Timed Modal Logics for Specifying and
Verifying Real-Time Systems

Francois Laroussinie

Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643
61, av. Pdt. Wilson, 94235 Cachan Cedex France
email: £1@01sv.ens-cachan.fr

Abstract. The timed modal logic L, has been proposed in order to
express timed properties over real-time systems modeled as (composi-
tions of) timed automata. In this paper, we present a short survey of
results about L,: complexity of model checking, expressivity, composi-
tional methods, relationship with strong timed bisimulation etc. We also
show how L, can be extended in order to express new properties.

1 Introduction

Model checking is widely used for the design and debugging of critical reactive
systems [Eme90,CGP99]. During the last fifteen years, it has been extended to
real-time systems, where quantitative information about time is required.

Timed models. Real-time model checking has been mostly studied and developed
in the framework of Alur and Dill’s Timed Automata (TA) [ACD93,AD94], i.e.
automata extended with clocks that progress synchronously with time. The be-
havior of a real-time system can often be modeled as a parallel composition
of TA. There now exists a large body of theoretical knowledge and practical
experience for this class of systems.

Timed specifications. Temporal and modal logics provide a fundamental frame-
work for formally specifying systems and reasoning about them [Eme90,MP92].
For example, a property like “any problem is followed by an alarm” can be easily
expressed with most of the temporal logics (CTL, LTL, u-calculus, etc.).

When specifying real-time systems, it is necessary to express timed property
like:

” Any problem is followed by an alarm in at most 10 time units.” (1)

In order to express timing aspects of computations, we can extend the clas-
sical temporal or modal logics. A first possibility is to use timing constraints
tagging temporal modalities [AH92]. For example, with the timed version of
CTL, namely TCTL, one can specify the property (1) as follows:

2 Frangois Laroussinie

AG(probIem = AF<yo aIarm)

A more expressive method consists in adding clocks — a.k.a. freeze variables —
in the specification language [AH94,BCMO05]. In this framework, a formula clock
(with the in operator) can be reset and compared with some constant later
on. For example, the previous property can be written as follows:

AG(probIem = 2 in AF(z <10 A alarm))

The same extensions can be done for modal logics with fixpoint operators.

Outline. In this paper, we consider the timed modal logic L, that has been in-
troduced in [LLW95]. It is a natural extension of classical modal logics for finite
labeled transition systems with (1) two modalities (6) and [4] in order to deal
with delay transitions of the system to be specified (in addition to the stan-
dard modalities for action transitions), (2) with formula clocks and (3) maximal
fixpoint operators.

We address complexity questions for model checking and present several
properties about the expressive power of L,. This paper contains results from
the following papers [AL02,LL95,LLW95 LL98,BCL05a].

2 Definitions

We first define the timed automata proposed by Alur and Dill [ACH94] and then
we introduce the timed modal logic L, .

2.1 Timed Automata

Notations. Let Act be a finite set of actions, and let N and R, denote the sets of
natural and non-negative real numbers, respectively. Let X be a set of clocks. A
clock valuation for X is a function from X to R, the set of valuations is denoted
]Rf. Given a valuation v € Rf and t € Ry, v+t is a valuation assigning v(z)+t
for any x € X. Let r C X, v[r < 0] be the valuation assigning 0 (resp. v(x)) for
any z € r (resp. € X \ 7).

We use C(X) to denote the set of clock constraints defined as the boolean
combinations of atomic constraints of the form x ~ por x—y ~ p, with z,y € X,
peN, and ~ € {<,<,>,>,=}. Given g € C(X) and v € RY, we write v = g
when v satisfies g. We write C«(X) for the restriction of C(X) to the positive
combinations of constraints x < p or z < p, with p € N.

