
chapter 9

ASYMPTOTIC BEHAVIOUR

In Chapter 7 we saw that, in order to evaluate a complexity or a cost, esti-

mating its order of magnitude could be useful. This can happen when exact
computation is not possible (for instance, the average complexity of Quicksort,
see Section 14.1), or when an approximate value of the cost or complexity is

enough. For instance, comparing it to the cost of other algorithms or, a priori,
excluding a too costly algorithm or determining the maximum size of data which

can be dealt with by a given algorithm, etc.
This evaluation of an order of magnitude consists of finding an approximation

of the behaviour of a function in limit conditions (n going to infinity, x going
to zero, etc.); this is why such behaviour is called asymptotic. Most often, such

evaluations will be used to study the complexity of an algorithm when the size n
of the data goes to infinity. Note, however, that an algorithm which is optimal
for large-size data is not always the best one for smaller-size data.

After the basic definitions, this chapter introduces methods to determine the
asymptotic behaviour of functions, and to classify functions according to their

asymptotic behaviour.

We recommend the following handbook:

Ronald Graham, Donald Knuth, Oren Patashnik, Concrete Mathematics, Addi-

son-Wesley, London (1989).

9.1 Generalities

9.1.1 Definitions

Definition 9.1 Let f, g be two mappings from IN into IR+. f is said to be

dominated by g or to be a ‘big-Oh’ of g (resp. f is said to dominate g or to be a
‘big-Omega’ of g), and we note f = O(g) (resp. f = Ω(g)) if and only if

∃c ∈ IR+, ∃n0 ∈ IN, ∀n > n0 : f(n) ≤ cg(n) (resp. f(n) ≥ cg(n)).
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This definition also holds for functions with several arguments, for instance

f(n, p) = O(g(n, p)) if and only if

∃c, n0, p0, ∀n > n0 , ∀p > p0 : f(n, p) ≤ cg(n, p).

The O-notation was introduced by the German mathematician Bachmann at the
end of the last century (1894), and was made popular by his fellow countryman

Landau, after whom it is named.

Remark 9.2 The equality in the notation f = O(g) is somewhat inappropriate

but handy: for instance n2 + 2n = O(n2), but no equality holds, since also
n2 + 2n = O(n5), but not O(n2) = O(n5)! To be quite precise, we should write
f ∈ O(g), and we would then have O(n2) ⊆

/
O(n5); but we will follow the standard

notation by writing f = O(g).

Definition 9.3 f and g are said to have the same order of magnitude, and this

is denoted by f = θ(g), if and only if f = O(g) and g = O(f).

Proposition 9.4 f = θ(g) =⇒ f = O(g), but the converse is false.

Proof. Immediate as f = θ(g) if and only if f = O(g) and g = O(f). The
converse is false, e.g. np = O(np+1). ⊓⊔

Proposition 9.5 f = O(g) ⇐⇒ g = Ω(f).

Proof. Immediate since ∃c ∈ IR+, ∃n0 ∈ IN, ∀n > n0: f(n) ≤ cg(n) if and only

if ∃c′ = 1

c
∈ IR+, ∃n0 ∈ IN, ∀n > n0: g(n) ≥ c′f(n). ⊓⊔

Definition 9.6 f is said to grow more slowly than g, and we write
f = o(g), or f ≺ g, if and only if ∀ε ∈ IR+, ∃n0 ∈ IN, ∀n > n0: f(n) ≤ εg(n).

Remark 9.7 The notations O, o,Ω, θ also hold for mappings from IR into IR; but
in this case, when speaking of limit conditions we must specify the limits we are

talking about, because the same function f may be an O(g) when x −→ ∞, and
an O(g′) for a quite different g′ when x −→ 0: for instance, let f(x) = x3+4x2+x;

then

• when x −→ ∞, f = O(x3), but f = O(x) does not hold (on the contrary

f = Ω(x), and even x = o(f), since x/f(x) −→ 0),

• symmetrically, when x −→ 0, f = O(x), but f = O(x3) does not hold (on

the contrary f = Ω(x3), and even x3 = o(f)).
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9.1.2 Operations on the orders of magnitude

Proposition 9.8 For all g, g1, g2 :

g(n) = O(g(n))

g(n) = θ(g(n))

cO(g(n)) = O(g(n))

O(g(n)) +O(g(n)) = O(g(n))

O(g1(n)) +O(g2(n)) = O(max(g1(n), g2(n)))

O(O(g(n))) = O(g(n))

O(g1(n)) ·O(g2(n)) = O(g1(n))g2(n) = g1(n)O(g2(n)) .

