
ELSEVIER Information Processing Letters 54 (1995) 343-345 

Information 
Processing 
Letters 

About the expressive power of CTL combinators 
F. Laroussinie a*b~l 

a LIFIA-IMAG, 46 Av. F&x viallet, F-38000 Grenoble cedex, France 
b Department of Computer Science, Aalborg Universiv, Aalborg, Denmark 

Communicated by L. Kott; received 25 April 1994; revised 5 December 1994 

Abstract 

We present a new and quite surprising result about the expressive power of the 3-U and V-U combinators in CTL. 

Keywords: Temporal logic; CTL; Program specification; Specification languages 

1. The CTL logic 

CTL, the Computation Tree Logic proposed in [ 21 
has been widely considered in literature for the specifi- 
cation of reactive systems [ 6,5]. CTL is paradigmatic 
in the field of branching-time temporal logic because it 
admits efficient model checking algorithms (see [ 3 J ) 
while remaining very expressive. 

CTL formulas are built using four combinators: 3X, 
VX, 3-U and V-U, plus atomic propositions a, b, . . . 
and boolean combinators: 

(CTL 3) f,g ::= 

3X.f I vx.f I 3[fUgl I WfUgl 
I -f I fAs I a I b I . . . 

where we use the standard abbreviations: I, T, f V g, 
. . . for resp. a A 7u, . . . . 

CTL formulas are interpreted over Kripke struc- 
tures, i.e. directed graphs where every vertice (the 
states) carries a boolean valuation for the atomic 
propositions. See e.g. [5] for formal definitions. 
Informally, 3Xf means “there exists a next state sat- 

’ Email: fl@lifia.imag.fr. 

isfying f’ so that a state q satisfies 3Xf (written 
q k 3Xf) iff for some q’, a successor state of q 
(written q --f q’), it holds that q’ k f. VX means “for 
all next states . . .“, so that VXf E +lXlf (we do 
not allow states with no successors). 3 [ f U g] means 
“from the current state, there is a run n- satisfying f 
until g holds”, that is a run qo + q1 --+ . . . such that 
qk k g for some k and qi b f for all 0 < i < k. 
V[f U g] means “from the current state, all runs 
satisfy f until g”. 

Additional useful operators are 3F and VF, which 
are weak versions of 3_U (resp. V-U): 3Ff means 
“from the current state, there is a (complete) run along 
which f will hold at some point”, while VFf means 
“along all runs f will eventually hold”. Clearly 3Ff 
can be defined as SITU f and VF f as VTU f. 

2. A folk result on CTL 

In this setting it is well known that the V-U operator 
can be expressed in terms of 3-U and VF: 

V[f Ug] =VFgAd[(lg) U (-fAyg>l. (1) 

0020-0190/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDf 0020-0190(95)00053-4 



344 F: Laroussinie/lnformaton Processing Letters 54 (1995) 343-345 

This fact may be used to simplify proofs by induction 
over the structure of CTL formulas (see e.g. [ 1,8] ) , 
or to ease model-checking (see e.g. [ 3,4] ) . 

In such cases VF is much simpler than V-U. 3-U 
also is often simpler to deal with than V-U. Indeed, 
looking at the quantifier alternation in the seman- 
tic clause for V-U, we see that it has the general 
form “V n 3 kV i . . ,” and then is (syntactically) in 
L73, whereas (the clause for) 3_U is in 22 (witness 
“Cl r 3 k Vi”) and VF is in I& (witness ‘“d S- 3”). 
Perhaps this explains why nobody (to our knowledge) 
has ever tried to express 3-U in terms of V-U and 3F 
even though many people think this is possible through 
a definition as simple as ( 1) . We thought so for some 
time, but we were wrong. 

In this note, we show that it is impossible to express 
3-U with V-U and SF. This result is quite surprising, 
especially when one knows about ( 1) and considers 
the position of the combinators in the alternation hier- 
archy. We believe the impossibility proof is interest- 
ing. Indeed every time we found ( 1) in the literature, 
no mention was made of the dual question, not even 
through an open question. By contrast, the question 
pops up every time we teach CTL in the classroom. 

3. A surprising remark 

Eq. (1) entails the well-known result: 

Folk Theorem 1. CTL is no more expressive than the 
fragment LE where only 3_U, VF, 3X are allowed. 

By contrast 

Theorem 2. CTL is strictly more expressive than the 
fragment LA where only 3F, V-U, 3X are allowed. 
Specifically 3 [a U b] has no equivalent in LA. 

For a proof, consider the Kripke structure M given 
in Fig. 1. 

We prove that considering larger and larger j’s, the 
states aj and flj agree on larger and larger LA for- 
mulas. Formally, writing If] for the height of nested 
temporal operators in f, we have: 

Lemma 3. For all k and all j > k, aj and flj agree 
on any f E LA such that IfI < k. 

Fig. 1. The valuation of the states are indicated by their color. 

Proof. By induction on k. The base case where k = 0 
is clear: Qj and pj agree on atomic propositions. 

