
chapter 14

APPLICATIONS AND EXAMPLES

In the present chapter we illustrate how the various methods we have introduced

in this book can be applied to

1. study complexity problems for algorithms and

2. prove correctness of programs.

There are several criteria by which to evaluate the complexity of an algorithm:

• Space complexity: for instance, the number of variables or instructions, the

size of the variables, the space allowed in the memory, etc.

• Time complexity: the length of time required to execute the program; this

will usually depend on the input data, and several notions of complexity may be
of interest:

– average case complexity,

– worst-case complexity (namely, the complexity for the input data re-

sulting in the longest possible computation),

– best-case complexity (namely, the complexity for the input data re-

sulting in the shortest possible computation).

One of the goals of a ‘discrete mathematics’ course is to build tools for evaluating
these various notions of complexity. We illustrate these tools by studying the
average complexity of Quicksort and the worst-case complexity of a simple algo-

rithm: Euclid’s algorithm. We will only sketch the various tools in the present
chapter; for further details the reader is refferred to the chapters in which each

tool is defined. This chapter owes much to the class handouts by Jean Claude
Raoult on the same subject; we heartily thank him.

On the other hand, to prove the correctness of programs, most existing tech-
niques boil down to proofs by induction and searches for loop invariants. We

illustrate these techniques in the remainder of the chapter.

280

Quicksort 281

14.1 Quicksort

Intuitively, the complexity of an algorithm corresponds to the size t(in) of the

computations on a size n input in. However, t(in) is usually not the same for all
size n inputs. For in ranging over size n inputs:

• The worst-case complexity is the maximum value of all the t(in)s.

• The average complexity is the average value of the t(in)s.

• The best-case complexity is the least value of all the t(in)s.

We will now study a more complex example: the worst-case complexity and
the average complexity of Quicksort, which is considered one of the best sorting

algorithms.

14.1.1 Quicksort

Briefly recall the idea of Quicksort: for sorting a length n list, we choose a pivot
p in this list and we pairwise permute the elements of the list in order to put

together all the elements ≤ p at the beginning of the list, and all the elements
> p at the end of the list; the pivot is then put in its proper place (between the

elements ≤ p, and the elements > p), and we repeat this operation with the two
sublists of elements ≤ p, and of elements > p (see Figure 14.1). Here again we
have a ‘divide and conquer’ strategy.

≤ pivot > pivot
x



pivot

Figure 14.1

Let T [i . . . j] be the list of the elements to be sorted; the algorithm just described

can be written:
program Quicksort
var i,j,k: integer
var T: integer list
begin

read i,j,T
if i < j then

pivot(T,i,j; k)
Quicksort(T, i, k-1)
Quicksort(T, k+1, j)

endif

print T
end

282 14. Applications and examples

pivot is a procedure choosing T (i) as pivot and permuting the elements of

T [i . . . j] until T (i) is put in its final place, whose index is k. All the T (j) ≤ T (i)
are before T (i) and all the T (j) > T (i) are after T (i). The pivot procedure uses
two counters for ranging over the T (j)s, one of them increasing, and the other

one decreasing until they meet in k, which is the final place of the pivot, then
T (i) and T (k) are interchanged and T (k) sits in its final place (Figure 14.2).

interchange

↓ ↓
a ≤ a > a ≤ a > a

i j

−→ ←−
l k

Figure 14.2

program pivot
var i, j, k, l: integer
var T: integer list
begin

read i,j,T
l:= i+1
k:= j
p:= T(i)
while l ≤ k do

while T(k) > p do k:= k-1 endwhile

while T(l) ≤ p do l:= l+1 endwhile

if l < k then

interchange (T(l),T(k))
k:= k-1
l:= l+1

endif

endwhile

interchange (T(i),T(k))
return (k)
end

k stops as soon as T (k) ≤ pivot, l stops as soon as T (l) > pivot and T (k) and

T (l) are interchanged; then, when k and l meet, namely, k becomes greater than
or equal to l, we can stop and place the pivot, which will no longer move. The
following example for sorting the list 100, 202, 22, 143, 53, 78, 177, can be studied:

Quicksort 283

100 202 22 143 53 78 177

53 78 22 100 143 202 177

22 53 78 100 143 202 177

22 53 78 100 143 202 177

22 53 78 100 143 177 202

The pivots have been underlined and the sublists of the elements ≤ k and of the
elements > k which are left for sorting, are in bold-face.

