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1) Let E be a coherence space. We use Cl(E) for the set of cliques of E.

1.1) Let X = (|E|,
{
x ∈ R|E|≥0 | ∀u′ ∈ Cl(E⊥)

∑
a∈u′ xa ≤ 1

}
). Prove that X is a probabilistic coher-

ence space (PCS). We use p(E) to denote this PCS.

1.2) Let E be a coherence space and let x ∈ P(p(E)). Prove that ‖x‖p(E) = supu′∈Cl(E⊥)

∑
a∈u′ xa.

1.3) Let t ∈ Cl(E ( F ) (where E and F are coherence spaces). We de�ned p(t) ∈ R|E|×|F |≥0 by

p(t)a,b =

{
1 if (a, b) ∈ t
0 otherwise.

Prove that p(t) ∈ Pcoh(p(E), p(F )).

1.4) Prove that p(_) de�ned in the two previous questions is a functor from the category Coh of
coherence spaces and linear morphisms to Pcoh.

Remember that if (Ei)i∈I is a family of coherence spaces, then the coherence space
˘
i∈I Ei is de�ned

as follows:

� |E| =
⋃
i∈I {i} × |Ei|

� and (i, a) ¨E (j, b) if i = j ⇒ a ¨Ei
b.

And F =
⊕

i∈I Ei is de�ned as follows:

� |E| =
⋃
i∈I {i} × |Ei|

� and (i, a) ˝F (j, b) if i = j and a ˝Ei
b.

1.5) Let (Ei)i∈I be a family of coherence spaces. Prove that p(
˘
i∈I Ei) =

˘
i∈I p(Ei) (this property

relates the & of ordinary coherence spaces and the & of PCSs).

1.6) Let (Ei)i∈I be a family of coherence spaces. Prove that p(
⊕

i∈I Ei) =
⊕

i∈I p(Ei) (use the
characterization of the ⊕ of PCSs in terms of the norm).

1.7) Let S be the least set of coherence spaces which contains 1 (the coherence space whose web is
{∗}) and such that

� if E ∈ S then E⊥ ∈ S

� and if (Ei)i∈I is a family of elements of S, then
˘
i∈I Ei ∈ S.

Prove that, for any E ∈ S, one has p(E⊥) = p(E)
⊥
.

An embedding from a coherence space E into a coherence space F is an injective function f : |E| → |F |
such that, for all a, b ∈ |E|, one has a ¨E b⇔ f(a) ¨F f(b). If there is such an embedding we say that
E embeds in F .

1.8) If k ∈ N, let Ck be the coherence space such that |Ck| = {1, . . . , k} and where 1 ˝ 2, 2 ˝ 3. . . ,
k ˝ 1 are the only coherent pairs (the cycle of length k). Prove that it is not true that P(p(C5

⊥)) =

P(p(C5))
⊥
.

1.9) Prove that if C5 embeds in a coherence space E then it is not true that P(p(E⊥)) = P(p(E))
⊥
.

1.10) Generalize the above to all Ck's with k odd.



2) Let X and Y be PCSs and f : P(X) → P(Y ) be a function which is monotone, Scott continuous
and linear in the sense that for all x(1), x(2) ∈ P(X) and λ1, λ2 ∈ R≥0, if λ1x(1) + λ2x(2) ∈ P(X) then
f(λ1x(1) + λ2x(2)) = λ1f(x(1)) + λ2f(x(2)).

2.1) For each a ∈ |X| let N(a) = sup {λ ∈ R≥0 | λea ∈ P(X)}. Prove that 0 < N(a) < ∞ and that
N(a)ea ∈ P(X).

2.2) We de�ne s ∈ R|X|×|Y |≥0 by

sa,b =
f(N(a)ea)b

N(a)
∈ R≥0 .

Given x ∈ P(X) let supp(x) = {a ∈ |X| | xa 6= 0}. Prove that if supp(x) is a �nite set then f(x) = s · x.

2.3) Given x ∈ P(X) and I ⊆ |X| let x(I) ∈ R|X|≥0 be de�ned by

x(I)a =

{
xa if a ∈ I
0 otherwise.

Prove that x(I) ∈ P(X), that {x(I) | I ∈ Pfin(|X|)} is directed in P(X) (where Pfin(E) is the set of all
�nite subsets of E) and that

x = sup {x(I) | I ∈ Pfin(|X|)} .

2.4) Prove that s ∈ Pcoh(X,Y ) and that ∀x ∈ P(X) f(x) = s · x.

