
chapter 6

COMBINATORIAL ALGEBRA

In the present chapter we are interested in tools and techniques for counting

finite sets and their subsets without enumerating all their elements. Discrete
probabilities (see Chapter 12) are also rooted in the study of combinatorics. We

start by recalling well-known results about permutations and combinations. We
then study some counting techniques for finite sets which enable us to count the

number of elements in a union, in a partition and in various combinations of finite
sets.

We advise the following further reading:

Ronald Graham, Donald Knuth, Oren Patashnik, Concrete Mathematics, Addi-
son-Wesley, London (1989).

Donald Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,

London (1973).

6.1 Basics

6.1.1 Generalities

Definition 6.1 A permutation p of a finite set E is a bijection from E to E.

The number of permutations of a set with n elements will be denoted by Pn .

Identifying E with {1, . . . , n}, a permutation p is characterized by a bijection
{1, . . . , n} −→ {1, . . . , n} determining a total ordering on the elements of E, given

by the sequence p(1), p(2), . . . , p(n). Because there are n possible choices for p(1),
it follows that there are (n− 1) possible choices for p(2), etc. (the word ‘etc.’

hides a proof by induction), therefore, Pn = n!.
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108 6. Combinatorial algebra

Definition 6.2

1. A k-permutation, k ≤ n, of a finite set E with cardinality n is a totally
ordered subset of E with k elements. Ak

n denotes the number of k-permutations
of a set with n elements.

2. A k-combination, k ≤ n, of a finite set E with cardinality n is a subset of
E with k elements.

(

n
k

)

denotes the number of k-combinations of a set with n

elements.

Exercise 6.1 Show that Ak
n =

n!

(n− k)!
. ♦

Combinations are unordered, whilst k-permutations are ordered; hence each k-
combination yields k! k-permutations, and thus Ak

n = k!
(

n
k

)

. We have An
n = Pn =

n!, A0
n = 1, A1

n = n. We also have Ak
n =

n!

(n− k)!
(see Exercise 6.1), and thus

(

n
k

)

=
n!

(n− k)!k!
=
(

n
n−k

)

.

Example 6.3 Let E = {a, b, c}. Then

• (a, b, c), (b, c, a), (c, a, b), (b, a, c), (c, b, a), (a, c, b) are the permutations of E,
• (a, b), (b, a), (a, c), (c, a), (b, c), (c, b) are the 2-permutations of E and
• {a, b} , {a, c}, {c, b} are the 2-combinations of E.

Remark 6.4 A k-permutation is characterized by an injection

i: {1, . . . , k} −→ E,

and a k-combination is characterized by the image of an injection {1, . . . , k} −→
E. As k! different injections have the same image, we return to the previously
stated result: Ak

n = k!
(

n
k

)

.

Exercise 6.2 Show that

(

a+ b

p

)

=

inf(p,a)
∑

k=0

(

a

k

)(

b

p− k

)

, with p ≤ a+ b. ♦

Exercise 6.3

1. Show that

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.

2. Show that

n
∑

k=0

n−k
∑

i=0

(

n

k

)(

n

i

)(

n

i+ k

)

=

(

3n

n

)

. ♦

The k-permutations (resp. the k-combinations) are also called k-permutations
without repetition (resp. k-combinations without repetition). Lastly, terms of

the form
(

n
p

)

are also called binomial coefficients or coefficients of Pascal’s triangle.
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Proposition 6.5 (Recurrence relations on the
(

n
k

)

s) The binomial coefficients

verify the identities

(i)

(

n

k

)

=

(

n

n− k

)

for 0 ≤ k ≤ n ,

(ii)

(

n

k

)

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

for 2 ≤ k , 1 ≤ n . (6.1)

Proof. We have already proved (i). To prove (ii), choose an element e ∈ E, where
E has cardinality n, and divide the

(

n
k

)

combinations in two disjoint sets:

• those combinations which do not contain e, of which there are
(

n−1

k

)

, and
• those combinations which contain e, of which there are

(

n−1

k−1

)

.

