (un)n∈IN by: u0 = 0, u1 = 1 and

∀n ≥ 0, un+2 = un+1 + un + 1.

Show that ∀x ∈ BBT , n(x) ≥ uh(x), where h and n are the functions that give the
height and the number of nodes of a tree respectively. ♦

Exercise 3.17 Let A∗ be the free monoid on alphabet A (see Definition 1.15, Example
2.4 and Exercise 3.11). The set Rat of rational languages is defined inductively by:
(B) ∅ ∈ Rat and ∀a ∈ A, {a} ∈ Rat,
(I1) L,M ∈ Rat =⇒ L ∪M ∈ Rat,
(I2) L,M ∈ Rat =⇒ L ·M ∈ Rat,
(I3) L ∈ Rat =⇒ L∗ ∈ Rat.

1. The mirror image (or reverse) of language L is the set L̃ = {ũ / u ∈ L}, where, if
u is the string u = a1a2 · · · an, then ũ is the string ũ = an · · · a2a1, see Exercise 3.18.
Show that L ∈ Rat =⇒ L̃ ∈ Rat.
2. We denote by LF (L) the set of prefixes (left factors) of strings in the language L,
i.e. LF (L) = {v ∈ A∗ / ∃u ∈ L such that v is a prefix of u}. Show that L ∈ Rat =⇒
LF (L) ∈ Rat. ♦

3.3 Terms

In the present section we study a particular instance of definition by structural

induction that is quite useful in computer science: the definition of terms. Many
structures use terms in their representation.

3.3.1 Definition

Let F = {f0, . . . , fn, . . .} be a set of operation symbols. With each symbol f is
associated a finite arity (or rank) a(f) ∈ IN representing the number of arguments
of f . Fn denotes the set of arity n operation symbols.

Let U be the set of all strings of symbols in F ∪ {‘
(
’, ‘
)
’, ‘, ’}. Let Fi be the set

of symbols of arity i.

46 3. Recursion and induction

Definition 3.14 The set T of terms built on F is inductively defined by:

(B) B = F0 ⊆ T ,

(I) ∀f ∈ Fn, Φf (t1, . . . , tn) = f
(
t1, . . . , tn

)
for t1, . . . , tn in T .

Z
Φf (t1, . . . , tn) represents the result of operation Φ applied to the n-tuple of

terms (t1, . . . , tn), i.e. a semantic object, whilst f
(
t1, . . . , tn

)
represents a

string of formal symbols constituting a term, i.e. a syntactic object.

A term may be represented as a tree; for instance, f
(
t1, . . . , tn

)
may be pictured

as in Figure 3.4.

f

t t n1
......

Figure 3.4

3.3.2 Interpretations of terms

Let V be an arbitrary set. With each element f of F0 we associate an element h(f)

of V . With each element f of Fi with i > 0 we associate a mapping hf :V
i −→ V .

Proposition 3.15 There exists a unique function h∗ from T to V such that:

(B′) If t ∈ F0, h
∗(t) = h(t).

(I′) If t = f
(
t1, . . . , tn

)
, h∗(t) = hf (h

∗(t1), . . . , h
∗(tn)).

If t is a term, the element h∗(t) of V will be called the interpretation of t by
h∗.

Proof. By structural induction (or induction on the construction of terms). Let
P (t) be the property: ‘there exists a unique y = h∗(t) verifying (B′) and (I′)’.

(B) P (t) is true if t = f ∈ F0 because y = h(t) by (B′).

(I) If P (t1), . . . , P (tn) are true, and if t = f(t1, . . . , tn), then P (t) is true because

• on the one hand, there is a unique way of decomposing t in the form
f
(
t1, . . . , tn

)
: if f

(
t1, . . . , tn

)
= g

(
t′1, . . . , t

′
p

)
then f = g, n = p, and ti = t′i ,

∀i = 1, . . . , n,

• on the other hand, by (I′) if P (t1), . . . , P (tn) are true then P (t) must

be true because h∗(t) is entirely defined by

h∗(t) = hf (h
∗(t1), . . . , h

∗(tn)).

Another proof will be given in Section 3.4. ⊓⊔

Terms 47

Example 3.16 Let F0 = {a}, F1 = {s}, F = F0

⋃
F1. We have

T = {a, s
(
a
)
, s
(
s
(
a
))
, . . .}.

