State Explosion in Almost-Sure Probabilistic
Reachability

Francois Laroussinie

Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex France

Jeremy Sproston

Dipartimento di Informatica, Universita di Torino, 10149 Torino, Italy

Abstract

We show that the problem of reaching a state set with probability 1 in probabilistic-
nondeterministic systems operating in parallel is EXPTIME-complete. We then
show that this probabilistic reachability problem is EXPTIME-complete also for
probabilistic timed automata.
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1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical
model of a system satisfies a formula representing a desired property [4]. Many
real-life systems, such as multimedia equipment, communication protocols,
networks and fault-tolerant systems, exhibit probabilistic behavior, leading to
the study of probabilistic model checking of probabilistic and stochastic mod-
els (for an overview, see [12]). We often incorporate nondeterministic choice in
probabilistic models, resulting in formalisms akin to Markov decision processes
[15]. Furthermore, formalisms such as probabilistic timed automata [11,9] (an
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extension of Markov decision processes with clock variables, as in timed au-
tomata [2]) can represent models in which nondeterminism, probability and
timing information coexist.

The description of a probabilistic system is usually given in terms of interact-
ing sub-systems composed in parallel, or by models referring to variables; an
example is the system description language of the probabilistic model-checking
tool PrIsM [8]. However, the number of system states is exponential in the size
of such a description: this is known as the state-explosion problem, and is the
main practical limitation of model checking. In this paper, we show that the
problem “does there exist a way of resolving the nondeterministic choice of the
system such that a set of states is reached with probability 1?7 is EXPTIME-
complete both for a set of probabilistic systems operating in parallel and for
probabilistic timed automata. A positive answer to this almost-sure (or quali-
tative) probabilistic reachability problem establishes that the probabilistic sys-
tem can guarantee an event (such as the completion of a task) with probability
1. The reachability problem is a fundamental sub-problem of model checking,
and, analogously, the almost-sure probabilistic reachability problem is a fun-
damental sub-problem of probabilistic model checking. Hence, the EXPTIME
lower bounds shown in this paper apply to all probabilistic model-checking
problems for the systems we consider.

A similar result has been shown by Littman [14] in the context of probabilistic
propositional planning, which involves the solution of a probabilistic reacha-
bility problem on a concisely-described Markov decision process. Littman’s
result relies on the reduction of the two-player game G4 to reachability on a
Markov decision process described in the sequential-effect trees notation. Our
approach is instead to reduce the acceptance problem on linearly-bounded al-
ternating Turing machines to the almost-sure probabilistic reachability prob-
lem, both on probabilistic systems operating in parallel and on probabilistic
timed automata, in a similar manner to the reductions in [13,1].

Preliminaries. An Alternating Turing Machine (ATM) [3] is a tuple A =
(Q,Qv,Qn,T,0,q0, Gace), With a set Q@ = Qv U Qx of states partitioned into
disjunctive states )y and conjunctive states ()., an initial state ¢y € @), an
accepting state gq.. € Qv, a tape alphabet I' = {a, b}, and a transition relation
§CQxT'xQxT x{-1,1}. A configuration of A is a triple a = (g, i, w)
where g € () is the current state, w € I'* is a word describing the tape content,
and 0 < ¢ < |w| is the position of the head on the tape. The symbol written
in the ith cell of the tape is denoted by w(i). An ATM moves like a usual
nondeterministic Turing machine: for example, if & = (¢, 7, w), w(i) = a and
(q,a,q',b,e) € §, then A may move from o to o/ = (¢,7',w’), where w' is w
updated by writing b in position ¢, and i’ is i + ¢ (with i + ¢ > 0). We say
that o' is a successor of . We also assume that A has only one reachable
configuration (g, ¢, w) for which ¢ = ¢4, and that i = 1 and w = a”.