These two sets are disjoint, so
(

n
k

)

=
(

n−1

k

)

+
(

n−1

k−1

)

. ⊓⊔

The binomial coefficients can be represented by Pascal’s triangle, using the
recurrence relation (6.1) for computing the successive

(

n
k

)

s.

k 0 1 2 3 4
n

0 1 0 0 0 0
1 1 1 0 0 0
2 1 2 1 0 0
3 1 3 3 1 0
4 1 4 6 4 1
5 . . . . . . . . . . . . . .

Proposition 6.6 (Binomial theorem) Let A be a ring, a, b ∈ A such that
ab = ba, and n ∈ IN. The following identity, called the binomial identity, holds:

(a+ b)n =

(

n

0

)

an +

(

n

1

)

an−1b+ · · ·+

(

n

p

)

an−pbp + · · ·+

(

n

n

)

bn

=
n
∑

p=0

(

n

p

)

an−pbp .

Proof. By induction on n.
(B) If n = 0, (a+ b)0 =

(

0

0

)

= 1. If n = 1, a+ b =
(

1

0

)

a+
(

1

1

)

b.

(I) Assume (a + b)n =
∑n

p=0

(

n
p

)

an−pbp. Then, taking into account that (a +

b)n+1 = (a+ b)n(a+ b), we have

(a+ b)n+1 =

(

n

0

)

an+1 +

n
∑

p=1

(

(

n

p− 1

)

+

(

n

p

)

)

an+1−pbp +

(

n

n

)

bn+1 .
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Noting that
(

n+1

0

)

=
(

n
0

)

=
(

n+1

n+1

)

=
(

n
n

)

= 1, and that
(

n
p−1

)

+
(

n
p

)

=
(

n+1

p

)

, we

indeed have (a+ b)n+1 =
∑n+1

p=0

(

n+1

p

)

an+1−pbp. ⊓⊔

Exercise 6.4 Compute the number N of partitions of a set with np elements in n
subsets with p elements. ♦

Exercise 6.5 Compute S =

p
∑

q=0

(−1)q
(

n

q

)(

n− q

p− q

)

, for p ≤ n. ♦

Exercise 6.6

1. Show that

k
∑

p=0

(

n+ p

p

)

=

(

n+ k + 1

k

)

, for k ≥ 0.

2. Show that

n
∑

k=p

(

k

p

)

=

(

p

p

)

+

(

p+ 1

p

)

+ · · ·+

(

n

p

)

=

(

n+ 1

p+ 1

)

.

Deduce the value of
∑n

k=1
kp, for p = 1, 2, 3. ♦

Exercise 6.7 Let P (x) be a polynomial of degree less than or equal to n. Show that
∑n+1

i=0
(−1)i

(

n+1
i

)

P (x+ i) = 0. ♦

6.1.2 Applications

The notions and results of the preceding section are very basic, but they can
nevertheless be applied to counting finite sets, evaluating discrete probabilities

or determining complexity and feasibility of algorithms. We illustrate such ap-
plications by examples and exercises.

Remark 6.7 Recall (see Example 1.5) that the characteristic function of a

subset A of a set E is the function

χA : E −→ {0, 1} ,

defined by

χA(x) =
{

1 if x ∈ A,
0 otherwise.

Conversely, any function χ:E −→ {0, 1} defines the subset A = χ−1({1}) of E.

We will consider that {0, 1} ⊆ IB, or {0, 1} ⊆ IN; the choice will be clear by
the context.
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Example 6.8 We have various methods for computing

Sn =
(

n
0

)

+
(

n
1

)

+ · · ·+
(

n
n

)

.

1. By Remark 6.7, there is a one-to-one correspondence between the set of

subsets of E and the set of functions E −→ IB. Thus

Sn = |P({1, . . . , n})| = 2n,

since there are 2n functions {1, . . . , n} −→ IB.

2. Note that
(

n
k

)

represents the number of subsets with k elements of {1, . . . , n}.
We introduce the notation + for the disjoint union: if A and B are disjoint, i.e.
if A ∩ B = ∅, then A ∪ B is denoted by A + B, and this notation is justified by

the fact that |A+B| = |A|+ |B|. Note, finally, that if Pk denotes the set of k-
element subsets of {1, . . . , n}, P0, . . . , Pn form a partition of the set P({1, . . . , n})
of subsets of {1, . . . , n}. Since

(

n
k

)

= |Pk| and

2n = |P({1, . . . , n})| = |P0 + P1 + · · ·+ Pn| = |P0|+ |P1|+ · · ·+ |Pn| ,

we deduce 2n =
(

n
0

)

+ · · ·+
(

n
n

)

.