We will study the complexity of Quicksort in terms of the number of compar-

isons performed on the list which we want to sort, T : if there are n elements in

this list, the pivot procedure will compare the pivot to all the other elements;
however, depending upon how the two counters k and l meet, we will have n− 1,

n or n+ 1 comparisons to perform.

Exercise 14.1 Study the various possible cases for the termination of the pivot

procedure in order to check the above statement. ♦

Let Cn(T [1, . . . , n]) be the complexity of Quicksort for a list T [1, . . . , n] of
length n; if the pivot is put in the kth place we will have

Cn(T [1, . . . , n]) = Ck−1(T [1, . . . , k − 1]) + Cn−k(T [k, . . . , n])

+ πn(T [1, . . . , n]) ,

where πn(T [1, . . . , n]) denotes the complexity of placing the pivot for the list

(T [1, . . . , n]).

Exercise 14.2 Check that

1. π2(T [1, 2]) = 2 for T [1, 2] = (11, 22) or T [1, 2] = (22, 11).
2. π5(T [1, . . . , 5]) = 6 for T [1, . . . , 5] = (30, 51, 23, 42, 14). ♦

14.1.2 Worst-case complexity of Quicksort in number of comparisons

We can see that the worst-case complexity will occur when the initial list is
already sorted and each call to pivot simply verifies that the first element is the

least one. Let pn be the worst-case complexity for sorting a length n list; we thus
have

pn = n+ 1 + pn−1 (14.1)

with p2 = 3.

Exercise 14.3 Solve this recurrence relation, and evaluate pn. ♦

284 14. Applications and examples

14.1.3 Average complexity of Quicksort in number of

comparisons

Let pivn be the average number of comparisons performed by the procedure pivot

on a size n list, let cn(k) be the average number of comparisons performed by
the procedure Quicksort on a size n list assuming that the result of the pivot

procedure was the pivot in the kth position and let cn be the average number of
comparisons performed by Quicksort on a size n list; we then have

n− 1 ≤ pivn ≤ n+ 1 ,

n− 1 + ck−1 + cn−k ≤ cn(k) ≤ n+ 1 + ck−1 + cn−k .

Assume a random repartition of the numbers of the list, and assume that the
positions 1, . . . , n are equally probable for the pivot with probability 1/n; thus

cn = 1/n
(

cn(1)+ · · ·+ cn(n)
)

and, finally, we obtain the following squeeze for cn:

∀n ≥ 2 , n−1+1/n

(

n
∑

k=1

(ck−1+cn−k)

)

≤ cn ≤ n+1+1/n

(

n
∑

k=1

(ck−1+cn−k)

)

.

Hence, noting that

n
∑

k=1

ck−1 =
n
∑

k=1

cn−k =
n−1
∑

k=1

ck (since c0 = 0) ,

∀n ≥ 2 , n− 1 + 2/n

n−1
∑

k=1

ck ≤ cn ≤ n+ 1 + 2/n

n−1
∑

k=1

ck ,

or also, letting

an = n− 1 + 2/n
n−1
∑

k=1

ak and bn = n+ 1 + 2/n
n−1
∑

k=1

bk , (14.2)

∀n ≥ 2 , an ≤ cn ≤ bn .

Note, moreover, that c0 = c1 = 0, and thus we also have a0 = b0 = a1 = b1 = 0.

Consider the recurrence relation defining bn. It will be evaluated by forming
linear combinations of suitably chosen instances of the recurrence relation. Note,

first, that

n(bn − (n+ 1)) = 2
n−1
∑

k=1

bk,

Quicksort 285

hence for n− 1: (n− 1)(bn−1 − n) = 2
∑n−2

k=1 bk and, by subtraction,

nbn − (n− 1)bn−1 − 2n = 2bn−1 , for n ≥ 3,

namely, nbn = (n+ 1)bn−1 + 2n, and dividing by n(n+ 1),

bn
n+ 1

=
bn−1

n
+

2

n+ 1
, n ≥ 3,

with b0 = b1 = 0 and b2 = 3 (computed by the initial recurrence relation).