Let V = IN.
1. If h1(a) = 0 and h1s(n) = n+ 1, then

h1
∗(sn

(
a
)
) = h1

∗(s
(
s . . .

(
s
(
a
))
. . .

)
︸ ︷︷ ︸

n times

) = n .

2. If h2(a) = 1 and h2s(n) = 2n, then

h2
∗(sn

(
a
)
) = h2

∗(s
(
s . . .

(
s
(
a
))
. . .

)
︸ ︷︷ ︸

n times

) = 2n .

3. If h3(a) = 1 and h3s(n) = n+ 2, then

h3
∗(sn

(
a
)
) = h3

∗(s
(
s . . .

(
s
(
a
))
. . .

)
︸ ︷︷ ︸

n times

) = 2n+ 1 .

Indeed, we verify by induction that:

1. h1(a) = 0 and
h1

∗(sn+1
(
a
)
) = h1

∗(s
(
sn

(
a
))
) = h1s(h1

∗
(
sn

(
a
))
) = h1s(n) = n+ 1,

2. h2(a) = 1 and

h2
∗(sn+1

(
a
)
) = h2

∗(s
(
sn

(
a
))
) = 2× h2

∗(sn
(
a
)
) = 2× 2 = 2n+1,

3. h3(a) = 1 and

h3
∗(sn+1

(
a
)
) = h3

∗(s
(
sn

(
a
))
) = h3

∗(sn
(
a
)
)+2 = 2n+1+2 = 2(n+1)+1.

Let E be an arbitrary set, and let X be the subset of E inductively defined

by the conditions (B) and (I). Theorem 3.10 asserts that each element of X is
obtained from the basis by applying a finite number of inductive steps. We refine
this result by describing by a term how the element x is obtained.

With each element b of the basis B, we associate a nullary symbol denoted by
b. With each function Φ of K, we associate the arity a(Φ) symbol Φ. Let T be

the set of all terms constructed with these symbols.
We consider the interpretation h∗ : T → E defined by

• h(b) = b,
• hΦ(x1, . . . , xa(Φ)) = Φ(x1, . . . , xa(Φ)).

Proposition 3.17 X = {h∗(t) / t ∈ T}.

Proof. For an element x of E, let P (x) be the property: ‘there exists a term t
such that x = h∗(t)’. It is easy to see that P has properties (B′′) and (I′′) of
Proposition 3.11, and thus X ⊆ h∗(T).

For a term t of T , let Q(t) be the property: ‘h∗(t) ∈ X’. Here also Proposition
3.11 enables us to conclude that h∗(T) ⊆ X. ⊓⊔

48 3. Recursion and induction

3.3.3 Unambiguous definitions

Definition 3.18 An inductive definition of a set X is said to be unambiguous

if the mapping h∗ of Proposition 3.17 is injective, i.e. for any x ∈ X there exists
a unique term t such that x = h∗(t).

More intuitively, this means that there is a unique way of building up an element

x of X.

Example 3.19 The following definition of IN2 is ambiguous:

(B) (0, 0) ∈ IN2,
(I1) (n,m) ∈ IN2 =⇒ (n+ 1,m) ∈ IN2,
(I2) (n,m) ∈ IN2 =⇒ (n,m+ 1) ∈ IN2.

Indeed, the pair (1, 1) can be obtained from (0, 0) by using the rule (I1) first then
the rule (I2), or by using the rule (I2) first then the rule (I1).
More formally, we consider the terms built up from

• the arity 0 symbol b whose interpretation h(b) is (0, 0),

• the unary symbols f and g whose interpretations are defined by
(i) h

f
(n,m) = (n+ 1,m),

(ii) hg(n,m) = (n,m+ 1).

Then (1, 1) = h∗(f
(
g
(
b
))
) = h∗(g

(
f
(
b
))
).

3.3.4 Inductively defined functions

In order to define a function on an inductively defined set unambiguously, it
is convenient to use an inductive definition. Intuitively, we define the function

on the elements of the basis directly, and then define new elements inductively,
building them up from elements already defined.