3) We de�ne T0, T1 ∈ Pcoh(!(!1 ( 1)⊗ !1, 1), keeping often implicit the monoidality isomorphisms of
Pcoh. T0 is the following composition of morphisms in Pcoh:

!(!1 ( 1)⊗ !1 !1 1
w⊗!1 der

and T1 is the following composition of morphisms in Pcoh:

!(!1 ( 1)⊗ !1 !(!1 ( 1)⊗ !(!1 ( 1)⊗ !1⊗ !1 !(!1 ( 1)⊗ !1⊗ !(!1 ( 1)⊗ !1

1 1⊗ 1 (!1 ( 1)⊗ !1⊗ (!1 ( 1)⊗ !1

c⊗c ∼

der⊗!1⊗der⊗!1

∼ ev⊗ev

3.1) Let t ∈ P(!1 ( 1) and x ∈ P(1) (that we identify with the unit interval [0, 1]). Prove that

T0 · (t(!) ⊗ x(!)) = x

T1 · (t(!) ⊗ x(!)) = (t · x(!))2

Let p ∈ [0, 1]. We assume that p 6= 0.

3.2) Let Si = cur(Ti) ∈ Pcoh(!(!1 ( 1), !1 ( 1) = P(!(!1 ( 1) ( (!1 ( 1)) for i = 1, 2 and let
S = (1 − p)S0 + pS1. Explain why Si = cur(Ti) ∈ Pcoh(!(!1 ( 1), !1 ( 1) and show that for any
t ∈ P(!1 ( 1), the morphism s = S · t(!) ∈ Pcoh(!1, 1) satis�es

∀x ∈ P(1) s · x(!) = (1− p)x+ p(t · x(!))2

Remember that the function F : t 7→ S · t(!) is monotone and Scott continuous, and hence has a least
�xed point.

3.3) Let s0 be the least �xed point of F , and let f : [0, 1]→ [0, 1] be the associated function (that is
f(x) = s0 · x(!)). Prove that we must have

∀x ∈ [0, 1] f(x) =
1 + α(x)

√
1− 4p(1− p)x
2p

where ∀x ∈ [0, 1] α(x) ∈ {−1, 1}.



3.4) Prove that f(0) = 0 and that ∀x ∈]0, 1] α(x) = −1.

3.5) Plot the function f for p = 1
4 , p =

1
2 , p =

3
4 and p = 1.

3.6) Since s0 ∈ P(!1 ( 1), we can consider s0 as an element of RN
≥0. Using the Taylor expansion of√

1− u compute the value of (s0)n for each n ∈ N.

4) 4.1) Let X and Y be PCSs, let ϕ : |X| → |Y | be a bijection and let v : |X| → R≥0 be such

that ∀a ∈ |X| v(a) 6= 0. Let s = mat(ϕ, v) ∈ R|X|×|Y |≥0 be given by

mat(ϕ, v)a,b =

{
v(a) if ϕ(a) = b

0 otherwise.

We assume that

∀u ∈ R|X|≥0 u ∈ P(X)⇔ mat(ϕ, v) · u ∈ P(Y ) .

Prove that mat(ϕ, v) is an iso in the category Pcoh, with inverse mat(ϕ−1, v′) where v′(b) = 1/v(ϕ−1(b)).
An iso of shape mat(ϕ, v) will be called quasi-strong.

We want to prove that any iso of PCS is quasi-strong. So let t ∈ Pcoh(X,Y ) be an iso and
t−1 ∈ Pcoh(Y,X) be its inverse.

Let a ∈ |X| and let α = sup {λ ∈ R≥0 | λea ∈ P(X)}. Remember that α > 0.

4.2) Prove that αea ∈ P(X) and that t · αea 6= 0.

Let b, b′ ∈ |Y | be such that (t · αea)b 6= 0 and (t · αea)b′ 6= 0. Let β = (t · αea)b and β′ = (t · αea)b′ .
4.3) Observe that, for the standard order relation on PCSs (x(1) ≤ x(2) if ∀a′ ∈ |X| x(1)a′ ≤ x(2)a′)

one has βeb ≤ t · αea and deduce that there must exist γ ≤ α such that t−1 · βeb = γea. Prove that
γ 6= 0.

Similarly we have γ′ > 0 such that t−1 · β′eb′ = γ′ea. Without loss of generality we can assume that
γ′ ≤ γ.

4.4) Prove that γ′β
γ eb = β′eb′ . Deduce that b = b′. As a consequence β′ = (t · αea)b = β.

4.5) Prove that t · αea = βeb.

4.6) Deduce from the above that there is a function ϕ : |X| → |Y | and a function v : |X| → R≥0 \{0}
such that ∀a ∈ |X| ta,b 6= 0⇒ b = ϕ(a) and ta,ϕ(a) = v(a).

4.7) Prove that t is quasi-strong.