These equalities are abbreviated notations, for instance the third one stands for:
f = O(g(n)), f ′ = cf =⇒ f ′ = O(g(n)), etc.

Proof. Let us check for instance that

O(g1(n)) +O(g2(n)) = O(max(g1(n), g2(n))) ;

if f(n) ∈ O(g1(n))+O(g2(n)), c1 and c2 exist such that f(n) ≤ c1g1(n)+ c2g2(n)
for n ≥ n0. Letting c = max(c1, c2), then

f(n) ≤ c(g1(n) + g2(n)) ≤ 2cmax(g1(n), g2(n)) . ⊓⊔

Exercise 9.1 Find the error in the following argument: ‘n = O(n) and
2n = O(n), and so on, hence

∑n

k=1
kn =

∑n

k=1
O(n) = nO(n) = O(n2)’. ♦

Exercise 9.2 If f(n) = O(n), do the following hold?:

1. (f(n))2 = O(n2),

2. 2f(n) = O(2n). ♦

Proposition 9.9

1. f = θ(g) =⇒ λf = θ(g) for any constant λ > 0, and
2. fi = θ(gi) for i = 1, 2, . . . , k, implies

∑k
i=1 fi = θ(max{g1, g2, . . . , gn}).

Proof. 1 is immediate; to verify 2 note that

•
∑k

i=1 fi = O(max{g1, g2, . . . , gn}), by induction on k and applying the fifth
equality of Proposition 9.8,

• for i = 1, 2, . . . , k, gi = O(fi) implies that gi = O
(
∑k

i=1 fi
)

, and thus

max{g1, g2, . . . , gn} = O
(
∑k

i=1 fi
)

. ⊓⊔
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Example 9.10 ∀k, ∑n
i=1 i

k = θ(nk+1). The proof is by induction on n:

• Basis. For k = 0,
∑n

i=1 i
0 = n = θ(n);

• Inductive step. Assuming ∀j < k,
∑n

i=1 i
j = θ(nj+1), note that

ik+1 = ((i− 1) + 1)k+1 =

k+1
∑

p=0

(

k + 1

p

)

(i− 1)p,

and let us apply this formula for i = 1, 2, . . . , n:

nk+1 = (n− 1)k+1 + (k + 1)(n− 1)k + · · ·+ 1

(n− 1)k+1 = (n− 2)k+1 + (k + 1)(n− 2)k + · · ·+ 1

...

2k+1 = 1k+1 + (k + 1)1k + · · ·+ 1

1k+1 = 0 + 0 + · · ·+ 1 .

By summing these n equalities, we obtain, after simplifications,

nk+1 = (k + 1)

n−1
∑

i=1

ik +

(

k + 1

2

) n−1
∑

i=1

ik−1 + · · ·+ n ;

hence,
n−1
∑

i=1

ik =
nk+1

k + 1
− 1

k + 1

[((

k + 1

2

) n−1
∑

i=1

ik−1

)

+ · · ·+ n

]

,

and
n
∑

i=1

ik =
(n+ 1)k+1

k + 1
− 1

k + 1

[ k+1
∑

j=2

(

k + 1

j

)( n
∑

i=1

ik+1−j

)]

.

We then have by the induction, ∀j = 2, . . . , k + 1,
(

k+1
j

)

k + 1

n
∑

i=1

ik+1−j = θ(nk+2−j),

and
nk+1

k + 1
= θ(nk+1). Hence, as max{nk+1, . . . , n} = nk+1, Proposition 9.9, 2,

enables us to conclude
n−1
∑

i=1

ik = θ(nk+1) ,

which proves the inductive step.

Exercise 9.3 Let g1, g2 be two mappings from IN into IR+; does the following equality
hold?

O(g1(n) + g2(n)) = g1(n) +O(g2(n)). ♦
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Remark 9.11 The relation f R g if and only if f = O(g) is a preorder relation,

i.e. a reflexive and transitive relation. It is naturally associated with an order
relation: let E be the set of mappings from IN into IR+, the relation f ≡ g if and
only if f = θ(g) is an equivalence relation, called the equivalence associated with

R; on the factor set E/≡, the relation [R/≡] defined by [f ] [R/≡] [g] if and only
if f R g, is an order relation, which is the order relation canonically associated

with R (see Proposition 2.9).

9.2 Criteria of asymptotic behaviour of functions

9.2.1 A sufficient condition

Given, now, two positive functions f and g, we will compare them to find out

whether f is O, Ω or θ of function g or not. To this end, assuming f and g are
not zero, we will form the quotients f/g or g/f .

