State Explosion in Almost-Sure Probabilistic
Reachability

Francois Laroussinie

Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex France

Jeremy Sproston

Dipartimento di Informatica, Universita di Torino, 10149 Torino, Italy

Abstract

We show that the problem of reaching a state set with probability 1 in probabilistic-
nondeterministic systems operating in parallel is EXPTIME-complete. We then
show that this probabilistic reachability problem is EXPTIME-complete also for
probabilistic timed automata.

Key words: probabilistic systems, model checking, computational complexity,
formal methods, timed automata

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical
model of a system satisfies a formula representing a desired property [4]. Many
real-life systems, such as multimedia equipment, communication protocols,
networks and fault-tolerant systems, exhibit probabilistic behavior, leading to
the study of probabilistic model checking of probabilistic and stochastic mod-
els (for an overview, see [12]). We often incorporate nondeterministic choice in
probabilistic models, resulting in formalisms akin to Markov decision processes
[15]. Furthermore, formalisms such as probabilistic timed automata [11,9] (an

Email addresses: £1@1sv.ens-cachan.fr (Frangois Laroussinie),
sproston@di.unito.it (Jeremy Sproston).
L Supported in part by Miur project Firb-Perf and EEC project Crutial.

Preprint submitted to Information Processing Letters 17 January 2007

extension of Markov decision processes with clock variables, as in timed au-
tomata [2]) can represent models in which nondeterminism, probability and
timing information coexist.

The description of a probabilistic system is usually given in terms of interact-
ing sub-systems composed in parallel, or by models referring to variables; an
example is the system description language of the probabilistic model-checking
tool PrIsM [8]. However, the number of system states is exponential in the size
of such a description: this is known as the state-explosion problem, and is the
main practical limitation of model checking. In this paper, we show that the
problem “does there exist a way of resolving the nondeterministic choice of the
system such that a set of states is reached with probability 1?7 is EXPTIME-
complete both for a set of probabilistic systems operating in parallel and for
probabilistic timed automata. A positive answer to this almost-sure (or quali-
tative) probabilistic reachability problem establishes that the probabilistic sys-
tem can guarantee an event (such as the completion of a task) with probability
1. The reachability problem is a fundamental sub-problem of model checking,
and, analogously, the almost-sure probabilistic reachability problem is a fun-
damental sub-problem of probabilistic model checking. Hence, the EXPTIME
lower bounds shown in this paper apply to all probabilistic model-checking
problems for the systems we consider.

A similar result has been shown by Littman [14] in the context of probabilistic
propositional planning, which involves the solution of a probabilistic reacha-
bility problem on a concisely-described Markov decision process. Littman’s
result relies on the reduction of the two-player game G4 to reachability on a
Markov decision process described in the sequential-effect trees notation. Our
approach is instead to reduce the acceptance problem on linearly-bounded al-
ternating Turing machines to the almost-sure probabilistic reachability prob-
lem, both on probabilistic systems operating in parallel and on probabilistic
timed automata, in a similar manner to the reductions in [13,1].

Preliminaries. An Alternating Turing Machine (ATM) [3] is a tuple A =
(Q,Qv,Qn,T,0,q0, Gace), With a set Q@ = Qv U Qx of states partitioned into
disjunctive states)y and conjunctive states ()., an initial state ¢y € @), an
accepting state gq.. € Qv, a tape alphabet I' = {a, b}, and a transition relation
§CQxT'xQxT x{-1,1}. A configuration of A is a triple a = (g, i, w)
where g € () is the current state, w € I'* is a word describing the tape content,
and 0 < ¢ < |w| is the position of the head on the tape. The symbol written
in the ith cell of the tape is denoted by w(i). An ATM moves like a usual
nondeterministic Turing machine: for example, if & = (¢, 7, w), w(i) = a and
(q,a,q',b,e) € §, then A may move from o to o/ = (¢,7',w’), where w' is w
updated by writing b in position ¢, and i’ is i + ¢ (with i + ¢ > 0). We say
that o' is a successor of . We also assume that A has only one reachable
configuration (g, ¢, w) for which ¢ = ¢4, and that i = 1 and w = a”.