Definition 3.20 Let X ⊆ E be an unambiguous inductively defined set (see

Definitions 3.7 and 3.18), and let F be any set. The inductive definition of
mapping ψ from X to F consists of

(B) specifying ψ(x) ∈ F for each element x ∈ B,

(I) specifying the expression of ψ
(
Φ(x1, . . . , xa(Φ))

)
in terms of x1, . . . , xa(Φ) and

of ψ(x1), . . . , ψ(xa(Φ)) for each Φ ∈ K. We will write

ψ
(
Φ(x1, . . . , xa(Φ))

)
= ψΦ

(
x1, . . . , xa(Φ), ψ(x1), . . . , ψ(xa(Φ))

)
,

where ψΦ is a mapping from Ea(Φ) × F a(Φ) to F .

The definition is illustrated by the following examples.

Terms 49

Example 3.21 The factorial function from IN to IN is defined inductively by

(B) Fact(0) = 1,

(I) Fact(n+ 1) = (n+ 1)× Fact(n).

Here we use the inductive definition of IN given in Example 3.9. First, the factorial
function for the unique element of the basis (0) is defined directly, and then the

factorial applied to the new element n+1 is expressed in terms of n and Fact(n).
Henceforth, we will also write inductive definitions of functions as follows:

Fact(n) =

{
1 if n = 0,
n× Fact(n− 1) otherwise.

Exercise 3.18 Let A∗ be the free monoid on the alphabet A (see Definition 1.15).
The mirror image (or reverse) of a string u = a1a2 · · · an is the string ũ = an · · · a2a1.
Give an inductive definition of the mirror image. ♦

Exercise 3.19 Let the lists L of letters from the alphabet A be defined inductively
by:

(B) ε ∈ L,
(I) ∀l ∈ L, ∀a ∈ A, (al) ∈ L.

We define g(x, y) on L× L by, ∀a ∈ A, ∀l ∈ L, ∀y ∈ L,

g(ε, y) = y ,

g((al), y) = g(l, (ay)) .

1. Let Q(x) be the predicate ‘∀y, g(x, y) is defined’. Prove by induction on x that
Q(x) holds on L.
2. Compute g((a1), y), for a1 ∈ A, y ∈ L.

3. Prove by induction on n (for n ≥ 1) that g
(
(an(an−1(. . . (a1) . . .))), y

)
= g

(
ε,

(a1(. . . (an−1(any)) . . .))
)
.

4. Let rev(x) = g(x, ε). Deduce from 3 that, for a1, . . . , an ∈ A,

rev
(
(an(an−1(. . . (a1) . . .)))

)
= (a1(. . . (an−1(an)) . . .)). ♦

We now justify Definition 3.20 and explain why we have assumed the definition

of the set X to be unambiguous.
Instead of defining a function ψ from X to F , we will define a function ψ′

from T to F , where T is the set of terms whose interpretation is in X (see
Proposition 3.17). ψ′ is defined as follows:

• ψ′(b) = ψ(b),

• ψ′(Φ(t1, . . . , ta(Φ))) = ψΦ

(
h∗(t1), . . . , h

∗(ta(Φ)), ψ
′(t1), . . . , ψ

′(ta(Φ))
)
.

As in the proof of Proposition 3.15 we show that such a function exists and is
unique.

50 3. Recursion and induction

If the inductive definition of X is unambiguous, then for each element x of X

there exists a unique term t such that h∗(t) = x. Then let ψ(x) = ψ′(t). ψ is
thus indeed a mapping from X to F and it is easy to prove that ψ verifies the
conditions (B) and (I) of Definition 3.20.

If the definition of X is ambiguous, then there exist several terms t1, . . . , tn
whose interpretation is the same element x of X and, according to the chosen

term, Definition 3.20 will give different values ψ(t1), . . . , ψ(tn) to ψ(x). This is
illustrated by the following example.

Example 3.22 Let us consider the following inductive definition of ψ from IN2

to IN, where the inductive definition of IN2 is given in Example 3.19:

(B) ψ(0, 0) = 1,

(I′1) ψ(n+ 1,m) = ψ(n,m)2,
(I′2) ψ(n,m+ 1) = 3× ψ(n,m).

The thus defined ψ is not a mapping because by using the rule (I ′1) first and then
the rule (I ′2), we obtain ψ(1, 1) = ψ(0, 1)2 = (3 × ψ(0, 0))2 = 32 = 9, whilst by

using the rule (I ′2) first and then the rule (I ′1), we obtain

ψ(1, 1) = 3× ψ(1, 0) = 3× ψ(0, 0)2 = 3.