Proposition 9.12 Let f and g be two positive functions, then:

(i) lim
n→∞

f(n)

g(n)
= a 6= 0 =⇒ f = θ(g),

(ii) lim
n→∞

f(n)

g(n)
= 0 =⇒ f = O(g) and f 6= θ(g),

(iii) lim
n→∞

f(n)

g(n)
= ∞ =⇒ g = O(f) and g 6= θ(f).

Proof. Let us prove (i) for instance. lim
n→∞

f(n)

g(n)
= a 6= 0 implies

∀ε , ∃n0 , ∀n > n0 :

∣

∣

∣

∣

f(n)

g(n)
− a

∣

∣

∣

∣

< ε .

Since f and g are positive, this in turn implies

(a− ε)g(n) < f(n) < (a+ ε)g(n),

and thus f(n) < (a + ε)g(n), g(n) <
1

a− ε
f(n), hence f = O(g) and

g = O(f). ⊓⊔
Exercise 9.4 Prove cases (ii) and (iii). ♦
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Definition 9.13 If lim
n→∞

f(n)

g(n)
= 1, f is said to be asymptotic to g and we write

f ∼ g ; ∼ is an equivalence relation.

Proof. It can easily be checked that ∼ is an equivalence relation. Let us check

for instance that f ∼ g and g ∼ h =⇒ f ∼ h: as h and g are not zero, we
have

lim
n→∞

f(n)

h(n)
= lim

n→∞

f(n)

g(n)
× g(n)

h(n)
= 1. ⊓⊔

Proposition 9.14 If lim
n→∞

f(n)

g(n)
= 0, then f grows more slowly than g, i.e.

f = o(g).

Proof. Straightforward. ⊓⊔

Remark 9.15 1. The preceding proposition gives a criterion which is sufficient

but not necessary to classify the functions among O and Ω: for instance, let
g(n) = 2n and

f(n) =

{

n if n is odd,
2n if n is even,

then
f(n)

g(n)
has no limit, even though f = θ(g) since

∀n, g(n)

2
≤ f(n) ≤ g(n).

2. If lim
n→∞

f(n)

g(n)
is one of the indeterminate forms

0

0
or

∞
∞ , we can apply

l’Hospital’s rule in the form: if lim
n→∞

f ′(n)

g′(n)
= a exists, then lim

n→∞

f(n)

g(n)
= a.

Example 9.16

∀a > 0, ∀b > 0 , lim
n→∞

log(n)
a

nb
= 0

and

∀a > 1, ∀b > 0 , lim
n→∞

nb

an
= 0 ,

which is abbreviated to ‘exponential wins over powers, and powers win over log-
arithms’. More precisely, for all ε and c such that 0 < ε < 1 < c, the following

holds:
1 ≺ log n ≺ nε ≺ nc ≺ nlogn ≺ cn ≺ nn ≺ cc

n

.
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Example 9.17 Let the partition recurrence un = 2un/2 with u1 = 1. We have

seen in Chapter 7 that un is not uniquely determined on IN (see Example 7.12).
We can, however, determine the asymptotic order of magnitude of un: here we
will obtain un = θ(n). If we assume that un is ultimately increasing, namely,

that there is an integer n0 such that

∀n ≥ n0, ∀p ≥ n0, n ≥ p =⇒ un ≥ up ,

then un is of the same order of magnitude as n. Indeed, in this case, for a large

enough k, 2k ≥ n0. Thus let n be such that ∃k, n0 ≤ 2k ≤ n ≤ 2k+1; we deduce
2k ≤ un ≤ 2k+1. We thus have

• on the one hand, un ≤ 2k+1 and 2k ≤ n, hence un ≤ 2n,

• on the other hand, 2k ≤ un and n ≤ 2k+1, hence n ≤ 2un,

and thus, finally, n/2 ≤ un ≤ 2n, i.e. un = θ(n) .

More generally, we can state the following proposition.

Proposition 9.18 Let un = bun/a+ cnk, with a ≥ 2, b, c > 0, k ∈ IN. Assume,

moreover, that un is monotone increasing for n ≥ n0, then

un =







θ(nk) if b < ak,
θ(nk log n) if b = ak,
θ(nloga b) if b > ak.

The proof is not given here.

Exercise 9.5 Let the sequence un be defined by: uo = c > 1, and

un = un−1 +
1

un−1
, for n ≥ 1 .

1. Show that
1

u2
n−1

≤
1

un−1
.

2. Show that

2 ≤ u2
n − u2

n−1 ≤ 2 + un − un−1 . (9.1)

3. Determine the asymptotic behaviour of un. ♦
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9.2.2 Hierarchies

A hierarchy is a set of functions against which all other functions are measured
in order to study their asymptotic behaviour. For instance, {np / p ∈ IN} is such

a hierarchy. The formal definition follows.