A run of A from some configuration «y is a tree, the root of which corresponds
to ap, and where every node corresponding to « has a child node for each
successor o’ of a. For k € N, a run rooted at some disjunctive configuration o
is accepting in k steps if and only if its state is g, or kK > 1 and at least one
of its children is accepting in & — 1 steps. A run rooted at some conjunctive
configuration « is accepting in k steps if and only if & > 1 and all of its
children is accepting in k — 1 steps (and there is at least one child). A word
v is accepted by A if and only if there exists some k such that the run from
(qo, 1,v) is accepting in k steps. We say that A is linearly-bounded (LB-ATM)
on v if all configurations (¢, 7, w) in the run of A have |w| < |v|. The problem of
acceptance of a LB-ATM, which we denote by LB-ATM-ACCEPT, is written
as:

Input An ATM A and a word v € I'* such that A is linearly-bounded on v.
Output YES if and only if A accepts v, NO otherwise.

A classical result says that the problem LB-ATM-ACCEPT is EXPTIME-
complete [3]. In the following, we assume, as in [5], that along a single branch of
a run of an LB-ATM, no configuration is repeated; thus every branch is finite.
This assumption does not change the complexity issues: one can easily reduce
an instance (A,v) of LB-ATM-ACCEPT to some instance (A’,v") where A’
avoids repetitions by inserting on the tape a counter (encoded in binary)
whose value is bounded by 2"l - |Q] - |v| (the maximum number of distinct
configurations along the run). Then A’ simulates the moves of .4 and increases
the counter by 1 for every simulated move of A.

2 Concurrent Markov Decision Processes

A (discrete) probability distribution over a countable set @) is a function p :
Q — [0,1] such that > .o u(q) = 1. For a possibly uncountable set @', let
Dist(Q’) be the set of distributions over countable subsets of). A distribution
p will occasionally be denoted by {q — 1(q) | ¢ € @ and u(q) > 0}. Given the
distributions piq, ..., ux over the sets @)y, ..., Qk, respectively, the independent
product p1 ®...® py is defined as {(q1, ..., qx) — p1(q1) - pr(aqr) | (@1, qx) €
Q1% ... xXQk}. A Markov decision process (MDP) M = (X, S, D) comprises a set
Y of actions, a set S of states, and the transition relation D C S x ¥ x Dist(5).
The transitions from state to state of an MDP are performed in two steps:
given that the current state is s, the first step concerns a nondeterministic
selection of an triple (s, a,) € D associated with s; the second step comprises
a probabilistic choice, made according to the distribution p of the chosen triple,
as to which state to make the transition (that is, we move to a state s’ € S
with probability p(s’)). We often write s %, instead of (s,a,) € D; when
p={s" — 1}, we write s = s’. An MDP is finite if 32, S and D are finite sets.

Unless stated otherwise, we henceforth assume that MDPs are finite.

A finite path is a finite sequence sg <>, $1 —p, - uun_l sy, of consecutive
transitions followed by a state, such that p;(s;+1) > 0 for all ¢ < n. An infinite
path is an infinite sequence sy %, 1 —,, - -+ of consecutive transitions, such
that p;(s;11) > 0for alli € N. A state s is reached along the path if there exists
1 € N such that s = s;. An adversary of an MDP is a partial function mapping
finite paths to triples (s,a,) € D, such that s is the state at the end of the
path [7,17]. In the standard way, we define the probability measure Pmb;4 over
measurable sets in the set of paths generated by adversary A from state s [10].
Given F C S, let Reach’}(F) be the set of paths generated by A from s along
which a state in F' is reached. For an MDP M = (X, S, D), an initial state
5€ 5, and a set ' C S of final states, the almost-sure reachability problem
for MDPs (MDP-ASR) consists in checking the existence of an adversary
of M that assigns probability 1 to reaching F' from §, and can be solved in
polynomial time in the size of M, independently of the transition probabilities
(see, for example, [6]). Formally, MDP-ASR is written as:

Input An MDP M, an initial state s, and a set of final states F'.
Output YES if and only if there exists an adversary A of M such that
Prob?{Reach?(F)} = 1, No otherwise.