3. Check that Sn = 2Sn−1 for n ≥ 1. We apply the recurrence relation (6.1) on

the
(

n
k

)

s: then

Sn =

(

n

0

)

+

(

n

1

)

+ · · ·+

(

n

n− 1

)

+

(

n

k

)

+ · · ·+

(

n

n

)

=

(

n

0

)

+

(

n− 1

1

)

+

(

n− 1

2

)

+ · · ·+

(

n− 1

k

)

+ · · ·+

(

n− 1

n− 1

)

+

(

n− 1

0

)

+

(

n− 1

1

)

+ · · ·+

(

n− 1

k − 1

)

+ · · ·+

(

n− 1

n− 2

)

+

(

n

n

)

= 2Sn−1 (since

(

n

0

)

=

(

n− 1

0

)

= 1 =

(

n− 1

n− 1

)

=

(

n

n

)

).

Hence, noting that S0 = 1 and multiplying the equalities Sn = 2Sn−1 yields
Sn = 2n.

4. Finally, we can apply the binomial identity, Proposition 6.6, with a = b = 1,
and deduce Sn = (1 + 1)n.

Exercise 6.8 Given twenty-seven white cubes, we stack them to build a cube three
times larger. The outside of the big cube is painted in red, then the big cube is pulled
down and the pieces are given to a blind person who is asked to rebuild it. Compute
p = nf/n, where nf is the number of ways to rebuild a red cube (number of favourable
cases) and n is the total number of ways to rebuild a cube (number of possible cases)?
(p is the probability that the rebuilt cube is red.) ♦
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Exercise 6.9 How many five-card hands, chosen from a deck of thirty-two cards (four
suits), are there:

1. containing a four-of-a-kind (four cards of equal face values)?
2. containing a three-of-a-kind (three cards of equal face values) and nothing else?
3. containing a pair (two cards of equal face values) and nothing else? ♦

Exercise 6.10 Compute the number of strings of sixteen bits containing eight bits
equal to 1. ♦

Example 6.9 This example shows how to use combinatorial algebra to prove
the (in)tractability of some algorithms by evaluating their complexity a priori.

We consider the problem of a travelling salesman who wishes to visit n pairwise
connected cities {1, . . . , n} (i.e. forming a complete graph with n nodes). The

distance between cities i and j is denoted by cij . He starts and ends his tour in
city 1, visits each city exactly once, and wants to drive as few miles as possible.

See also Chapter 10.

The simplest algorithm is to enumerate all the cycles starting at node 1 and to

compute the length of each cycle; then choosing the shortest possible cycle will do
the job. For each cycle consisting of n cities, the computation of its length needs

n−1 additions, and since there are (n−1)! cycles starting at node 1, the total cost
of such an algorithm is (n− 1)× (n− 1)! additions. For a tour of fifty cities, we

have 49×49! (circa 3·1064) additions (see Chapter 9 on asymptotic behaviours for
the order of magnitude of n!). A computer performing 109 additions per second
will need 1047 years to complete the computation of the optimal path. This cost

is prohibitive for the sales of the travelling salesman. Practically, this algorithm
will thus be excluded, and we must consider heuristic methods which will involve

some cycles only. We will no longer find the shortest path but only the shortest
path among the class of considered paths, the asset being that this path will be

obtained after a reasonable amount of time.

6.2 Applications: counting techniques for finite sets

6.2.1 Fundamentals

Here we recall results which can be found in a slightly different form in Chapter 4.
We generalize the notion of characteristic function as follows. Let f :E → {0, 1, 2}
be defined by

f(x) =

{

1 if x ∈ A1,
2 if x ∈ A2 and x /∈ A1,
0 if x /∈ A2.

