MPRI 2-2 TD 2

Thomas Ehrhard

1) Let E be a coherence space. We use $\mathrm{Cl}(E)$ for the set of cliques of E.
1.1) Let $X=\left(|E|,\left\{x \in \mathbb{R}_{\geq 0}^{|E|} \mid \forall u^{\prime} \in \mathrm{Cl}\left(E^{\perp}\right) \sum_{a \in u^{\prime}} x_{a} \leq 1\right\}\right)$. Prove that X is a probabilistic coherence space (PCS). We use $\mathrm{p}(E)$ to denote this PCS.
1.2) Let E be a coherence space and let $x \in \mathrm{P}(\mathrm{p}(E))$. Prove that $\|x\|_{\mathrm{p}(E)}=\sup _{u^{\prime} \in \mathrm{Cl}\left(E^{\perp}\right)} \sum_{a \in u^{\prime}} x_{a}$.
1.3) Let $t \in \mathrm{Cl}(E \multimap F)$ (where E and F are coherence spaces). We defined $\mathfrak{p}(t) \in \mathbb{R}_{\geq 0}^{|E| \times|F|}$ by

$$
\mathrm{p}(t)_{a, b}= \begin{cases}1 & \text { if }(a, b) \in t \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $\mathrm{p}(t) \in \mathbf{P} \operatorname{coh}(\mathrm{p}(E), \mathrm{p}(F))$.
1.4) Prove that $p\left(_\right)$defined in the two previous questions is a functor from the category Coh of coherence spaces and linear morphisms to Pcoh.

Remember that if $\left(E_{i}\right)_{i \in I}$ is a family of coherence spaces, then the coherence space $\&_{i \in I} E_{i}$ is defined as follows:

- $|E|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- and $(i, a) \frown_{E}(j, b)$ if $i=j \Rightarrow a \frown_{E_{i}} b$.

And $F=\bigoplus_{i \in I} E_{i}$ is defined as follows:

- $|E|=\bigcup_{i \in I}\{i\} \times\left|E_{i}\right|$
- and $(i, a) \frown_{F}(j, b)$ if $i=j$ and $a \frown_{E_{i}} b$.
1.5) Let $\left(E_{i}\right)_{i \in I}$ be a family of coherence spaces. Prove that $\mathrm{p}\left(\&_{i \in I} E_{i}\right)=\&_{i \in I} \mathrm{p}\left(E_{i}\right)$ (this property relates the $\&$ of ordinary coherence spaces and the $\&$ of PCSs).
1.6) Let $\left(E_{i}\right)_{i \in I}$ be a family of coherence spaces. Prove that $\mathrm{p}\left(\bigoplus_{i \in I} E_{i}\right)=\bigoplus_{i \in I} \mathrm{p}\left(E_{i}\right)$ (use the characterization of the \oplus of PCSs in terms of the norm).
1.7) Let \mathcal{S} be the least set of coherence spaces which contains 1 (the coherence space whose web is $\{*\}$) and such that
- if $E \in \mathcal{S}$ then $E^{\perp} \in \mathcal{S}$
- and if $\left(E_{i}\right)_{i \in I}$ is a family of elements of \mathcal{S}, then $\&_{i \in I} E_{i} \in \mathcal{S}$.

Prove that, for any $E \in \mathcal{S}$, one has $\mathrm{p}\left(E^{\perp}\right)=\mathrm{p}(E)^{\perp}$.
An embedding from a coherence space E into a coherence space F is an injective function $f:|E| \rightarrow|F|$ such that, for all $a, b \in|E|$, one has $a \frown_{E} b \Leftrightarrow f(a) \frown_{F} f(b)$. If there is such an embedding we say that E embeds in F.
1.8) If $k \in \mathbb{N}$, let C_{k} be the coherence space such that $\left|C_{k}\right|=\{1, \ldots, k\}$ and where $1 \frown 2,2 \frown 3 \ldots$, $k \frown 1$ are the only coherent pairs (the cycle of length k). Prove that it is not true that $\mathrm{P}\left(\mathrm{p}\left(C_{5}{ }^{\perp}\right)\right)=$ $\mathrm{P}\left(\mathrm{p}\left(C_{5}\right)\right)^{\perp}$.
1.9) Prove that if C_{5} embeds in a coherence space E then it is not true that $\mathrm{P}\left(\mathrm{p}\left(E^{\perp}\right)\right)=\mathrm{P}(\mathrm{p}(E))^{\perp}$.
1.10) Generalize the above to all C_{k} 's with k odd.
2) Let X and Y be PCSs and $f: \mathrm{P}(X) \rightarrow \mathrm{P}(Y)$ be a function which is monotone, Scott continuous and linear in the sense that for all $x(1), x(2) \in \mathrm{P}(X)$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{\geq 0}$, if $\lambda_{1} x(1)+\lambda_{2} x(2) \in \mathrm{P}(X)$ then $f\left(\lambda_{1} x(1)+\lambda_{2} x(2)\right)=\lambda_{1} f(x(1))+\lambda_{2} f(x(2))$.
2.1) For each $a \in|X|$ let $N(a)=\sup \left\{\lambda \in \mathbb{R}_{\geq 0} \mid \lambda \mathrm{e}_{a} \in \mathrm{P}(X)\right\}$. Prove that $0<N(a)<\infty$ and that $N(a) \mathrm{e}_{a} \in \mathrm{P}(X)$.
2.2) We define $s \in \mathbb{R}_{\geq 0}^{|X| \times|Y|}$ by