A concurrent Markov decision process (CMDP) M = (My, ..., M) is a k-tuple
of Markov decision processes. The flattening of the concurrent Markov decision
process M is a Markov decision process (X,S, D), where ¥ = ¥ U ... U Xy,
S = 51 X ... x Sg, and D is the set of all triples ((s, ..., Sx),a,p) from S x
Y. x Dist(S) such that g = p ® ... ® g, where, for each 1 < i < k, either
(sisa,pi) € D;or (a ¢ X; and p; = {s; — 1}) [16]. For a concurrent Markov
decision process M = (My, ..., M) with the flattening M = (3, S, D), an initial
state (51,...,5;) € S and a set of final states F' C S of M, the almost-sure
reachability problem for CMDPs (CMDP-ASR) is similar to MDP-ASR, but
checks for the existence of an adversary on the flattening of the CMDP:

Input A CMDP M, an initial state s, and a set of final states F'.
Output YES if and only if there exists an adversary A of the flattening M of
M such that Prob?{Reach?(F)} = 1, No otherwise.

Theorem 2.1 The problem CMDP-ASR is EXPTIME-complete.

Proof. An EXPTIME algorithm is obtained by applying standard polynomial
time algorithms for MDP-ASR [6] over the (exponential) flattening of the
CMDP in question. It remains to show the EXPTIME-hardness of CMDP-
ASR. Let v € T and A = (Q, Qv, Qn, T, 9, qo, Gace) be an LB-ATM. We define
a CMDP M 4, = (M My, ..., M,) which models the run of A over v:

e For each 1 < i < n, the MDP M, models the ith tape cell. The state set

is S; = {s si}, and the initial state is s’ if v(i) = a, and s} otherwise.
The alphabet is ¥; = (§ x {i}) U {(a,i), (b,7)}. For each transition ¢ =
(q,e,q,¢',€) € § such that i +¢ € {1,...,n}, there is a transition s SR s,
in D; to simulate the behavior of t. Furthermore, for each e € {a, b}, there
is a transition s{ =% s in D; to indicate the current value of the cell.
e The MDP Mentrl = (yentrl Gentrl - pentrl) models the control part of A. The
alphabet is " = (§ x {1,...,n}) U ({a,b} x {1,...,n}), and the state set
is S = (Q x {1,...,n}) U (Qx x {1,...,n} x §). The initial state is (qo, 1).
The transition relation D" is defined as follows: A
- For each ¢ € @y, each 1 < i < n, and each t € 4, a transition (g, 1) SN
(¢',i+¢) is included in D" if t = (q,e,¢',¢',e) and i +¢ € {1,...,n}.

- For each ¢ € Q,, each 1 < i < n and each e € {a,b} such that the set
Tyie = {(qg,e,¢,e,e) € 6|i+e € {1,...,n}} is non empty, we have a
transition (g, 1) El—m(me) in D" where fi(g;.) is the distribution (with

equal probabilities) over the states (¢, i,t) for all t € T, ;.. Then we add

transitions (q, 1, t) N (¢',i + €) to D" according to the definition of ¢.

The size of M 4, is O(n x |@Q| x |d]), including the probabilities represented as
the ratio of two integers encoded in binary, and the reduction can be done in
logarithmic space. Now we show that A accepts v if and only if CMDP-ASR
returns YES for M 4, with the initial state ((qo, 1), 311)(1), ey sﬁ(n)), and the set

containing the single final state ((qaee, 1), sk, ..., s7). As the problem LB-ATM-

ACCEPT is EXPTIME-hard, this will suffice to show the EXPTIME-hardness
of CMDP-ASR.