Exercise 6.11 E is a finite set with n elements.
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1. What is the number N1 of pairs (A1, A2) such that

A1 ⊆ E , A2 ⊆ E , and A1 ⊆ A2 ? (6.2)

2. Let N2 be the number of triples (A1, A2, A3) verifying

A1 ⊆ A2 ⊆ A3 ⊆ E. (6.3)

Compute N2. ♦

The operations on the subsets A of E will then correspond to operations on the

corresponding characteristic functions, and to the operations on IB through which
the operations on the characteristic functions are defined (see Section 4.1.3). An

operation on IB is described by its truth table. For example, the unary operation
corresponding to negation (or complement) is ¬x = 1− x with the truth table:

x 0 1

¬x 1 0

The binary operations corresponding to the disjunction x∨y and the conjunction

x ∧ y are described on IB by the tables:

∧ x 0 1
y

0 0 0
1 0 1

∨ x 0 1
y

0 0 1
1 1 1

and they can be characterized on IN by (see Example 4.6)

x ∧ y = xy and x ∨ y = x+ y − xy (= x+ y mod 2).

Lemma 6.10 Let A and B be two subsets of E, and let α = χA (resp. β = χB)

be the characteristic function of A (resp. B). Then α ∧ β = αβ (resp. α ∨ β =
α+ β − αβ) is the characteristic function of A ∩B (resp. A ∪B). ¬α = 1− α is
the characteristic function of Ā.

Lemma 6.11 A1 ∪ · · · ∪An = A1 ∩ · · · ∩ An. That is, the complement of a
union is the intersection of the complements.

Proof. See De Morgan’s laws in Chapter 1 or Proposition 4.3 in Chapter 4. ⊓⊔
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Lemma 6.12 |A| =
∑

e∈E χA(e) for any subset A of E.

Proof. Here, χA is considered to be a function with values in {0, 1} ⊆ IN. Since

e ∈ A ⇐⇒ χA(e) = 1,
∑

e∈E

χA(e) =
∑

e∈A

1 = |A|. ⊓⊔

6.2.2 Inclusion–exclusion principle and applications

We will apply the preceding techniques in order to compute the cardinality of

sets (unions of subsets of E, number of surjections, injections, etc.).

Proposition 6.13 Let Ai ⊆ E be subsets of E, for i = {1, . . . ,m}. Then, we
have Sylvester’s identity

|A1 ∪ · · · ∪Am| = |A1|+ · · ·+ |Am| −
∑

i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak|

+ · · ·+ (−1)p−1
∑

i1<···<ip

|Ai1 ∩ · · · ∩Aip |+ · · ·

+ (−1)m−1|A1 ∩ · · · ∩Am|

=

m
∑

p=1

(−1)p−1
∑

i1<···<ip

|Ai1 ∩ · · · ∩Aip |.

Proof. First method: We will apply the three lemmas stated at the end of the
preceding section. Let A = A1 ∪ · · · ∪Am, χA = 1−χ

A
; also let χAi

= αi. Then

χ
Ai

= 1− αi and, since A = A1 ∩ · · · ∩Am, we have

χ
A
=

m
∏

i=1

χ
Ai

=

m
∏

i=1

(1− αi)

= 1− (α1 + · · ·+ αm) +
∑

i<j

αiαj −
∑

i<j<k

αiαjαk + · · · .

We will then use

χA = 1− χ
A
= α1 + · · ·+ αm −

∑

i<j

αiαj +
∑

i<j<k

αiαjαk − · · ·

=

n
∑

p=1

(−1)p−1
∑

i1<i2<···<ip

αi1αi2 · · ·αip ,
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and we will apply Lemma 6.12, which tells us that |A| =
∑

e∈E χA(e). Thus

|A| =
∑

e∈E

χA(e) =
∑

e∈E

m
∑

p=1

(−1)p−1
∑

i1<···<ip

αi1(e) · · ·αip(e)

=

m
∑

p=1

(−1)p−1
∑

i1<···<ip

∑

e∈E

αi1(e) · · ·αip(e)

=

m
∑

p=1

(−1)p−1
∑

i1<···<ip

|Ai1 ∩ · · · ∩Aip |

(by noting that αi1 · · ·αip = χAi1
∩···∩Aip

).

Second method: By induction on m.