Letting vn =
bn

n+ 1
, we obtain vn = vn−1 +

2

n+ 1
, which immediately yields, by

the summation factors method,

vn = 1 + 2
n+1
∑

k=4

1

k
,

i.e. letting Hn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
,

bn = n+ 1 + 2(n+ 1)

(

Hn+1 − 1− 1

2
− 1

3

)

= 2(n+ 1)

(

Hn+1 −
4

3

)

= 2(n+ 1)

(

Hn +
1

n+ 1
− 4

3

)

= 2(n+ 1)Hn −
8n+ 2

3
.

Exercise 14.4 Prove that, similarly, an = 2(n+ 1)Hn − 4n. ♦

Since Hn ∼ log n (see Example 7.26, Definition 9.13 and Section 9.2.4), we

deduce that an ∼ bn ∼ 2n log n, and thus cn ∼ 2n log n.
The average complexity of Quicksort for sorting a length n list, assuming that

all the possible permutations of the list are equally probable, is thus of the order
of magnitude 2n log n. This gives us an example where cn was in fact given by

two recurrence inequations, and not by a single equation. When a recurrence cn
defining a cost is defined not by an equality but by a squeeze, we will proceed as

above, and try to evaluate the order of magnitude of each part of the squeeze.
If we obtain the same order of magnitude f(n) for both parts, then we will have
proved that cn is also of the same order of magnitude f(n).

The average complexity of Quicksort can also be computed by using generating
series. Consider the recurrence relation defining an:

an = n− 1 +
2

n

n−1
∑

k=0

ak for n ≥ 2, and a0 = a1 = 0.

286 14. Applications and examples

Letting a(x) =
∑

n≥0 anx
n, multiplying the recurrence equation by xn and sum-

ming for n ≥ 2:

∑

n≥2

anx
n =

∑

n≥2

(n− 1)xn + 2
∑

n≥2

(

n−1
∑

k=0

ak

)

xn

n
.

Note that
∑

n≥2

(n− 1)xn = x2
∑

n≥2

(n− 1)xn−2 =
x2

(1− x)2

and
∑

n≥2

(

n−1
∑

k=1

ak

)

xn

n
=
∑

n≥1

(

n
∑

k=0

ak

)

xn+1

n+ 1
(since a0 = 0)

=

∫ x

0

∑

n≥0

(

n
∑

k=0

ak

)

snds

=

∫ x

0

a(s)× 1

1− s
ds .

Hence,

a(x) =
x2

(1− x)2
+ 2

∫ x

0

a(s)

1− s
ds ,

and, taking the derivative,

a′(x) =
2x

(1− x)2
+

2x2

(1− x)3
+

2a(x)

1− x
. (14.3)

Equation (14.3) is a differential equation which can be solved by the usual meth-

ods:

• First solve the associated homogeneous equation

a′(x)

a(x)
=

2

1− x
,

hence

a(x) =
λ

(1− x)2
.

• Then reporting the result in (14.3) and applying the method of variation of

parameters, we have

λ′(x)

(1− x)2
+

2λ(x)

(1− x)3
=

2x

(1− x)2
+

2x2

(1− x)3
+

2λ(x)

(1− x)3
,

Quicksort 287

and, after simplifications,

λ′(x) = 2x+
2x2

1− x
= 2x+

2(1− x)2 − 4(1− x) + 2

1− x

= −2 + 2

1− x
.

(We computed the partial fraction expansion of the rational function
2x2

1− x
.)

Integrating we obtain

λ(x) = −2x+ 2 log
1

1− x
+ c

and, since λ(0) = a0 = 0, we have c = 0. Hence, finally,

a(x) =
2

(1− x)2
(log

1

1− x
− x) .

But

1

(1− x)2
log

1

1− x
=
∑

n≥0

(n+ 1)Hn+1x
n − 1

(1− x)2
(see Example 8.10)

=
∑

n≥0

(n+ 1)Hn+1x
n −

∑

n≥0

(n+ 1)xn

and
x

(1− x)2
=
∑

n≥0

(n+ 1)xn+1,

hence,

an = 2(n+ 1)Hn+1 − 2(n+ 1)− 2n = 2(n+ 1)Hn − 4n− 2.

We thus have

an ∼ 2nHn = θ(n log n)

since the order of magnitude of Hn is log n.