$$
s_{a, b}=\frac{f\left(N(a) \mathrm{e}_{a}\right)_{b}}{N(a)} \in \mathbb{R}_{\geq 0}
$$

Given $x \in \mathrm{P}(X)$ let $\operatorname{supp}(x)=\left\{a \in|X| \mid x_{a} \neq 0\right\}$. Prove that if $\operatorname{supp}(x)$ is a finite set then $f(x)=s \cdot x$.
2.3) Given $x \in \mathrm{P}(X)$ and $I \subseteq|X|$ let $x(I) \in \mathbb{R}_{\geq 0}^{|X|}$ be defined by

$$
x(I)_{a}= \begin{cases}x_{a} & \text { if } a \in I \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $x(I) \in \mathrm{P}(X)$, that $\left\{x(I) \mid I \in \mathcal{P}_{\text {fin }}(|X|)\right\}$ is directed in $\mathrm{P}(X)$ (where $\mathcal{P}_{\text {fin }}(E)$ is the set of all finite subsets of E) and that

$$
x=\sup \left\{x(I) \mid I \in \mathcal{P}_{\text {fin }}(|X|)\right\}
$$

2.4) Prove that $s \in \mathbf{P} \operatorname{coh}(X, Y)$ and that $\forall x \in \mathrm{P}(X) f(x)=s \cdot x$.
3) We define $T_{0}, T_{1} \in \mathbf{P c o h}(!(!1 \multimap 1) \otimes!1,1)$, keeping often implicit the monoidality isomorphisms of Pcoh. T_{0} is the following composition of morphisms in Pcoh:

$$
!(!1 \multimap 1) \otimes!1 \xrightarrow{\mathrm{w} \otimes!1}!1 \xrightarrow{\text { der }} 1
$$

and T_{1} is the following composition of morphisms in Pcoh:

3.1) Let $t \in \mathrm{P}(!1 \multimap 1)$ and $x \in \mathrm{P}(1)$ (that we identify with the unit interval $[0,1])$. Prove that

$$
\begin{aligned}
& T_{0} \cdot\left(t^{(!)} \otimes x^{(!)}\right)=x \\
& T_{1} \cdot\left(t^{(!)} \otimes x^{(!)}\right)=\left(t \cdot x^{(!)}\right)^{2}
\end{aligned}
$$

Let $p \in[0,1]$. We assume that $p \neq 0$.
3.2) Let $S_{i}=\operatorname{cur}\left(T_{i}\right) \in \operatorname{Pcoh}(!(!1 \multimap 1),!1 \multimap 1)=\mathrm{P}(!(!1 \multimap 1) \multimap(!1 \multimap 1))$ for $i=1,2$ and let $S=(1-p) S_{0}+p S_{1}$. Explain why $S_{i}=\operatorname{cur}\left(T_{i}\right) \in \mathbf{P c o h}(!(!1 \multimap 1),!1 \multimap 1)$ and show that for any $t \in \mathrm{P}(!1 \multimap 1)$, the morphism $s=S \cdot t^{(!)} \in \mathbf{P} \operatorname{coh}(!1,1)$ satisfies

$$
\forall x \in \mathrm{P}(1) \quad s \cdot x^{(!)}=(1-p) x+p\left(t \cdot x^{(!)}\right)^{2}
$$

