
chapter 11

RATIONAL LANGUAGES AND FINITE

AUTOMATA

Objects used in computer science are always representable as strings of symbols.
We examine an algebraic structure on such strings of symbols, the free monoid.

We will see how particular sets of such strings of symbols can be defined. We
may think of a string of symbols as a representation of a computation. Finally,

we will introduce machines, called finite automata, that can decide whether a
given string belongs to a given set. These automata are simple examples of

abstract machines. The entire study of computation theory relies mainly on
generalizations and extensions of these simple machines.

This chapter defines rational subsets of a free monoid. It also defines (determin-

istic and non-deterministic) finite automata. It introduces some basic operations
on automata: direct product, sequential product, determinization, minimization;

it concludes with the proof of Kleene’s theorem that rational languages are ex-
actly those languages recognized by finite automata.

We recommend the following further reading:

Garrett Birkhoff, Thomas Bartee, Modern Applied Algebra, McGraw Hill, New
York (1970).

Michael Harrison, Introduction to Formal Languages, Addison-Wesley, Reading
(1978).

John Hopcroft, Jeffrey Ullman, Introduction to Automata Theory, Languages

and Computation, Addison-Wesley, Reading (1979).

Arto Salomaa, Formal Languages, Academic Press, New York (1973).

203

204 11. Rational languages and finite automata

11.1 The free monoid

We defined monoids and free monoids in Definition 1.12 and Definition 1.15, with

slightly different notations. We recall these definitions.

Definition 11.1 A monoid M = (M, ., e) is a set M equipped with an associa-
tive operation, denoted by ‘.’, that has a unit e.

The free monoid over A, denoted by A∗, is the set of strings over the al-

phabet A, equipped with concatenation (see Definition 1.15). The concatena-
tion of two strings u = u1u2 · · ·un and v = v1v2 · · · vm is the string u · v =

u1u2 · · ·unv1v2 · · · vm.

Exercise 11.1 Are the following objects monoids?

1. The set of mappings E → E equipped with the composition operation. (The com-
position g ◦ f of f and g is denoted by g.f or gf and is defined by
(gf)(x) = g

(
f(x)

)
for x ∈ E.)

2. IN equipped with the ‘power’ operation : (x, y)→ xy.
3. The set of strings in A∗ whose length is even.
4. The set of strings in A∗ with as many occurrences of as as occurrences of bs.
5. The set of finite subsets of E, with the union operation.
6. The set of finite subsets of E, with the intersection operation. ♦

Exercise 11.2 Let the matrices

A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)
.

Consider the set M1 consisting of the identity matrix I =

(
1 0
0 1

)
and the matrices

obtained by products of matrices A and B. Consider also the setM2 of 2× 2 matrices
with determinant +1 whose coefficients are non-negative integers.
1. Show that all the determinants of the matrices in M1 are equal to +1 and that
all their coefficients are non-negative integers. Hint: try a proof by induction on the
number of factors A and B in the product.

This implies thatM1 ⊆M2; we now establish the reverse inclusion.
2. Show that a matrix with non-negative coefficients, and which is not the identity
matrix, has determinant +1 only if all the coefficients of one of its columns are simul-

taneously greater than the coefficients of another column. More precisely,

(
x y
z w

)

(x, y, z, w ∈ IN) has determinant +1 only if either x ≥ y and z ≥ w, or x ≤ y and z ≤ w.
3. Compute the inverses of the matrices A and B. Use the result of 2 to show that

any matrix

(
x y
z w

)
in M2 can be uniquely decomposed as a product of matrices A

and B. (Use the complete induction principle and a recurrence on x+ y + z + w.)
4. Deduce the equalityM1 =M2. ♦

The free monoid 205

Let M = (M, ., e) and let M ′ be a subset of M . M′ = (M ′, ., e) is a submonoid

of M if it is a monoid, namely, if

• e ∈ M ′ and

• ∀m,m′ ∈ M ′, m.m′ ∈ M ′.

If I is a set of indices, and if ∀i ∈ I, Mi = (Mi, ., e) is a submonoid of M, then

(
⋂

i∈I Mi, ., e) is a submonoid of M. For a subset X of M , we can thus define
the least submonoid of M containing X, called the submonoid of M generated
by X, as the intersection of all the submonoids of M containing X.

Example 11.2 Let N = (IN,+, 0). Let A be the set of even numbers and B be
the set of odd numbers. (A,+, 0) is the submonoid of N generated by {2} while

(B ∪ {0},+, 0) is not a submonoid of N (e.g. 3 + 1 is even).

If M = (M, ., e) and M′ = (M ′,×, e′) are two monoids, a mapping h from M

in M ′ is a monoid homomorphism if it satisfies

• h(e) = e′ and

• ∀m,m′ ∈ M , h(m.m′) = h(m)× h(m′).

Example 11.3 The mapping associating with each string u its length |u| is a

homomorphism from (A∗, ., ε) to (IN,+, 0).

The mapping associating with each n ∈ IN the number 2n is a homomorphism

from (IN,+, 0) to (IN,×, 1), because 20 = 1 and 2n+m = 2n × 2m.

Exercise 11.3 Let M1 be the monoid defined in Exercise 11.2. Construct a monoid
homomorphism {a, b}∗ −→ M1. Show that this homomorphism is both injective and
surjective. ♦

Theorem 11.4 Let A be an alphabet. Let (M, ., e) be a monoid and let h be
a mapping from A to M . There exists a unique homomorphism h∗:A∗ −→ M
such that ∀a ∈ A, h∗(a) = h(a).

Proof. Existence: Let h∗(ε) = e and h∗(a1 · · · an) = h(a1). · · · .h(an). It is easy
to see that h∗ indeed is a homomorphism.

Uniqueness: Let g and g′ be two homomorphisms from A∗ inM such that ∀a ∈ A,
g(a) = g′(a). Then g(ε) = g′(ε) = e, and for any string u = a1 · · · an,

g(u) = g(a1). · · · .g(an) = g′(a1). · · · .g
′(an) = g′(u). ⊓⊔

Inspired by this theorem, we call the monoid A∗ the free monoid generated by A.

206 11. Rational languages and finite automata

Exercise 11.4 Let A be an alphabet containing at least the letters a and b.

