
chapter 8

GENERATING SERIES

The basic idea for which generating series were introduced is to represent a se-
quence of numbers by a function, which on the one hand will be easier to manip-

ulate and on the other hand will allow us to treat the sequence in its entirety. For
example, if a sequence of costs is defined by a recurrence equation, the recurrence

equation will correspond to a functional equation on the generating series: the
latter equation may be solved by algebraic or analytic techniques.

Similarly, generating series will allow us to represent a discrete probability law
globally and to handle it more easily: indeed, assuming that pn is the probabil-

ity that event n occurs, a single generating function g will represent the whole
sequence pn; moreover, the values of pn can be recovered from the generating
series g, and techniques for studying the generating series will give properties of

the probability distribution (average values, means, etc.).
Generating series were introduced at the end of the eighteenth century in order

to study probabilities by the French mathematicians Laplace and de Moivre (the
latter took British nationality after the édit de Nantes was revoked).

We especially recommend the following handbooks, where many examples of
computations on series and applications can be found:

Ronald Graham, Donald Knuth, Oren Patashnik, Concrete Mathematics, Addi-
son-Wesley, London (1989).
William Feller, Probability Theory, Vol. 1, John Wiley, New York (1968).

Donald Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,
London (1973).
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8.1 Generalities

8.1.1 Intuitions

Let u = (u0, u1, u2, . . . , up) be a sequence of p+ 1 numbers; they can be globally
represented as a vector, or canonically associated with an element of a fixed vector

space; we choose the second option and take the set of polynomials in the variable
X as vector space; the sequence u = (u0, u1, u2, . . . , up) is then represented by
the polynomial

P (X) = u0 + u1X + u2X
2 + · · ·+ upX

p.

If up 6= 0, p is said to be the degree of the polynomial P (X). The advantage
of this second approach is the ability to represent polynomials of an arbitrary

degree n ∈ IN: a polynomial is simply represented by a sequence (un)n∈IN such
that all but a finite number of the uns are equal to zero. A polynomial P (X) =

u0 + u1X + u2X
2 + · · ·+ upX

p, of degree p is then represented by the sequence
u = (u0, u1, u2, . . . , up, 0, 0, . . .), where un = 0 for all n > p. The + and ×
operations on sequences correspond to operations on the polynomials.

• The sum u + v corresponds to the addition of polynomials. The unit for +
is the sequence (0, 0, 0, . . .), corresponding to the polynomial function Z(x) = 0

for all x. In fact, if

P (X) = u0 + u1X + u2X
2 + · · ·+ upX

p

and

Q(X) = v0 + v1X + v2X
2 + · · ·+ vqX

q,

the polynomial P (X) +Q(X) is given by

P (X) +Q(X) = (u0 + v0) + (u1 + v1)X + (u2 + v2)X
2 + · · ·+ wnX

n,

where

wnX
n =







upX
p if p > q,

(up + vp)X
p if p = q,

vqX
q if p < q.

• Multiplication is more complex: various problems arise with the definition
(uv)n = unvn. Firstly, the sequence ∀n, un = 1 would be a good candidate for

a unit, except for the fact that it counts an infinity of non-zero uns; secondly, as
soon as a sequence has a term un = 0, it is not invertible; and finally, the ring

of sequences is not an integral domain: u 6= 0, v 6= 0 and uv = 0 may occur
(in case u and v are equal to zero on complementary sets of indices); for this
reason the Hadamard product (uv)n = unvn will no longer be considered in the
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sequel. Instead, we will use the Cauchy product (or convolution product) defined

by (uv)n =
∑

p+q=n upvq, which has the additional advantage of corresponding
naturally to the product of polynomials: if the sequence u is represented by
P (X) =

∑N
0 upX

p and the sequence v is represented by Q(X) =
∑M

0 vqXq,

then uv is represented by P (X)Q(X), since the coefficient of Xn in P (X)Q(X)
is (uv)n =

∑

p+q=n upvq.

Example 8.1 Let P (X) = u0 + u1X + u2X
2 and Q(X) = v0 + v1X.

u0 + u1X + u2X
2

× v0 + v1X

———————————

u0v0 + u1v0X + u2v0X
2

+u0v1X + u1v1X
2 + u2v1X

3

———————————————————————

u0v0 + (u1v0 + u0v1)X + (u2v0 + u1v1)X
2 + u2v1X

3

If we assume that Q(X) = v0 + v1X + v2X
2 with v2 = 0, we obtain u2v0 +

u1v1 = u2v0 + u1v1 + u0v2. Similarly, u2v1 = u3v0 + u2v1 + u1v2 + u0v3 with

u3 = v3 = v2 = 0.

Exercise 8.1 Find the unit of the convolution product. ♦

We will generalize this approach to sequences
(

un

)

n∈IN
possibly having an infinite

number of non-zero uns, by associating a formal power series u =
∑∞

n=0 unX
n

to the sequence u = {un / n ∈ IN}.
Note, first, that it is a purely formal extension of the notion of polynomials

and that we will not worry about the convergence radius of our series which can
be equal to zero. A philosophical remark is called for here (for readers already
familiar with series): the generating series can be considerered from two different

viewpoints:

• firstly, they can be considered as analytic functions of the complex variable

X, and they then inherit all the good (or bad) properties of those functions
(convergence, absolute convergence, approximations, etc.) which can be found in
all complex analysis handbooks,

• secondly, they can be considered as formal algebraic expressions, generalizing
polynomials, where X is simply a position indicator whose values are irrelevant.