Exercise 14.5 Verify by the same method that the upper bound bn of the inequalities
giving the average complexity of Quicksort, which is defined by the recurrence equation

bn = n+ 1 +
2

n

n−1
∑

k=1

bk, n ≥ 2, b0 = b1 = 0,

is equal to

bn = 2(n+ 1)Hn −
8n+ 2

3
, n ≥ 2. ♦

288 14. Applications and examples

14.2 Euclid’s algorithm

14.2.1 Euclid’s algorithm

This algorithm takes as input two integers u, v ∈ IN and gives as output their
gcd, namely, the greatest integer d such that:

d | u , d | v and ∀d′ (d′ | u and d′ | v =⇒ d′ | d),
where d | u is an abbreviation for ‘d divides u’.

The idea of the algorithm is as follows: we assume 0 ≤ v ≤ u. If v = 0 then
gcd(u, v) = d = u. Otherwise, we use the property given below.

Lemma 14.1 If u = vq + r with 0 ≤ r < v, then gcd(u, v) = gcd(v, r).

Proof. By induction. See Exercise 14.6. ⊓⊔
We thus inductively substitute the computation of gcd(v, r) for the computa-

tion of gcd(u, v), where r is the remainder of the division of u by v. Formally,

the algorithm is:

program Euclid
var u,v,r: integer
begin

read u,v
if u < 0 then u:= -u endif

if v < 0 then v:= -v endif

if u = 0 and v = 0 then

write gcd undefined
otherwise

while v 6= 0 do

r:= remainder of the division of u by v
u:= v
v:= r

endwhile

write u
endif

end

Exercise 14.6 Show that Euclid’s algorithm terminates and computes the greatest
common divisor of its arguments. Hint: an induction on the value of the variable v in
the loop will do the job. (See Chapter 3 and Section 14.3.) ♦

The space complexity of this algorithm is quite simple: only three variables.

The time complexity can be measured according to various criteria: number of
operations performed, possibly multiplied by a factor measuring the cost of the
operation, etc. We will choose as the complexity measure the number n of times

Euclid’s algorithm 289

we go through the ‘WHILE’ loop; this implicitly assumes that the costs of the

assignments and the divisions performed in a loop are integrated in the cost of
executing that loop, and we count only the ‘number of divisions performed’ before
obtaining the gcd.

The best-case complexity (case when (v = 0)) is n = 0. We will now study
the worst-case complexity. This complexity was first studied in the eighteenth

century using Fibonacci numbers.

14.2.2 Complexity of Euclid’s algorithm in the worst-case

In the preceding section we studied the time complexity, and we characterized it
by the number of divisions to be performed in order to obtain the gcd. It thus
suffices to evaluate this number of divisions.

Proposition 14.2 Let 0 < v ≤ u. Then

(i)
v

u
can be represented by a continued fraction, namely, an expression of the

form
v

u
=

1

a1 +
1

a2 +
1

· · ·+ 1

an−1 +
1

an

where all the ais are positive integers and an 6= 1.
(ii) The number of divisions performed by Euclid’s algorithm for obtaining the

gcd of u and v is equal to the number of coefficients ai of the continued fraction

representing
v

u
.

Before sketching the proof, note that in order to obtain the worst-case com-

plexity it is enough to minimize u and v with respect to n, thus obtaining the
least possible u and v for each n, and to this end we will see that it will suffice to

minimize the ais. We only sketch the proofs and invite the reader to fill in the
details as an exercise.

Lemma 14.3 The continued fraction

e =
v

u
=

1

a1 +
1

a2 +
1

· · ·+ 1

an−1 +
1

an

290 14. Applications and examples

can be rewritten as
Qn−1(a2, . . . , an)

Qn(a1, . . . , an)
where the Qis are polynomials in the ais,

with positive integer coefficients, and where the ais are the successive quotients

obtained by Euclid’s algorithm applied to the pair (u, v), with u = Qn(a1, . . . , an)
and v = Qn−1(a2, . . . , an).

Proof. By induction on n.

Basis: If n = 2,
1

a1 +
1

a2

=
a2

a1a2 + 1
and

Q1(a2) = a2 , Q2(a1, a2) = a1a2 + 1 ;

moreover, letting u = a1v + 1 and v = a2, we have gcd(u, v) = 1.
Inductive step: Assume the result holds for p, and let us prove that it holds for

n = p+ 1. Let e =
1

a1 + e′
, where

e′ =
1

a2 +
1

· · ·+ 1

an−1 +
1

an

then, by the induction hypothesis,

e′ =
v′

u′
=

Qp−1(a3, . . . , an)

Qp(a2, . . . , an)
,

where Qp−1 and Qp are polynomials in the ais, with positive integral coefficients,

v′ < u′, and a2, . . . , an are the successive quotients obtained in the computation
of gcd(u′, v′). Then,

e =
1

a1 +
v′

u′

=
u′

a1u′ + v′
.

