MPRI 2-2 TD 3 du 22/01/2019 — With solutions

Thomas Ehrhard

1) The goal of this exercise is to understand the structure of the category PoLR' (the category of
coalgebras of the comonad ! on the category PoLR). We refer to the lecture notes for all basic definitions
and notations.

1.1) Given a preorder S, we set hg = {(a,u’) € |S| x |!S] | V&’ € u® @’ <g a}. Prove that hg €
PoLR(S,!S5).

Solution > Let (a,u’) € hg and (b,v°) € |S —o 15| be such that (b,v°) <g_a15 (a,u’), that is, a <g b
and v° <jg u°, we must prove that (b,v") € hg. So let b’ € v°, let a’ € u® be such that b’ <g a’ (using
¥ <15 u?), we know that a’ <g a since (a,u") € hg and hence b’ <g a’ <ga <gb. SoVv' €’ b <gb
as required. <

1.2) Is the family of morphisms (hg)s natural in S? That is, is it true that hrt = lthg for all
t € PoLR(S,T)?

Solution > We postpone the answer to Question 1.9. <

1.3) Prove that derg hg = Idg.

Solution > We have to prove an equality of sets, so we prove both inclusions. Let (a,a’) € |S — S].
Assume first that (a,a’) € derg hg. So there exists u® € |!S| such that (a,u’) € hg and (u°,a’) € ders.
By the second condition there is @’ € u° such that a’ <g a”’. By the first condition, a”’ <g a so a’ <5 a
that is (a,a’) € ldg.

Conversely assume that (a,a’) € Idg, that is ' <g a. Then ({a’},d’) € derg and (a,{a’}) € hg so
(a,a’) € derg hg. <

1.4) Prove that digg hs = lhg hs. So we have shown that (S, hg) is an object of PoLR': any preorder
has a canonical structure of coalgebra. We prove now that this structure is unique.

Solution > Assume first that (a, U?) € lhg hg. So let u® € S| be such that (a,u") € hg and (u°,U°) €
lhs. The second condition means that Vo' € U%3a’ € u® (a/,0°) € hs. Let b € UU°. Let v° € U
be such that b € v°. By the first condition there is a’ € u" such that b <g a’ (a’ satisfies this for all
the elements of v actually). Then @’ <g a by the first condition. Therefore ({a},U°) € digg and since
(a,{a}) € hg we have (a,U°) € digg hs.

Conversely assume that (a,U°) € digg hs, so let u® € |IS| be such that (a,u’) € hs and (u°,U°) €
digg, that is UU? <5 u® (and hence Vv° € UY v? <5 u® <5 {a}). Hence ({a},U°) € !hs and since
(a,{a}) € hg we have (a,U°) € lhg hg as required. <

1.5) Let h € PoLR(S,!S) be a coalgebra structure. Using the fact that ders h C Idg prove that
h C hg (take (a,u") € h and then for any a’ € u° observe that (u°,a’) € ders).

Solution 1> Let (a,u’) € h. Let a’ € u°, we have (u°,a’) € ders and hence (a,a’) € Idg since
ders h C Idg. Therefore a’ <g a which shows that h C hg. <

1.6) Using the fact that ldg C derg h, prove that (a,{a}) € h for all a € |S| (do not forget that
h € PoLR(S,!9)!).

Solution > Let a € |S|, we have (a,a) € lds and hence (a,a) € ders h. So let u’ € |!S| be such that
(a,u’) € h and (u°,a) € ders. By the second property there is a’ € u” such that a <g a’ and hence
{a} <15 u®. Since (a,u°) € h, {a} <15 u® and h € PoLR/(S,!S), we have (a, {a}) € h. N

1.7) Prove that h = hg.

Solution 1> It suffices to prove that hg C h, so let (a,u’) € hg. We have seen that (a,{a}) € h and by
our assumption we have u <g {a}. Since h € PoLR(S,!S) we conclude that (a,u’) € h as required. <



Strangely enough we have not used the equation digg h = !hh. We have shown that any object S
of PoLR has exactly one structure of !-coalgebra. Observe that one has accordingly digg = hig, for
instance, since (15,digg) is a typical !-coalgebra, the free one generated by S.

A natural question is whether such a phenomenon occurs in all models of LL.

1.8) (Open question) Look for a counter-example in the model of coherence spaces, that is: a coherence
space which has no coalgebra structures or which has several coalgebra structures), for the usual “!”
comonad on coherence spaces.