A run of A from some configuration «y is a tree, the root of which corresponds
to ap, and where every node corresponding to « has a child node for each
successor o’ of a. For k € N, a run rooted at some disjunctive configuration o
is accepting in k steps if and only if its state is g, or kK > 1 and at least one
of its children is accepting in & — 1 steps. A run rooted at some conjunctive
configuration « is accepting in k steps if and only if & > 1 and all of its
children is accepting in k — 1 steps (and there is at least one child). A word
v is accepted by A if and only if there exists some k such that the run from
(qo, 1,v) is accepting in k steps. We say that A is linearly-bounded (LB-ATM)
on v if all configurations (¢, 7, w) in the run of A have |w| < |v|. The problem of
acceptance of a LB-ATM, which we denote by LB-ATM-ACCEPT, is written
as:

Input An ATM A and a word v € I'* such that A is linearly-bounded on v.
Output YES if and only if A accepts v, NO otherwise.

A classical result says that the problem LB-ATM-ACCEPT is EXPTIME-
complete [3]. In the following, we assume, as in [5], that along a single branch of
a run of an LB-ATM, no configuration is repeated; thus every branch is finite.
This assumption does not change the complexity issues: one can easily reduce
an instance (A,v) of LB-ATM-ACCEPT to some instance (A’,v") where A’
avoids repetitions by inserting on the tape a counter (encoded in binary)
whose value is bounded by 2"l - |Q] - |v| (the maximum number of distinct
configurations along the run). Then A’ simulates the moves of .4 and increases
the counter by 1 for every simulated move of A.

2 Concurrent Markov Decision Processes

A (discrete) probability distribution over a countable set @) is a function p :
Q — [0,1] such that > .o u(q) = 1. For a possibly uncountable set @', let
Dist(Q’) be the set of distributions over countable subsets of ). A distribution
p will occasionally be denoted by {q — 1(q) | ¢ € @ and u(q) > 0}. Given the
distributions piq, ..., ux over the sets @)y, ..., Qk, respectively, the independent
product p1 ®...® py is defined as {(q1, ..., qx) — p1(q1) - pr(aqr) | (@1, qx) €
Q1% ... xXQk}. A Markov decision process (MDP) M = (X, S, D) comprises a set
Y of actions, a set S of states, and the transition relation D C S x ¥ x Dist(5).
The transitions from state to state of an MDP are performed in two steps:
given that the current state is s, the first step concerns a nondeterministic
selection of an triple (s, a, ) € D associated with s; the second step comprises
a probabilistic choice, made according to the distribution p of the chosen triple,
as to which state to make the transition (that is, we move to a state s’ € S
with probability p(s’)). We often write s %, instead of (s,a, ) € D; when
p={s" — 1}, we write s = s’. An MDP is finite if 32, S and D are finite sets.



Unless stated otherwise, we henceforth assume that MDPs are finite.

A finite path is a finite sequence sg <>, $1 —p, - uun_l sy, of consecutive
transitions followed by a state, such that p;(s;+1) > 0 for all ¢ < n. An infinite
path is an infinite sequence sy %, 1 —,, - -+ of consecutive transitions, such
that p;(s;11) > 0for alli € N. A state s is reached along the path if there exists
1 € N such that s = s;. An adversary of an MDP is a partial function mapping
finite paths to triples (s,a, ) € D, such that s is the state at the end of the
path [7,17]. In the standard way, we define the probability measure Pmb;4 over
measurable sets in the set of paths generated by adversary A from state s [10].
Given F C S, let Reach’}(F) be the set of paths generated by A from s along
which a state in F' is reached. For an MDP M = (X, S, D), an initial state
5€ 5, and a set ' C S of final states, the almost-sure reachability problem
for MDPs (MDP-ASR) consists in checking the existence of an adversary
of M that assigns probability 1 to reaching F' from §, and can be solved in
polynomial time in the size of M, independently of the transition probabilities
(see, for example, [6]). Formally, MDP-ASR is written as:

Input An MDP M, an initial state s, and a set of final states F'.
Output YES if and only if there exists an adversary A of M such that
Prob?{Reach?(F)} = 1, No otherwise.