Definition 2.1. A timed automaton (TA) is a tuple A = (L, Ly, Act, X, Inv, T)
where L is a finite set of locations, {y € L is the initial location, X is a finite
set of clocks, Inv: L — C.(X) is a function that assigns an invariant to each
location, and T C L x C(X) x Act x 2X x L is a finite set of edges. A quintuple

Timed Modal Logics for Specifying and Verifying Real-Time Systems 3

(4,g,a,7m,0") € T — denoted by £ LY, ¢ — represents an edge from location
£ to location ¢’ with action a, g is the guard and r is a set of clocks to be reset
to 0.

A guard is used to specify when a transition can be performed. An invariant
is used to avoid excessive time delays in a location and thus it may enforce action
transitions to be performed.

The semantics of TA is defined as a Timed Transition System (TTS), that is
a tuple S = (@, qo, Act, —5) where @ is a set of states, gy € @ is the initial state,
and —sC Q x (Act UR,) x @ is a set of transitions (we write ¢ ——g ¢’ when
(g,e,q4') €—g). The transitions labeled by a € Act (resp. t € R;) are called
action (resp. delay) transitions. We make the following common assumptions
about delay transitions in TTSs:

0O-delay: ¢ 2 q' if and only if ¢ = ¢,

— Time-Additivity: if ¢ g ¢’ and ¢ ~—g ¢" with t,¢ € R, then ¢ Mg,
Time-Continuity: if ¢ g ¢/, then Vt/,t" € R, with t = ¢ + t”, there exists

q"” such that ¢ L q”’ g q,
— Time-determinism: if ¢ g ¢’ and ¢ ——g ¢’ with t € Ry, then ¢’ = ¢".

Standard notions of finite or infinite runs apply to TTS.

Given a TA A = (L, ¢y, Act, X, Inv,T), we define its semantics as the TTS
Sa = (L x RY, (Lo, v0),Act, —g,) where vg(z) = 0 for all z € X and —g,
consists of:

1. action transition: (£,v) ——g, (¢',v') if there exists an edge ¢ 2%~ (' in T
st.vEg, v =v[r — 0] and v' = Inv(¢);
2. delay transitions: (¢, v) LSA (L,0") ift e Ry, v = v+t and! v = Inv(f).

Then a state (or configuration) of a timed automaton A is a pair (¢, v), where
£ is a location — a control state — and v is a clock valuation for X. A key point (for
decidability) is the synchronous time elapsing: all clocks have the same speed.

The size of a TA is [L[+ |X|+ 32 g o.reyer 191 + 220 [Inv(£)] where the size
of a constraint is its length (constants are encoded in binary).

Networks of timed automata We model real time systems as parallel compo-
sitions of timed automata with n-ary synchronization functions. Let A;,...,
A, be n timed automata. A synchronization function f is a partial function
(ActU{e}) x...x (ActU{e}) — Act, where e denotes a distinguished no—action
symbol. Note that f is a synchronization function with renaming. We write
(Aq]...]Ap)y for the parallel composition of Aj,. .., A, w.r.t. function f. A net-
work configuration is a pair (¢,v) where £ = (¢1,...,£,) is a vector of locations
and v is a valuation for X = U; X;, i.e. the clocks of the network (we denote by
v; the restriction vjx,).

! due to the definition of the invariants, this entails: v +t' |= Inv(¢) for any 0 < ' < t.

4 Frangois Laroussinie

The semantics of (A4]...|A,)s can be defined as a TTS whose states are the
configurations of the network and the transitions are given by the two following
rules:

(Cv+t) iff Vie{l,...,n}, (l;,v;) 5 (6, v; +1t)

(00 iff Vie{l,...,n},a; € Actimplies (¢;, v;) % (£}, v}) and
a; = e implies (¢} = £; N v} = v;) and
v =wv...v), and f(ai,...,a,) =0

(tv)
lw

@) >

Note that the parallel composition does not add expressive power: from any
parallel composition, one can build an equivalent (i.e. strongly bisimilar, see
Section 4.1) timed automaton.