1. Give a homomorphism from A∗ to (A ·A)∗.
2. Give a homomorphism from A∗ to (A \ {b})∗.
3. Is there a monoid isomorphism (i.e. a bijective homomorphism whose inverse is a
homomorphism) from (A \ {a})∗ to (A \ {b})∗ ? ♦

Exercise 11.5 Levi’s lemma: Let u, v, x, y ∈ A∗. Show that uv = xy if and only if
exactly one of the three following cases holds:
(i) |u| = |x|, u = x, and v = y.
(ii) |u| < |x| and there exists a t ∈ A∗ such that ut = x and v = ty.
(iii) |u| > |x| and there exists a t ∈ A∗ such that u = xt and tv = y. ♦

Exercise 11.6 Equations on strings: Let u, v ∈ A∗. Show the following equivalences:

1. uv = vu if and only if there exists a w ∈ A∗ and m,n ∈ IN such that u = wm and
v = wn.
2. up = vq (with p, q ∈ IN) if and only if there exists a w ∈ A∗ and m,n ∈ IN such
that u = wm, v = wn.
3. uu = u if and only if u = ε.
4. ua = au if and only if there exists a p ∈ IN such that u = ap.
5. ua = bu (with a 6= b) if and only if 0 6= 0. ♦

11.2 Regular languages

In computer science we often define sets of strings of symbols, or subsets of a free
monoid A∗, called languages. There are many ways of defining languages. Here

we describe one such way, which also gives a simple way of determining whether
a given string u is in the language or not.

We first define some operations on P(A∗):

• The union, denoted by ∪ or + : if L and L′ are two subsets of A∗,

L+ L′ = L ∪ L′ = {u / u ∈ L or u ∈ L′}.

• The product, denoted by · : if L and L′ are two subsets of A∗,

L · L′ = {uv / u ∈ L, v ∈ L′}.

• The iteration, denoted by ∗ : if L is a subset of A∗, let

L0 = {ε},

L1 = L,

...

Li+1 = L · Li,

...

and L∗ =
⋃

i≥0

Li.

Regular languages 207

We will denote by L+ the set
⋃

i>0
Li. We thus have

L+ = L · L∗ = L∗ · L and L∗ = {ε}+ L+.

Exercise 11.7

1. Show that (P(A∗), ·, {ε}) is a monoid.
2. Show that if (Li)i∈I is any family of languages, then

(⋃

i∈I

Li

)
· L =

⋃

i∈I

Li · L.

3. Show that L∗ = (L+ {ε})∗ and that L∗ = {ε}+ L · L∗.
4. Show that ∅∗ = {ε}. ♦

Definition 11.5 A subset of A∗ is said to be a regular set (over A) if it can be

built up from the finite subsets of A∗ by using the three operations ∪, ·, and ∗.
We denote by Rat(A∗) the regular sets over A and by Fin(A∗) the set of finite

subsets of A∗.

In order to specify a regular set over A it is enough to describe a procedure to

construct it from finite subsets by the three operations given above. We do this by
writing a regular expression. Since each non-empty finite subset is a finite union

of singleton sets, and since any subset consisting of a single non-empty string is
obtained by taking a product of sets consisting of a single one-letter string, the

regular subsets can also be obtained by taking the closures under product, union
and iteration of the sets consisting of a single one-letter string and of the empty
set.

Definition 11.6 We formally define the regular expressions as strings of sym-

bols:

• ∅ is a regular expression.

• If a is a letter, a is a regular expression.
• If E is a regular expression , E∗ is a regular expression.

• If E1 and E2 are regular expressions, (E1 + E2) and (E1E2) are regular
expressions.

The set I(E) specified by the regular expression E is defined by

I(∅) = ∅,

I(a) = {a},

I(E∗) = I(E)∗,

I(E1E2) = I(E1) · I(E2) and

I(E1 + E2) = I(E1) + I(E2).

208 11. Rational languages and finite automata

Note that the definition of I is an inductive definition (see Definition 3.20).

The rules we gave are very strict. For instance, (a+ b+ c) · d is disallowed unless
it is written in the form (((a+b)+c)·d) or ((a+(b+c))·d). (Both these expressions
denote the same set {ad, bd, cd}.) Usually, when there is no ambiguity we allow

ourselves more flexibility in denoting regular expressions, in a similar manner
to the way algebraic expressions are denoted in mathematics. However, if these

regular expressions are used in computer systems, we must abide strictly by the
rules of the system, which might possibly differ from the rules given above. It

is exactly the same situation as for arithmetic expressions, whose denotations in
programming languages are also very strictly regulated.

Exercise 11.8 Let X = {b} and Y = (A \ {b}) · {b}∗.

1. Informally describe the elements of X∗, Y , and Y ∗.
2. Show that any string of A∗ starting with a letter different from b is in Y ∗.
3. Show that any string u of A∗ can be uniquely written in the form u = vw, where
v ∈ X∗ and w ∈ Y ∗. ♦

11.3 Finite automata

11.3.1 Labelled transition systems

Definition 11.7 A labelled transition system over an alphabet A is a quintuple

(S, T, α, β, λ) where

• (S, T, α, β) is a directed graph (α:T −→ S (resp. β:T −→ S) is called the

source (resp. target) mapping): the elements of S are called states instead of
vertices, and the elements of T are called transitions instead of edges.

• λ is a mapping from T to A: λ(t) is called the label of the transition t. The
triple (α, λ, β) must define an injective mapping from T to S ×A× S: there can

be no two different transitions with the same source, the same target and the
same label. This reduces to requiring T to be a subset of S × A × S and allows

us to denote a transition system more simply by (S, T).

A path is a non-empty sequence c = t1 · · · tn of transitions such that

β(ti) = α(ti+1) for 1 ≤ i ≤ n− 1. The source α(c) of path c is α(t1); the target
β(c) of path c is β(tn). A path is also called a computation of the transition

system.
Consider also the empty paths: to each state s is associated an empty path εs ,

whose source and target are s. We might also have considered empty paths in
graphs.
If c is a path, the trace of this path is the string λ(c) of A∗ defined by

Finite automata 209

• λ(εs) = ε, ∀s ∈ S,

• λ(t1 · · · tn) = λ(t1) · · ·λ(tn).

A labelled transition system is said to be deterministic if ∀s ∈ S, ∀a ∈ A, there
exists at most one transition t with source s and label a. A labelled transition

system is said to be complete if ∀s ∈ S, ∀a ∈ A, there exists at least one transition
t with source s and label a.

