
chapter 4

BOOLEAN ALGEBRAS

In the middle of the nineteenth century the English mathematician George Boole
introduced the algebras which are now named after him. These algebras give

a mathematical basis to logical reasoning (see Chapter 5); they are also the
basis of electronic computer design via the physical implementation of Boolean

operations.

In this chapter we introduce Boolean algebras and their operations, and we

define Boolean functions which specify the operation performed by a Boolean
circuit, or the truth value of a logical formula. Finally, we show how to represent
a Boolean function by a polynomial expression built up using the basic operations

of Boolean algebras.

We recommend the following textbooks:

Garrett Birkhoff, Thomas Bartee, Modern Applied Algebra, McGraw Hill, New
York (1970).

Kenneth Ross, Charles Wright, Discrete Mathematics, Prentice Hall, London
(1988).

4.1 Boolean algebras

A Boolean algebra is a distributive and complemented lattice having at least two
elements.

Example 4.1 If E is a non-empty set, P(E), ordered by inclusion, is a Boolean

algebra. The condition E 6= ∅ ensures that P(E) has at least two elements.

4.1.1 Algebraic definition

A Boolean algebra can also be viewed as an algebraic structure, and this yields
the following definition.
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58 4. Boolean algebras

Definition 4.2 A Boolean algebra B consists of

• a set E,

• two distinct elements of E, denoted by ⊥ and ⊤,

• two binary operations on E, denoted by ⊓ and ⊔,
• a unary operation on E, denoted by ,

satisfying the following conditions:

• the operations ⊓ and ⊔ are idempotent, associative, commutative and dis-

tributive,

• x ⊓ (x ⊔ y) = x = (y ⊓ x) ⊔ x,

• x ⊓ ⊥ = ⊥, x ⊔ ⊥ = x, x ⊓ ⊤ = x, x ⊔ ⊤ = ⊤,

• x ⊓ x = ⊥, x ⊔ x = ⊤.

Of course this list of properties is redundant: some of them are consequences of

the others. This will be shown in Exercise 4.1.

If B = (E,⊓,⊔, ,⊥,⊤) is a Boolean algebra, then B̃ = (E,⊔,⊓, ,⊤,⊥) is also
a Boolean algebra, called the dual Boolean algebra of B. This algebra is obtained

by interchanging ⊔ and ⊓, as well as ⊥ and ⊤. The result of this operation is a
Boolean algebra because the interchanged elements play symmetric roles in the

definition. Considering B as an ordered set, B̃ is the set ordered by the inverse
ordering.

Exercise 4.1 The purpose of this exercise is to prove that the following conditions
ensure that B = (E,⊓,⊔, ,⊥,⊤) is a Boolean algebra:

N0 : x ⊔ x = x,
N1 : x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z),
N ′

1 : (x ⊔ y) ⊓ z = (x ⊓ z) ⊔ (y ⊓ z),
N2a : x ⊓ ⊤ = x,
N3 : x ⊔ ⊥ = x = ⊥ ⊔ x,
N4 : x ⊓ x = ⊥ and x ⊔ x = ⊤.

Note that ⊓ and ⊔ should not be assumed to be associative or commutative, and that ⊓
should not be assumed to be idempotent; associativity, commutativity and idempotence
will be shown to be consequences of the hypotheses.
1. First show the following equalities:

N ′

0 : x ⊓ x = x,
N2b : ⊤ ⊓ x = x,
N ′

2 : x ⊔ ⊤ = ⊤ = ⊤ ⊔ x.
2. Show that y ⊓ x = ⊥ and y ⊔ x = ⊤ imply that y = x. Infer that N6 : x = x.
3. Show that N ′

3 : x ⊓ ⊥ = ⊥ = ⊥ ⊓ x.
4. Next show that N5 : x = x⊔ (x⊓ y) = x⊔ (y ⊓ x) = (x⊓ y)⊔ x = (y ⊓ x)⊔ x. Infer
the associativity and commutativity of ⊔. Show that N ′′

1 : x⊔ (y⊓z) = (x⊔y)⊓ (x⊔z).
5. Finally, show that N7 : x ⊓ y = x⊔y, and N ′

7 : x ⊔ y = x⊓y. Infer the associativity
and commutativity of ⊓. ♦
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In the rest of the present chapter we will sometimes use more algebraic and

more familiar notations, denoting lattice operations by sum and product. (We
have avoided their use until now, because such well-known symbols might have
misled the reader into believing that the operations ⊔ and ⊓ are exactly identical

to sum and product.)