More generally, we can consider that Definition 3.20 in fact defines a relation R
from X to F by: xRy if and only if there exists a term t such that x = h∗(t) and

y = ψ′(t). If h∗ is injective then this relation is functional, as we just saw. We
should, however, note that this is not the only case when R is functional. In fact

R is functional if and only if

∀t, t′ ∈ T, h∗(t) = h∗(t′) =⇒ ψ′(t) = ψ′(t′).

Example 3.23 We consider again the ambiguous definition of IN2 given in
Example 3.19 and we consider the inductive definition

(B) g(0, 0) = 1,
(I1) g(n+ 1,m) = 2× g(n,m),

(I2) g(n,m+ 1) = 3× g(n,m).

Using Proposition 3.11, we easily show by induction that there exists a unique
mapping g verifying these conditions and that this unique mapping is defined by
∀(n,m) ∈ IN2, g(n,m) = 2n3m.

Exercise 3.20 Let IN∗ = IN \ {0}. We give an inductive definition of the function
‘modulo’ defined on IN× IN∗, that, when applied to the pair (n,m), gives the remainder
of the Euclidean division of n by m

n mod m =
{
n if n < m,
(n−m) mod m otherwise.

Terms 51

Give the corresponding unambiguous inductive definition of IN× IN∗. ♦

Exercise 3.21 Inductively define the gcd function on X = IN× IN \ {(0, 0)} (i.e. the
greatest common divisor). What is the corresponding unambiguous inductive definition
of X? ♦

We now show some examples of inductively defined functions on sets other
than IN.

Example 3.24

1. The expressions of the set E (see Example 3.9) use an infix notation (in which
the operator is placed between its arguments). We can also use a postfix notation

without parentheses (in which the operator is placed after both its arguments).
For instance, the postfix notation of expression

((
a× (b+ c)

)
+ d

)

is abc+×d+. The transformation from the infix notation to the postfix notation

is inductively defined by

(B) ∀a ∈ A, Post(a) = a,

(I) ∀e, f ∈ E, Post
(
(e + f)

)
= Post(e) Post(f)+ and Post

(
(e × f)

)
=

Post(e) Post(f)×.

2. The height of a binary tree is inductively defined by

(B) h(∅) = 0,
(I) ∀l, r ∈ BT, ∀a ∈ A, h

(
(a, l, r)

)
= 1 +max

(
h(l), h(r)

)
.

A more elegant definition of this function is

h(x) =

{
0 if x = ∅,
1 + max

(
h(l), h(r)

)
if x = (a, l, r).

3. The inorder traversal of a tree is the list of the labels of its nodes from left to
right. We can notice that several trees may have the same inorder traversal. For

instance, the two trees of Figure 3.5 have the same inorder traversal bacad. The
inductive definition of the inorder traversal is

Inf(x) =

{
ε if x = ∅,
Inf(l) · a · Inf(r) if x = (a, l, r).

a

a d

b c

a

b a

dc

,

Figure 3.5

52 3. Recursion and induction

Exercise 3.22 Give inductive definitions of the functions n and l from BT to IN,
defining respectively, the number of nodes and the number of leaves of a binary tree.
For instance, if x is either tree in Figure 3.5, we have n(x) = 5 and l(x) = 3. ♦

Exercise 3.23 Define the preorder traversal of a binary tree. The preorder traversals
of the trees of Figure 3.5 are aabcd and abacd. ♦

Note that inductive definitions are appropriate as definitions of certain algo-
rithms: sorting algorithms, algorithms on trees such as binary search, insertion,

traversal, etc.

3.4 Closure operations

In the proof of Theorem 3.10, we showed that the set X inductively defined by

(B) B ⊆ X, and

(I) ∀Φ ∈ K, ∀x1, . . . , xa(Φ) ∈ X, Φ(x1, . . . , xa(Φ)) ∈ X,

is the union of the sets Xn with X0 = B and Xn+1 = Xn ∪ {Φ(x1, . . . , xa(Φ)) /
x1, . . . , xa(Φ) ∈ Xn and Φ ∈ K}. We see that the subset (I) of the inductive

definition of X is used in order to build a new set Xn+1 from an already known
set Xn. Indeed, it suffices to define Xn+1 (or even Xn+1 − Xn) from Xn and,

when no new element can be added, the inductive definition is completed.

