An algebraic characterization of unary 2-way transducers

Christian Choffrut¹ and <u>Bruno Guillon^{1,2}</u>

 1 LIAFA - Université Paris-Diderot, Paris 7 2 Dipartimento di Informatica - Università degli studi di Milano

August 25, 2014

2-way automaton over $\boldsymbol{\Sigma}$

$$\begin{pmatrix} Q, q_{-}, F, \delta \end{pmatrix} \xleftarrow{} transition set: \subset Q \times \Sigma_{\mathbb{R},\mathbb{Q}} \times \{-1, 0, 1\} \times Q$$

2-way automaton over Σ

2-way transducer over Σ , Γ

$$({}^{Q, q_{-}, F, \delta}) \stackrel{(A, \phi)}{\leftarrow} _{\text{production function:}} \delta \rightarrow Rat(\Gamma^*)$$

copy the input word

- copy the input word
- rewind the input tape

- copy the input word
- rewind the input tape
- append a copy of the input word

- copy the input word
- rewind the input tape
- append a copy of the input word

Rational operations

Union

$$R_1 \cup R_2$$

• Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$

Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Rational operations

Union

$$R_1 \cup R_2$$

- Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$
- Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i \ (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Rational operations

Union

$$R_1 \cup R_2$$

- Componentwise concatenation $R_1 \cdot R_2 = \{(u_1 u_2, v_1 v_2) \mid (u_1, v_1) \in R_1 \text{ and } (u_2, v_2) \in R_2\}$
- Kleene star

$$R^* = \{(u_1u_2\cdots u_k, v_1v_2\cdots v_k) \mid \forall i (u_i, v_i) \in R\}$$

Definition $(Rat(\Sigma^* \times \Gamma^*))$

The class of rational relations is the smallest class:

- that contains finite relations
- and which is closed under rational operations

Theorem (Elgot, Mezei - 1965) 1-way transducers = the class of rational relations.

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

H-product

 $R_1 \oplus R_2 = \{(u, v_1 v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

Example: $SQUARE = \{(w, ww) \mid w \in \Sigma^*\} = Identity \oplus Identity$

- copy the input word
- rewind the input tape
- append a copy of the input word

H-product

 $R_1 \oplus R_2 = \{(u, v_1v_2) \mid (u, v_1) \in R_1 \text{ and } (u, v_2) \in R_2\}$

► H-star
$$R^{H\star} = \{(u, v_1 v_2 \cdots v_k) \mid \forall i (u, v_i) \in R\}$$

► H-product
R₁ ⊕ R₂ = {(u, v₁v₂) | (u, v₁) ∈ R₁ and (u, v₂) ∈ R₂}
► H-star
R^{H★} = {(u, v₁v₂ ··· v_k) | ∀i (u, v_i) ∈ R}

Example: UnaryMult =
$$\{(a^n, a^{kn}) \mid k, n \in \mathbb{N}\}$$
 = Identity^{H*}

H-Rat relations

Definition A relation *R* is in *H*-*Rat*($\Sigma^* \times \Gamma^*$) if

$$R = \bigcup_{0 \le i \le n} A_i \oplus B_i^{\mathsf{H}^{\bigstar}}$$

where for each i, A_i and B_i are rational relations.

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Theorem (Elgot, Mezei - 1965)

1-way transducers = the class of rational relations.

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Main result

When $\Sigma = \{a\}$ and $\Gamma = \{a\}$:

Proof

- ▶ ⊇: easy
- ► ⊆: difficult part

2-way functional — MSO definable functions

[Engelfriet, Hoogeboom - 2001]

2-way functional MSO definable functions

 [Engelfriet, Hoogeboom - 2001]

 2-way general incomparable MSO definable relations

 [Engelfriet, Hoogeboom - 2001]

2-way functional MSO definable functions

 [Engelfriet, Hoogeboom - 2001]

 2-way general incomparable MSO definable relations
 [Engelfriet, Hoogeboom - 2001]
 1-way simulation of 2-way functional transducer:
 decidable and constructible
 [Filiot et al. - 2013]

When Γ = {a}: ► 2-way unambiguous → 1-way

[Anselmo - 1990]