We will therefore denote ⊔ by the addition symbol +, and ⊓ will be denoted
as a product, by simply concatenating its arguments. We will thus write (x+y)z

instead of (x⊔y)⊓z. As is usual, we will also assume that products take precedence
over sums; this will allow us to denote (x ⊓ y) ⊔ z by xy + z, instead of (xy) + z.
Finally, ⊥ will be denoted by 0 and ⊤ will be denoted by 1.

Sum and product operations being associative and commutative, and product

being distributive over sum, this notation is quite natural. In a Boolean algebra,
the usual equalities also hold: x+ 0 = x, x0 = 0, and x1 = x. But the following

equalities, which are particular to Boolean algebras, also hold:

• x+ x = x = xx,

• x+ 1 = 1,

• (x+ y)(x+ z) = x+ yz,

• x+ xy = x.

Exercise 4.2

1. Show that x = ax+ bx ⇐⇒ b ≤ x ≤ a (Poretsky’s formula).
2. Show that ax+ bx = 0 ⇐⇒ b ≤ x ≤ a (Schröder’s formula).
3. Show that

(i) if b ≤ a, then ∃u : x = au+ bu =⇒ b ≤ x ≤ a,
(ii) if b ≤ x ≤ a, then ∀u : bx ≤ u ≤ a + x, x = au + bu. (Hint: first show
that with these hypotheses, u can be written bx+ by + az.) ♦

4.1.2 Homomorphisms

Let B = (E,⊓,⊔, ,⊥,⊤) and B′ = (E′,⊓′,⊔′, ,̂⊥′,⊤′) be two Boolean algebras.

A homomorphism from B to B′ is a mapping h from E to E′ satisfying

• h(x ⊔ y) = h(x) ⊔′ h(y),

• h(x ⊓ y) = h(x) ⊓′ h(y),

• h(x) = ĥ(x),

• h(⊥) = ⊥′,

• h(⊤) = ⊤′.

An antihomomorphism from B to B′ is a homomorphism from B to the dual B̃′

of B′.

Exercise 4.3 Show that a homomorphism is a monotone mapping with respect to the
order relation defining the Boolean algebra.

Show that not all monotone mappings are homomorphisms. ♦
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Exercise 4.4 Let B = (E, .,+, , 0, 1) be a Boolean algebra and e an element of E
different from 0. Let E′ = {x ∈ E /xe = x}. Show that B′ = (E′, .,+, ,̂ 0, e), where
x̂ = xe is a Boolean algebra and that the mapping h from E to E′ defined by h(x) = xe
is a homomorphism. ♦

Proposition 4.3 Let B = (E, .,+, , 0, 1) be a Boolean algebra. The mapping

h from E to E defined by h(x) = x is an antihomomorphism.

Proof. 1 = 0 and 0 = 1 hold. By the De Morgan laws, x+ y = x y and xy = x+y.
Finally, h(x) = x = x. ⊓⊔

Exercise 4.5 Let F be a finite set. Let F = P(P(F )). This is a Boolean algebra if F
is ordered by inclusion, namely,

X = {X1, . . . , Xn} ⊆ Y = {Y1, . . . , Ym}

if and only if ∀X ∈ X , ∃Y ∈ Y:X = Y (see Exercise 1.29).
We consider the mapping i from f to F defined by i(x) = {X ⊆ F /x ∈ X}.
Let B = (E, .,+, , 0, 1) be a Boolean algebra, and g a mapping from F to E. Show

that there exists a unique homomorphism h from F to B such that ∀x ∈ F , h(i(x)) =
g(x). ♦

4.1.3 The minimal Boolean algebra

A very special Boolean algebra, denoted by IB, is the Boolean algebra containing

only the two elements 0 and 1. (It is usually referred to as The Boolean algebra.)
The sum, product and complement operations on this two element algebra are

described in the following table:

x y x+ y xy x

0 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 1 1 0

The two values of this Boolean algebra can be given various special interpreta-

tions:

• 0 and 1, not forgetting that 1 + 1 = 1 !