In the following, for a given word w € I'", we write s,, instead of 311U(1)7 coos S
Let My, = (£, S, D) be the flattening of the CMDP M 4,,. Our first task is to
construct a modified, action-less version of My, denoted by M = (S, D), so
that we are better able to relate the transitions of M 4, with those of A. Intu-
itively, we obtain M by removing intermediate states of the form ((q,4,t),s,)
from My,. Let Sy C S be the set of states of M, which have the com-
ponent M in a state in the set Qy x {1,...,n}, and similarly let Sp C S
be the set of states for which M is in a state in QA x {1,...,n}. Then let
S = Sy U Sp. The transition relation D C S x Dist(S) is defined as follows.

For states ((q,1),8,) € Sy, for each transition ((q,7),s,) 4, ((¢',i"),84) of D
we have ((¢,7),8,) — ((¢/,i'),84) in D. For states ((¢,7),8,) € Sp, observe

w(i),

that in My, we have transitions ((¢,%),s,) ——, ((¢,7,t),8y), and, from

((q,7,t),8y), there is a unique transition ((q, 7,t), Sy) BN ((¢',7"),8u), where ¢/,
i’ and w’ depend on t. In M we skip the intermediate state ((q, i,t), s,,) and con-
sider a transition ((g,%),s,) — such that 7((¢', '), s.r) equals p((g,%,t),s,) if
there is a transition ¢ such that ((g,%,t),s,) — ((¢/,7'),sw), and 0 otherwise.

We can verify that, for all states s € S and any F' C S, CMDP-ASR returns
YES for M 4,, s and F if and only if MDP-ASR returns YES for M, s and F.

Note that we can obtain an isomorphism between the configurations of A and
the states of M, which relates a configuration (g, 7, w) of A to a state ((q,), s,)
of M. For configurations (q,i,w) and (¢,7',w’), we have that (¢/,i',w’) is a
successor of (¢,4,w) if and only if ((¢,%),sw) —, ((¢,7'),sw). Because no
configuration is repeated along a branch of a run of A (see page 3), the MDP M
is acyclic (i.e. there does not exist a finite path sg <>, $1 —>,, - - ﬁj—mﬂ_l Sn
of M such that sy = s,,). Hence M has no infinite path.

Next, we introduce the alternating reachability problem (ALT-REACH) on

M. First we consider the variant in k steps (ALT-REACH-k):

Input An MDP M, a partition of the states of M into disjunctive states S,
and conjunctive states S, an initial state s, and a set of final states F.
Output YEs if and only if:
e s € S, and either s € F or k > 1 and there exists a transition s —, s
such that ALT-REACH-(k — 1) returns YES on M, S\, S\, ¢, and F;
e s €Sy, k>1, and, for all states s’ € S, we have that s —, s implies
that ALT-REACH-(k — 1) returns YES on M, Sy, Sy, §', and F}
and NO otherwise.

Then the answer to ALT-REACH is YES if and only if there exists some k such
that the corresponding instance of ALT-REACH-£ is positive. We apply the
problem ALT-REACH by letting the set of disjunctive and conjunctive states
considered be equal to Sy and Sp, respectively. From the acyclic property of
M, we have that the problem MDP-ASR outputs YES on M, s and F if and
only if ALT-REACH outputs YES on M, Sy, Sp, s and F.? We claim that
the following statements are equivalent:

) CMDP-ASR returns YES on input M 4, ((go, 1), y), and ((qace; 1), Sa...a);
) MDP-ASR returns YES on input M, ((go, 1),,), and ((qace, 1), Sa...a);

)
)

ALT-REACH returns YES on input M, ((qo,1),s,), and ((Gace; 1), Sa..a);

(
(
(
(4) LB-ATM-ACCEPT returns YES on input A and wv.