Definition 9.19 A hierarchy E is a set of functions:

E = {g: IN −→ IR}

such that:

(i) ∀g ∈ E, limn→∞ g(n) = 0, or limn→∞ g(n) = ∞, or g is the constant function

1,

(ii) ∀g1 ∈ E, ∀g2 ∈ E, if g1 6= g2 then either g1 = o(g2), or g2 = o(g1),

(iii) ∀g ∈ E, ∀n ∈ IN, g(n) > 0.

The second condition of this definition asserts that two functions in the hierarchy

never have the same order of magnitude.

Example 9.20 E = {g / g(n) = na(log n)b, a, b ∈ IR} is a hierarchy. Let gi =
nai(logn)bi , i = 1, 2; we have g1 = o(g2), or g1 ≺ g2 if and only if a1b1 < a2b2 in

the lexicographic ordering.

Exercise 9.6 Study the hierarchy E = {g / g(n) = ean
b

×nc×(log n)d, with a, b, c, d ∈
IR, b > 0}. ♦

9.2.3 Asymptotic approximations

Definition 9.21 Let E be a hierarchy and f a function:

• If there exist 0 6= a1 ∈ IR and g1 ∈ E such that f ∼ a1g1, then we have
f − a1g1 = o(g1); we say that g1 is the principal part of f with respect to

hierarchy E and we write f = a1g1 + o(g1).

• More generally, the asymptotic power series expansion of order k of f with

respect to E is an expression of the form f = a1g1 + · · · + akgk + o(gk), with
gi+1 = o(gi) for i− 1, . . . , k − 1.

Lemma 9.22 The principal part, if it exists, is unique.

Proof. See Exercise 9.7. ⊓⊔
Exercise 9.7 Prove that, when it exists, the asymptotic power series expansion of
order k of f is unique. ♦
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Example 9.23 The asymptotic power series expansion may not exist for various

reasons:

• The hierarchy is not refined enough: for instance en has no principal part
with respect to E = {np / p ∈ IN}.
• The function has an irregular behaviour: for instance the function f defined
by

f(n) =
{

2n if n odd
n if n even

has no limit with respect to E.

The following asymptotic power series expansions, with respect to the hierarchy

{xk / k ∈ IN} ,

and for x → 0, are quite usual and useful:

for |x |≤ r < 1,

1

1− x
= 1 + x+ · · ·+ xk + o(xk),

for α ∈ IR, |x |≤ r < 1,

(1 + x)α = 1 + αx+ · · ·+ α(α− 1) · · · (α− k + 1)
xk

k!
+ o(xk),

for |x |≤ r ∈ IR+,

ex = 1 + x+
x2

2!
+ · · ·+ xk

k!
+ o(xk),

for |x |≤ r < 1,

log(1 + x) = x− x2

2
+

x3

3
+ · · ·+ (−1)k+1x

k

k
+ o(xk).

The rules given in Proposition 9.24 complete those given in Proposition 9.8 and

can be deduced from the asymptotic power series expansion given above.

Proposition 9.24

log
(

1 +O(f(n))
)

= O
(

f(n)
)

,if f(n) = o(1),

eO(f(n)) = 1 +O
(

f(n)
)

,if f(n) = O(1),

if f(n) = o(1) and f(n)g(n) = O(1),
(

1 +O(f(n))
)O(g(n))

= 1 +O
(

f(n)g(n)
)

.

Proof. Let g = O(f), then ∃c ∈ IR+, ∃n0 ∈ IN, ε ∈ IR+,

∀n > n0 , |g(n)| ≤ c|f(n)| ≤ ε < 1 .
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The series

log
(

1 +O(g(n))
)

= g(n)

(

1− 1

2
g(n) +

1

3
g(n)2 − · · ·

)

thus converges ∀n > n0, and the series 1 − 1
2g(n) +

1
3g(n)

2 − · · · has the upper

bound 1 + 1
2ε+

1
3ε

2 + · · ·, whence the first rule. The second is proved similarly.
The two first rules together imply the third rule. ⊓⊔

Exercise 9.8 Verify that

(1 + n)1/n = 1 +
log n

n
+

1

2

(log n)2

n2
+

1

n2
+

1

6

(log n)3

n3
+ o

(

(log n)3

n3

)

. ♦

9.2.4 Asymptotic approximations by partial sums

The following lemma, is very simple, but nevertheless very useful in many cases.

