Communicating Finite Automata Systems

Bruno Guillon, Christian Choffrut cotutelle franco-italienne - Giovanni Pighizzini

L.I.A.F.A, Université Paris Diderot - Paris VII Dipartimento di Informatica, Università degli studi di Milano

October 10, 2012

Finite Automata

Finite Automata

Finite Automata

Each computing step is composed of:

Each computing step is composed of:

1. send message?

$$\nu:~\Sigma\times Q\to\{0,1\}$$

Each computing step is composed of:

- 1. send message?
- 2. receive message

 $\nu: \; \Sigma \times Q \rightarrow \{0,1\}$

Each computing step is composed of:

1. send message?

 $\nu:~\Sigma\times Q\to\{0,1\}$

- 2. receive message
- 3. execute transition: $\delta: Q \times \Sigma \times M \rightarrow \mathcal{P}(Q \times \{-1, 0, +1\}),$

where
$$M = (Q \cup \{Nil\})^k$$
.

Each computing step is composed of:

1. send message?

$$\nu: \ \Sigma \times Q \rightarrow \{0,1\}$$

- receive message
- 3. execute transition: $\delta: Q \times \Sigma \times M \rightarrow \mathcal{P}(Q \times \{-1, 0, +1\})$,

where
$$M = (Q \cup \{Nil\})^k$$
.

accepted language $\{a^nb^n\}$

Over unary alphabets?

Over unary alphabets?

One may accept $\left\{1^{2^n},\ n\in\mathbb{N}\right\}$:


```
Theorems (Tomasz Jurdzinski, 1999-2001) Notation: dMes_k(f)
```

Theorems (Tomasz Jurdzinski, 1999-2001) Notation: $dMes_k(f)$

▶ $1 Mes_k(m+1) \setminus 2 Mes_k(m) \neq \emptyset$

Theorems (Tomasz Jurdzinski, 1999-2001) Notation: $dMes_k(f)$

- ▶ $1 Mes_k(m+1) \setminus 2 Mes_k(m) \neq \emptyset$
- ▶ $2 Mes_2(m+1) \setminus 2 Mes_k(m) \neq \emptyset$

```
Theorems (Tomasz Jurdzinski, 1999-2001)
Notation: dMes_k(f)
```

- ▶ $1 Mes_k(m+1) \setminus 2 Mes_k(m) \neq \emptyset$
- ▶ $2Mes_2(m+1)\backslash 2Mes_k(m) \neq \emptyset$
- ▶ $1 Mes_k(o(\log n)) = 1 Mes_k(\mathcal{O}(1))$

```
Theorems (Tomasz Jurdzinski, 1999-2001)
Notation: dMes_k(f)
```

- ▶ $1 Mes_k(m+1) \setminus 2 Mes_k(m) \neq \emptyset$
- ▶ $2Mes_2(m+1)\backslash 2Mes_k(m) \neq \emptyset$
- ▶ $1 Mes_k(o(\log n)) = 1 Mes_k(\mathcal{O}(1))$
- ▶ $2Mes_k(o((\log \log \log n)^c)) = 2Mes_k(\mathcal{O}(1))$

Question

Which language may be accepted by Communicating FA

Question

Which language may be accepted by Communicating FA, over unary alphabets

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

one-way/two-way

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

- one-way/two-way
- deterministic/nondeterministic

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

- one-way/two-way
- deterministic/nondeterministic

Theorem (Harrison & Ibarra, 1968)

Unary one-way multihead automata accept exactly regular languages.

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

- one-way/two-way
- deterministic/nondeterministic

Question

Which language may be accepted by Communicating FA, over unary alphabets, with a constant number of messages?

Conjecture

unary rational languages.

- ▶ one-way/two-way
- deterministic/nondeterministic

▶ Does there exist a gap in the number of messages in the unary case (conjecture: log(n)/constant)

Recall (Jurdzinski)

General case: $2Mes_k(o((\log \log \log n)^c)) = 2Mes_k(\mathcal{O}(1))$

- ▶ Does there exist a gap in the number of messages in the unary case (conjecture: log(n)/constant)
- Influence of nondeterminism (in general case)

Example

non regular language: $\{1^n \# 1^m, / \gcd(n, m) = 1\}$ is accepted by nondeterministic $2 Mes_2(1)$.

- ▶ Does there exist a gap in the number of messages in the unary case (conjecture: log(n)/constant)
- Influence of nondeterminism (in general case)

Example

non regular language: $\{1^n \# 1^m, / \gcd(n, m) = 1\}$ is accepted by nondeterministic $2 Mes_2(1)$.

- ▶ Does there exist a gap in the number of messages in the unary case (conjecture: log(n)/constant)
- Influence of nondeterminism (in general case)

Example

non regular language: $\{1^n \# 1^m, / \gcd(n, m) = 1\}$ is accepted by nondeterministic $2 Mes_2(1)$.

Thanks for your attention...