More generally, we will assume that from any given set E we can build a new
set C(E). We will study the properties that C should have in order to give an

inductive definition which will be completed whenever C can add no new element
to E. With this standpoint we will generalize the results of Section 3.2.

Let U be any set and let C : P(U) −→ P(U) be a monotone mapping, i.e. a
mapping verifying ∀E,E′ ⊆ U , E ⊆ E′ =⇒ C(E) ⊆ C(E′).

A subset E of U is said to be C-closed if C(E) ⊆ E.

Proposition 3.25 Let I be any set of indices. Let Ei be a C-closed set, for

any i ∈ I. Then
⋂

i∈I Ei is C-closed.

Proof. Let E =
⋂

i∈I Ei. Since E ⊆ Ei and Ei is C-closed, C(E) ⊆ C(Ei)⊆ Ei

hence C(E) ⊆
⋂

i∈I Ei = E. ⊓⊔

If E is any subset of U , the intersection of all the C-closed subsets of U con-

taining E is a C-closed subset of U containing E, denoted by Ĉ(E).

Closure operations 53

Proposition 3.26

• If E′ is a C-closed subset containing E, then Ĉ(E) ⊆ E′,

• E ⊆ Ĉ(E),

• Ĉ(Ĉ(E)) = Ĉ(E),

• E ⊆ E′ =⇒ Ĉ(E) ⊆ Ĉ(E′).

Proof. The first two points are clear by the definition of Ĉ(E).

• On the one hand, we have that E ⊆ Ĉ(E) ⊆ Ĉ(Ĉ(E)). And, on the other

hand, since Ĉ(E) is a C-closed subset containing Ĉ(E), then Ĉ(Ĉ(E)) ⊆ Ĉ(E).

• If E ⊆ E′, then E ⊆ Ĉ(E′) which is a C-closed subset containing E. We

thus have that Ĉ(E) ⊆ Ĉ(E′). ⊓⊔

The next proposition is a generalization of the induction principles and may
be called the universal induction principle.

Proposition 3.27 Let P ⊆ U be such that C(P) ⊆ P . Then

∀E , E ⊆ P =⇒ Ĉ(E) ⊆ P.

Proof. If C(P) ⊆ P , then P is C-closed. So if E ⊆ P , then Ĉ(E) ⊆ P . ⊓⊔

Example 3.28 Let X be a subset of a set U ; assume that X is inductively
defined by (B) and (I) (see Definition 3.7). Define C:P(U) −→ P(U) by

C(Y) = {Φ(y1, . . . , ya(Φ)) /Φ ∈ K, y1, . . . , ya(Φ) ∈ Y }.

Then X = Ĉ(B).

Example 3.29 Let U = IN, C(E) = {n+ 1 / n ∈ E}. Then

E′ = Ĉ(E) = {n+m/n ∈ E,m ∈ IN}.

Indeed, C(E′) = {n+m+ 1 / n ∈ E′,m ∈ IN} ⊆ E′. Assume there is a C-closed
subset E′′ containing E and strictly included in E′. Let k be the least integer of

E′ that is not in E′′, i.e. k ∈ E′, k /∈ E′′ and (k = 0 or k − 1 ∈ E′′).

• If k = 0 then, since k = n + m with n ∈ E, 0 ∈ E, and hence 0 ∈ E′′, a
contradiction.

• Otherwise, k − 1 ∈ E′′ =⇒ k = (k − 1) + 1 ∈ C(E′′) ⊆ E′′, a contradiction.

We deduce: Ĉ(E) = {m/m ≥ inf(E)} = Ĉ({inf(E)}). Let P be such that
n ∈ P =⇒ n+ 1 ∈ P . Then C(P) ⊆ P , and hence inf(E) ∈ P =⇒ Ĉ(E) ⊆ P .

54 3. Recursion and induction

If inf(E) = 0 then Ĉ(E) = IN, and we again find the induction principle on the

integers.