Lemma 9.25

1. Let f be a monotone decreasing mapping, and un =
∑n

i=p f(i), then,

∫ q+1

p

f(x)dx ≤
q

∑

i=p

f(i) ≤
∫ q

p−1

f(x)dx.

2. Similarly let f be a monotone increasing mapping, then,

∫ q

p−1

f(x)dx ≤
q

∑

i=p

f(i) ≤
∫ q+1

p

f(x)dx.

Figure 9.1 is an aid to the understanding of case 2.

We have already seen an application of the squeeze obtained in Lemma 9.25, 1.

If f(x) =
1

x
, then

∫ n+1

2

dx

x
≤

n
∑

i=2

1

i
≤

∫ n

1

dx

x
,

which enables us to bound Hn = 1 +
1

2
+ · · ·+ 1

n
:

log(n+ 1) + 1− log 2 ≤ Hn ≤ log(n) + 1.
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np q

f(n)

Figure 9.1 A monotone increasing mapping f .

We can prove, at the cost of more complex computations, that

Hn = log n+ γ +
1

2n
+ o(n),

where γ = 0.5772 . . . is Euler’s constant.

We now apply Lemma 9.25, 2, to find the order of magnitude of n!: we reduce

this problem to evaluating the order of magnitude of log n!. If f(x) = log x, we
have log n! =

∑n
i=1 log i =

∑n
i=2 log i and, by the above remark,

∫ n

1

log xdx ≤
n
∑

i=2

log i =
n
∑

i=1

log i ≤
∫ n+1

1

log xdx.

Integrating by parts
∫ n

1
log xdx = [x log x]n1 −

∫ n

1
dx = n log n − (n − 1), whence

the bounds

n log n− n+ 1 ≤ log n! ≤ (n+ 1) log(n+ 1)− n,

which will enable us to find an approximation of n! . Forming the exponentials

we have: e1−nnn ≤ n! ≤ e−n(n + 1)n+1. The order of magnitude of n! is thus
O(nn+1). A more precise asymptotic power series expansion of n! can be ob-
tained, yielding an exact equivalent of n!, but the proof is more complex and
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gives Stirling’s formula

n! =
√
2πn

(

n

e

)n(

1 +
1

12n
+ o

(

1

n

))

,

whence n! = θ(nn+1/2).

9.2.5 ‘Bootstrapping’

We now introduce a technique which is both simple and powerful for finding
asymptotic expansions of functions or solving recurrences asymptotically, without

explicit computation but by using successive approximations. We start with a
rough estimate, which we improve by plugging the estimate in the recurrence;

this process gives better and better estimates, and is stopped when a reasonably
good estimate is obtained (sometimes the exact solution can even be found, see
Exercise 9.10). This technique is called bootstrapping.

We illustrate this technique with an example taken from Graham–Knuth–
Patashnik. Consider the exponential generating series defined by

u(z) =
∑

n≥0

zn = ev(z), with v(z) =
∑

k≥1

zk

k2
, (9.2)

and try to find the asymptotic behaviour of the coefficients un of the series u(z).

Differentiating equation (9.2), we find

u′(z) =
∑

n≥0

nzn−1 = v′(z)ev(z) =
∑

k≥1

zk−1

k
u(z),

hence the recurrence equation defining un, u0 = 1, and for n ≥ 1,

nun =
∑

0≤k<n

uk

n− k
. (9.3)

We check by induction on n that 0 < un ≤ 1, since u0 = 1, and nun ≤
∑

0≤k<n 1 = n. Hence,
un = O(1).

This fact is used to ‘start up the pump’ of the bootstrapping, by plugging this
information in equation (9.3); this gives

nun =
∑

0≤k<n

O(1)

n− k
= HnO(1) = O(log n),
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hence

un = O
( log n

n

)

, for n > 1,

un = O
(1 + log n

n

)

, for n ≥ 1.and

Bootstrapping again in equation (9.3) gives, for n > 1,

nun =
1

n
+

∑

0<k<n

1

n− k
O
(1 + log k

k

)

,

since, for 1 ≤ k < n, O(1 + log k) = O(log n),

nun =
1

n
+

∑

0<k<n

O(logn)

k(n− k)
=

1

n
+

∑

0<k<n

(1

k
+

1

n− k

)O(log n)

n

=
1

n
+

2

n
Hn−1O(log n) =

1

n
O((logn)2)

and, finally,

un = O
(( log n

n

)2)

, for n > 1. (9.4)

Exercise 9.9

1. What would come out of one more bootstrapping step using equation (9.4)?
2. Find the principal part of un. ♦

Exercise 9.10 Solve the recurrence un = n+un−1, with u0 = 0, by bootstrapping. ♦