2.2 The Timed Modal Logic L,
We now define L,,, a timed modal p-calculus [LLW95]:

Definition 2.2. Let K be a finite set of clocks (disjoint from X), and Id be a
countably infinite set of identifiers (ranged over by X,Y). The set L,, of formulae
over Act, K and Id is generated by the following grammar:

pu=t | £ | pA@ | Vo | rin ¢ | g [d¢ | (a)¢ |
0] ¢ |)¢ | Z

where a € Act, g € C(K), r C K and Z € Id.

The meaning of the identifiers is specified by a declaration D assigning an L,
formula to each identifier in order to define properties with maximal fixpoints.
Let A be a TA or a parallel composition of TA. We interpret L, formulae over
extended states (¢,v,u) where (£,v) is a configuration of A and w is a clock
valuation for K. This satisfaction relation =4 p is defined as the largest rela-
tion satisfying the implications in Table 1 (for =4 p the implications are bi-
implications). The modalities (e) with e € ActU {0} correspond to existential
quantification over action or delay transitions, and [e] is the counterpart for uni-
versal quantification. An extended state satisfies an identifier Z if it belongs to
the maximal fixpoint of the equation Z =, D(Z). Finally the formula clocks are
used to measure time elapsing in properties. We write A = ¢ for (£g, vg, ug) = ¢
where ug(xz) =0 for all z € K.

We can use L, formula to express classical temporal (and timed) properties:

— zin (8) (2 < 10 A ((a) &£ V (b) &)) specifies that an a-action or a b-action is
enabled before 10 time units (without performing any action transition).

— We can express that some formula ¢ holds for any reachable state
(“ALWAYS)", corresponding to the AG operator from CTL). This can be

defined by the following equation: Z def ©A /\ [a] Z A [0] Z.
acAct

Timed Modal Logics for Specifying and Verifying Real-Time Systems 5

t — t
£ = f
g = ukg
@

@

T

1V, = (Lv,u) =1 or (Lv,u) = @2
1Ap2, = (Lv,u) E@r and (Lv,u) = @2
inyp = (Lv,ulr —0]) ¢
[a] ¢ = for all (£,v) ——s, (£,v), (€0 u) =
(a) p = there is some (£,v) ——s, (¢',v), (¢',v",u) E ¢
6] = forallt e Ry s.t. (£,v) ——5, (L,o+1), (Lv+tu+tt) =
(6) ¢ = there is some t € Ry s.t. (£,v) L)S.A lv+1t), Lv+t,ut+t)Ee
Z = (l,v,u) =D(Z)

SRERRFRR/RIR/IR_RR
e @ e e
EEEEEEEEEESE
e m

Table 1. Satisfaction implications for L,

— Given two subsets of events Act; and Acte, we can state that any event
in Act; is followed by an event in Acty in less than A time units (assume
AeN):

def .
Z1 = NseAct, lal (y in Z3) A /\aeAct\/—\ct1 [a] Z N 18] Z4
def
2y = (Y < A) A NaeAct,] 20 A NgeAct\Act, [a] Z2 A 18] 2
— To express that some property ¢ will hold during at least A time units,
whatever the transitions performed (pUpTo A), we can use the L, formula
z in 7 with:

7z, € (z>A)\/(<p/\ A [a]Zl/\[é]Zl>
acAct

3 Model checking

Region graph technique. Automatic verification of timed systems modelled as
(networks of) timed automata is possible despite the uncountably infinite num-
ber of states associated with the semantics of a timed automaton. The decision
procedure for the problem A |= ¢ is based on the well known region technique
(see [ACD93] for a description for TCTL). Given A and ¢, it is possible to
partition the uncountably infinite set of time assignments over X U K into a
finite number of regions, s.t. two extended configurations (¢, v,u) and (¢,v',u’),
where uv and u/v’ are in the same region, satisfy the same subformulae of .
Let ¢mqe be the maximal constant occurring in the guards and invariants of
A and in the formula ¢. The regions can be defined as the equivalence classes
induced by the equivalence relation over valuations defined as follows: two val-
uations w,w’ € RfUK are in the same region iff they satisfy the same clock
constraints from the set C., (X U K) containing C(X U K) expressions whose

6 Francois Laroussinie

integer constants belong to {0, ..., ¢mnaz }- Due to this bound over the constants,
the number of equivalence classes is clearly finite.