1.9) Let S and T be preorders and let s € PoLR(S, T), remember that s € PoLR'((S, hg), (T, hr)))
iff hps = lshg. Prove that this condition is equivalent to: for all a € |S| and by,...,b, € |T| (with
n € N), there is b € |T| such that (a,b) € s and b; <p b for all 7 iff there are ay,...,a, € |S| such that
a; <g a and (a;,b;) € s for all i. What does this condition mean when n = 07

Solution > Let s € POLR(S,T). Let a € |S| and v° = {b1,...,b,} € |!T|. Then (a,v") € hr s means
that there is b € |T| such that (a,b) € s and (b,0°) € hr, that is b; <7 b for all i. And (a,v") € !shg
means that there is u® € |!S| such that (a,u’) € hg (that is ug <15 {a}) and (u®,v°) € !s, which is
equivalent to the existence of aq,...,a, € |S| such that a; < a and (a;,b;) € s for each ¢. This proves
the equivalence.

Notice that, since we assume s € PoLR(S,T), the = direction of the equivalence is always true:
if (a,b) € s and by,...,b, < b then it suffices to take a; = a for ¢ = 1,...,n. So the criterion for
s € PoLR/'(S,T) boils down to: if (a;,b;) € s and a; <g a for i = 1,...,n, then there exists b € |T| such
that (a,b) € sand b; <pbfori=1,...,n.

When n = 0 this criterion means that, for all a € |S|, there is a b € |T'| such that (a,b) € s. So if
|S] # 0 and s € POLRI(S, T) then s # (. Notice that this provides a negative answer to Question 1.2.

1.10) An ideal of S is a downwards-closed directed subset of |S|, that is, a subset u of |S| such that
o u#(
e Yaj,as €Euda €uar,as <ga
e VacuVad €S| d <ga=d €u.

We use Z(S) for the set of all ideals of |S| (sometimes called the ideal completion of S), ordered under
inclusion. Prove that Z(S) is a cpo (which has not necessarily a least element however). Prove that, for
any a € |S|, one has | a € Z(S) and that | a is isolated in Z(S) (see Chapter 5 in the lecture notes).
Last prove that Z(5) is algebraic (actually any algebraic cpo D is of shape Z(S) for S the set of isolated
elements of D equiped with the induced order relation).

Solution > i’(S) is a cpo: it suffices to prove that, if D C f(S) is directed then UD € Z(S) since then
UD is necessarily the least upper bound of D in f(S ) (which is ordered under inclusion). Since D #
and u # () for all u € D, we have UD # (). Next let ¢ € UD and let @’ € |S]| be such that a’ <g a. Let
u € D be such that a € u. Since u € f(S) we have a’ € u and hence o’ € UD. Last let aj,a2 € UD.
Let u', 42 € D be such that a; € u? for 7 = 1,2. Since D is directed there is u € D such that u® C u for
i = 1,2 and hence aj,as € u. But u € Z(S) hence u is directed, so there is a € u such that a; <g a for
i=1,2. We have a € UD since u € D and this ends the proof that UD € Z(S). <

Isolated elements: first, if a € |S] it is clear that | a € Z(S), let us prove that it is isolated. So let
D C Z(S) be directed and such that [ a € UD. Then a € UD so there is u € D such that a € u,
but then | a C u since u € f(S), which ends the proof that | a is isolated. Conversely let ug € | S be
isolated. Let D = {l a | a € up}. Then D is a directed subset of Z(S) (because ug is directed) and clearly
UD = ug. So since ug is isolated there must be a € ug such that ug C | a. Since the converse inclusion
holds because ug € i’(S), we must have up = | a.

i’(S) is algebraic: this is obvious since for all v € f(S), one has u = U{la | a € u} (the set
{}a|a€u} is directed in f(S), it is the set of all isolated lower bounds of u).

1.11) Exhibit a canonical bijection between Z(S) and PoLR'((1,hy), (S, hs)) (remember that 1 =
({¥},=) so that simply hy = {(*,*)}). Using it prove that, if s € PoLR'((S,hs), (T, hr)) and u € Z(S)
one has su € Z(T) (you can also prove this directly). We use fun'(s) for this function Z(S) — Z(T).



Solution > Canonical bijection: let u € f(S’), then we claim that {*} x u € PoLR'((1, h1), (S, hs)).
First we have {*} x u € PoLR(1, S) because v is downwards closed. By Question 1.9, it suffices to prove
if by,...,b, € u then there is b € u such that b; <g b for all 7 which results immediately from the fact
that u € Z(S). Conversely if s € POLR'((1,h1), (S, hg)) then u = {a | (x,a) € s} € Z(S) again by 1.9
and by the fact that s € PoLR(1,S). We set 6(u) = {*} x u.