• if E is a set, 0 is its empty subset and 1 its full subset. Unions, intersections
and complements will be performed only on these two subsets.

• ‘true’ and ‘false’. Sum is then logical disjunction (read ‘or’) and product is

logical conjunction (read ‘and’). This will be studied in more detail in Chapter 5.
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4.2 Boolean rings

4.2.1 Exclusive ‘or’

Let (E, .,+, , 0, 1) be a Boolean algebra. We define a new binary operation
denoted by ⊕ and called ‘exclusive or’ by

x⊕ y = xy + xy.

Note that xy + xy is also equal to (x+ y)xy.

Example 4.4 Considering the Boolean algebra consisting of the subsets of a set,

this operation coincides exactly with the symmetrical difference (see Section 1.1.2).

The following properties arise from the definition of this operation.

Proposition 4.5

• ⊕ is associative and commutative,

• x⊕ x = 0,

• x⊕ 0 = x,

• x⊕ 1 = x,

• (x⊕ y)z = xz ⊕ yz,

• x+ y = x⊕ y ⊕ xy.

Proof. Let us merely show the associativity of ⊕ and the last two points (the rest
is straightforward).

(x⊕ y)⊕ z = (xy + xy)⊕ z = (xy + xy)z + (xy + xy)z1.

= (xy + xy)z + (x+ y)(x+ y)z = xy z + xyz + x yz + xyz,

x⊕ (y ⊕ z) = x⊕ (yz + yz) = x(y + z)(y + z) + x(yz + yz)

= xy z + xyz + xyz + x yz.

xz ⊕ yz = xzyz + xzyz = xz(y + z) + (x+ z)yz2.

= xzy + xyz = (xy + xy)z = (x⊕ y)z.

(x⊕ y)⊕ xy = (xy + xy)⊕ xy = (xy + xy)(x+ y) + (x+ y)(x+ y)xy3.

= xy + xy + xy = (x+ x)y + x(y + y) = x+ y . ⊓⊔
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4.2.2 Boolean rings

It can be seen that the ‘exclusive or’ has the properties of an addition operation in
an additive group where each element is its own inverse, since x⊕x = 0. By also

taking into account the product, we obtain a ring structure. Thus the following
definition holds: a Boolean ring is a structure A = (E,±, ., 0, 1) satisfying the

following conditions:

• sum and product are associative and commutative,

• product is distributive over sum,

• 0 is the unit (or identity element) for sum and 1 is the identity element for
product,

• x0 = 0,

and, moreover,

• xx = x,

• x± x = 0.

The notation ± for addition is designed to remind us that this addition could
also be thought of as a subtraction!

Example 4.6 The ring ZZ/2ZZ of the integers modulo 2 is a Boolean ring.

Here again some of the hypotheses are redundant. For instance, we can substitute
for the condition x ± x = 0 the weaker condition x ± y = x =⇒ y = 0, and not

assume commutativity of the product. Then x±y = (x±y)(x±y) = x±y±xy±yx,
whence ∀x, y, xy ± yx = 0. Letting x = y, we have x± x = 0, and adding xy to

xy ± yx = 0 we obtain xy = yx.

Proposition 4.7 If B = (E, .,+, , 0, 1) is a Boolean algebra then A = (E,⊕, .,

0, 1) is a Boolean ring.

Proposition 4.5 shows that sum and complement can be retrieved from ⊕. The
converse of this result also holds: let A = (E,±, ., 0, 1) be a Boolean ring. Let us

define the two operations

• x+ y = x± y ± xy,

• x = 1± x.