Then we can define a symbolic semantics [LLW95] for A over a finite transi-
tion system, called the region graph, whose states are pairs (¢,7): a location and
a region. And formulae in L, can be interpreted over the states of the region
graph.

Thus the region graph technique provides decidability results for many ver-
ification problems over timed systems because it allows us to reduce a question
over an infinite transition system to a problem over a finite one. But note that

the number of regions is in O(| X UK]|! ~c‘n)fa%K|) and the size of the region graph is

in O((|1L|+|T) - |XUK|!~c|mXaUzK‘). Then in practice, the region graph is not built
in timed model checkers. and in the tools like Uppaal[LPY97] or Kronos|[Yov97],
the algorithms are based on an efficient data-structure, the DBMs — Differences
Bounded Matrices — that allow to handle convex sets of valuations. Moreover
several heuristics have been developed to improve the efficiency of the algorithms
(on-the-fly algorithms, reduction of the number of clocks, ...).

Verification of L, properties. Model checking L, over networks of timed au-
tomata is then decidable:

Theorem 3.1 ([ALO2]). Model checking problem for L, is EXPTIME-
complete. The specification and program complexities are also EXPTIME-
complete.

The EXPTIME membership comes from the fact that applying standard
verification algorithms for modal logics over the region graph can be done in
time linear in the size of ¢ and the size of the region graph, this provides an
algorithm which is exponential in |A| and |¢].

The EXPTIME-hardness is proved by reducing the acceptance of a word w
by a linear (space) bounded alternating Turing machine M to a model check-
ing problem for L,. We assume (w.l.0.g.) that there is a strict alternation of
existential and universal states in M and that the initial state is existential.
First one can build a timed automaton Aa,, that represents the behavior of
the non-alternating version of M over the word w (clocks are used to encode
the contents of the |w]| cells of the tape): any action transition corresponds to
a step of M and between two actions one require a strictly positive delay. We
distinguish three labels for actions of M : Init corresponds to the writing of w
on the tape at the beginning of the computation, a labels any step of M and

Accepting labels accepting states of M. Secondly one can use the L, formula

B, 15 [Init] Y with -

vy %6 [Accepting] £ A [6] [a] ((6) (a) Y)

Then the formula @, holds for the initial state of Apg,, iff M does not
accept w. See [ALO02] for the full proof.

Timed Modal Logics for Specifying and Verifying Real-Time Systems 7

The main difference with reachability or TCTL model checking (which are
PSPACE-complete problems for TA) is the ability for L, to simulate the alter-
nating behavior of M.

From the previous construction, one can easily deduce that the program
complexity is also EXPTIME-hard since the formula used in the reduction does
not depend on M and w.

Finally the specification complexity comes from the ability of L, to encode
the behavior of timed automata. The previous reduction could have been done
for a simple automaton with no clock and no edge and with a more complex
formula. This can be obtained as a direct consequence of the properties of L,
presented in the next section.

Satisfiability. The decidability of the satisfiability problem — given an L,
formula @, does there exists a timed automaton A st. A E & — is still
an opened problem [LLW95]. Note that for most of the timed branching-
time temporal logics (TCTL, T,) the satisfiability problem is undecid-
able [ACD93,AFH96,HNSY94]. For the timed linear-time temporal logics like
MTL, satisfiability is undecidable for the (standard) interval-based seman-
tics [HNSY94], but is decidable for pointwise semantics [OW05].

Finally note that if we bound the resources of A — its number of clocks and
the maximal constant occurring in its guards — the problem is decidable for
L, [LLW95].