(B) Straightforward for m = 1 and m = 2.
(I) Assume

|A1 ∪ · · · ∪Am| =
m
∑

p=1

(−1)p−1
∑

1≤i1<···<ip≤m

|Ai1 ∩ · · · ∩Aip |

= |A1|+ · · ·+ |Am|

+
m
∑

p=2

(−1)p−1
∑

1≤i1<···<ip≤m

|Ai1 ∩ · · · ∩Aip | .

and compute, for m ≥ 2, |A1 ∪ · · · ∪Am ∪Am+1|. It follows that

|A1 ∪ · · · ∪Am ∪Am+1| = |A1 ∪ · · · ∪Am|+ |Am+1|

− |(A1 ∪ · · · ∪Am) ∩Am+1| .

Moreover, letting A′
i = Ai ∩Am+1, we have

(Ai1 ∪ · · · ∪Aip) ∩Am+1 = A′
i1
∪ · · · ∪A′

ip

and

(Ai1 ∩ · · · ∩Aip) ∩Am+1 = A′
i1
∩ · · · ∩A′

ip
;

hence, by the induction hypothesis

|(A1∪ · · · ∪Am) ∩Am+1| = |A′
1 ∪ · · · ∪A′

m|

= |A′
1|+ · · ·+ |A′

m|+
m
∑

p=2

(−1)p−1
∑

1≤i1<···<ip≤m

|A′
i1
∩ · · · ∩A′

ip
|

= |A′
1|+ · · ·+ |A′

m|

+

m
∑

p=2

(−1)p−1
∑

1≤i1<···<ip≤m

|Ai1 ∩ · · · ∩Aip ∩Am+1|
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and

|A1 ∪ · · · ∪Am ∪Am+1| = |A1|+ · · ·+ |Am|+ |Am+1| − |A′
1| − · · · − |A′

m|

+
m
∑

p=2

(−1)p−1
∑

1≤i1<···<ip≤m

|Ai1 ∩ · · · ∩Aip |

−
m
∑

p=2

(−1)p−1
∑

1≤i1<···<ip≤m

|Ai1 ∩ · · · ∩Aip ∩Am+1|

=
m+1
∑

p=1

(−1)p−1
∑

1≤i1<···<ip≤m+1

|Ai1 ∩ · · · ∩Aip | . ⊓⊔

Exercise 6.12 |E| = n, A ∩ B = ∅, |A| = n1, |B| = n2. Compute the number N of
subsets with p elements, with p ≥ 2, and with

1. exactly one element from A and one element from B,
2. at least one element from A and one element from B. ♦

Exercise 6.13 Let {a, b, c, d} be a four-letter alphabet. What are:

1. the number of strings of length n over this alphabet?
2. the number of strings of length n in which each of the letters a, b, c, d occurs at
least once? ♦

Exercise 6.14 Among the permutations of {a, b, c, d, e, f}, how many contain neither
‘ac’ nor ‘bde’ ? ♦

Exercise 6.15 What is the number un of binary strings with n bits containing neither
010 nor 11. ♦

Proposition 6.14 Let A and B be two sets with cardinality |A| = m and

|B| = n.

1. The number of mappings from A to B is nm.

2. The number of injections (or one-to-one mappings) from A to B is Am
n , if

m ≤ n.

3. The number of surjections (or onto mappings) from A to B is

Sm
n =







0 if m < n,
n! if m = n,
∑n

p=0
(−1)p

(

n
p

)

(n− p)m if m > n.

Proof.

1. Indeed, there are n possible choices for the image of each element a1, . . . , am
in A, thus nm choices altogether (see Proposition 1.9 (iv)). As an exercise, the
reader is invited to give a formal proof by induction on m.
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2. See Remark 6.4.

3. It is an application of the preceding proposition. The first two cases are
straightforward, and so the only case requiring a proof is the case when m > n.
We first compute the number of mappings from A to B. We then determine,

using the preceding proposition, the number of non-surjective mappings from A
to B. We finally deduce by difference the number of surjections from A to B,

since, clearly, the set of mappings from A to B is the disjoint union of surjections
on the one hand, and of mappings that are not surjections on the other hand.

Let N = {f :A −→ B / f non-surjective}; f is non-surjective if and only if
∃bi ∈ B such that bi /∈ f(A). Thus let,

Ai = {f :A −→ B / bi /∈ f(A)}, i = 1, . . . , n .

We will have

N = {f :A −→ B / f non-surjective}

= {f :A −→ B / f(A) 6= B} = A1 ∪ · · · ∪An .