Proposition 11.8 If a transition system is deterministic, then ∀u ∈ A∗, ∀s ∈ S,

there exists at most one path c with source s such that λ(c) = u. If a transition
system is complete, there exists at least one such path.

Proof. The proof proceeds by induction on the length of u.

If u = ε then the unique path with source s and with trace ε is the empty path
εs.
Let u = av and let s be a given state. Consider the case when the transition

system is deterministic and assume that there exist two paths c1 and c2 with
source s. The first transition of both paths is the unique transition t = (s, a, s′)

with source s and label a. We thus have c1 = tc′1 and c2 = tc′2. The paths
c′1 and c′2 are then two distinct paths with trace v and with source s′, and this

is impossible by the induction hypothesis. If the transition system is complete,
there exists at least one transition t = (s, a, s′) and at least one path c with source

s′ and with trace v. The path tc is then a path with source s and with trace
av. ⊓⊔

If s and s′ are two states of S, Ls,s′ is the set of traces of the paths with source

s and with target s′:

Ls,s′ = {λ(c) / α(c) = s and β(c) = s′}.

Exercise 11.9 Show that ε ∈ Ls,s′ if and only if s = s′. ♦

Let Q and Q′ be two subsets of S. LQ,Q′ =
⋃

s∈Q,s′∈Q′ Ls,s′ .

Definition 11.9 A finite-state automaton is an eight-tuple (A,S, T, α, β, λ,

I, F), where

• (S, T, α, β, λ) is a labelled transition system with label alphabet A, and S is
a finite set,

• I and F are two subsets of S whose elements are called initial states and
final states respectively.

When no ambiguity can occur, a finite-state automaton will simply be denoted

by (S, T, I, F).
A finite-state automaton is said to be complete if (S, T) is a complete transi-

tion system. A finite-state automaton is said to be deterministic if (S, T) is a
deterministic transition system and if there is a single initial state.

210 11. Rational languages and finite automata

Definition 11.10 A language L ⊆ A∗ is said to be recognizable if and only

if there exists a finite-state automaton A = (A,S, T, α, β, λ, I, F) such that L =
L(A), where L(A) is, by definition, LI,F .

Intuitively, to check whether a string u is in L(A), we start from an initial state
of the automaton and then read the string u using each successive letter of u,
from left to right. Each time it reads a letter, the automaton changes its state by

taking a transition labelled by this letter. If we can thus reach a final state when
all the letters of u heve been read, then the string is recognized. Note, however,

that if a finite-state automaton is non-deterministic, then the same string u can
yield several different evolutions of the automaton. Some of these evolutions will

lead to a final state and others will not. If there is at least one evolution that
leads to a final state, then u is in L(A).

Example 11.11 Let A be the finite-state automaton with two states s1 and s2
whose transitions are (s1, a, s1), (s1, b, s1), and (s1, b, s2). See Figure 11.1. The

string ab is the label of two different paths: (s1, a, s1, b, s1) and (s1, a, s1, b, s2).
If I = {s1} and F = {s2}, then ab ∈ L(A).

a

b

b

>

>

s1 > s2

Figure 11.1

Exercise 11.10 Let L be a language and let Pref (L) = {u ∈ A∗ / ∃v ∈ A∗ : uv ∈ L}
be the set of prefixes of the strings in this language L. Show that if a language L is
recognizable then the set Pref (L) is also recognizable. ♦

Exercise 11.11 Show that any finite language is recognized by a deterministic finite-
state automaton. (Explain how such an automaton can be constructed using the prefixes
of the strings in the language.) ♦

Exercise 11.12 Let A be a finite-state automaton with a finite alphabet A. Show that
the language recognized by A is finite if and only if the directed graph corresponding to
the set of transitions of A has no circuit containing a vertex that is on a path going from
an initial state to a final state. Give the least upper bound on the size of this language
in terms of the number of states and of the size of the alphabet; also give this bound
in the particular case when the finite-state automaton is deterministic and complete.
Describe the finite-state automata for which this bound is reached. ♦

Finite automata 211

11.3.2 Completion of a finite-state automaton

In all cases, the demand that a finite-state automaton be complete is not a re-

striction on its language, because it is always possible to transform an incomplete
finite-state automaton into a complete finite-state automaton without changing

the language recognized.

Thus let A = (S, T, I, F) be a finite-state automaton assumed to be incomplete.

We build a new finite-state automaton A′ = (S′, T ′, I, F) as follows:

• To obtain S′, we add to S a new state, usually called the sink state, denoted
here by p.

• To obtain T ′ we add to T

– the transitions (s, a, p) for any state s and for any letter a such that

there do not exist in T any transitions with source s and label a,

– the transitions (p, a, p) for all the letters a.

A′ is complete by construction. Moreover, paths existing in A′ and which did
not exist in A are paths ending in state p, which is not a final state, and thus

L(A) = L(A′).

Exercise 11.13 Consider an incomplete finite-state automaton A. Assume that we
transform it into a complete finite-state automaton A′ as follows: for all a ∈ A and
s ∈ S such that there is no transition with source s and label a, we add a loop with
label a in s, namely, the transition (s, a, s):

1. If A is deterministic, is A′ also deterministic?
2. What is the relationship between L(A) and L(A′) ? ♦

11.3.3 Determinization of a finite-state automaton

The construction of a deterministic finite-state automaton from an arbitrary one

is more complex than its completion, but it is also possible. Moreover, this
construction is more interesting, because if A is a finite-state automaton then

it is much easier to check whether any given string u is in L(A) when A is
deterministic than when it is not deterministic.

Let A = (S, T, I, F) be a finite-state automaton. Let us construct the deter-
ministic finite-state automaton Ad recognizing the same language as A. This

automaton Ad = (S′, T ′, {i′}, F ′) is defined by:

S′ = P(S) ,

T ′ =
{
(Q, a,Q′) / Q ⊆ S , Q′ ⊆ S , Q′ = {q′ /∃q ∈ Q: (q, a, q′) ∈ T}

}
,

i′ = I ,

F ′ = {Q ⊆ S / Q ∩ F 6= ∅} .

212 11. Rational languages and finite automata

Proposition 11.12 Let c be a path in Ad with source Q, target Q′ and trace

u. Then Q′ = {q′ /∃q ∈ Q: there exists in A a path with source q, target q′ and
trace u}.

Proof. By induction on the length of u:

• If u = ε , then Q = Q′ and the result trivially holds.