4 Expressivity

4.1 Strongly timed bisimilar

The standard notion of bisimulation [Mil89,Par81] can be naturally extended
to timed systems : let S4 and Sp two TTSs and and Q4 and Qp be their
set of states, the strong timed bisimulation ~ is defined as the largest symmetric
relation over Q4 x @ such that whenever ga ~ gp, we have (1) for any g4 = ¢/

with a € Act, there exists ¢p — ¢j3 and ¢y ~ ¢’3, and (2) for any ga 4 ¢’y with

t € Ry, there exists ¢p SR ¢p and ¢4 ~ ¢f.

We say that two TA A; and A, are strong timed bisimilar if their corre-
sponding TTSs are strong bisimilar. In the following we show that some L, can
express strong timed bisimilarity of timed automata.

Let A; = (LY, 6}, Act, X1, Invq,T1) and Ay = (L2, 03, Act, X, Inva, T3) be two
timed automata. Let o be the binary synchronization function defined as follows :
Va € Act, we have o(a,e) = a; and o(e,a) = az. With o, the action transitions
of the TA are not synchronized and they are tagged by the number of the active
TA. But the delay transitions are synchronized : every clock of the composition
progresses synchronously with time.

Now assume A; and Ay have no invariant (for any location ¢, we have
Inv;(£) = tt). Then we have: A; ~ A iff (A1|A2), = Z with:

8 Francois Laroussinie

def

A\ ([al] (az) Z A [as) <a1>Z)/\[5]Z
aEACt

Indeed the definition of Z is precisely the definition of the strong timed
bisimilarity.

When the automata contain invariants, the parallel composition (A;]As3),
does not contain all the behaviors of A; and Ay: from a configuration
(01,2, v102) of (A1]Az)s, a delay transition L, is enabled iff it is enabled for
both automata. If £, has an invariant, the parallel composition does not contain
delays that violate this invariant even if such delays exist in A5. The solution
consists in defining new TA A’s with the same locations L, the same clocks X,
the set of actions Act U {InvFail}, but without invariant and with another set of
edges T/ defined as follows:

— For any location ¢ € L*, we add a transition (¢, —Inv(¢), InvFail, 0, ¢) to T}.

— For any transition (¢, g,a,r,¢') in T;, we add a transition (£,g A Inv(¢) A
(Inv(£)[r < 0]),7,¢') to T/. Where g[r <« 0] denotes the constraint g where
every occurrence of the clocks in r are replaced by the constant 0.

The first kind of transitions is used to mark states which are not reachable
in A; because the current invariant is violated. The second kind of transitions
corresponds to original action steps but we require in the guard that the current
invariant has to be satisfied and also that the invariant of the target location
has to be satisfied by the valuation after the reset: indeed we want to deal only
with transitions that are actually enabled.

Finally we have: A; ~ A iff (A}|AL)s = Z where Z is defined as above.

4.2 Compositionality

Compositional model checking [And95] is possible for L,: given a parallel com-
position (A4]...|A,) s and some L, formula @, one can build a quotient formula
D/Ay st (Al . |An)f E @ (Ag|...|A,)f = @/ A;. The formula ¢/ A; in-
tegrates the initial property and the pertinent part (w.r.t. @) of the behavior of
A;1. By repeatedly quotienting components from the network into the formula,
we will finally be faced with the verification problem: nil = @/ A,/ ... /A, where
nil is an untimed automaton unable to perform action transitions.

Table 2 presents the definition of quotienting for L, [L1.95,LL98]. Note that
the quotient is defined for a formula, a location and a synchronization function f.
Moreover the clocks of the quotiented automaton become formula clocks in the
quotient formula. Finally any fixpoint variable of @ may give rise to |L| variables
in ¢/ A.