We then speak of formal power series.

As our goal is understanding the sequence of numbers (un / n ∈ IN), we will
be interested in the second viewpoint. In this viewpoint, all the operations we
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perform on the series can be defined and justified in a purely algebraic and formal

framework, independently of their convergence.
When, moreover, the series happens to converge for some values of x and, in

addition, we know how to compute the corresponding analytic function and we

want to study the asymptotic behaviour of the uns, then the usual methods of
complex analysis will allow us to find the values of the coefficients of the series,

or at least their asymptotic behaviour. In that case, the first approach will be
usable.

Note that, conversely, every function which admits a power series expansion
having a non-zero convergence radius uniquely determines (because of the unique-

ness of the power series expansion) a sequence of numbers consisting of its coef-
ficients.

Example 8.2 Consider the example of the Fibonacci numbers denoted by Fn.

We want to determine Fn given that

Fn = Fn−1 + Fn−2 and F0 = 0 F1 = 1 .

Consider the series F (X) =
∑

n≥0 FnX
n. From Fn = Fn−1 + Fn−2 we deduce

∀n ≥ 2, FnX
n = Fn−1X

n + Fn−2X
n = XFn−1X

n−1 +X2Fn−2X
n−2. Summing

the equalities FnX
n = XFn−1X

n−1+X2Fn−2X
n−2 for n ≥ 2, and recalling that

F0 = 0 and F1 = 1, yields the equation:

F (X) = XF (X) +X2F (X) +X .

Hence: (1 −X −X2)F (X) = X. We can thus consider that F (X) is the power

series expansion of the rational function

F (X) =
X

1−X −X2
=

X

(1− r1X)(1− r2X)
=

1√
5
(

1

1− r1X
− 1

1− r2X
) ,

where r1 =
1 +

√
5

2
and r2 =

1−
√
5

2
are the two roots of 1−X −X2 = 0. But

1

1− Z
= 1 + Z + Z2 + · · ·+ Zn + · · · ,

and hence F (X) = 1/
√
5(
∑

n≥0(r
n
1 − rn2 )X

n) and Fn = 1/
√
5(rn1 − rn2 ).

For the present the formal power series will be denoted by
∑∞

n=0 unX
n

and the analytic series by
∑∞

n=0 unx
n. We will revert to the nota-

tion
∑∞

n=0 unx
n for all series from Section 8.1.5 onwards. Similarly, for

the present, the series will be denoted by boldface letters, in the form

u =
∑∞

n=0 unX
n in order to distinguish them from the corresponding sequences

(un)n∈IN.
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8.1.2 Definitions

Definition 8.3 The power series u =
∑

n≥0 unX
n is said to be a generating

series of coefficients un. The set of power series with coefficients in the set C of
complex numbers is denoted by C[[X]]. The power series u is also denoted by

u(X).

Remark 8.4 Similarly, we can consider the set IN[[X]] (resp. IR[[X]], ZZ[[X]],. . . )
of power series with coefficients in IN (resp. IR, ZZ,. . . ).

Proposition 8.5 The set of power series, together with

• the addition + defined by
∑

n≥0

unX
n +

∑

n≥0

vnX
n =

∑

n≥0

(un + vn)X
n and

• the convolution product ×, defined by

(

∑

n≥0

unX
n

)

×
(

∑

n≥0

vnX
n

)

=
∑

n≥0

(

∑

p+q=n

upvq

)

Xn ,

is an integral ring (i.e. a ring without zero-divisors).

Proof. The unit for addition is the series O = (0)n≥0; the unit for the convolution
product is the series 1l defined by: 1l0 = 1 and 1ln = 0 for all n > 0; 1l will also be

denoted by 1 from Section 8.1.3 on. The axioms of the ring structure are easily
verified (i.e. addition is associative and commutative, product is associative and
commutative and distributes over addition).

Finally, recall that u 6= O is a divisor of O if v exists such that v 6= O and
u× v = O. If u× v = O, and if one of the two series u or v is different from O,

then the other one is equal to O; if for instance u 6= O, let j = min{i / ui 6= 0};
one computes the coefficients of u× v and shows by induction on n that vn = 0

for all n ≥ 0. ⊓⊔
Exercise 8.2 Let r ≥ 0. Find a power series u(X) whose coefficient of Xn is un =
∑n

k=0

(

r

k

)(

r

n−2k

)

. Hint: it can be noted that un = 0 if n > 3r. ♦

Notations

1. The convolution product u× v will be denoted simply by the concatenation
uv when there is no ambiguity.

2. Let i: C −→ C[[X]] be the mapping defined by i(a) = a = a1l = (an)n≥0 ,
with a0 = a and an = 0 for all n 6= 0; i is an injection and i(0) = O, i(1) = 1l; we
will denote O by 0 and 1l by 1 from the Section 8.1.3 on.
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Shift operations can be defined on series:

• Let u = (un)n≥0 and a ∈ C, then, ua,r = uX + a is the series verifying
(ua,r)0 = a, and for n > 0, (ua,r)n = un−1. This operation consists of translating
all the coefficients of u one position to the right, and adding an a at the beginning.