• If u = au′, then there exists in Ad a path tc with t = (Q, a,Q′′). By
the definition of Ad, Q

′′ = {q′′ /∃q ∈ Q: (q, a, q′′) ∈ T}, and, by the induction

hypothesis,

Q′ = {q′ /∃q′′ ∈ Q′′: there exists in A a path with source q′′,

with target q′ and with trace u′},

and by combining both cases we have the result. ⊓⊔

Corollary 11.13 L(A) = L(Ad).

Proof. u ∈ L(A) if and only if u is the trace of a path with source q ∈ I and with
target q′ ∈ F ; u ∈ L(Ad) if and only if the set

{q′ /∃q ∈ I:u is the trace of a path with source q and with target q′}

contains at least an element of F . By Proposition 11.12 it is clear that these two

conditions are equivalent. ⊓⊔

Example 11.14 We return to the finite-state automaton of Example 11.11.

It is associated with the deterministic finite-state automaton Ad with states{
∅, {s1}, {s2}, {s1, s2}

}
, whose initial state is i = {s1}, whose set of final states

is
{
{s2}, {s1, s2}

}
and whose transitions are given by the following table, where

the set appearing in line Q (Q ⊆ {s1, s2}) and column x (x ∈ {a, b}) is the set

{q′ /∃q ∈ Q : (q, x, q′) ∈ T}.

s a b

∅ ∅ ∅
{s1} {s1} {s1, s2}

{s2} ∅ ∅

{s1, s2} {s1} {s1, s2}

The string ab is the trace of a path from the initial state {s1} to the final state

{s1, s2}. In the original finite-state automaton, there are indeed two (and exactly
two) different paths with trace ab and with source s1; these lead to s1 and s2
respectively (Figure 11.2).

Finite automata 213

a
b

>

>

>

b

s1 s2s1{ , }

<a

Figure 11.2

Exercise 11.14 Make deterministic and complete the following finite-state automaton
over the alphabet {a, b, c}, where the initial state is denoted by i and the final states
are denoted by f , and f ′.

f
a,c
←− x

b
←− i

b
←→ y

b,c
−→ z

a,c
←→ f ′. ♦

Exercise 11.15 Let A = {a, b, c}. Give a complete deterministic finite-state automa-
ton to recognize each of the following languages:

1. the set of strings of even length,
2. the set of strings with a number of occurrences of ‘b’ that is divisible by 3,
3. the set of strings ending with ‘b’,
4. the set of strings not ending with ‘b’,
5. the set of non-empty strings not ending with ‘b’,
6. the set of strings with at least one ‘b’,
7. the set of strings with at most one ‘b’
8. the set of strings with exactly one ‘b’,
9. the set of strings with no ‘b’ at all,
10. the set of strings with at least one ‘a’ and whose first ‘a’ is not followed by a ‘c’,
11. the set of strings where at least three letters occur and whose third-from-last letter
is an ‘a’ or a ‘c’. ♦

Exercise 11.16 (Iteration Lemma)

1. Show that if G is a directed graph with n vertices and c is a path of length ≥ n in
G, then the subpath of c consisting of the first n edges of c contains a circuit.
2. Consider a transition system with n states labelled by the alphabet A, and let
q, q′ be two among these states. Show that if z ∈ Lq,q′ and |z| ≥ n, then there exist
u, v, w ∈ A∗ such that z = uvw, v 6= ε, |uv| ≤ n and v is the trace of a circuit, and for
any i ∈ IN, uviw ∈ Lq,q′ .
3. Let A be a finite-state automaton with n states. Then for any z ∈ L(A) verifying
|z| ≥ n, there exist u, v, w ∈ A∗ such that z = uvw, v 6= ε, |uv| ≤ n, and for any i ∈ IN,
uviw ∈ L(A). ♦

Exercise 11.17 Application: Show that the following languages are not recognizable
because they cannot be equal to L(A) for any finite-state automaton A:

1. {anbn | n ∈ IN}.

2. {an2

| n ∈ IN}.
3. {ap | p is a prime number}.
4. {ww | w ∈ A∗}, when A has at least two letters.
5. The set of palindromes: the strings w1 · · ·wn ∈ A∗ (n ≥ 0) such that w1 · · ·wn =
wn · · ·w1 (i.e. wi = wn+1−i for i = 1, . . . , n) when A has at least two letters. ♦

214 11. Rational languages and finite automata

11.3.4 Minimal finite-state automata

Let A be a complete deterministic finite-state automaton whose only initial state
is i. With any string u we associate the mapping δu:S −→ S defined by: δu(s) is

the target of the unique path with source s and with trace u. Two strings u and
v are said to be equivalent modulo A (denoted by u ∼A v) if δu(i) = δv(i). It is

easy to see that this is indeed an equivalence relation. Moreover, we have

Proposition 11.15

1. The relation ∼A has a finite number of equivalence classes.
2. If u ∼A v, then ∀a ∈ A, ua ∼A va.
3. If u ∼A v and u ∈ L(A), then v ∈ L(A).

Proof.

1. With each equivalence class of ∼A we can associate a state of A; namely,
the class of a string u is associated with the state δu(i). The number of classes is
thus less than or equal to the number of states of A.

2. If the two paths with respective traces u and v and with source i have the
same target state q, the two paths with respective traces ua and va and with

source i also have the same target state q′ = δa(q).
3. If u ∈ L(A), the unique path with source i and trace u has a final state as

its target. If u ∼A v then the only path with source i and trace v has the same
final state as its target, and thus v ∈ L(A). ⊓⊔

An equivalence relation ∼ on A∗ verifying

u ∼ v =⇒ ∀a ∈ A, ua ∼ va

is called a (right) semi-congruence. If it has only a finite number of equivalence

classes, it is said to have a finite index. Finally, if a language L is a union of
equivalence classes of ∼, then ∼ is said to saturate L.

We have thus shown that if A is a complete deterministic finite-state automa-
ton, then ∼

A
is a right semi-congruence of finite index saturating L(A). Because

any language recognized by a finite-state automaton can be recognized by a com-
plete deterministic finite-state automaton, any recognizable language is saturated
by a finite index semi-congruence. We will also show the converse of this property

which will give a characterization of recognizable languages.

Theorem 11.16 A language L in A∗ is recognizable if and only if it is saturated

by a finite index semi-congruence.