Remember that the function $F: t \mapsto S \cdot t^{(!)}$is monotone and Scott continuous, and hence has a least fixed point.
3.3) Let s_{0} be the least fixed point of F, and let $f:[0,1] \rightarrow[0,1]$ be the associated function (that is $\left.f(x)=s_{0} \cdot x^{(!)}\right)$. Prove that we must have

$$
\forall x \in[0,1] \quad f(x)=\frac{1+\alpha(x) \sqrt{1-4 p(1-p) x}}{2 p}
$$

where $\forall x \in[0,1] \alpha(x) \in\{-1,1\}$.
3.4) Prove that $f(0)=0$ and that $\forall x \in] 0,1] \alpha(x)=-1$.
3.5) Plot the function f for $p=\frac{1}{4}, p=\frac{1}{2}, p=\frac{3}{4}$ and $p=1$.
3.6) Since $s_{0} \in \mathrm{P}(!1 \multimap 1)$, we can consider s_{0} as an element of $\mathbb{R}_{\geq 0}^{\mathbb{N}}$. Using the Taylor expansion of $\sqrt{1-u}$ compute the value of $\left(s_{0}\right)_{n}$ for each $n \in \mathbb{N}$.
4) 4.1) Let X and Y be PCSs, let $\varphi:|X| \rightarrow|Y|$ be a bijection and let $v:|X| \rightarrow \mathbb{R}_{\geq 0}$ be such that $\forall a \in|X| v(a) \neq 0$. Let $s=\operatorname{mat}(\varphi, v) \in \mathbb{R}_{\geq 0}^{|X| \times|Y|}$ be given by

$$
\operatorname{mat}(\varphi, v)_{a, b}= \begin{cases}v(a) & \text { if } \varphi(a)=b \\ 0 & \text { otherwise }\end{cases}
$$

We assume that

$$
\forall u \in \mathbb{R}_{\geq 0}^{|X|} \quad u \in \mathrm{P}(X) \Leftrightarrow \operatorname{mat}(\varphi, v) \cdot u \in \mathrm{P}(Y)
$$

Prove that $\operatorname{mat}(\varphi, v)$ is an iso in the category $\mathbf{P c o h}$, with inverse $\operatorname{mat}\left(\varphi^{-1}, v^{\prime}\right)$ where $v^{\prime}(b)=1 / v\left(\varphi^{-1}(b)\right)$. An iso of shape $\operatorname{mat}(\varphi, v)$ will be called quasi-strong.

We want to prove that any iso of PCS is quasi-strong. So let $t \in \operatorname{Pcoh}(X, Y)$ be an iso and $t^{-1} \in \mathbf{P} \operatorname{coh}(Y, X)$ be its inverse.

Let $a \in|X|$ and let $\alpha=\sup \left\{\lambda \in \mathbb{R}_{\geq 0} \mid \lambda \mathrm{e}_{a} \in \mathrm{P}(X)\right\}$. Remember that $\alpha>0$.
4.2) Prove that $\alpha \mathrm{e}_{a} \in \mathrm{P}(X)$ and that $t \cdot \alpha \mathrm{e}_{a} \neq 0$.

Let $b, b^{\prime} \in|Y|$ be such that $\left(t \cdot \alpha \mathrm{e}_{a}\right)_{b} \neq 0$ and $\left(t \cdot \alpha \mathrm{e}_{a}\right)_{b^{\prime}} \neq 0$. Let $\beta=\left(t \cdot \alpha \mathrm{e}_{a}\right)_{b}$ and $\beta^{\prime}=\left(t \cdot \alpha \mathrm{e}_{a}\right)_{b^{\prime}}$.
4.3) Observe that, for the standard order relation on PCSs $\left(x(1) \leq x(2)\right.$ if $\left.\forall a^{\prime} \in|X| x(1)_{a^{\prime}} \leq x(2)_{a^{\prime}}\right)$ one has $\beta \mathrm{e}_{b} \leq t \cdot \alpha \mathrm{e}_{a}$ and deduce that there must exist $\gamma \leq \alpha$ such that $t^{-1} \cdot \beta \mathrm{e}_{b}=\gamma \mathrm{e}_{a}$. Prove that $\gamma \neq 0$.

Similarly we have $\gamma^{\prime}>0$ such that $t^{-1} \cdot \beta^{\prime} \mathrm{e}_{b^{\prime}}=\gamma^{\prime} \mathrm{e}_{a}$. Without loss of generality we can assume that $\gamma^{\prime} \leq \gamma$.
4.4) Prove that $\frac{\gamma^{\prime} \beta}{\gamma} \mathrm{e}_{b}=\beta^{\prime} \mathrm{e}_{b^{\prime}}$. Deduce that $b=b^{\prime}$. As a consequence $\beta^{\prime}=\left(t \cdot \alpha \mathrm{e}_{a}\right)_{b}=\beta$.
4.5) Prove that $t \cdot \alpha \mathrm{e}_{a}=\beta \mathrm{e}_{b}$.
4.6) Deduce from the above that there is a function $\varphi:|X| \rightarrow|Y|$ and a function $v:|X| \rightarrow \mathbb{R}_{\geq 0} \backslash\{0\}$ such that $\forall a \in|X| t_{a, b} \neq 0 \Rightarrow b=\varphi(a)$ and $t_{a, \varphi(a)}=v(a)$.
4.7) Prove that t is quasi-strong.