We have the following theorem:

Theorem 4.1 ([LL98]). Given two timed automata Ay and Az, a synchro-
nization function f and an L, formula ¢, we have the following property for any
configuration (1,02, v1v2) of (A1|A2); and u € Rf :

Timed Modal Logics for Specifying and Verifying Real-Time Systems 9

(o1 Ap2) /= (p1/€) N (p2/0) Z =27
(1 Vp2)/l=(p1/0) V (p2/€)

(twe)/e=" \/ gnie (rin (nv(€) A/t))

g,b,7
L——=t's.t.f(b,c)=a

(ae)/e= A g=[d(rin (€)= ¢/0))

Zg;}li;f/s.t.f(b,c):a
() o/t = (3) (Inv(0) n /1) 610/t = (5] (Inv(0) = /1)
(x+cmy+d)/€ (z+ ey + d) (mi_nap)/ﬂzxi_n(cp/l)

Table 2. Quotient construction.

(((51,52)701112711) = 50) iff (b2,v2,uvn) = @/l

This technique allows us to avoid the construction of the (exponential) con-
struction of the product corresponding to the parallel composition (A]...[A,)y,
but of course this complexity is reported in the formula: the size of the quotient
formula @/ A, is in O(|P|-|.A1]). In order to be applied, the compositional method
needs to be completed with reductions: after every quotienting operation, we ap-
ply reduction laws in order to keep the size of the formula as small as possible
(see [LL98] for a description of these reductions).

The tool CMC (Compositional Model Checker)? implements this method for
the verification of L, properties for TA.

This technique has also been extended to linear hybrid systems [CLO0O].

4.3 Characteristic properties of timed automata

Given a timed automaton A = (L, ¢y, Act, X, Inv, T'), it is possible to build an L,
formula @ 4 that precisely characterizes the behavior of A: a timed automaton
is strongly timed-bisimilar to A iff it satisfies @ 4. This construction can be done
directly from the definition of A [LLW95] or it can be seen as a consequence of the
ability to express timed bisimilarity and the compositionality. Indeed consider
the variable Z defined as above to express strong bisimilarity, then the formula
Z* defined as the quotient® Z /¢, verifies the following property for any TA B:

A~B iff B 2z

where B’ denotes the TA without invariant described in Section 4.1.
Then the timed modal logic L, is expressive enough to describe the behavior
of timed automata.

2 http://www.lsv.ens-cachan.fr/ fl/cmcweb.html
3 with a declaration assigning a definition to every new identifier Z°.

10 Frangois Laroussinie
5 An extension of L,

Recently a new operator has been added to L, in order to express controllability
properties [BCLO05a]. More generally the expressivity of L, is limited in the way
of dealing with delay transitions: the modalities (0) and [0] are respectively too
weak or too strong for specifying some natural properties.

For example, consider the classical EaWb formula: “there exists a path satis-
fying aWb” where W stands for the weak until operator: either the path satisfies
aUb (there is eventually a b and the previous states satisfy a), or it satisfies Ga
(“always a”). In classical Kripke structures, this property can be expressed as

the greatest fixpoint of Y def bV (a NEXY) where EX denotes the Next operator.
In our framework, the property EoW1) cannot be expressed in L, due to the
lacks of expressivity of (§) and [0] . Indeed, from a current state, we need to
state that there is a way of letting time elapse s.t. all visited states satisfy ¢,
until a state where an action can be performed and so on. But the formula (§) £
allows us to specify that after some delay, the property £ holds, but there is no
requirement on the intermediary states. And the formula [§] £ requires that any
state reachable via a delay transition has to satisfy £. This does not allow us to
express EpW1 and which has motivated the introduction of the operator [0)
defined as follows [BCLO0b5al:

(0, v,u) = @ [8) ¢ < either Vi € Ry, (L,v) - (Lv+t) = (Lv+tu+t) =g
or 3t € Ry s.t. (4,v) AN (L,v+1t) and (4,v+t,u+1t) =1 and
V0 <t/ <t, we have ({,, v+t ,u+t) @

Note that in [HNSY94] a timed p-calculus (7)) has been defined with a
modality > whose semantics is close to the one of [§) 4.