Proof. Let ∼ be a finite index semi-congruence saturating the language L. We
will construct a complete deterministic finite-state automaton A = (S, T, i, F)
recognizing L:

Finite automata 215

• S is the set of equivalence classes of A∗ modulo ∼.

• T is the set of triples ([u]∼, a, [ua]∼) for all [u]∼ in S and all a in A.
• i is the class of ε.
• F is the set of classes of strings in L.

The fact that ∼ has a finite index implies that S is finite. The fact that it is
a semi-congruence implies that the definition of T is meaningful since [u]∼ =

[v]∼ =⇒ [ua]∼ = [va]∼. It is clear that A is deterministic and complete.
We now show that this automaton recognizes L (i.e. L = L(A)). We easily

show by induction on the length of a string u ∈ A∗ that the target of the unique
path with source i = [ε]∼ and with trace u is [u]∼. It follows that if u is in L
then this state is final, and hence L ⊆ L(A). Conversely, if [u]∼ is final, then

there exists a string v in L with u ∼ v and, since ∼ saturates L, u is also in L
and thus L(A) ⊆ L. ⊓⊔

Among the finite-index semi-congruences saturating a given recognizable lan-
guage L, there is a semi-congruence that is less refined than all the others (i.e. it
has fewer equivalence classes, and each equivalence class is ‘fatter’). It is denoted

∼L and is defined by u ∼L v if and only if

∀w ∈ A∗, uw ∈ L ⇐⇒ vw ∈ L.

It is clear that ∼L is an equivalence relation. It is also a semi-congruence. Indeed,
if u ∼L v then ∀w ∈ A∗, uaw ∈ L ⇐⇒ vaw ∈ L and thus ua ∼L va. It saturates
L because letting w = ε and u ∼L v implies that

u ∈ L ⇐⇒ v ∈ L .

Finally, the fact that it has finite index follows from the next result.

Theorem 11.17 Let L be a recognizable language and ∼ a finite index semi-

congruence saturating L. Then ∼L ⊇ ∼ . That is,

∀u, v ∈ A∗, u ∼ v =⇒ u ∼L v.

Proof. Assume that u ∼ v and show that

∀w ∈ A∗, uw ∈ L ⇐⇒ vw ∈ L .

Let w be an arbitrary string in A∗. Because ∼ is a semi-congruence, uw ∼ vw,

and because ∼ saturates L, uw ∈ L ⇐⇒ vw ∈ L. ⊓⊔

We saw in the proof of Theorem 11.16 that any finite-index semi-congruence
∼ saturating L enabled us to define a finite-state automaton recognizing L, with

216 11. Rational languages and finite automata

the equivalence classes of ∼ as states. Therefore, the semi-congruence ∼L enables

us to define a deterministic finite-state automaton recognizing L whose number
of states is minimal. We will temporarily call this automaton the canonical
automaton of L.

There is a more algebraic way of characterizing this canonical automaton rec-
ognizing a language L. First we must introduce some definitions.

Definition 11.18 A complete deterministic finite-state automaton A = (S, T, i,

F) is said to be reachable if ∀s ∈ S, ∃u ∈ A∗: δu(i) = s.

It is easy to see that we can always delete from a finite-state automaton its
non-reachable states (namely, those states s such that ∀u ∈ A∗, δu(i) 6= s) with-
out modifying the recognized language and also that the finite-state automaton

constructed in the proof of Theorem 11.16 is reachable.

Definition 11.19 Let A = (S, T, i, F) and A′ = (S′, T ′, i′, F ′) be two reach-
able complete deterministic finite-state automata. A mapping h:S −→ S′ is a

homomorphism of automata from A to A′ if

• h is surjective,
• ∀s ∈ S, ∀a ∈ A, h(δa(s)) = δ′a(h(s)),

• h(i) = i′ and
• ∀s ∈ S, h(s) ∈ F ′ ⇐⇒ s ∈ F .

Proposition 11.20 If there exists a homomorphism from A to A′, then L(A) ⊆
L(A′).

Proof. We prove, by induction on the length of u ∈ A∗, that, for any path in A
with source s, target s′ and trace u, there exists in A′ a path with source h(s),

target h(s′) and trace u.
It follows that if there exists in A a path with source i, trace u and target in

F , then there exists in A′ a path with source i′, trace u and target in F ′. ⊓⊔

Theorem 11.21 For any reachable complete deterministic finite-state automa-
ton A, there exists a homomorphism from A to the canonical automaton recog-

nizing L(A).

Proof. Let s be a state of A. Since A is reachable, there exists a string u such that
s = δu(i). Let h(s) = [u]∼L

. This mapping is well defined, because if δv(i) = s,

then u ∼A v and, by Theorem 11.17, u ∼L v. This mapping is indeed surjective
(∀u ∈ A∗, [u]∼L

= h(δu(i)). It is a homomorphism because

• h(i) = [ε]∼L
,

• h(δa(δu(i)) = h(δua(i)) = [ua]∼L
and h(δu(i) = [u]∼L and

Finite automata 217

• h(δu(i)) = [u]∼L
⊆ L if and only if u ∈ L if and only if δu(i) ∈ F . ⊓⊔

Justified by this theorem, we call the canonical automaton theminimal automa-

ton. It is indeed minimal, among complete deterministic finite-state automata
recognizing L, for the ordering ≤ defined by A ≤ A′ if there exists a homomor-

phism from A′ to A.
The canonical homomorphism h from A to the minimal automaton induces an

equivalence relation on the states of A defined by

s ≈ s′ ⇐⇒ h(s) = h(s′).

We will show how to compute this equivalence, and this will enable us to find the
minimal automaton recognizing L from any (reachable complete) deterministic

finite-state automaton recognizing L.
Let A = (S, T, i, F) be a reachable complete deterministic finite-state automa-

ton. Define the sequence (≈i)i≥0 of equivalence relations on S by:

• s ≈0 s′ if and only if s ∈ F ⇐⇒ s′ ∈ F or, equivalently, ≈0 has exactly two
classes, F and S \ F .

• s ≈i+1 s′ if and only if s ≈i s
′ and ∀a ∈ A, δa(s) ≈i δa(s

′).

Proposition 11.22

(a) ≈i+1⊆≈i.
(b) If ≈i+1 = ≈i, then ∀j ≥ i, ≈j = ≈i.
(c) ∃n < |S|: ≈n+1 = ≈n.