By the preceding proposition, we thus have

|N | =
n
∑

p=1

(−1)p−1

(

∑

i1<···<ip

|Ai1 ∩ · · · ∩Aip |

)

and it suffices to compute |Ai1 ∩ · · · ∩Aip |. Note now that

Ai1 ∩ · · · ∩Aip = {f :A −→ B / bi1 /∈ f(A), . . . , bip /∈ f(A)}

= {f :A −→ B − {bi1 , . . . , bip}} ,

and thus Ai1 ∩ · · · ∩Aip is the set of mappings from A, a set with m elements, to
B−{bi1 , . . . , bip}, a set with n−p elements. There are (n−p)m such mappings by

Proposition 6.14, 1. Since, moreover, there are
(

n
p

)

possible choices of bi1 , . . . , bip
in {b1, . . . , bn}, we deduce |N | =

∑n

p−1
(−1)p−1

(

n
p

)

(n− p)m. Finally, noting that

nm =
(

n
0

)

(n− 0)m, we have

Sm
n = nm − |N | =

n
∑

p=0

(−1)p
(

n

p

)

(n− p)m.

Another way of computing Sm
n is given in Example 7.27. ⊓⊔

Exercise 6.16 A function f from {1, 2, . . . , n} to {1, 2, . . . ,m} is said to be increasing
if x < y implies f(x) < f(y).
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1. What is the number of increasing functions (in terms of n and m)?
2. What is the number of increasing functions such that

∃x: f(x) = k + 1 for m = 2k + 1 and k > 1 ?

3. What is the number of increasing functions such that, for a fixed k,

|{a / f(a) < k}| = |{a / f(a) > k}| ?

4. What is the number of injective functions such that

|{a / f(a) < k}| = |{a / f(a) > k}| ? ♦

6.3 Counting sequences and partitions

We now give some other counting formulas that will be of use in probability

theory.

Definition 6.15 A k-permutation with repetition allowed of a set E with n
elements is an ordered sequence with k elements from E in which each element

may occur arbitrarily often.

Example 6.16 Let E = {a, b, c}. Then aa, ab, ba, bb are 2-permutations with
repetition of E. Two k-permutations can differ by the ordering of their elements,

by their elements or by both.

Proposition 6.17 Let E be a set with cardinality n and k ∈ IN. (It is not
assumed that k ≤ n.) A k-permutation with repetition of E is defined by a
mapping from {1, . . . , k} to E. There are thus nk such k-permutations.

Definition 6.18 A k-combination with repetition of a set E with n elements is

an unordered set with k elements of E in which each element can occur arbitrarily
often.

A set whose elements can occur arbitrarily often is called a multiset. The differ-

ence between a k-combination with repetition and a k-permutation with repeti-
tion is the following: a k-combination with repetition is an unordered multiset of

elements, possibly repeated, whilst a k-permutation is an ordered sequence. For
instance the 3-permutations aba and baa correspond to the same 3-combination:

{a, a, b}. Two k-combinations with repetition can differ by their elements, by the
number of repetitions or by both. A k-combination with repetition of elements of

E = {1, . . . , n} will contain n1 occurrences of i1, . . . , np occurrences of ip, with
• ∀j, 1 ≤ ij ≤ n,
• n1 + · · ·+ np = k.
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Proposition 6.19 Let E be a set of cardinality n, and let k ∈ IN. A k-

combination with repetition of elements of E is defined by a mapping f from
E to {0, 1, . . . , k} such that

∑n

i=1
f(ei) = k. An element ei of E occurs in the

k-combination ji times if and only if f(ei) = ji .

Equivalently, a k-combination with repetition is defined by a solution of the
equation j1 + · · ·+ jn = k, with ji ∈ IN, ∀i ∈ {1, . . . , n}.

Proposition 6.20 The number of k-combinations with repetition of a set E
with n elements is

(

n+k−1

n−1

)

.

Proof. There is a one-to-one correspondence between k-combinations with repe-

tition and the sequences j1, . . . , jn such that j1 + · · ·+ jn = k. We can represent
such a sequence by the string of length n+ k − 1 over the alphabet {0, 1} given

by 0j110j21 . . . 0jn−110jn . (The rth sequence of 0s represents the number of rep-
etitions of er, and the 1s act as separators.)