A concurrent Markov decision process (CMDP) M = (My, ..., M) is a k-tuple
of Markov decision processes. The flattening of the concurrent Markov decision
process M is a Markov decision process (X,S, D), where ¥ = ¥ U ... U Xy,
S = 51 X ... x Sg, and D is the set of all triples ((s, ..., Sx),a,p) from S x
Y. x Dist(S) such that g = p ® ... ® g, where, for each 1 < i < k, either
(sisa,pi) € D;or (a ¢ X; and p; = {s; — 1}) [16]. For a concurrent Markov
decision process M = (My, ..., M) with the flattening M = (3, S, D), an initial
state (51,...,5;) € S and a set of final states F' C S of M, the almost-sure
reachability problem for CMDPs (CMDP-ASR) is similar to MDP-ASR, but
checks for the existence of an adversary on the flattening of the CMDP:

Input A CMDP M, an initial state s, and a set of final states F'.
Output YES if and only if there exists an adversary A of the flattening M of
M such that Prob?{Reach?(F)} = 1, No otherwise.

Theorem 2.1 The problem CMDP-ASR is EXPTIME-complete.

Proof. An EXPTIME algorithm is obtained by applying standard polynomial
time algorithms for MDP-ASR [6] over the (exponential) flattening of the
CMDP in question. It remains to show the EXPTIME-hardness of CMDP-
ASR. Let v € T and A = (Q, Qv, Qn, T, 9, qo, Gace) be an LB-ATM. We define
a CMDP M 4, = (M My, ..., M,) which models the run of A over v:

e For each 1 < i < n, the MDP M, models the ith tape cell. The state set



is S; = {s si}, and the initial state is s’ if v(i) = a, and s} otherwise.
The alphabet is ¥; = (§ x {i}) U {(a,i), (b,7)}. For each transition ¢ =
(q,e,q,¢',€) € § such that i +¢ € {1,...,n}, there is a transition s SR s,
in D; to simulate the behavior of t. Furthermore, for each e € {a, b}, there
is a transition s{ =% s in D; to indicate the current value of the cell.
e The MDP Mentrl = (yentrl Gentrl - pentrl) models the control part of A. The
alphabet is " = (§ x {1,...,n}) U ({a,b} x {1,...,n}), and the state set
is S = (Q x {1,...,n}) U (Qx x {1,...,n} x §). The initial state is (qo, 1).
The transition relation D" is defined as follows: A
- For each ¢ € @y, each 1 < i < n, and each t € 4, a transition (g, 1) SN
(¢',i+¢) is included in D" if t = (q,e,¢',¢',e) and i +¢ € {1,...,n}.

- For each ¢ € Q,, each 1 < i < n and each e € {a,b} such that the set
Tyie = {(qg,e,¢,e,e) € 6|i+e € {1,...,n}} is non empty, we have a
transition (g, 1) El—m(me) in D" where fi(g;.) is the distribution (with

equal probabilities) over the states (¢, i,t) for all t € T, ;.. Then we add

transitions (q, 1, t) N (¢',i + €) to D" according to the definition of ¢.

The size of M 4, is O(n x |@Q| x |d]), including the probabilities represented as
the ratio of two integers encoded in binary, and the reduction can be done in
logarithmic space. Now we show that A accepts v if and only if CMDP-ASR
returns YES for M 4, with the initial state ((qo, 1), 311)(1), ey sﬁ(n)), and the set

containing the single final state ((qaee, 1), sk, ..., s7). As the problem LB-ATM-

ACCEPT is EXPTIME-hard, this will suffice to show the EXPTIME-hardness
of CMDP-ASR.

In the following, for a given word w € I'", we write s,, instead of 311U(1)7 coos S
Let My, = (£, S, D) be the flattening of the CMDP M 4,,. Our first task is to
construct a modified, action-less version of My, denoted by M = (S, D), so
that we are better able to relate the transitions of M 4, with those of A. Intu-
itively, we obtain M by removing intermediate states of the form ((q,4,t),s,)
from My,. Let Sy C S be the set of states of M, which have the com-
ponent M in a state in the set Qy x {1,...,n}, and similarly let Sp C S
be the set of states for which M is in a state in QA x {1,...,n}. Then let
S = Sy U Sp. The transition relation D C S x Dist(S) is defined as follows.

For states ((q,1),8,) € Sy, for each transition ((q,7),s,) 4, ((¢',i"),84) of D
we have ((¢,7),8,) — ((¢/,i'),84) in D. For states ((¢,7),8,) € Sp, observe

w(i),

that in My, we have transitions ((¢,%),s,) ——, ((¢,7,t),8y), and, from

((q,7,t),8y), there is a unique transition ((q, 7,t), Sy) BN ((¢',7"),8u), where ¢/,
i’ and w’ depend on t. In M we skip the intermediate state ((q, i,t), s,,) and con-
sider a transition ((g,%),s,) — such that 7((¢', '), s.r) equals p((g,%,t),s,) if
there is a transition ¢ such that ((g,%,t),s,) — ((¢/,7'),sw ), and 0 otherwise.