Proof. Point (a) is straightforward by the definition of ≈i+1.
Point (b) is proved by induction on n = j − i. It is straightforward if n = 0

and n = 1. Assume ≈j = ≈i. Then,

s ≈j+1 s′ ⇐⇒ s ≈j s
′ and ∀a ∈ A, δa(s) ≈j δa(s

′)

⇐⇒ s ≈i s
′ and ∀a ∈ A, δa(s) ≈i δa(s

′)

⇐⇒ s ≈i+1 s′

⇐⇒ s ≈i s
′.

To show point (c), let mi be equal to the number of classes of ≈i. It is clear that
mi+1 ≥ mi and that mi+1 = mi implies ≈i+1 = ≈i. Assume that ∀n < |S|, ≈n

6= ≈n+1. We thus have m0 < m1 < · · · < m|S|; hence 2 + |S| = m0 + |S| ≤ m|S|,
and this is impossible since an equivalence relation on S can have at most |S|
classes. ⊓⊔

To minimize a finite-state automaton, we will thus construct such a sequence
of equivalence relations. As soon as ≈i+1 = ≈i, the mapping h mapping a state

to its class modulo ≈i is the required homomorphism, as shown by the following
proposition.

218 11. Rational languages and finite automata

Proposition 11.23 LetA be a finite-state automaton and let h be the canonical

homomorphism from A to the minimal automaton recognizing L(A). Let n < |S|
be such that ≈n = ≈n+1. Then

∀s, s′ ∈ S, h(s) = h(s′) ⇐⇒ s ≈n s′.

Proof.

1. First show by induction on i that

∀i ≥ 0, ∀s, s′ ∈ S, h(s) = h(s′) =⇒ s ≈n s′.

Let u and v be two strings such that δu(i) = s and δv(i) = s′. If h(s) = h(s′),
then u ∼L v, by the definition of h.

• s ∈ F ⇐⇒ u ∈ L ⇐⇒ v ∈ L ⇐⇒ s′ ∈ F , and thus s ≈0 s′.

• Assume that ∀s, s′ ∈ S, h(s) = h(s′) ⇐⇒ s ≈i s′. If h(s) = h(s′)
then s ≈i s

′; but we also have, for any a in A, h(δa(s)) = h(δa(s
′)), and thus

δa(s) ≈i δa(s
′). Hence, s ≈i+1 s′.

2. It is easy to show, by induction on the length |w| of w ∈ A∗, that s ≈i s
′ =⇒

δw(s) ≈i+|w| δw(s
′) and, in particular, since ≈n = ≈n+|w|, s ≈n s′ =⇒ δw(s) ≈n

δw(s
′). Since ≈n ⊆ ≈0, we also obtain s ≈n s′ =⇒ δw(s) ≈0 δw(s

′). Hence,

δu(i) ≈n δv(i) =⇒ ∀w ∈ A∗, δuw(i) = δw(δu(i)) ≈0 δw(δv(i)) = δvw(i)

⇐⇒ ∀w ∈ A∗, δuw(i) ∈ F ⇐⇒ δvw(i) ∈ F

⇐⇒ ∀w ∈ A∗, uw ∈ L ⇐⇒ vw ∈ L

⇐⇒ u ∼L v. ⊓⊔

Exercise 11.18 Give minimal complete deterministic finite-state automata recog-
nizing the languages over the alphabet A = {a, b} specified by the following regular
expressions:

1. (a+ b)∗b(a+ b)∗.

2. ba∗ + ab+ (a+ bb)ab∗.

3. (b+ ab+ aab)∗(ε+ a+ aaa).

4. (a+ b)2 + (a+ b)3 + (a+ b)4.

5.
(
(a+ b)2

)∗
+
(
(a+ b)3

)∗
.

6. ε+ ab∗a+ (ab+ ba)∗. ♦

Equation systems 219

11.3.5 Operations on finite-state automata

Let A = (S, T, {i}, F) be a complete deterministic finite-state automaton. For
any string u in A∗, there exists in A a unique path c with source i and label u.

The target state of this path c is in F if and only if u ∈ L(A). We immediately
obtain a finite-state automaton recognizing the complement of L(A).

Proposition 11.24 If A = (S, T, {i}, F) is a complete deterministic finite-state

automaton, the finite-state automaton A′ = (S, T, {i}, S \F) is again a complete
deterministic finite-state automaton and L(A′) = A∗ \ L(A).

Exercise 11.19 Let A = (S, T, I, F) be a finite-state automaton and let
A′ = (S, T, I, S \ F). Show, by means of examples, that L(A′) = A∗ \ L(A) does
not necessarily hold if A is not both deterministic and complete. ♦

Let A′ = (S′, T ′, I ′,′ F) and A′′ = (S′′, T ′′, I ′′, F ′′) be two finite-state automata
over the same alphabet A. The direct product of the transition systems (S′, T ′)
and (S′′, T ′′) is the transition system (S, T) defined by

S = S′ × S′′ and T = {((s′1, s
′′
1), a, (s

′
2, s

′′
2)) / (s

′
1, a, s

′
2) ∈ T ′, (s′′1 , a, s

′′
2) ∈ T ′′}.

It is easy to see that there is in (S, T) a path c with trace u, source (s′1, s
′′
1) and

target (s′2, s
′′
2) if and only if there is in (S′, T ′) a path c′ with trace u, source s′1

and target s′2, and in (S′′, T ′′) a path c′′ with trace u, source s′′1 and target s′′2 .
Now consider the finite-state automata

A1 = (S, T, I ′ × I ′′, F ′ × F ′′) and A2 = (S, T, I ′ × I ′′, F ′ × S′′ ∪ S′ × F ′′).

Clearly, using the above remark we have

Proposition 11.25 L(A1) = L(A) ∩ L(A′), L(A2) = L(A) ∪ L(A′).

11.4 Equation systems

With each labelled transition system S we associate an equation system Ŝ on

P(A∗) such that the least solution of Ŝ is the set of traces of paths of the transition
system S.
Let S = (S, T, α, β, λ) be a labelled transition system, where S is finite. Let D

be the set of mappings from S × S to P(A∗) ordered as follows: D ≤ D′ if and
only if ∀s, s′ ∈ S, D(s, s′) ⊆ D′(s, s′).