The new operator [§) is a kind of weak Until operator over delay transitions.
We could have defined the operator [d)) corresponding to a (strong) Until re-
quiring that a position satisfying v exists. But we can easily define this modality
with [§) and vice versa:

o) = @lo)Pn{(0)y
p[0) ¥ @lo) Y Vo]
Let L} be the extension of L, with the modality [§). This new logic is more
expressive than L,:

Lemma 5.1 ([BCLO5a]). The L} formula ([a] £) [0) ((b) &) has no equivalent
n L,.

The full proof can be found in [BCLO5b]. Let & be the formula
([a] £) [0) ({b) tt). The difficult point is that it is not possible to find two TA A

* The main difference between > and [§) is that > may include an action transition
after the delay

Timed Modal Logics for Specifying and Verifying Real-Time Systems 11

and B such that A = @, B}~ & and A =y < B =1 for any ¢ € L,. Indeed as
we have seen in Section 4.3, L, formulas allow us to distinguish between two TA
that are not bisimilar and if A |= @ and B [~ &, then A % B. This is a classical
problem in temporal logic [EMSS91] where one shows that two temporal logics
may have different expressive powers even if they have the same distinguishing
power and this makes the proof about expressivity more difficult.

Adding the modality [0) does not modify the interesting properties of L,:

— The logic L} allows compositional model checking. It is sufficient to add the
following rule to the quotient definition:

(er) w2) /e (1v(0) = (21/0)) [8) (Iv(0) A (2/0))

— Moreover there is no additional complexity for the verification: Model check-
ing L} is EXPTIME-complete.

Control and controllability. The main motivation for adding [6) to L, was related
to control problems. In this framework, we address a more general problem than
classical model checking: given a plant P and a control objective @, one aims at
synthesizing a controller C' such that C(P) = ¢ where C(P) denotes the plant
supervised by C'. Usually P is a (timed) automaton describing a system and its
environment and we often distinguish between controllable and uncontrollable
events in P: the controller can only act over controllable event in order to satisfy
the property @. Moreover the notion of supervision C'(P) can be seen as a simple
synchronization function between the two automata. Finally note that we can
consider different kinds of controller: the sampled controllers (performing an
action every A time units — A being fixed), or the more general case of the
dense-time controllers (we just require that at least A time units elapse between
two controllable actions).

Note that synthesizing C' — when it exists — is closely related to the sat-
isfiability problem and it is an open problem when P, E and C are TA and
bel,.

Nevertheless it has been shown in [BCL05a] that when a control objective
belongs to a deterministic fragment of L, , it is possible to reduce the controlla-
bility problem — the existence of a controller — to a model checking problem.
More precisely, given P and @, the existence of a controller for P and @ can be
reduced to a model checking instance (P|AA) = @' where:

— @' is an L formula that can be constructed automatically from @,
— A, is a simple timed automaton describing the type of the controller (sam-
pled, or dense-time).

If ¢’ holds for (P|AA) , then we know that there exists a strategy for choosing
controllable actions in P in order to satisfy &. This strategy — i.e. the controller
— is a timed transition system but it may be non definable as a timed automaton:
a TTS is much more general.

12 Frangois Laroussinie

Acknowledgments. Special thanks to Luca Aceto, Béatrice Bérard, Patricia
Bouyer, Franck Cassez and Kim Guldstrand Larsen for all the discussions about
timed automata and timed modal logics.

References

[ACDY3]

[ACH94]

[AD94]
[AFHO6]

[AH92]

[AH94]

[AL02]

[And95)

[BCLO5a]

[BCLO5b]

[BCMO5]

[CGPYY]

[CLO0]

[Eme90]

R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2-34, 1993.

R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of
clocks. In Proc. 5th Int. Conf. Theory of Concurrency (CONCUR ’94), Upp-
sala, Sweden, Aug. 1994, volume 836 of Lecture Notes in Computer Science,
pages 162—177. Springer, 1994.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116-146, 1996.