• Let u = (un)n≥0, then ul = u− u0
X is the series defined by ∀n ≥ 0,

(ul)n = un+1. This operation consists of suppressing u0 and translating the

other coefficients of u one position to the left.

Exercise 8.3 Define a series v such that ua,r = u× v + a and u− u0 = ul × v. ♦

We will characterize invertible series, which, in the sequel, will yield a con-

venient tool for computing terms of the form 1/f(x), where f(x) is a function
represented by a series.

Lemma 8.6 Let u 6= O, v and v′ be power series. Then

uv = uv′ =⇒ v = v′.

Proof. If v 6= v′, there exists a k such that vk 6= v′k. Let m be the least such k,
and let n be the least integer such that un 6= 0. Then:

(uv)n+m =

n+m
∑

p=0

upvn+m−p

=
n+m
∑

p=n

upvm+n−p (because up = 0 if p < n)

=
m
∑

p=0

un+pvm−p

=
m
∑

p=0

un+m−pvp .

Similarly,

(uv′)n+m =
m
∑

p=0

un+m−pv
′
p ;

hence,

(uv − uv′)n+m =

m
∑

p=0

un+m−p(vp − v′p)

= un(vm − v′m) (because vp = v′p if p < m).

Because un 6= 0 and vm 6= v′m, (uv − uv′)n+m 6= 0, and that contradicts uv =

uv′. ⊓⊔
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Definition 8.7

1. Let u, v 6= O be power series. Then v is said to divide u if and only if there

exists a (necessarily unique) power series w such that u = vw. The unique w

such that u = vw is denoted by u/v.

2. A series u is said to be invertible if and only if there exists a series v such
that uv = 1l. v is called the inverse of u.

Lemma 8.8 Let u 6= O, v 6= O be power series. Let n (resp. m) be the least
integer such that un 6= 0 (resp. vm 6= 0). Then v divides u if and only if m ≤ n.

Proof. Assume, first, that u = vw. Then uq = (vw)q =
∑q

p=0 vpwq−p. If q < m

then
∑q

p=0 vpwq−p = 0 = uq, hence q < n, and thus m ≤ n.

Assume now that m ≤ n. The sequence (wp)p≥0 is inductively defined by:

(B) wp =

{

0 if p < n−m,
un/vm if p = n−m.

(I) wn+m+i+1 = (un+i+1 −
∑n−m+i

p=0 vn+i+1−pwp)/vm , for i ≥ 0.

Let w =
∑

wpX
p. Let us compute vw: (vw)q =

∑q
p=0 wpvq−p:

• If q < n−m, (vw)q = 0 = uq.

• If q ≥ n−m, then (vw)q =

q
∑

p=n−m

wpvq−p =

q−n+m
∑

p=0

wp+n−mvq−n+m−p.

– If n−m < q < n, the sum
∑q−n+m

p=0 wp+n−mvq−n+m−p is null and is

equal to uq.

– If q = n, we have (vw)q =

m
∑

p=0

wp+n−mvm−p =

m
∑

p=0

wn−pvp =

wn−mvm = un.

– If q > n, let q = n+ i+ 1, then

(vw)q =
n+i+1
∑

p=0

wn+i+1−pvp =
n+i+1
∑

p=m

wn+i+1−pvp

=

n−m+i+1
∑

p=0

wn−m+i+1−pvp+m =

n−m+i+1
∑

p=0

wpvn+i+1−p

=

n−m+i
∑

p=0

wpvn+i+1−p + wn−m+i+1vm

= un+i+1 = uq . ⊓⊔
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Corollary 8.9 A series u = u0 + u1X + · · ·+ unX
n + · · · in C[[X]] is invertible

if and only if u0 6= 0.

Exercise 8.4 Prove that a series u = a0 + a1X + · · ·+ anX
n + · · · with coefficients in

a ring is invertible if and only if a0 is invertible. ♦

8.1.3 Operations on series

From the present section on, we will cease using the boldface notation when
denoting series.

Operations on series naturally correspond to the operations on sequences in-
troduced in Section 7.4.1. We recall these in the list given below: the first column

contains the operation on sequences, and the second column the corresponding
operation on series. For instance, the first line of the list should be read as: if

v = (Eu)n = un−1, then the operation corresponding to E on the series is the
mapping u 7−→ Xu = v. Indeed, it can be verified that if u =

∑

n≥0 unX
n, then

Xu =
∑

n≥1 un−1X
n.