The integers

u = a1u
′ + v′ = Qn(a1, . . . , an) = a1Qp(a2, . . . , an) +Qp−1(a3, . . . , an) ,

v = u′ = Qn−1(a2, . . . , an) = Qp(a2, . . . , an)

have the required form, and u′ < a1u
′ + v′. The quotient of a1u

′ + v′ by u′ is a1 ,

and gcd(a1u
′ + v′, u′) = gcd(u′, v′). Hence the result. ⊓⊔

Euclid’s algorithm 291

Remark 14.4

1. In the preceding proof we could have started the induction with n = 1 instead
of n = 2.
2. The preceding proof, moreover, shows that the recurrence defining the poly-

nomials Qn is given by

Qn(a1, . . . , an) = a1Qn−1(a2, . . . , an) +Qn−2(a3, . . . , an).

The proposition immediately follows from Lemma 14.3.
Because all the coefficients of the polynomials Qn are positive integers, the

worst-case complexity (namely, the greatest possible n for the least possible u
and v) will be obtained when all the ais with i < n are equal to 1 and an = 2.

So, for a given n, the least possible u and v whose gcd requires n divisions are
determined by the recurrence

un = Qn(1, . . . , 1, 2) = 1×Qn−1(1, . . . , 1, 2) +Qn−2(1, . . . , 1, 2) ,

and

vn = Qn−1(1, . . . , 1, 2) .

un and vn are obtained by solving: un = un−1 + un−2 and vn = un−1. (The
verification is left to the reader.)

We thus have to solve the recurrence un = un−1 + un−2, with u0 = 1, u1 = 2.
Shortly, we sketch various methods for so doing, and refer the reader to Chapter

7 for more details about recurrence relations.

14.2.3 Fibonacci numbers

The uns such that un = un−1 + un−2 are called the Fibonacci numbers, and,
following tradition, we will denote them by Fn. We thus want to determine Fn

given that
Fn = Fn−1 + Fn−2 and F0 = 0 F1 = 1 . (14.4)

(We will have: un = Fn+2 , un−1 = Fn+1.)

First method: the characteristic polynomial

We look for a solution of the form Fn = rn. We deduce rn = rn−1 + rn−2, and

hence r2 = r + 1, which has two roots r =
1±
√
5

2
. Then the general solution

of (14.4) is of the form: λrn1 + µrn2 , where r1 =
1 +
√
5

2
and r2 =

1−
√
5

2
;

moreover, λ + µ = F0 = 0 and λr1 + µr2 = 1, and hence λ = −µ = 1/
√
5, and

Fn = 1/
√
5× (rn1 − rn2).

292 14. Applications and examples

For evaluating the complexity, we are interested in large values of n. When

n tends to infinity, lim
n→∞

rn2 = 0 and lim
n→∞

rn1 = ∞, and thus Fn is equivalent to

rn1 /
√
5 when n → ∞ (see Chapter 9 on asymptotic behaviours). Consequently,

if un is the Fibonacci number Fn+2, and vn is the Fibonacci number Fn+1, the
number of divisions performed by Euclid’s algorithm will be equal to n, and by

the asymptotic behaviour of Fn we will have:

un = Fn+2 ∼
rn+2
1√
5

,

and thus n+ 2 ∼ logr1(
√
5un) and finally n ∼ logr1(

√
5un).

The worst-case complexity is thus at most logr1(
√
5u). This example shows

us that, in order to evaluate the complexity of a very simple algorithm such
as Euclid’s algorithm, we already need tools as elaborate as inductive proofs,

methods for solving recurrences and methods for studying asymptotic behaviours,
to which chapters of this book have been devoted. Before concluding the present
study, we briefly sketch another method for solving recurrences.

Second method: matrix method

Fn+1 = Fn + Fn−1 can be written in the form of a linear system:

Fn+1 = Fn + Fn−1

Fn = Fn

⇐⇒
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Let M be the matrix

M =

(

1 1
1 0

)

.