Proposition 4.8 B = (E, .,+, , 0, 1) is a Boolean algebra.

Proof. Let us first show that the operation + is associative, commutative, idem-
potent and has 0 as unit. It clearly is commutative since ± and the product
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are commutative. Moreover, x + x = x ± x ± xx = 0 ± xx = xx = x, and

0 + x = 0± x± x0 = x. Finally,

(x+ y) + z = (x± y ± xy) + z = x± y ± xy ± z ± (x± y ± xy)z

= x± y ± xy ± xz ± yz ± xyz,

x+ (y + z) = x+ (y ± z ± yz) = x± y ± z ± yz ± x(y ± z ± yz)

= x± y ± xy ± xz ± yz ± xyz.

We also have 1 + x = 1± x± 1x = 1± 0 = 1.

Next, let us show distributivity:

(x+ y)z = (x± y ± xy)z = (xz ± yz ± xzyz) = xz + yz,

(x+ y)(x+ z) = (x± y ± xy)(x± z ± xz)

= xx± xz ± xxz ± xy ± yz ± xyz ± xxy ± xyz ± xxyz

= x± yz ± xyz = x+ yz,

and absorption:

x+ xy = x± xy ± xxy = x , x(x+ y) = x(x± y ± xy) = x± xy ± xy = x.

Let us now have a look at the properties of negation:

0 = 1± 0 = 1, 1 = 1± 1 = 0,

xx = x(1± x) = x± xx = x± x = 0,

x+ x = x± (1± x)± x(1± x) = x± (1± x)(1± x) = x± 1± x = 1,

x+ y = 1± x± 1± y ± (1± x)(1± y) = x± y ± (1± x± y ± xy) = 1± xy = xy,

x y = (1± x)(1± y) = 1± x± y ± xy = 1± (x+ y) = x+ y. ⊓⊔
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4.3 The Boolean functions

Let IB be the two-element Boolean algebra. A Boolean function (with n argu-

ments) is a mapping from IBn to IB.
A Boolean function f with n arguments is completely defined by the n-tuples

of IBn for which it takes the value 1. Since there are 2n n-tuples in IBn and since
a set with k elements has 2k different subsets, there are 22

n

Boolean functions

with n arguments.

• If n = 0, then 2n = 1 and 21 = 2; there are two Boolean functions with 0
arguments and these are the two constants 0 and 1.

• If n = 1, then 2n = 2 and 22 = 4; there are four Boolean functions with 1
argument: the two constant functions, the identity function and the complement
function.

• If n = 2, then 2n = 4 and 24 = 16; see Exercise 4.6.

4.3.1 Polynomial form of the Boolean functions

A Boolean function is said to be polynomial if it can be written as a combination

of its arguments via the sum, product and complement operations, or if it is the
zero function.

Example 4.9 The function f(x, y) = xy+y is a polynomial function. Its values

are given by the following table:

x y x xy y xy + y

0 0 1 0 1 1
0 1 1 1 0 1
1 0 0 0 1 1
1 1 0 0 0 0

We next show that every Boolean function is polynomial.

Lemma 4.10 Let f be a function with k + 1 arguments. Then

f(x0, x1, . . . , xk) = x0f(0, x1, . . . , xk) + x0f(1, x1, . . . , xk).

Proof. Let

g(x0, x1, . . . , xk) = x0f(0, x1, . . . , xk) + x0f(1, x1, . . . , xk)

and let (b0, b1, . . . , bk) denote an arbitrary (k + 1)-tuple in IBk+1. Then

g(b0, b1, . . . , bk) = b0f(0, b1, . . . , bk) + b0f(1, b1, . . . , bk).
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If b0 = 0 then b0f(1, b1, . . . , bk) = 0f(1, b1, . . . , bk) = 0 and

g(b0, b1, . . . , bk) = b0f(0, b1, . . . , bk) = 1f(0, b1, . . . , bk)

= f(0, b1, . . . , bk) = f(b0, b1, . . . , bk).