Exercise 3.24 Let U = IN and C(E) = {n+m/n ∈ E,m ∈ E}. Let kIN = {kn /n ∈

IN}. Show that if E ⊆ kIN then Ĉ(E) ⊆ kIN. ♦

Let C:P(U) −→ P(U) be such that E ⊆ E′ =⇒ C(E) ⊆ C(E′). C is finitary

if it also verifies: ∀E, ∀e ∈ C(E), there exists a finite subset F of E such that
e ∈ C(F).
Let E ⊆ U . Consider the monotone increasing (for inclusion) sequence

E0 = E

E1 = E0 ∪ C(E0)

...

Ei+1 = Ei ∪ C(Ei)

...

and Ê =
⋃

i≤0

Ei .

Proposition 3.30 Ê ⊆ Ĉ(E). If C is finitary, Ê = Ĉ(E).

Proof. Let E′ = Ĉ(E). We show by induction on the integers that ∀i ≥ 0,

Ei ⊆ E′.

• E0 = E ⊆ E′.

• We assume Ei ⊆ E′. Then C(Ei) ⊆ C(E′) ⊆ E′ and Ei+1 = Ei ∪ C(Ei)
⊆ E′. Since ∀i ≥ 0, Ei ⊆ E′, we have Ê =

⋃
i≥0Ei ⊆ E′.

We show that if C is finitary then Ê is C-closed, and we will therefore deduce
that E′ ⊆ Ê. Let e ∈ C(Ê). Because C is finitary, there exists a finite subset

F = {x1, . . . , xp} of Ê such that e ∈ C(F). Since xj ∈
⋃

i≥0Ei, there exists ij
such that xj ∈ Eij ; let k = max{ij / j = 1, . . . , p}. We thus have that F ⊆ Ek

and e ∈ C(F) ⊆ C(Ek) ⊆ Ek+1 ⊆ Ê. Hence C(Ê) ⊆ Ê. ⊓⊔

Example 3.31 The mapping C that inductively defines a set X (see Example

3.28) is finitary, whence Theorem 3.10.

Closure operations 55

Example 3.32 The mapping C from P(IR) to itself, which is defined by y ∈
C(X) if and only if there exists Y ⊆ X such that y = inf Y , is not finitary.
Indeed, let X = {1/n /n ∈ IN, n > 0}. We thus have 0 ∈ C(X). But for all finite
subsets F of X, 0 6∈ C(F) because the greatest lower bound of any finite subset

of X is of the form 1/n for some n > 0.

Exercise 3.25 Let E be a vector space on IR. For a, b ∈ E, let

[a, b] = {λa+ µb / λ ≥ 0, µ ≥ 0, and λ+ µ = 1}

be the closed segment subtended by a and b. Let C : P(E) → P(E) be defined by

C(X) =
⋃

a,b∈X

[a, b].

What usual name is given to C(X)?
1. Is C monotone increasing and finitary?
2. Given a ∈ Ĉ(A) and b ∈ Ĉ(B), show that [a, b] ⊆ Ĉ(A ∪B).

3. Deduce that
⋃

F∈fin(X)
Ĉ(F) is C-closed, where fin(X) is the set of finite subsets

of X.
4. Is Ĉ monotone increasing and finitary?
5. Can you generalize (4) to any set transformation which is monotone increasing and
finitary? ♦

We can apply the closure operations in order to define the terms. Let U , F
and Fi be as in Section 3.3. Let C:P(U) −→ P(U) be defined by

C(E) =
⋃

i>0

{f(σ1, . . . , σi) / σj ∈ E, f ∈ Fi}.

Then C is finitary and the set T of terms built on F is identical to Ĉ(F0).

Exercise 3.26 Let C′ = C(E) ∪ F0. Show that Ĉ(F0) = Ĉ′(∅). ♦

Exercise 3.27 Let Ê = Ĉ(F0). Show that T = Ê. ♦

Exercise 3.28 Show that there exists a unique function h∗ verifying conditions (B′)
and (I′) of Proposition 3.15. ♦

Exercise 3.29 Let U = IN and let C:P(IN) −→ P(IN) be defined by

C(X) =

{
{x+ 1 / x ∈ X} if X is finite,
{x+ 1 / x ∈ X} ∪ {0} if X is infinite.

1. Show that the limit of the sequence

E0 = {1}

E1 = E0 ∪ C(E0)

...

Ei+1 = Ei ∪ C(Ei)

...

56 3. Recursion and induction

is equal to IN \ {0}.

2. Show that Ĉ({1}) = IN.
3. Explain this result. ♦