We can verify that, for all states s € S and any F' C S, CMDP-ASR returns
YES for M 4,, s and F if and only if MDP-ASR returns YES for M, s and F.



Note that we can obtain an isomorphism between the configurations of A and
the states of M, which relates a configuration (g, 7, w) of A to a state ((q,), s,)
of M. For configurations (q,i,w) and (¢,7',w’), we have that (¢/,i',w’) is a
successor of (¢,4,w) if and only if ((¢,%),sw) —, ((¢,7'),sw). Because no
configuration is repeated along a branch of a run of A (see page 3), the MDP M
is acyclic (i.e. there does not exist a finite path sg <>, $1 —>,, - - ﬁj—mﬂ_l Sn
of M such that sy = s,,). Hence M has no infinite path.

Next, we introduce the alternating reachability problem (ALT-REACH) on

M. First we consider the variant in k steps (ALT-REACH-k):

Input An MDP M, a partition of the states of M into disjunctive states S,
and conjunctive states S, an initial state s, and a set of final states F.
Output YEs if and only if:
e s € S, and either s € F or k > 1 and there exists a transition s —, s
such that ALT-REACH-(k — 1) returns YES on M, S\, S\, ¢, and F;
e s €Sy, k>1, and, for all states s’ € S, we have that s —, s implies
that ALT-REACH-(k — 1) returns YES on M, Sy, Sy, §', and F}
and NO otherwise.

Then the answer to ALT-REACH is YES if and only if there exists some k such
that the corresponding instance of ALT-REACH-£ is positive. We apply the
problem ALT-REACH by letting the set of disjunctive and conjunctive states
considered be equal to Sy and Sp, respectively. From the acyclic property of
M, we have that the problem MDP-ASR outputs YES on M, s and F if and
only if ALT-REACH outputs YES on M, Sy, Sp, s and F.? We claim that
the following statements are equivalent:

) CMDP-ASR returns YES on input M 4, ((go, 1), y), and ((qace; 1), Sa...a);
) MDP-ASR returns YES on input M, ((go, 1),,), and ((qace, 1), Sa...a);

)
)

ALT-REACH returns YES on input M, ((qo,1),s,), and ((Gace; 1), Sa..a);

(
(
(
(4) LB-ATM-ACCEPT returns YES on input A and wv.

1
2
3
4

The equivalence of statements (1) and (2), (statements (2) and (3), respec-
tively) follows from the arguments relating CMDP-ASR and MDP-ASR (MDP-
ASR and ALT-REACH, respectively) given above. The equivalence of state-
ments (3) and (4) follows from the aforementioned isomorphism between con-
figurations of A and states of M. Hence, the CMDP-ASR problem and the
acceptance problem for LB-ATM are equivalent, and thus the CMDP-ASR
problem is EXPTIME-hard. O

2 The proof can be done directly on the number of steps of the accepting runs,
which is the same in both problems.



3 Probabilistic Timed Automata

In this section, we study the complexity of the almost-sure probabilistic reach-
ability problem for probabilistic timed automata. We use standard notation
from (probabilistic) timed automata, such as clock valuations val : X — Rx
which are mappings from the set of clocks X to the set of non-negative real
numbers R, and clock constraints Wy over X. A probabilistic timed au-
tomaton (PTA) P = (L, X, prob) [11,9] is a tuple consisting of a finite set L of
locations, a finite set X of clocks, and a finite set prob C L x ¥y x Dist(2* x L)
of probabilistic edges. A probabilistic edge (I, g,p) € prob is a triple contain-
ing (1) a source [ location, (2) a guard g, and (3) a probability distribution
p which assigns probability to pairs of the form (X,!’) for some clock reset
X and target location I’. The semantics of P is the action-less, infinite-state
Markov decision process M[P] = (S, D). The state set S = L x R%, comprises
location-valuation pairs. The transition relation D is defined as the smallest
set such that ((I, val), 0, u) € D if there exist 6 € R>( and a probabilistic edge
(I,g9,p) € prob such that (1) val + ¢ | g and (2) for each (I',val’) € S, we

have :u(l/7 ’U(Ll/) = ZXQX& val’=(val+8)[X:=0] p(X7 l/)