Lines 6 and 7 of the list given below can be used for defining the differentiation

and integration operations on power series; it can then be proved that, when the
convergence radii of the corresponding series are not equal to zero, the operations

thus defined coincide with the usual differentiation and integration operations on
analytic functions: for instance, if we define the derivative of the power series
u = (un)n≥0 as being the power series v =

(

(n + 1)un+1

)

n≥0
(1st column of

line 7), and if, moreover, u and v, considered as analytic series, have non-zero

convergence radii and define the analytic functions u(x) and v(x), then we have:
u′(x) = v(x).

sequences series

1. vn =(Eu)n = un−1 , v0 = 0 v = Xu = uX + 0 = u0,r

2. vn =(∆u)n =
(

(1l− E)u
)

n
= un − un−1 v = (1−X)u

v0 =u0

3. vn =

(

∑

u

)

n

= u0 + · · ·+ un v =
u

1−X
4. wn =un + vn w = u+ v

5. wn =
∑

p+q=n upvq w = uv
6. vn =(n+ 1)un+1 v = u′

7. vn =
un−1

n
, v0 = 0 v =

∫ x

0

u(t)dt

Exercise 8.5 Verify lines 2–7 of the list given above. ♦
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Example 8.10 Recall that the derivative of
1

1− x
is

1

(1− x)2
; hence, by (6),

1

(1− x)2
=
∑

n≥0

(n+ 1)xn.

Similarly, taking the integral of
1

1− x
and applying line 7, we obtain

log
1

1− x
=
∑

n≥1

xn

n
.

Multiplying this last equality by
1

1− x
and using line 3, we obtain

1

1− x
log

1

1− x
=
∑

n≥1

Hnx
n,

where

Hn = 1 +
1

2
+ · · ·+ 1

n
.

Taking derivatives again:

1

(1− x)2
log

1

1− x
+

1

(1− x)2
=
∑

n≥0

(n+ 1)Hn+1x
n ;

hence

1

1− x

[

∑

n≥1

Hnx
n +

∑

n≥0

xn

]

=
∑

n≥0

(n+ 1)Hn+1x
n .

Applying 3 once more:

∑

n≥0

[(

n
∑

i=1

Hi

)

+

(

n
∑

i=0

1

)]

xn =
∑

n≥0

(n+ 1)Hn+1x
n,

and also
∑n

i=1 Hi = (n+ 1)(Hn+1 − 1).
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8.1.4 Exponential generating series

We have associated a power series with a sequence; this power series can be said
to be polynomial; we can also associate an exponential generating series with each

sequence as follows. To the sequence u = u0, u1, . . . , un, . . . we will associate the
series:

û = u0 + u1X + · · ·+ un
Xn

n!
+ · · · .

The exponential terminology originates from the fact that we associate with the

sequence un = 1, ∀n, the series∑n≥0

xn

n!
, which is the expansion of the function

ex into a power series. As in the case of ordinary generating series, operations on
the corresponding exponential generating series are associated with the operations

on sequences. We give a short list below.

sequences series

wn =un + vn (û, v̂) 7−→ ŵ = û+ v̂

vn =un+1 û 7−→ v̂ = û′

vn =un−1 û 7−→ v̂ =
∫X

0
û(t)dt

wn =
∑n

p=0

(

n
p

)

upvn−p (û, v̂) 7−→ ŵ = ûv̂

Exercise 8.6

1. Show that:
∫

∞

0
tne−tdt = n!.

2. Conclude from 1 that:
∫

∞

0
û(xt)e−tdt = u(x) provided that the series is convergent

and that the integral exists. ♦

8.1.5 Partial fraction expansion of rational functions

We will now study a computation method which is very useful for obtaining the
coefficients of a generating series in a simple way (this method is also used in

probability theory).

Proposition 8.11 Let g(x) =
∑

n≥0 unx
n be a generating series which is the

power series expansion of a rational function of the form g(x) =
U(x)

V (x)
, where

U and V are two polynomials having no common root and such that deg(U) <

deg(V ) = m. Let us assume, moreover, that V (x) has m distinct roots r1, . . . , rm,
i.e. V (x) = (x− r1) · · · (x− rm). Then, constants a1, . . . , am exist such that:

g(x) =
a1

x− r1
+ · · ·+ am

x− rm
. (8.1)

To find ai, let us multiply the equation (8.1) by x− ri; we have

gi(x) =
a1(x− ri)

x− r1
+ · · ·+ ai−1(x− ri)

x− ri−1
+ ai +

ai+1(x− ri)

x− ri+1
+ · · ·+ am(x− ri)

x− rm
.
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Letting x = ri, we obtain gi(ri) = ai. Moreover,

gi(x) =
U(x)

(x− r1) · · · (x− ri−1)(x− ri+1) · · · (x− rm)

and, for x = ri,

(ri − r1) · · · (ri − ri−1)(ri − ri+1) · · · (ri − rm) = V ′(ri) ,

hence

ai = gi(ri) =
U(ri)

V ′(ri)
.

Proposition 8.12 (Computation of un – asymptotic value) Let U and V satisfy

the hypotheses of Proposition 8.11. Let r1 be a simple root of V (x), such that,

for all other roots rj , |r1| < |rj |; then when n → ∞, un ∼ −a1

rn+1
1

.

Proof. The power series expansion of
1

x− ri
is known:

1

x− ri
= − 1

ri

(

1

1− x
ri

)

= − 1

ri

(

1 +
x

ri
+

x2

r2i
+ · · ·+ xn

rni
+ · · ·

)

.