Action of morphisms: let s € PoLR'((S, hs), (T, hr)). Then 8(fun'(s)(u)) = s6(u) € PoLR'(1,T)
and hence fun'(s)(u) € f(T) <

1.12) Prove that fun!(s) is Scott-continuous. Conversely, given a Scott-continuous function f : Z(S) —
Z(T), define tr'(f) = {(a,b) € |S| x |T| | b € f(1 a)}. Prove that tr'(f) € PoLR'((S, hs), (T, hr)).

Solution 1> Scott continuity is obvious: by its definition fun'(s) is monotonic and commutes with all
existing unions, so in particular with directed ones (the only ones which certainly exist in Z(S)). Let
f:Z(S) — Z(T) be Scott continuous. Observe first that tr'(f) € PoLR(S,T) holds by monotonicity of

7.

We prove that the criterion of Question 1.9 holds for tr'(f), so let a € |S| and by, ..., b, € |T|. Assume
that we have ay, . .., a, such that a; <g a € |S| and (a;,b;) € tr'(f) for each i. Then b; € f(la;) C f({ a)
and since f(| a) € Z(T) there exists b € f(| a) such that b; <p b for each i. Since (a,b) € tr'(f) we have
proven our contention. <

1.13) Prove that the operations fun'(_) and tr'(_) are inverse of each other.

Solution > First let s € PoLR'(S,T) and let us prove that tr'(fun'(s)) = s. Let (a,b) € s, then
b € fun'(s)({ a) and hence (a,b) € tr'(fun'(s)). Conversely assume that (a,b) € tr'(fun'(s)), which means
that b € fun'(s)(} a), that is (a’,b) € s for some a’ such that a’ <g a. Since s € PoLR(S,T) we have
(a,b) € s

Now let f : f(S) — f(T) be Scott continuous and let us prove first that f = fun'(tr'(f)). Let

u € f(S) and let us prove that f(u) C funl(tr!(f))(u). Let b € f(u) = f(Useud @) = Upen f(L a) by
Scott continuity (remember that, since u € Z(5), the set {| a | a € u} is directed in Z(S5)). So there exists
a € u such that (a,b) € tr'(f). Hence b € fun'(tr'(f))(u) and we are done. Conversely we prove that
fun' (tr' (f))(u) C f(u). Let b € fun'(tr'(f))(u). Let a € u be such that (a,b) € tr'(f), that is b € f(] a).
Since a € u we have | a C v and hence b € f(u) by monotonicity of f. <

1.14) Prove that PoLR' is cartesian (with cartesian product defined using ® and not &) and also co-
cartesian (with co-product defined using @). Describe the corresponding operations on cpos. Compare
with what happens in PoLR for & and .

Solutio'n > If S is a preorder, we use simply the notation S for the unique associated object (S, hg) of
PoLR'.

Cartesian product: Observe first that 1 is the terminal object of PoLR'. Indeed PoLR'(S,1) has
exactly one element, namely {(a,*) | a € |S|}. More generally, let (S;);c; be a family of preorders (for I
finite). Let T be the preorder defined by |T'| =[], [Si| and (ai)icr <7 (a})icr if a; <g, aj foralli € I (in
other words T' = ), Si). We define projections pr!j € PoLR/(T, S;) as pr!j ={((ai)ier,a’) | a’ <s; a;}.
Clearly prj € PoLR(T,S;), let us check that pr;. € PoLR/(T,S;). So let @ = (a;)ic; € |T| and
(@d),a;) € pr;. with @(l) <p @ for l =1,...,k. Then we have a] < a(l); <g a; for all [, and (@, a;) € pr},
showing that the criterion of 1.9 holds for pr!j.

Now let s; € PoLR'(U,S;) for i = 1,...,n. We define t C |U| x |T| by t = {¢, (ai)ier | (¢,a;) €
s; fori =1,...,n}. The fact that ¢t € POLR(U T) results easily from the fact that s; € PoLR(U S5)
for each 7. We prove that t € PoLR' (U, T), so let ¢ € |U| and (¢;,@(l)) € t with ¢; <y cfor I =1,..., k.
Let i € {1,...,n}, we have (¢, a(l);) € s; for I = 1,...,k so, applying 1.9 to s;, we can find a; € |S¢\
such that (c,a;) € s; and a(l); < a; for I = 1,... k. Now (¢,@ = (a;)ier) € t by definition of ¢, and
@(l) <p @for I =1,... k. We have proven that ¢ satisfies Criterion 1.9 so t € PoLR'(U,T). The fact
that pri o t = s; for i = 1,...,n immediately results from the definitions. Uniqueness of ¢ also results
from the fact that we must have pr} ot = s; for i = 1,...,n.