2-way functional — MSO definable functions [Engelfriet, Hoogeboom - 2001] 2-way general incomparable MSO definable relations [Engelfriet, Hoogeboom - 2001] ▶ 1-way simulation of 2-way functional transducer: decidable and constructible [Filiot et al. - 2013] When $\Gamma = \{a\}$: \blacktriangleright 2-way unambiguous \longrightarrow 1-way [Anselmo - 1990] 2-way unambiguous = 2-way deterministic [Carnino, Lombardy - 2014]

Property

The family of relations accepted by 2-way transducers is

closed under \cup , \oplus and $H \star$.

Property

The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and $\mu \star$.

Proof.

- $\blacktriangleright R_1 \cup R_2:$
 - simulate T_1 or T_2

Property

The family of relations accepted by 2-way transducers is

closed under \cup , \oplus and $H\star$.

Proof.

- $\blacktriangleright R_1 \cup R_2:$
 - simulate T_1 or T_2
- ► *R*₁ ⊕ *R*₂:
 - ▶ simulate T₁
 - rewind the input tape
 - simulate T₂

Property

The family of relations accepted by 2-way transducers is closed under \bigcup , \bigoplus and $\mu \star$.

Proof.

- $\blacktriangleright R_1 \cup R_2:$
 - simulate T₁ or T₂
- ► *R*₁ ⊕ *R*₂:
 - simulate T₁
 - rewind the input tape
 - ▶ simulate T₂

► *R*^{H★}:

- repeat an arbitrary number of times:
 - simulate T
 - rewind the input tape
- reach the right endmarker and accept

Property The family of relations accepted by 2-way transducers is closed under \cup , \bigoplus and $\mu \star$.

A first ingredient, a preliminary result:

Lemma With arbitrary Σ and $\Gamma = \{a\}$:

H-Rat is closed under
$$\cup$$
, \oplus and $H\star$.

Proof. Tedious formal computations...

We fix a transducer \mathcal{T} .

Consider border to border run segments;

We fix a transducer \mathcal{T} .

Consider border to border run segments;

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;

 $R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$

We fix a transducer \mathcal{T} .

- Consider border to border run segments;
- Compose border to border segments;
- ► Conclude using the closure properties of *H*-*Rat*.

 $R_1 \oplus R_2 \oplus R_3 = \{(u, v_1 v_2 v_3)\}$

define a relation R_{b_i} , b_j

Second ingredient:

The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary Each entry of HIT^{++*} is in H-Rat.

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary Each entry of HIT^{++*} is in H-Rat.

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{$H\star$}.

Second ingredient: The behavior of \mathcal{T} is given by the matrix $HIT^{H\star}$.

Third ingredient:

Lemma Each entry R_{b_1,b_2} of the matrix HIT is rational (constructible).

By closure property:

Corollary Each entry of HIT^{++*} is in H-Rat.

Remark

The relation accepted by \mathcal{T} is a union of entries of HIT^{H*}.

Corollary

accepted by 2-way transducers

Theorem

When $\Gamma = \{a\}$ and $\Sigma = \{a\}$:

2-way transducers accept exactly the H-Rat relations.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
• 2-way $\begin{cases} deterministic \\ unambiguous \\ functional \end{cases}$ accept rational relations.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
• 2-way $\begin{cases} deterministic \\ unambiguous \\ functional \end{cases}$ accept rational relations.

2-way transducers are uniformizable by 1-way transducers.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
• 2-way $\begin{cases} deterministic \\ unambiguous \\ functional \end{cases}$ accept rational relations.

2-way transducers are uniformizable by 1-way transducers.

Every thing is **constructible**.

Theorem When $\Gamma = \{a\}$ and $\Sigma = \{a\}$: 2-way transducers accept exactly the H-Rat relations.

From our construction follows:

2-way transducers can be made sweeping.

With only
$$\Gamma = \{a\}$$
:
• 2-way $\begin{cases} deterministic \\ unambiguous \\ functional \end{cases}$ accept rational relations.

2-way transducers are uniformizable by 1-way transducers.

Every thing is **constructible**.

Thank you for your attention.