By (8.1), we have

g(x) =
∑

n≥0

(

m
∑

i=1

−ai
rin+1

)

xn. (8.2)

Identifying with g(x) =
∑

n≥0 unx
n, we obtain un =

∑m
i=1

−ai
rin+1

, whence

rn+1
1 un = −a1 +

∑m
i=2(−ai)

(r1
ri

)n+1

. If, moreover, |r1| < |rj | for all the other

roots rj , then
∑m

i=2(−ai)
(r1
ri

)n+1

tends to 0 as n tends to infinity, and thus

rn+1
1 un tends to −a1 ; hence un ∼ −a1

rn+1
1

. ⊓⊔

Exercise 8.7 Can you eliminate some of the restrictions assumed for obtaining the
partial fraction expansion? ♦

We state without proof the general form of Proposition 8.11.
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Proposition 8.13 Let g(x) =
∑

n≥0 unx
n be a generating series which is the

power series expansion of a rational function of the form g(x) =
U(x)

V (x)
, where

U and V are two polynomials having no common root and such that deg(U) <

deg(V ) = m. Let us assume, moreover, that V (x) has the m roots r1, . . . , rm,
and that V (x) = c(x− r1)

d1 · · · (x− rm)dm . In this case, we have

g(x) =
∑

n≥0

(

m
∑

i=1

Pi(n)

rin

)

xn , (8.3)

where, for i = 1, . . . ,m, Pi(n) is a polynomial in the variable n of degree di − 1,
whose coefficient ai of n

di−1 is given, if V (di) denotes the dith derivative of V , by

ai =
diU(ri)

(−ri)dicV (di)(ri)

=
U(ri)

(−ri)di(di − 1)!c
∏

j 6=i(ri − rj)dj
.

The proof is by induction on max(d1, . . . , dm), by showing that

g(x)−
m
∑

i=1

ai(di − 1)!

(1− x/ri)di

is a rational fraction whose denominator is divisible by none among the (x−ri)
dis.

Example 8.14 Let the sequence un be defined by u0 = 1, and

un = qun−1 + p(1− un−1),

where p + q = 1 and q 6= 1. un represents the probability of obtaining an even

number of ‘tails’ after n successive tosses of a coin. Let g(x) =
∑

n≥0 unx
n. Let

us multiply equation un = qun−1 + p(1− un−1) by xn for each n > 0 in IN, and

add the equalities thus obtained:

...

unx
n = xqun−1x

n−1 + xp(1− un−1)x
n−1

...

u1x = xqu0 + xp(1− u0).
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We obtain
g(x)− 1 = qx

∑

n≥0

unx
n + px

∑

n≥0

xn − px
∑

n≥0

unx
n

= qxg(x) + px
1

1− x
− pxg(x) ,

or

g(x)(1− (q − p)x) = 1 + px
1

1− x
=

1− x(1− p)

1− x
=

1− qx

1− x
,

hence

g(x) =
1− qx

(1− x)(1− (q − p)x)
=

a1
1− x

+
a2

1− (q − p)x
;

and, after computing a1 and a2, which yield

a1 = a2 =
1− q

1− (q − p)
=

p

2p
=

1

2
,

g(x) =
1

2

( 1

1− x
+

1

1− (q − p)x

)

=
1

2

(

∑

n≥0

xn +
∑

n≥0

(q − p)nxn

)

=
1

2

∑

n≥0

(

1 + (q − p)n
)

xn ,

hence

un =
1

2
(1 + (q − p)n).

We deduce (see Chapter 12) the formula

1

2
(1 + (q − p)n) =

n/2
∑

k=0

(

n

2k

)

p2kqn−2k;

indeed,
(

n
2k

)

p2kqn−2k represents the probability of obtaining 2k ‘tails’ in a se-
quence of n successive tosses of a coin (in technical terms in a sequence of n

Bernoulli trials).

Exercise 8.8

1. Prove that
∞
∑

k=0

x2
k

1− x2k+1
=

x

1− x
.

2. Deduce the following identity, where the Fns are the Fibonacci numbers:

∞
∑

k=0

1

F 2k
=

7−
√
5

2
.

This equality is called the Millin identity, and was proved by Dale Miller. (His name
was misprinted in the first paper stating the result.) ♦
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8.2 Applications of generating series to recurrences

8.2.1 Linear recurrences with constant coefficients

Let the sequence un be defined by the recurrence equation (7.9)

∀n ≥ k , un = a1un−1 + · · ·+ akun−k (7.9)

and let u(z) =
∑

n≥0 unz
n be the associated generating series. We will compute

the generating series, and deduce the uns.

Multiplying (7.9) by zn we obtain

∀n ≥ k , unz
n = a1zun−1z

n−1 + a2z
2un−2z

n−2 + · · ·+ akz
kun−kz

n−k

and summing up all these equalities for n ≥ k,

ukz
k = a1zuk−1z

k−1 + a2z
2uk−2z

k−2 + · · ·+ akz
ku0

uk+1z
k+1 = a1zukz

k + a2z
2uk−1z

k−1 + · · ·+ akz
ku1z

...

unz
n = a1zun−1z

n−1 + a2z
2un−2z

n−2 + · · ·+ akz
kun−kz

n−k ,

...

we obtain
∑

n≥k

unz
n = a1z

∑

n≥k−1

unz
n + a2z

2
∑

n≥k−2

unz
n + · · ·+ akz

k
∑

n≥0

unz
n.