1
2
3
4

The equivalence of statements (1) and (2), (statements (2) and (3), respec-
tively) follows from the arguments relating CMDP-ASR and MDP-ASR (MDP-
ASR and ALT-REACH, respectively) given above. The equivalence of state-
ments (3) and (4) follows from the aforementioned isomorphism between con-
figurations of A and states of M. Hence, the CMDP-ASR problem and the
acceptance problem for LB-ATM are equivalent, and thus the CMDP-ASR
problem is EXPTIME-hard. O

2 The proof can be done directly on the number of steps of the accepting runs,
which is the same in both problems.

3 Probabilistic Timed Automata

In this section, we study the complexity of the almost-sure probabilistic reach-
ability problem for probabilistic timed automata. We use standard notation
from (probabilistic) timed automata, such as clock valuations val : X — Rx
which are mappings from the set of clocks X to the set of non-negative real
numbers R, and clock constraints Wy over X. A probabilistic timed au-
tomaton (PTA) P = (L, X, prob) [11,9] is a tuple consisting of a finite set L of
locations, a finite set X of clocks, and a finite set prob C L x ¥y x Dist(2* x L)
of probabilistic edges. A probabilistic edge (I, g,p) € prob is a triple contain-
ing (1) a source [location, (2) a guard g, and (3) a probability distribution
p which assigns probability to pairs of the form (X,!’) for some clock reset
X and target location I’. The semantics of P is the action-less, infinite-state
Markov decision process M[P] = (S, D). The state set S = L x R%, comprises
location-valuation pairs. The transition relation D is defined as the smallest
set such that ((I, val), 0, u) € D if there exist 6 € R>(and a probabilistic edge
(I,g9,p) € prob such that (1) val + ¢ | g and (2) for each (I',val’) € S, we

have :u(l/7 ’U(Ll/) = ZXQX& val’=(val+8)[X:=0] p(X7 l/)

Let 0 € RZ, be the clock valuation which assigns 0 to all clocks in X. For a
probabilistic timed automaton P = (L, X, prob), an initial location [€ L, and
a set Ly C L of final locations, the almost-sure reachability problem for PTAs
consists in checking the existence of an adversary that assigns probability 1
to reaching Ly from (I, 0). Formally, PTA-ASR is the problem written as:

Input A PTA P, an initial location I, and a set of final locations Lp.
Output YEs if and only if there exists an adversary A of M[P] such that
Probé-’o){Reachéo)(LF x RYy)} = 1, No otherwise.

Kwiatkowska et al. [11] show that the problem PTA-ASR can be solved in
exponential time in the size of P using a variant of the region graph technique
for timed automata [2]. We now show that this bound is optimal.

Theorem 3.1 The problem PTA-ASR is EXPTIME-complete.

Proof. Given that an EXPTIME algorithm has been presented previously, it
remains to show the EXPTIME-hardness of PTA-ASR. Let A = (Q, Qv, Qa,
I, 9, 90, Gace) be an LB-ATM and v be a word of length n. We define a PTA
Pa» = (L, X, prob) which models the run of A over v. Then we let L =
(Qx{1,...n)U{l,lr}, and X = {21, ..., 2, T1, ..., Tn, y}. The contents of the
tape of A are encoded by the relative values of the clocks x1, ..., z,, T1, ..., Tp:
cell ¢ contains a if z; = x;, and b if x; < Z;. Clock y is used to ensure the
elapse of time.

The probabilistic edge relation prob of P4, is obtained in a similar way to

the transition relation of the CMDP of the proof of Theorem 2.1, as we now
explain. The idea is that probabilistic edges emulate the transitions of A: in
particular, the guards of probabilistic edges from a given location (g,7) can
test whether the current tape symbol is a or b by checking whether z; = z; or
x; < &;, respectively. Furthermore, the writing of a symbol in a tape cell can
be replicated by clock resets: for example, to represent the writing of a in cell
i, we reset clocks x; and Z; to 0 (so that x; = Z;), whereas to write b we reset
only z; (so that x; < ;). The target locations of the probabilistic edges are
derived from the target states of the transition of A involved in the definition
of the probabilistic edge, and by the associated movement of the tape head.