With S we associate the equation system Ŝ on P(A∗) whose variables are xs,s′

for all pairs (s, s′) of states of S and whose equations are

xs,s′ =
∑

{axs′′,s′ /∃t:α(t) = s, λ(t) = a, β(t) = s′′} ∪ {ε / s = s′}.

220 11. Rational languages and finite automata

Consider now this equation system as a mapping, also denoted by Ŝ, from D to

D defined as follows: if D is a mapping from S × S to P(A∗), then Ŝ(D) is the
mapping D′ defined by

D′(s, s′) =
⋃

{a ·D(s′′, s′) /∃t:α(t) = s, λ(t) = a, β(t) = s′′} ∪ {ε / s = s′}.

It is easy to see that the mapping Ŝ is continuous. It thus has a least fixpoint
Dµ defined by (see Theorem 2.40)

Dµ(s, s′) =
⋃

i≥0

Di(s, s
′)

with

• D0(s, s
′) = ∅, ∀s, s′ ∈ S and

• Di+1(s, s
′) = Di(s, s

′) ∪ Ŝ(Di)(s, s
′).

Dµ is also said to be the least solution of the equation system Ŝ.

Exercise 11.20 Show that Ŝ is continuous. ♦

Theorem 11.26 ∀s, s′, Ls,s′ = Dµ(s, s′).

Proof. Let DL ∈ D be defined by DL(s, s
′) = Ls,s′ .

We will first show that Ŝ(DL) ⊆ DL, and hence it will follow that Dµ ⊆ DL.

Since

Ŝ(DL)(s, s
′) =

⋃
{a · Ls′′,s′ /∃t:α(t) = s, λ(t) = a, β(t) = s′′} ∪ {ε / s = s′},

we have:

1. ε ∈ Ŝ(DL)(s, s
′) if and only if s = s′ and thus if and only if ε ∈ Ls,s′ .

2. If au ∈ Ŝ(DL)(s, s
′), there exists a path c with source s′′, target s′ and trace

u, and there exists a transition t with source s, target s′′ and label a. It follows
that t · c is a path with source s, target s′ and trace au in Ls,s′ .

We now show that Ls,s′ ⊆ Dµ(s, s′). To this end, let Li
s,s′ be the set of strings

of Ls,s′ with length strictly less than i. We will show by induction that

Li
s,s′ ⊆ Di(s, s

′).

Hence, we will immediately deduce that Ls,s′ ⊆ Dµ(s, s′).

1. If i = 0 then Di(s, s
′) = ∅ and Li

s,s′ = {u ∈ Ls,s′ / |u| < 0} = ∅.
2. Let u be a string in Ls,s′ with length strictly less than i+ 1.

Equation systems 221

(2.1) If its length is strictly less than i then it is in Di(s, s
′) and hence in

Di+1(s, s
′).

(2.2) If it has length i, then the following holds:

(2.2.1) If i = 0 then u = ε and thus s = s′; hence ε ∈ Ŝ(Di)(s, s
′).

(2.2.2) If i > 0 then u = au′ with |u′| = i. Since u is the trace
of a path with source s and with target s′, there exists a path c =

t1 · · · ti+1 with α(c) = α(t1) = s, β(c) = β(ti+1) = s′ and λ(t1) = a,
λ(t2 · · · ti+1) = u′. The transition t1 has source s, target s′′ and

label a, and the path t2 · · · ti+1 has source s′′, target s′ and trace
u′. We thus have u′ ∈ Li

s′′,s′ ⊆ Di(s
′′, s′) and au′ ∈ Ŝ(Di)(s, s

′) ⊆
Di+1(s, s

′). ⊓⊔

We will now generalize the equation systems that we have just introduced.

Let X = {x1, . . . , xn} be variables and let Ki,j for i ∈ {0, . . . , n} and j ∈
{1, . . . , n} be subsets of A∗.

We define the mapping K̂ from P(A∗)n to P(A∗)n by

K̂(D1, . . . , Dn) = (D′
1, . . . , D

′
n) ⇐⇒ D′

j = K0,j ∪
n⋃

i=1

Ki,jDi .

This mapping is continuous and hence has a least fixpoint, (Dµ
1 , . . . , D

µ
n).

It is easy to see that the equation system Ŝ associated with a transition system
S is of this form.

Lemma 11.27 Let g be the mapping from P(A∗) to P(A∗) defined by g(D) =
K1 +K2D. Its least fixpoint is K∗

2K1.

Proof. (Cf. also Exercise 3.11 where we showed that if ε 6∈ L then L∗M is the

only fixpoint of X = LX +M .)

1. g(K∗
2K1) = K1 +K2K

∗
2K1 = K∗

2K1, and thus K∗
2K1 is a fixpoint of g.

2. Let Dµ be the least fixpoint of g. Then Dµ = K1 +K2D
µ. We thus have

K1 ⊆ Dµ, K1 +K2K1 ⊆ Dµ,

and, by induction,

K1 +K2K1 +K2
2K1 + · · ·+Ki

2K1 ⊆ Dµ.

Hence, K∗
2K1 ⊆ Dµ, and thus K∗

2K1 is indeed the least fixpoint of g. ⊓⊔

222 11. Rational languages and finite automata

Theorem 11.28 Let K̂ be defined as previously, and let (Dµ
1 , . . . , D

µ
n) be its

least fixpoint. If all the Ki,js are regular, then each Dµ
i is also regular.

Proof. The proof is by induction on n. If n = 1 then K̂(D) = K1 + K2D. Its
least fixpoint is K∗

2K1. If K1 and K2 are regular, then K∗
2K1 is also regular.

Deducing the result for n+1 from the result for n is analogous to the elimination
method for solving linear systems.

The required least fixpoint is the least solution of the following equation system:

x1 = K0,1 +

n+1⋃

i=1

Ki,1xi

...

xn = K0,n +

n+1⋃

i=1

Ki,nxi

xn+1 = K0,n+1 +

n+1⋃

i=1

Ki,n+1xi .

Let us solve the last equation:

xn+1 = K∗
n+1,n+1(K0,n+1 +

n⋃

i=1

Ki,n+1xi).

Substituting the value of xn+1 in the other equations:

x1 = K0,1 +K∗
n+1,n+1K0,n+1 +

n⋃

i=1

(Ki,1 +K∗
n+1,n+1Ki,n+1)xi

...

xn = K0,n +K∗
n+1,n+1K0,n+1 +

n⋃

i=1

(Ki,n +K∗
n+1,n+1Ki,n+1)xi .