For 0 ≤ i ≤ k − 1, let Pi(z) = u0 + u1z + · · ·+ uiz
i, so that

u(z) = Pi−1(z) +
∑

n≥i

unz
n;

hence
u(z)− Pk−1(z) = a1z

(

u(z)− Pk−2(z)
)

+ · · ·
+ ak−1z

k−1
(

u(z)− P0(z)
)

+ akz
ku(z).

And thus

u(z) =
Pk−1(z)− a1zPk−2(z)− · · · − ak−1z

k−1P0(z)

1− a1z − a2z2 − · · · − akzk

=
P (z)

1− a1z − a2z2 − · · · − akzk
,

where P (z) is a polynomial in z of degree less than or equal to k−1; the rational
fraction defining u(z) has a power series expansion which can be obtained by

standard techniques (see Section 8.1.5), and this allows one to find the coefficients
of the series u(z), i.e. the sequence un.
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Remark 8.15 Note that ri is a multiple root of multiplicity di of the character-

istic polynomial if and only if ρi = 1/ri is a multiple root of the same multiplicity
di of V (z) = 1 − a1z − a2z

2 − · · · − akz
k. The same phenomenon will occur for

non-homogeneous linear recurrences with constant coefficients.

Summing up, the above general method can be split into three steps:

1. Multiply the recurrence equation by zn and sum on n; to the left of the ‘=’
sign is the generating series u(z) where the k first terms have been deleted, i.e.

the expression u(z)−Pk−1(z), and to the right of the ‘=’ sign is an expression of
the form u(z)P (z) +Q(z), where P and Q are polynomials in z.

2. Solve the equation in u(z) thus obtained; we obtain a rational function;

3. Find the power series expansion of the rational function giving the coefficients

of u(z), namely the uns, for n ≥ k. This last step is usually the step demanding
most effort and computations.

Note, finally, that the methods using generating series are very suitable for some
manipulations on sequences: for instance if the generating series u(z) of the

sequence un is known, and if we are interested in the subsequence vn = u2n of
even index terms, it is enough to remark that the sequence vn is determined by

u(z) + u(−z)

2
=
∑

n≥0

u2nz
2n.

Similarly, the subsequence vn = u2n+1 of odd index terms is determined by

u(z)− u(−z)

2
=
∑

n≥0

u2n+1z
2n+1.

Exercise 8.9 The Fibonacci numbers are defined by F0 = 0, F1 = 1 and, for n ≥ 2,
Fn = Fn−1 + Fn−2 . Determine the generating series of the sequence F2n of Fibonacci
numbers of even index. ♦

Exercise 8.10 Solve the following recurrence equations by the generating series
method.

1. ∀n ≥ 2, 2un = 3un−1 − un−2 .

2. ∀n ≥ 2, un = 4un−1 − 4un−2 . ♦
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8.2.2 Non-homogeneous linear recurrences with constant coefficients

The preceding method can easily be applied and is illustrated in this example.

Consider the recurrence equation

un = un−1 + 2un−2 + (−1)n , n ≥ 2,

with u0 = u1 = 1, and let u(z) =
∑

n≥0 unz
n be the associated generating series.

Writing
u0 = 1

u1z = z = zu0

u2z
2 = zu1z + 2z2u0 + (−1)2z2

...

unz
n = zun−1z

n−1 + 2z2un−2z
n−2 + (−1)nzn

...

we deduce, by summing up the above equalities and adding the corrective term
(−1)1z on each side of the thus obtained equality, that

u(z)− z = zu(z) + 2z2u(z) +
1

1 + z
;

hence

u(z) =
1 + z + z2

(1 + z)(1− z − 2z2)
=

1 + z + z2

(1− 2z)(1 + z)2
.

By Proposition 8.13, we have

un = a2n + (bn+ c)(−1)n,

with a = 7/9 and b = 1/3. Substituting these values and letting n = 0 in the

preceding equation, we obtain c = 2/9.

Exercise 8.11 Solve the following recurrence equation:

∀n ≥ 2, un = 4un−1 − 4un−2 + n− 1, with u0 = 1 and u1 = 1. ♦

Exercise 8.12 Solve the simultaneous recurrence equations
un = 2vn−1 + un−2, with u0 = 1 and u1 = 0,
vn = un−1 + vn−2, with v0 = 0 and v1 = 1. ♦

Exercise 8.13 Solve the recurrence equation
∀n ≥ 2, un = 3un−1 − 2un−2 + n/2n, with u0 = 1 and u1 = 0. ♦
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8.2.3 Partitioning integers

The problem is that of finding the number of vectors of integers
v = (n1, . . . , np) which are solutions of a1n1 + · · · + apnp = n, with fixed

a1, . . . , ap ∈ IN. We illustrate this type of problem with an example. How many
ways are there to change a $100 bill for $1 and $5 bills? It boils down to finding
the number of solutions of the equation: p+ 5q = 100. Let the series

u(x) = 1 + x+ x2 + · · ·+ xp + · · ·
w(x) = 1 + x5 + x10 + · · ·+ x5q + · · · .

We have

(uw)(x) =
∑

n≥0

(

∑

p+5q=n

xpx5q

)

.

Consequently, the number of solutions of p+5q = n is the coefficient of xn in the

series v(x) = u(x)w(x). But

u(x) =
1

1− x
, w(x) =

1

1− x5
,

and hence

v(x) = (uw)(x) =
1

(1− x)(1− x5)
.