Similarly, if b0 = 1 then

g(b0, b1, . . . , bk) = b0f(1, b1, . . . , bk) = f(b0, b1, . . . , bk). ⊓⊔

Theorem 4.11 Every Boolean function is polynomial.

Proof. By induction on the number of arguments of f . A function f(x) with one

argument can be written, by the lemma, xf(0) + xf(1).
If f(0) and f(1) are both equal to 0, the function f is the zero function. If

they are both equal to 1 we obtain x+ x. If only one of the two is 0, we obtain

f(x) = x or f(x) = x.
Let us now assume that every Boolean function with k arguments is polynomial.

A Boolean function with k + 1 arguments can be written x0f(0, x1, . . . , xk) +
x0f(1, x1, . . . , xk). The Boolean functions g(x1, . . . , xk) = f(0, x1, . . . , xk) and

g′(x1, . . . , xk) = f(1, x1, . . . , xk) are functions with k arguments; hence they are
polynomial, and f is polynomial, too. ⊓⊔

Example 4.12 Let us come back to the function f of the preceding example,
as given by its table. We have

f(x, y) = xf(0, y) + xf(1, y) ,

f(0, y) = yf(0, 0) + yf(0, 1) = y + y ,

f(1, y) = yf(1, 0) + yf(1, 1) = y ,

whence
f(x, y) = x(y + y) + xy = x y + xy + xy

= xy + (x+ x)y = xy + y .

The polynomial form of a Boolean function given by its table can be found
very easily. Let f be a function with n arguments. Let Df = {(b1, . . . , bn) ∈
IBn / f(b1, . . . , bn) = 1}. If Df is empty then f is the zero function. Other-

wise, to each element ~b = (b1, . . . , bn) of Df we associate the Boolean function

M~b
(x1, . . . , xn) whose polynomial form is

x′

1 · · ·x
′

n with x′

i =

{
xi if bi = 1,
xi if bi = 0.
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We then have f(x1, . . . , xn) =
∑

~b∈Df
M~b

(x1, . . . , xn). Indeed, since a product of

elements of IB can take the value 1 only when all its factors are 1, M~b
(~c) = 1 if

and only if ~b = ~c and, since a sum of elements of IB takes the value 1 as soon as
one of its elements is 1,

(∑
~b∈Df

M~b

)
(~c) = 1 if and only if ~c ∈ Df , and therefore

if and only if f(~c) = 1.

4.3.2 Dual functions

Let f be a Boolean function with n arguments. Its dual, denoted by f̃ , is the
Boolean function with n arguments defined by

f̃(x1, . . . , xn) = f(x1, . . . , xn).

Example 4.13 Letting f(x, y) = x+ y, its dual f̃ is defined by

f̃(x, y) = x+ y = xy.

Let f(x) = x, its dual is x = x.

Proposition 4.14

1. f̃ = g =⇒ g̃ = f ,

2. If g(x1, . . . , xn) = f(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)) then

g̃(x1, . . . , xn) = f̃(f̃1(x1, . . . , xn), . . . , f̃k(x1, . . . , xn)).

Proof.

1. If f̃ = g then

g(x1, . . . , xn) = f̃(x1, . . . , xn) = f(x1, . . . , xn)

and

g̃(x1, . . . , xn) = f̃(x1, . . . , xn) = f(x1, . . . , xn) = f(x1, . . . , xn).

2. If g(x1, . . . , xk) = f(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)) then

g̃(x1, . . . , xn) = f(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)),

but fi(x1, . . . , xn) = f̃i(x1, . . . , xn), whence

g̃(x1, . . . , xn) = f(f̃1(x1, . . . , xn), . . . , f̃k(x1, . . . , xn))

= f̃(f̃1(x1, . . . , xn), . . . , f̃k(x1, . . . , xn)). ⊓⊔

Given a function in polynomial form, to find its dual we simply have to substitute
sums for products and products for sums.

Example 4.15 The dual of xy + y is (x+ y)y which can be simplified into xy.

Exercise 4.6 Give the sixteen Boolean functions with two arguments in polynomial
form. For each one of them, give the dual function. ♦