R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In
Real-Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991,
volume 600 of Lecture Notes in Computer Science, pages 74—106. Springer,
1992.

R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181-203, 1994.

L. Aceto and F. Laroussinie. Is your model checker on time? On the complex-
ity of model checking for timed modal logics. Journal of Logic and Algebraic
Programming, 52-53:7-51, August 2002.

H. R. Andersen. Partial model checking (extended abstract). In Proc. 10th
IEEE Symp. Logic in Computer Science (LICS ’95), San Diego, CA, USA,
June 1995, pages 398-407. IEEE Comp. Soc. Press, 1995.

P. Bouyer, F. Cassez, and F. Laroussinie. Modal logics for timed control.
In M. Abadi and L. de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR’05), Lecture Notes in Com-
puter Science, San Francisco, CA, USA, August 2005. Springer. To appear.
P. Bouyer, F. Cassez, and F. Laroussinie. Modal logics for timed control.
Research Report LSV-05-04, Laboratoire Spécification et Vérification, ENS
Cachan, France, April 2005. 23 pages.

P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of tptl and
mtl. Technical Report 05, Laboratoire Specification et Vérification, May
2005.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

F. Cassez and F. Laroussinie. Model-checking for hybrid systems by quoti-
enting and constraints solving. In E. A. Emerson and A. P. Sistla, editors,
Proceedings of the 12th International Conference on Computer Aided Ver-
ification (CAV 2000), volume 1855 of Lecture Notes in Computer Science,
pages 373-388, Chicago, Illinois, USA, July 2000. Springer.

E. A. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 16, pages 995-1072.
Elsevier Science, 1990.

Timed Modal Logics for Specifying and Verifying Real-Time Systems 13

[EMSS91] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. In Proc. 2nd Int. Workshop Computer-Aided Verifi-
cation (CAV °90), New Brunswick, NJ, USA, June 1990, volume 531 of
Lecture Notes in Computer Science, pages 136—145. Springer, 1991.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

[LL95]

[LLOS]

[LLW95]

[LPY97]
[Mil89]
[MP92]

[OWO05]

[Par81]

[Yov97]

checking for real-time systems. Information and Computation, 111(2):193—
244, 1994.

F. Laroussinie and K. G. Larsen. Compositional model-checking of real
time systems. In I. Lee and S. A. Smolka, editors, Proceedings of the 6th
International Conference on Concurrency Theory (CONCUR’95), volume
962 of Lecture Notes in Computer Science, pages 529-539, Philadelphia,
Pennsylvania, USA, August 1995. Springer.

F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-
checking of real-time systems. In S. Budkowski, A. R. Cavalli, and E. Najm,
editors, Proceedings of IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems and Communication
Protocols (FORTE’XI) and Protocol Specification, Testing and Verification
(PSTV’XVIII), volume 135 of IFIP Conference Proceedings, pages 439-456,
Paris, France, November 1998. Kluwer Academic Publishers.

F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic —
and back. In J. Wiedermann and P. Héjek, editors, Proceedings of the 20th
International Symposium on Mathematical Fundations of Computer Science
(MFCS’95), volume 969 of Lecture Notes in Computer Science, pages 27-41,
Prague, Czech Republic, August 1995. Springer.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Journal of
Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

R. Milner. A complete axiomatisation for observational congruence of finite-
state behaviours. Information and Computation, 81(2):227-247, 1989.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, 1992.

J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In
Proc. 20th IEEE Symp. Logic in Computer Science (LICS 2005), Chicago,
IL, USA, June 2005, 2005.

D. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI
Conf. on Theor. Comp. Sci., Karlsruhe, FRG, Mar. 1981, volume 104 of
Lecture Notes in Computer Science, pages 167—183. Springer, 1981.

S. Yovine. Kronos: A verification tool for real-time systems. Journal of
Software Tools for Technology Transfer, 1(1-2):123-133, 1997.