The standard method consists of computing the partial fraction expansion of uw,

and deducing therefrom the coefficient of x100 in uw. Here this partial fraction
expansion would have the form:

v(x) =
a

(1− x)2
+

b

1− x
+

c

1− eiαx
+

c̄

1− e−iαx
+

d

1− e2iαx
+

d̄

1− e−2iαx
,

where eiα, e−iα, e2iα, e−2iα are the complex roots of x5 = 1. Here we can, however,
perform a simpler and more astute computation: noting that 1−x5 = (1−x)(1+

x+ x2 + x3 + x4), we can deduce

v(x) =
1 + x+ x2 + x3 + x4

(1− x5)2

= (1 + x+ x2 + x3 + x4)
∑

n≥0

(n+ 1)x5n.

The number of ways to change n dollars for $1 and $5 bills is thus the coefficient

of xn in v(x). Any arbitrary n can be uniquely written in the form n = 5k + r
with 0 ≤ r ≤ 4, and the coefficient of x5k+r in v(x) is then k + 1. For instance,
there are v20 = 21 ways to change $100 for $1 and $5 bills.
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Exercise 8.14 Find the number of ways of bringing up a total of n with tokens of
value 2 and 3. ♦
Exercise 8.15 Assuming that in Morse code a dot takes two time units, and a dash
takes three time units, find the number of words taking n time units in the Morse
code. ♦
Exercise 8.16 How can you find the number of ways of changing $100 for $1, $2 and
$5 bills? ♦

8.2.4 Finite linear recurrence equations with non-constant coefficients

The method consists of associating with the recurrence equation defining the
sequence un a functional or differential equation on the generating series u(x)

corresponding to un. This method can be applied in the case of linear recurrence
equations with constant or non-constant coefficients.

• In the case of recurrence equations with constant coefficients, the functional

equation will be of the form u(x) =
U(x)

V (x)
, where U and V are polynomials in

x. More precisely, if the recurrence equation is of the form: un = a1un−1 +
· · ·+akun−k, with initial values u0, . . . , uk−1, and if u(x) =

∑

n≥0 uix
i, then (see

Section 8.2.1) u(x) =
U(x)

V (x)
, with

V (x) = 1− a1x− a2x
2 − · · · − akx

k,

and U(x) a polynomial of degree ≤ k − 1. It is then sufficient to find the par-

tial fraction expansion of the rational function
U

V
by the methods described in

Section 8.1.5, Proposition 8.11 and Proposition 8.13 in order to obtain the uns.

See Example 8.14.

• In the case of recurrence equations with non-constant coefficients, we will in
general obtain a differential equation involving the derivatives of u(x) of order 1,

2, etc. The problem will hence be more complex. We will illustrate the method
with a simple example.

Example 8.16 Let the sequence un , for n ≥ 2, be defined by

nun + (n− 2)un−1 − un−2 = 0, with u0 = u1 = 1.

Multiplying the recurrence equation by xn−1 and summing for n ≥ 2, we obtain

∑

n≥2

nunx
n−1 +

∑

n≥2

(n− 2)un−1x
n−1 −

∑

n≥2

un−2x
n−1 = 0 , (8.4)
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i.e.
∑

n≥2

nunx
n−1 + x

∑

n≥2

(n− 1)un−1x
n−2 −

∑

n≥2

un−1x
n−1 − x

∑

n≥2

un−2x
n−2 = 0 .

Hence, u(x) =
∑

n≥0 unx
n; then

u′(x) =
∑

n≥0

(n+ 1)un+1x
n =

∑

n≥1

nunx
n−1,

so that u′(x) = u1 +
∑

n≥2 nunx
n−1. Equation (8.4) can be written

(u′(x)− u1) + xu′(x)− u(x) + u0 − xu(x) = 0

or

(u′(x)− 1) + x(u′(x)− u(x))− u(x) + 1 = 0

and, then,

(u′(x)− u(x))(1 + x) = 0 ;

hence u(x) = u′(x), and u(x) = λex, with λ = 1 since u(0) = 1. Finally,

u(x) =
∑

n≥0

xn

n!
and un =

1

n!
.

Exercise 8.17 Solve the recurrence equation

∀n ≥ 1, 2nun = un−1 +
1

(n− 1)!
,

with u0 = 2, and the convention 0! = 1. ♦

8.2.5 Complete recurrence equations

The method of Section 8.2.1 can still be applied; of course the computation of the

series can no longer be reduced to the power series expansion of a rational function
because the functional equation defining the series may be more complex. Let us

study an example.
Recall (Example 7.1) that the number of binary trees with n nodes is given

by the recurrence equation bn =
∑n−1

k=0 bkbn−k−1 for n ≥ 1, and b0 = 1. Let
b(x) =

∑

n≥0 bnx
n be the associated generating series; substituting for bn in the

generating series b(x) the value of bn, which is given by the recurrence equation,

we have

b(x) = 1 +
∑

n≥1

(

n−1
∑

k=0

bkbn−k−1

)

xn = 1 + x
∑

n≥1

(

∑

p+q=n−1

bpbqx
n−1

)

,
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that is

b(x) = 1 + x(b(x))2.

b(x) is thus the solution of the equation in b: xb2 − b + 1 = 0, whose roots are
1±

√
1− 4x

2x
. Since b(0) = b0 = 1, the numerator should be divisible by 2x,

and this allows a single possible solution
1−

√
1− 4x

2x
(the other solution being

undefined for x = 0). Now, let us recall the power series expansion of (1 + u)α,
valid for α ∈ IR,

(1 + u)α = 1 + αu+ · · ·+
(

α

k

)

uk + · · · ,

where, by convention,

(

α

k

)

=
α(α− 1) · · · (α− k + 1)

k!
.