By the induction hypothesis, all the components of the least solution (D1, . . . ,

Dn) of this system are regular.
Substituting each Di in the definition of xn+1, we have

xn+1 = K∗
n+1,n+1

(
K0,n+1 +

n⋃

i=1

Ki,n+1Di

)
,

which is also regular.
We claim that this elimination method indeed computes the least solutions of

the considered equations. ⊓⊔

Equation systems 223

Corollary 11.29 Let (S, T, α, β, λ) be a transition system. For any Q,Q′ ⊆ S,

LQ,Q′ is a regular language.

Example 11.30 Consider the finite-state automaton with transitions (1, b, 1),
(1, a, 2), (2, b, 2), (2, a, 1) shown in Figure 11.3.

>

a

>

bb

a
>

<

1 2

Figure 11.3

Consider the variables x1,1, x1,2, x2,1, x2,2. The equation system associated with
this transition system is as follows:

x1,1 = ε+ bx1,1 + ax2,1 ,

x2,1 = bx2,1 + ax1,1 ,

x1,2 = bx1,2 + ax2,2 ,

x2,2 = ε+ bx2,2 + ax1,2 .

Compute x2,2:

x2,2 = b∗(ε+ ax1,2) = b∗ + b∗ax1,2.

Substitute x2,2 in the other equations:

x1,1 = ε+ bx1,1 + ax2,1 ,

x2,1 = bx2,1 + ax1,1 ,

x1,2 = bx1,2 + ab∗ + ab∗ax1,2 = (ab∗a+ b)x1,2 + ab∗.

Compute x1,2:
x1,2 = (ab∗a+ b)∗ab∗.

Substitute x1,2 in x2,2:

x2,2 = b∗ + b∗a(ab∗a+ b)∗ab∗ = (ab∗a+ b)∗ .

Exercise 11.21 Let L be the set of strings over the alphabet {a, b} such that the
number of bs is divisible by 3. There is a finite-state automaton A with three states
such that L = L(A). Give the equation system associated with the transitions, and
solve this system for LI,F in order to give a regular expression denoting L. ♦

Exercise 11.22 Let L be the language over the alphabet A = {a, b} consisting of all
the strings without three consecutive as. Give the minimal complete deterministic finite-
state automaton recognizing L and solve the corresponding equation system; deduce a
regular expression for L. ♦

We will now prove the converse of Corollary 11.29.

224 11. Rational languages and finite automata

Theorem 11.31 If L is a regular language then there exists a finite-state au-

tomaton A such that L = L(A).

Proof.

1. If L consists of a single string, the theorem holds as follows. If u = a1 · · · an,
consider the incomplete deterministic finite-state automaton whose states are
s0, s1, . . . , sn, the unique initial state is s0, the unique final state is sn and the

transitions are (si−1, ai, si) for 1 ≤ i ≤ n. If u is the empty string, we will let
n = 0 and the automaton will have no transition.

2. If L = L1+L2 then by the induction hypothesis there exist A1 and A2, with
Ai = (Si, Ti, Ii, Fi) such that Li = L(Ai). We can assume that the states of A1

and of A2 are two disjoint sets. The finite-state automaton A = (S, T, I, F), with
S = S1 ∪ S2, T = T1 ∪ T2, I = I1 ∪ I2, and F = F1 ∪ F2, recognizes the language

L(A) = L(A1) ∪ L(A2).
3. If L = L1L2, there exist A1 and A2 such that Li = L(Ai). Assume again
that their states are two disjoint sets and let

S = S1 ∪ S2,

T = T1 ∪ T2 ∪ {(s, a, s′) / s′ ∈ I2, ∃s
′′ ∈ F1 : (s, a, s′′) ∈ T1},

I =

{
I1 if I1 ∩ F1 = ∅,
I1 ∪ I2 otherwise,

F = F2.

Then L(A) = L(A1)L(A2). We show this as follows:
(a) Let v ∈ L(A1) and w ∈ L(A2). Since w ∈ L(A2), there exists in A2

a path c′ with trace w whose source s′1 is in I2 and whose target s′2 is in
F2 = F .

(a.1) If v = ε, then I2 ∩F1 6= ∅, and thus I2 ⊆ I. The path c′ is also
a path of A, and since s′1 ∈ I2 ⊆ I and s′2 ∈ F2 = F , vw = w ∈ L(A).

(a.2) If v = v′a, then there exists in A1 a path c with trace v′, source
s1 ∈ I1 and target s2, and a transition t = (s2, a, s3) with s3 ∈ F1. By
the definition of T , there also exists a transition t′ = (s2, a, s

′
1). The

path ct′c′ of A has trace v′aw = vw, source s1 ∈ I1 ⊆ I and target
s′2 ∈ F2 = F . Hence vw ∈ L(A).

(b) Let u ∈ L(A). There thus exists in A a path c with trace u, source
s1 ∈ I and target s′2 ∈ F = F2.

(b.1) If s1 ∈ I2, then,
• on the one hand, c is a path of A2 and u ∈ L(A2), and

• on the other hand, since I2 ∩ I 6= ∅, then, by the construction of
I, I1 ∩ F1 6= ∅ and thus ε ∈ L(A1).
We thus have u = εu ∈ L(A1)L(A2).

Equation systems 225

(b.2) If s1 6∈ I2, then s1 ∈ I1, and the path c must be of the form

c1(s2, a, s
′
1)c2 where ci (i = 1, 2) is a path of Ai. By the construction

of T , (s2, a, s
′
1) is a transition of T if s′1 ∈ I2 and ∃s3 ∈ F1 : (s2, a, s3) ∈

T1. It follows that u = vaw, where v is the trace of c1 and w the trace

of c2, and that va ∈ L(A1) and w ∈ L(A2).
4. Lastly, let A = (S, T, I, F) be a finite-state automaton. Since

L(A)∗ = {ε}∪L(A)+, in order to construct a finite-state automaton recognizing
L(A)∗, it suffices to construct a finite-state automaton A′ recognizing L(A)+. To

this end, it is enough to add to T the set of transitions

T ′′ = {(s, a, s′) / s′ ∈ I and ∃s′′ ∈ F : (s, a, s′′) ∈ T}.

The proof is similar to the proof of point 2, in one direction by induction on the
least integer i such that u ∈ L(A)i, and in the other direction by induction on
the number of transitions of T ′′ occurring in a path of A′. ⊓⊔