We have
(

Fn+1

Fn

)

= M

(

Fn

Fn−1

)

= · · · = Mn

(

F1

F0

)

= Mn

(

1
0

)

.

It thus suffices to compute the nth power of M . To this end, we compute the

eigenvalues (we find r1 and r2) and diagonalize M . Hence,

N =

(

r1 0
0 r2

)

= A−1MA and Mn = ANnA−1 = A

(

rn1 0
0 rn2

)

A−1.

(A is the transition matrix from M to N .)

Third method: generating series

See Example 8.2.

Exercise 14.7 Compute the continued fraction corresponding to v/u with v = 8 and
u = 29. What is the number n of divisions needed for obtaining gcd(8, 29) ? ♦

Proofs of program properties and termination 293

14.3 Proofs of program properties and termination

To conclude the present chapter, we will show how to use inductive proofs to
verify properties of programs. Our goal is not to build a program prover but

simply to show, with some examples, how to use proofs by induction in that
area. Essentially, proofs by induction are useful for iterative loops as well as

recursive processes (recursive procedures, functions, clauses, etc.).
Consider the following program:

program square
var a,b,c: integer
begin

read a
if a < 0 then

a:= -a
endif

b:= a
c:= 0
while b 6= 0 do

c:= c + a
b:= b - 1

endwhile

write c
end

We will show that this program computes and writes a2. The first point to be
verified is that we will eventually exit the loop. We proceed as follows:

• Before entering the loop, the value of b is a positive integer.

• The value of b is decreased at each execution of the loop. This value will
thus eventually become zero.

• When the value of b is zero, we exit the loop.

Once we have proved that the loop terminates, we must check that the result is

correct. For so doing, we show that the property I(a, b, c): ‘a2 = c+ b× a’ holds
at each execution of the loop. Let bn and cn be the values of the variables b and

c after the nth execution of the loop. Let P (n) be the property ‘a2 = cn+bn×a’.
We must now verify that ∀n ∈ IN, P (n). The proof is by induction:

• b0 = a and c0 = 0, and thus P (0) is true.
• Let n ∈ IN, and assume P (n). We have bn+1 = bn − 1 and cn+1 = cn + a.

We deduce cn+1 + bn+1 × a = cn + a + (bn − 1) × a = cn + bn × a = a2, which
proves that P (n+ 1) is true.

As a result, on exit of the loop both b = 0 and I(a, b, c) hold. Thus a2 = c+0×a
= c, which shows that the result of the program is a2.

294 14. Applications and examples

The basis for proving the correctness of a program is formalized by Hoare’s

assertion method. Let p, q be two first order formulas, and let S be a program; S
is said to be partially correct with respect to initial assertion p and final assertion

q if and only if whenever p is true for the input values of S, then q is true for the

output values of S. This is denoted by: p{S}q.
S is said to be totally correct with respect to initial assertion p and final asser-

tion q if and only if whenever p is true for the input values of S, then S terminates

and S is partially correct with respect to p and q.

We sketch a deductive system for proving partial correctness of iterative pro-

gram.

The axioms are:

for any assignment x:=t, and any formula p, p(t){x := t}p(x),
i.e. if p(t) holds and we assign t to x then p(x) holds.

The inference rules are:

p{S1}q q{S2}r
p{S1; S2}r

composition

(p ∧ b) {S} q
(

(p ∧ ¬b) =⇒ q
)

p {if b then S endif} qconditional

(p ∧ b) {S1} q (p ∧ ¬b) {S2} q
p {if b then S1 otherwise S2 endif} q

(p ∧ b) {S} p
p {while b do S endwhile} (p ∧ ¬b)loop invariant

(p =⇒ q) q{S}r (r =⇒ s)

p{S}sconsequence

The rules are to be read as: if the formula(s) above the horizontal line hold, then
the formula below the horizontal line also holds. For instance, the composition

rule states that: assume that if p is true and S1 executes and terminates, then
q is true and, moreover, if q is true and S2 executes and terminates, then r is
true; with those assumptions, if p is true and S = S1;S2 executes and terminates,

where ‘;’ denotes sequential composition, then r is true.

Proofs of program properties and termination 295

Example 14.5

1. Consider the program segment S defined by

c′:= c + a

b′:= b - 1

and let p be (a2 = ab + c); then, by the consequence rule and the axioms for
assignment, we have that

p {c′:= c + a} (a2 = ab+ c′ − a).