In a location (g,) derived from a disjunctive ATM state (that is ¢ € @\), there
will be a nondeterministic choice between probabilistic edges, each of which is
derived from a transition of A from ¢, and each of which will assign probability
1 to a single outcome. In contrast, in a location (g,) derived from a conjunctive
ATM state (that is ¢ € Q4), there are at most two probabilistic edges, one of
which has a guard testing whether the current tape symbol is a (using z; = Z;,
as above), the other testing for b (using x; < Z;). The probabilistic branching
is done (with equal probability) over the various outcomes derived from the
outgoing transitions of ¢ labeled with a or b, respectively. To the guard of each
probabilistic edge, we add the constraint y > 0 to force some time to elapse,
in order to ensure that a clock reset of {z;} encodes the writing of b in cell
j. Finally, we add the probabilistic edge (I,y > 0,{X,, (g0, 1) — 1}), where
X, = {z; | v(i) = b} U{y}, to encode the initialization of the input word v on
the tape, and also the probabilistic edge ((qacc, 1), iy (2 = Z;), {0, lp — 1}).

The size of the PTA P4, is linear in |A| - |v|: we have |L| = |Q] - |v] + 2,
|X| =2 |v]+ 1, and the size of the probabilistic edge set prob — including the
probabilities encoded in binary — is bounded by 2-|v|-|6|. The reduction can be
done in logarithmic space. Then A accepts v if and only if PTA-ASR returns
YES on the input PTA P 4, the initial location [, and the set {l/r} comprising
the single final location [r. Hence PTA-ASR is EXPTIME-hard. O

References

[1] L. Aceto and F. Laroussinie. Is your model checker on time? On the complexity
of model checking for timed modal logics. Journal of Logic and Algebraic
Programming, 52-53:7-51, 2002.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

[3] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

[5] C. Courcoubetis and M. Yannakakis. = The complexity of probabilistic
verification. Journal of the ACM, 42(4):857-907, 1995.

[6] L. de Alfaro. Computing minimum and maximum reachability times in
probabilistic systems. In Proc. of the 10th Int. Conf. on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 66-81. Springer, 1999.

[7] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent
program. ACM Trans. Program. Lang. Syst., 5(3):356-380, 1983.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In Proc. of the 12th Int.

Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920 of LNCS, pages 441-444. Springer, 2006.

[9] H. E. Jensen. Model checking probabilistic real time systems. In Proc. of
the 7th Nordic Workshop on Programming Theory, volume 86, pages 247-261.
Chalmers Institute of Technology, 1996.

[10] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains.
Graduate Texts in Mathematics. Springer, 2nd edition, 1976.

[11] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 286:101-150, 2002.

[12] M. Z. Kwiatkowska. Model checking for probability and time: from theory to
practice. In Proc. of the 18th IEEE Symposium on Logic in Computer Science
(LICS 2003), pages 351-360. IEEE Computer Society, 2003.

[13] F. Laroussinie and Ph. Schnoebelen. The state-explosion problem from trace
to bisimulation equivalence. In Proc. of the 3rd Inter. Conf. on Foundations of
Software Science and Computation Structures (FoSSaCS 2000), volume 1784 of
LNCS, pages 192-207. Springer, 2000.

[14] M. L. Littman. Probabilistic propositional planning: Representations and
complexity. In Proc. of the 14th National Conf. on Artificial Intelligence and the
9th Innovative Applications of Artificial Intelligence Conf. (AAAI/TAAI’97),
pages 748-754. AAAI Press/MIT Press, 1997.

[15] M. L. Puterman. Markov Decision Processes. J. Wiley & Sons, 1994.

[16] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250-273, 1995.

[17] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. of the 16th An. Symp. on Foundations of Computer Science
(FOCS’85), pages 327-338. IEEE Computer Society Press, 1985.