Now assume k = k’+ 1 : by the induction hypothesis 
aj and pj agree on all f such that If] < k. NOW 
consider some f with IfI = k. We prove that aj and 
flj agree on f by induction over the structure of f: 
?? The cases where f has the form lg or gi A g:! are 

obvious. 
?? f is some 3Xg (and then \gl < k’) : Assume pj b 

3Xg. There are three distinct cases depending on 
which successor of pj satisfies g: it may be aj_1, pj 
or pi_1. Then “j-1, or by the induction hypothesis 
aj or aj- 1 satisfies g SO that aj k 3Xg. The reverse 
direction (assuming aj k 3Xg) is dealt with in the 
same way. 

?? f is some 3Fg: All reachable states from aj are also 
reachable from /3j and conversely (because pj is 
reachable from S) . Therefore Lyj and pj agree on f. 

?? fissomeV[gUg’]:Ifcuj bV[gUg’],thenaj kg’ 
because there is a run looping on aj. By the induc- 
tion hypothesis, fij b g’ and then @j k V[g U g’] . 
The reverse direction is proved in the same way. 0 

Now pick any LA formula f and write k for If]. 
The previous lemma states that if j 3 k, then Lyj k f 
iff pj /= f. But aj p ][a U b] and fi,j k 3[a U b]. 



E Laroussinie/information Processing Letters 54 (1995) 343-345 345 

Therefore f is not equivalent to 3[ a U b] and this 
completes the proof of Theorem 2. 

4. Variants and extensions 

Clearly the above results apply to the logic CTL\X, 
i.e. CTL without a “NextTime” operator, a logic suited 
to reasoning modulo stuttering [ 71. 

Corollary 4. 
?? CTL \ X is no more expressive than the fragment 

where only 3.U and W are allowed. 
?? CTL\X is strictly more expressive than the fragment 

where only VU and 3F are allowed. 

Another interesting logic considered in the literature 
is the ECTL logic from [ 61. ECTL is “Extended CTL”, 

or CTL with fairness. It contains the 3 F operator in 

addition to CTL operators. Informally 3 ? f means 
“there is a run (starting from the current state) along 

which f holds infinitely often”. (ECTL also has a V? 

combinator but V? f can be written as dF+Ff.) 

Corollary 5. 
?? ECTL is no more expressive than the fragment 

where only 3-U, VF, 3 p, 3X are allowed. 
?? ECTL is strictly more expressive than the fragment 

where only VU, 3F, 3r and 3X are allowed. 

Proof. It is easy to extend lemma 3 with 3 ?: for any 
run rr starting from ~tj (resp. pi) there is a run r’ 
starting from flj (resp. aj) and having n- as a suffix. 
Clearly any property holding infinitely often along r 
also holds infinitely often along r’. Cl 

A well-known variant of the “Until” combinator is 
the “Unless” (see e.g. [ 51)) or “weak Until”, written 
W, and differing from U in that a run satisfies fwg 
is f holds as long as g does not hold, but g is not 
required to hold eventually. Then CTL can be defined 
with W in place of U because one can express 3-U 
and V-U with 3-W and V-W (and conversely): 

3[f u 81 z +‘[ (Tg)Wlf A -g) 1 
3[fwgl = -4 (33 u C-f A -g> 1 
V’[f u 81 f 13[(-g)W7f A -s>l 
H./-WI = -3[ (3) u C-f A ‘g> 1 

Then a consequence of our previous results is that CTL 
is strictly more expressive than the logic where only 
3-W, V-W-L and 3X are allowed, while it is no more 
expressive than the logic where only V-W, 3_WI and 
3X are allowed. 

Acknowledgements 

We would like to thank Philippe Schnoebelen and 
Sophie Pinchinat for their many helpful suggestions 
and comments on this work. 

References 

11 

[2 

[3] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic 
verification of finite-state concurrent systems using temporal 
logic specifications, ACM Trans. Programming Languages 
Systems 8 (2) (1986) 244-263. 

[4] E.M. Clarke and 0. Grtimberg, Research on automatic 
verification of finite-state concurrent systems, Ann. Rev. 
Comput. Sci. 2 (1987) 269-290. 

[5] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen, 
ed., Handbook of Theoretical Computer Science, Vol. B, 
Chapter 16 (Elsevier, Amsterdam, 1990) 995-1072. 

[6] E.A. Emerson and J.Y. Halpem, “Sometimes” and “Not 
Never” revisited: On branching versus linear time temporal 
logic, .I ACM 33 (1) (1986) 151-178. 

[7 ] L. Lamport, What good is temporal logic?, in: 
Proc. Information Processing (IFIP) 83 (North-Holland, 
Amsterdam, 1983) 657-668. 

[8 ] E Laroussinie and Ph. Schnoebelen, A hierarchy of temporal 
logics with past, in: Proc. STACS’94, Caen, France, Lecture 
Notes in Computer Science 775 (Springer, Berlin, 1994) 47- 
58. 

I A. Bouajjani, R. Echahed and J. Sifakis, On model checking 
for real-time properties with durations, in: Proc. 8th IEEE 
Symp. on Logic in Computer Science, Montreal, 1993. 
E.M. Clarke and E.A. Emerson, Design and synthesis of 
synchronization skeletons using branching time temporal 
logic, in: Proc. Logics of Programs Workshop, Yorktown 
Heights, Lecture Notes in Computer Science 131 (Springer, 
Berlin, 1981) 52-71. 