Applying the consequence rule
p {c′:= c + a} (a2 = a(b− 1) + c′).

Let q be (a2 = a(b− 1) + c′); then by the axioms for assignment
q {b′:= b-1} (a2 = ab′ + c′).

Applying now the composition rule, we obtain

(a2 = ab+ c) {S} (a2 = ab′ + c′).

2. Consider the program segment S′ defined by

if a < 0 then a := −a endif

Applying the conditional rule and the assignment axioms, we can deduce that:

p {S′} q holds, where p is ‘a is an integer’ and q is (a ≥ 0).

3. First, we give the intuition behind the loop invariant rule. Assertion p is

said to be a loop invariant if p holds before entering the loop and if p remains
true at each execution of the loop. Because the loop is executed until condition

b becomes false, then, when exiting the loop (if this occurs), ¬b ∧ p must hold.

Consider the program segment S′′ defined by

while b 6= 0 do

c:= c + a
b:= b - 1
endwhile

and let p be (a2 = ab + c), then, by the loop invariant rule and part 1 of the
present example, we have that: p {S′′}

(

p ∧ (b = 0)
)

.

Combining parts 1, 2 and 3 of Example 14.5, with the composition rule, we

conclude that program square is partially correct with respect to the initial
assertion integer(a) and the final assertion (a2 = ab + c) ∧ (b = 0). This shows

that program square indeed computes a2. In order to picture the whole proof
at a glance, we annotate program square with the final intermediate assertions;
each assertion is written to the right of the instruction after which it is true; we

296 14. Applications and examples

thus have

program square
var a,b,c: integer
begin

read a integer(a)
if a < 0 then

a:= -a
endif a ≥ 0
b:= a
c:= 0 a2 = ab+ c
while b 6= 0 do

c:= c + a
b:= b - 1

endwhile (a2 = ab+ c) ∧ (b = 0)
write c (a2 = c)
end

We can show the axioms and rules of our deductive system for proving partial

correctness of iterative program are sound, so that any statement p{S}q obtained
by this deductive system will be valid. This system is, however, not complete, and

it can be shown that there does not exist a complete deductive system for proving
all valid partial correctness assertions, even for a toy programming language.

(Hard.)

Exercise 14.8 Show that the program power terminates and writes the result ak (with
the convention 00 = 1). ♦

program power
var a,k,r: integer
begin

read a,k
n:= k
if n < 0 and a = 0 then

write undefined result
otherwise

r:= 1
while n < 0 do

r:= r / a
n:= n+1

endwhile

while n > 0 do

r:= r * a
n:= n-1

endwhile

write r
endif

end

Proofs of program properties and termination 297

The case of recursive programs is slightly more complex because several recur-

sive calls can occur in the same program and several cases can also occur when
the result is obtained without any recursive call. Recursive programs still can,
however, be studied in a similar way. Consider the following procedure listing

the inorder traversal of a binary tree (see Example 3.24):

procedure inorder(x: BT)
begin

if x 6= ∅ then

inorder(LeftChild(x))
write root(x)
inorder(RightChild(x))

endif

end

In order to prove termination, we can consider the mapping h:BT −→ IN giving
the height of a binary tree. The value of h(x) strictly decreases at each recursive

call, namely, h(LeftChild(x)) < h(x) and h(RightChild(x)) < h(x). Since there
can be no strictly decreasing infinite sequence in IN, we deduce that there are
a finite number of recursive calls. Consequently, the procedure inorder always

terminates.
Note that the choice of the mapping h is arbitrary. We could have chosen the

mapping n:BT −→ IN giving the number of nodes of a tree or even the mapping
id:BT −→ BT . Indeed, the relation ‘to be a subtree of’ is a well-founded ordering

on the set BT of binary trees. It is formally defined as the reflexive and transitive
closure of the relation

∀a ∈ A, ∀l, r ∈ BT, l < (a, l, r) and r < (a, l, r) .

Moreover, it verifies LeftChild(x) < x and RightChild(x) < x, which proves

that the procedure inorder terminates.
Usually, to prove the termination of a recursive program we associate it with

an expression that is given its values in a well-founded ordering. Most often, this

expression depends only on the arguments of the recursive program. Let V be
the value of the expression applied to the arguments of the program. (V = h(x)

in the above example.) We must then verify that, for each recursive call, the
value of this expression for the parameters of the call (h(LeftChild(x)) and

h(RightChild(x)) in the above example) is strictly less than V . As a result we
can conclude that the program terminates.