Such a k-combination is thus determined by a string of length k + n − 1 over
the alphabet {0, 1} consisting of exactly n − 1 occurrences of 1. It thus suffices

to determine the number of such strings by characterizing them by the positions
where the 1s occur. There are

(

n+k−1

n−1

)

possible choices for fitting n − 1 1s in a
string of length n+ k − 1. ⊓⊔

Remark 6.21

1.
(

n+k−1

n−1

)

is also the number of monomials of degree k on n variables.

2.
(

n+k−1

n−1

)

is also the number of monotone mappings from {1, 2, . . . , k} to
{1, 2, . . . , n}.

Finally, we will study the partitions of a set with n elements in k disjoint sets
A1, . . . , Ak such that |Ai| = ni and

∑k

i=1
ni = n, and this will lead us to the

definition of multinomial coefficients.

Theorem 6.22 The number of partitions
(

n
n1,...,nk

)

of a set E with n elements

in k classes A1, . . . , Ak each having ni elements, with
∑k

i=1
ni = n, is

n!

n1! · · ·nk!
.

Proof. By induction on k.

(B) If k = 2, then choosing a n1-element set A1 defines a partition of E in two
disjoint sets A1, A2 with |A2| = n2 = n− n1, hence

(

n

n1, n2

)

=

(

n

n1

)

=
n!

n1!n2!
.

(I) Assume
(

n
n1,...,nk

)

=
n!

n1! · · ·nk!
, and let A1, . . . , Ak+1 be a partition of E in

k + 1 subsets. Let Bk = Ak ∪ Ak+1. The number of partitions A1, . . . , Ak−1, Bk
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of E is
(

n
n1,...,mk

)

, where mk = nk + nk+1, i.e.
n!

n1! · · ·nk−1!(nk + nk+1)!
. More-

over, the number of partitions of Bk in Ak ∪ Ak+1 is
(nk + nk+1)!

nk!nk+1!
. Hence, by

multiplication,
(

n

n1, . . . , nk, nk+1

)

=
n!

n1! · · ·nk!nk+1!
. ⊓⊔

The
(

n
n1,...,nk

)

s are also called the multinomial coefficients. We have the following

multinomial identity.

Proposition 6.23

(X1 + · · ·+Xk)
n =

∑

n1+···+nk=n

(

n

n1, . . . , nk

)

Xn1

1 · · ·Xnk

k .

Proof. See Exercise 6.17. ⊓⊔

Exercise 6.17 We are given n letters not assumed to be pairwise distinct: q1 letters
a1, . . . , and qp letters ap, with q1 + q2 + · · ·+ qp = n.

1. How many different strings of length n can be written using those n letters?
(a) Deduce a representation of the formal polynomial (X1 +X2 + · · ·+Xp)

n.
(b) Deduce an expression of the multinomial coefficients in terms of the bino-
mial coefficients.

2. Deduce that (k!)! is divisible by k!(k−1)!.
3. Compute the number of strings of length 13 that can be written with q1 = 5 letters
a1 , and q2 = 8 letters a2 . ♦

Exercise 6.18 Compute
∑n

p=0
p2
(

2n
2p

)

, for n ≥ 2.

Hint: Let g(x) =
∑n

p=1
p2
(

2n
2p

)

x2p−2 and f(x) = (1+x)2n+(1−x)2n, and find a relation

among g(x), f ′(x), and f ′′(x). ♦

Exercise 6.19 For n ∈ IN and p ∈ IN−{0}, denote by F (n, p) the number of p-tuples
(x1, . . . , xp) ∈ INp such that x1 + · · ·+ xp = n. Compute F (n, p).

Method 1
(a) Show that F (n, p+ 1) =

∑n

k=0
F (k, p).

(b) Show that
(

n+p

p

)

=
∑n

k=0

(

k+p−1
p−1

)

, for n ≥ 0, and p ≥ 1.

(c) Compute F (n, p).

Method 2
(a) Show that F (n, p+ 1) = F (n, p) + F (n− 1, p+ 1).

(b) Show that F (n, p) =
(

n+p−1
n

)

. ♦