Let 0 € RZ, be the clock valuation which assigns 0 to all clocks in X. For a
probabilistic timed automaton P = (L, X, prob), an initial location [ € L, and
a set Ly C L of final locations, the almost-sure reachability problem for PTAs
consists in checking the existence of an adversary that assigns probability 1
to reaching Ly from (I, 0). Formally, PTA-ASR is the problem written as:

Input A PTA P, an initial location I, and a set of final locations Lp.
Output YEs if and only if there exists an adversary A of M[P] such that
Probé-’o){Reachéo)(LF x RYy)} = 1, No otherwise.

Kwiatkowska et al. [11] show that the problem PTA-ASR can be solved in
exponential time in the size of P using a variant of the region graph technique
for timed automata [2]. We now show that this bound is optimal.

Theorem 3.1 The problem PTA-ASR is EXPTIME-complete.

Proof. Given that an EXPTIME algorithm has been presented previously, it
remains to show the EXPTIME-hardness of PTA-ASR. Let A = (Q, Qv, Qa,
I, 9, 90, Gace) be an LB-ATM and v be a word of length n. We define a PTA
Pa» = (L, X, prob) which models the run of A over v. Then we let L =
(Qx{1,...n)U{l,lr}, and X = {21, ..., 2, T1, ..., Tn, y}. The contents of the
tape of A are encoded by the relative values of the clocks x1, ..., z,, T1, ..., Tp:
cell ¢ contains a if z; = x;, and b if x; < Z;. Clock y is used to ensure the
elapse of time.

The probabilistic edge relation prob of P4, is obtained in a similar way to



the transition relation of the CMDP of the proof of Theorem 2.1, as we now
explain. The idea is that probabilistic edges emulate the transitions of A: in
particular, the guards of probabilistic edges from a given location (g,7) can
test whether the current tape symbol is a or b by checking whether z; = z; or
x; < &;, respectively. Furthermore, the writing of a symbol in a tape cell can
be replicated by clock resets: for example, to represent the writing of a in cell
i, we reset clocks x; and Z; to 0 (so that x; = Z;), whereas to write b we reset
only z; (so that x; < ;). The target locations of the probabilistic edges are
derived from the target states of the transition of A involved in the definition
of the probabilistic edge, and by the associated movement of the tape head.

In a location (g, ) derived from a disjunctive ATM state (that is ¢ € @\ ), there
will be a nondeterministic choice between probabilistic edges, each of which is
derived from a transition of A from ¢, and each of which will assign probability
1 to a single outcome. In contrast, in a location (g, ) derived from a conjunctive
ATM state (that is ¢ € Q4 ), there are at most two probabilistic edges, one of
which has a guard testing whether the current tape symbol is a (using z; = Z;,
as above), the other testing for b (using x; < Z;). The probabilistic branching
is done (with equal probability) over the various outcomes derived from the
outgoing transitions of ¢ labeled with a or b, respectively. To the guard of each
probabilistic edge, we add the constraint y > 0 to force some time to elapse,
in order to ensure that a clock reset of {z;} encodes the writing of b in cell
j. Finally, we add the probabilistic edge (I,y > 0,{X,, (g0, 1) — 1}), where
X, = {z; | v(i) = b} U{y}, to encode the initialization of the input word v on
the tape, and also the probabilistic edge ((qacc, 1), iy (2 = Z;), {0, lp — 1}).

The size of the PTA P4, is linear in |A| - |v|: we have |L| = |Q] - |v] + 2,
|X| =2 |v]+ 1, and the size of the probabilistic edge set prob — including the
probabilities encoded in binary — is bounded by 2-|v|-|6|. The reduction can be
done in logarithmic space. Then A accepts v if and only if PTA-ASR returns
YES on the input PTA P 4, the initial location [, and the set {l/r} comprising
the single final location [r. Hence PTA-ASR is EXPTIME-hard. O
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