Similarly, in order to prove a property of a recursive program, we associate with
it a property P connecting the arguments of the program with its result. We then
directly show that P holds in all the cases when the program terminates without

298 14. Applications and examples

recursive calls. Assuming that the property holds for all the recursive calls of

the program, we prove that it still holds when the program terminates. Thus we
have another inductive proof that P holds on exit of the program regardless of
the values of its initial arguments. Consider, for instance, the following function:

function power(a,n: integer): y: integer
begin

if n = 0 then

y:=1
otherwise

if n = 1 then

y:=a
otherwise

if n is even then

y:=power(a * a, n / 2)
otherwise

y:=a * power(a * a, (n - 1) / 2)
endif

endif

endif

return(y)
end

Let us show that, ∀n ≥ 0, this function computes an. We thus consider the
property P : ‘power(a, n) = an’ and we prove that it holds when the function

returns its value y:

• There are two cases where the function directly returns a value: if n = 0,
the result is 1 = a0, and if n = 1, the result is a = a1. The property P is thus
verified in both cases.

• If n is even, the result is power(a× a, n/2). By the induction hypothesis we
have power(a× a, n/2) = (a× a)n/2 = an. The property P still holds.

• Similarly, if n is odd, the result is a×power(a×a, (n−1)/2). By the induction
hypothesis we have

power(a× a, (n− 1)/2) = (a× a)(n−1)/2 = an−1.

We deduce that the result is a× an−1 = an and property P still holds.

This can be formalized as an Hoare inference rule for recursion. Let

f(x : y) body

be a recursive procedure with argument x, result y and defined by body; let p
(resp. q) be an initial (resp. final) assertion; we extend Hoare’s inference rules

Proofs of program properties and termination 299

for iterative programs by an inference rule for recursion:

recursion

(

p{f(x : y)}q
)

=⇒
(

p{body}q
)

p {f(x : y) body} q ,

which means: if, when we assume the partial correctness of all internal calls with
respect to p and q we can prove the partial correctness of body with respect to p
and q, then the recursive procedure f(x : y) body is indeed partially correct with

respect to p and q.

In order to apply this rule to the preceding program power, note that p is:
integer(a, n), and q is: y = an. power annotated with the final assertions is given

below:

function power(a,n: integer): y: integer
begin

if n = 0 then

y:= 1 (n = 0) ∧ (y = 1)
otherwise

if n = 1 then

y:= a (n = 1) ∧ (y = a)
otherwise

if n is even then

y:= power(a*a, n/2)
(

even(n)
)

∧
(

y = (a× a)n/2
)

otherwise

y:= a*power(a*a, (n - 1)/2)
(

odd(n)
)

∧
(

y = a×(a×a)n−1

2

)

endif

endif

endif (y = an)
return(y) (y = an)
end

Exercise 14.9 Show that ∀n ∈ IN, the call Fact(n) of the Fact function defined below
terminates and computes n! ♦

function Fact(n: integer): y: integer
begin

if n = 0 then y:= 1
otherwise y:= n*Fact(n-1)
endif

return(y)
end

300 14. Applications and examples

Let the Ackermann function be defined by

function Ackermann(n,m: integer): y: integer
begin

if n = 0 then

y:= (m + 1)
otherwise

if m = 0 then

y:= (Ackermann(n - 1,1))
otherwise

y:= (Ackermann(n - 1, Ackermann(n, m - 1))
endif

endif

return(y)
end

Exercise 14.10 Show that ∀n,m ∈ IN, the call Ackermann(n,m) terminates. Hint:
use the lexicographic ordering on IN2 (see Example 2.30). ♦

Exercise 14.11 Show that in the PROLOG program given below, the call Q(x) ter-
minates with the result true, ∀x ∈ IN. ♦

Q(x) ←− (x = 0)
Q(x) ←− (y = x - 1) ∧ Q(y)

Exercise 14.12

1. Prove that Quicksort and pivot terminate.
2. Prove that Quicksort is partially correct with respect to the final assertion q
i ≤ k ≤ l ≤ j =⇒

(

T (k) ≤ T (l)
)

. ♦