Here we obtain

√
1− 4x =

∑

k≥0

(

1/2

k

)

(−4x)k =
∑

k≥0

1/2(−1/2)(−3/2) · · · (3− 2k)/2

k!
(−4x)k

= 1 +
∑

k≥1

(−1)k−1 (2k − 2)!(−4)kxk

k!2k2k−1(k − 1)!

= 1 +
∑

k≥1

− (2k − 2)!2

k!(k − 1)!
xk .

Hence,

b(x) =
∑

n≥1

(2(n− 1))!

n!(n− 1)!
xn−1 =

∑

n≥0

1

n+ 1

(

2n

n

)

xn

and

∀n ≥ 0, bn =
1

n+ 1

(

2n

n

)

=
1

n+ 1

(2n)!

n!n!
.

The number bn =
1

n+ 1

(

2n

n

)

is the nth Catalan number. The Catalan numbers

are useful in combinatorics.
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Exercise 8.18 Let A = {(, )} be the alphabet consisting of two parentheses (left and
right). The set of strings of balanced parentheses, also called the Dyck language, is the
subset D ⊆ A∗ defined by

(B) ε ∈ D,
(I) if x and y are in D, then (x)y is also in D.

1. Verify that this definition coincides with the one given in Example 3.9 and that
all the strings of balanced parentheses are words of even length.
2. Let un be the number of strings of balanced parentheses of length 2n; find a
recurrence equation defining un in terms of the uis, for i < n. Deduce un.
3. How can you generalize this result to the Dyck language on an alphabet Ak =
{a1, . . . , ak, ā1, . . . , āk} = Bk ∪ B̄k (assuming there are k different types of parentheses),
defined by

(B) ε ∈ D,
(I) if x and y are in D, then aixāiy is also in D, for all i = 1, . . . , k. ♦

Exercise 8.19 Solve the recurrence equation

∀n ≥ 1, un = un−1 + 2un−2 + · · ·+ nu0, with u0 = 1. ♦
Exercise 8.20 Solve the recurrence equation

∀n > 1, un = −2nun−1 +

n
∑

k=0

(

n

k

)

ukun−k ,

with u0 = 0 and u1 = 1, using exponential generating series. ♦

8.2.6 Average complexity of algorithms

Generally speaking, the generating series can be applied to the analysis of the
average complexity of algorithms. Let A be an algorithm computing on data D,

and let Dn be the set of data of size n, assumed to be all equally probable. Let
c(d) be the time complexity of algorithm A on data d. Then, the average time
complexity of A on Dn is

mn =
1

|Dn|
∑

d∈Dn

c(d) ,

where |Dn| is the cardinality of Dn. Let us denote by |d| the size of d and let

c(x) =
∑

n≥0 cnx
n, where cn =

∑

d∈Dn
c(d).

We can define the generating series of the enumeration of the Ds similarly:

d(x) =
∑

n≥0

|Dn|xn =
∑

n≥0

dnx
n.

We then have mn =
cn
dn

.
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Remark 8.17 We can adopt the notation
∑

d∈D c(d)x|d|, directly introducing

the object d in the definition of the generating series of the enumeration. This
method enables us to directly find the equation satisfied by the generating series
in many cases of combinatorial enumeration problems without considering the

associated recurrence equation.

Exercise 8.21 Let A = {blue, red, green} a set of colours. During a Master-mind
game, one forms size n sequences with these three colours. Let ai be the ith colour of
the current solution.

1. Let tn be the number of solutions of length n, such that, for i in {1, . . . ,
n− 2}, ai 6= ai+2.

(a) Compute t1, t2 and t3.
(b) Find a recurrence equation for tn.
(c) Deduce tn.

2. Let sn be the number of size n solutions, such that either ai 6= ai+2 or ai = ai+1 =
ai+2, for i = 1, . . . , n− 2.

(a) Compute s1, s2, s3 and s4.
(b) Find a recurrence equation for sn.
(c) Compute

∑

∞

n=1
snz

n and deduce sn. ♦
Exercise 8.22 After giving a dictation to his pupils, a teacher redistributes the ex-
ercises for correction to the pupils. Let bn be the number of ways of distributing the
exercises in such a way that no pupil gets his or her own.
1. Compute b1, b2 and b3.
2. Show that the following equation holds: bn = (n− 1)(bn−1 + bn−2), for n > 2.
3. Show that bn − nbn−1 = (−1)n, for n > 1.
4. Let b0 = 1, and define the exponential generating series by

b(z) =

∞
∑

n=0

bnzn
n!

.

Prove that b(z) =
e−z

1− z
. ♦