Cpo description of the product: one checks easily (do it!) that I(®l€] i) = Hielf(Si) up to
canonical order isomorphism (check the details).



Coproduct: given a (potentially infinite) family (S;);es of preorders, we show that 7' = @, g (as
defined in the course, that is |T'| = U;er{i} x |S;|) together with the usual injections in; € PoLR(S;, T')
is the coproduct of the S;’s in PoLR'. One needs first to prove that in; € PoLR!(S,»,T) so let a € S;
and (a1, (j1,4a})),. .., (ak, (Jk,a})) € in; with a1,...,ar <g a. Then by definition of in; we know that
j1 = =gk =tand d},...,a; <s, a, so (j1,a}),...,(Jr,a}) <r (i,a) and Criterion 1.9 holds since
(a, (i,a)) € in;.

Then let s; € PoLR'(S;, U), we define t € PoLR(T,U) as in PoLR, setting t = {((i,a),¢) | (a,¢) €
s;}. We have to prove that ¢ € PoLR'(T,U) and for this we use again Criterion 1.9. Let (i,a) € |T|
(so that a € |S;]) and ((j1,a1),¢1), .-, ((Jr, ax), cx) € ¢t with (j;,a;) <r (i,a) for I = 1,... k. This means
that j; =i and a; <g, a for I = 1,... k. So we actually have (a;,¢;) € s; for I = 1,...,k and hence,
by Criterion 1.9 applied to s;, there exists ¢ € |U| such that (a,c) € s; and hence ((i,a),c) € ¢, so that
Criterion 1.9 holds for ¢. The fact that tin; = s; and that ¢ is unique with these properties are obvious.

Cpo description of the coproduct: one checks easily (do it!) that Z(€D,.; S:) is (isomorphic to) the

disjoint union of the YA,'(Si)’s Uier{i} x f(Sz) with the disjoint union of the order relations. Notice that
this means that such a coproduct (if non-trivial) has no least element. Notice also that the unit of this
coproduct is the prorder 0 such that |0] = () and that Z(0) = () (whereas Z(0) = {0}). <

1.15) Prove that 7 (18) = Z(S). Using this observation explain how the canonical inclusion functor
PoLR; — PoLR' (from free coalgebras into general ones), which maps S to 1S and s € PoLRy(S,T)
to s' = !s digg can simply be described as an inclusion of categories in that special case (using the
characterization of POLR,(S,T) as the set of Scott-contuous functions Z(S) — Z(T)).

Solution > We define a function ¢g : Z(1S) — P(|S]) by ¢s(U) = JU ={a €|S| | Ju € U a € u}. We
prove that ¢g(U) € Z(S). Let a € ¢5(U) and a’ € |S| such that ¢’ <g a. Let u € U be such that a € u.
We have {a’} <is u and hence {a'} € U since U € Z(15), therefore a’ € pg(U). So ¢g : Z(15) — I(S).
It is clear that ¢g is monotonic. Conversely let 5 : Z(S) — P(|!S|) be defined by 1s(u) = u' = Pgn(u)
(the set of finite subsets of u). We prove that ¢g(u) € Z(!S). Let u® € Pgy(u) and let v° € |!S| such
that v° <;g u°. Let a € v°. There is a’ € u° such that a <g a’. We have @’ € u and since u € Z(9) it
follows that a € u. Therefore v° € 1g(u). So ¥g(u) € Z(!S). We have ) € ¥g(u) and hence 15(u) # 0.
Last let u!,u? € 1g(u), we have u! Uu? € 1hg(u) and hence ¥g(u) is directed, so ¥g(u) € Z(S). We have
shown that ¥g : Z(S) — 7 (15). This map g is obviously monotonic.

Now we prove that 1hs o ¢g = Id so let U € Z(1S). Let u® = {a1,...,an} € Ys(ps(U)), that is
a; € Pg(U) for each i = 1,...,n. So for each i there is u’ € U such that a; € u’. Since U is directed
thereAis % € U such that u* C Y for i = 1,...,n. It follows that uY <15 vY and hence u® € U since
U € Z(!S). Conversely let u® € U, we have u® C [JU, that is u° € 1g(ps(U)). We have shown that
s o pg = Id. Conversely, let u € Z(S), we have pg(¢s(u)) = | Psn(u) = u. So pg o g =1d.

Let s € PoLRy(S,T), we have Fun(s) : Z(S) — Z(T) defined by Fun(s)(u) = su'. Let I :
PoLR, — E’OLR! be the mentioned inclusion functor. Then, thanks to the above isomorphism,
fun'(I(s)) : Z(!S) — Z(!T) can be considered as a Scott continuous function Z(S) — Z(T). More
precisely, this latter function is f = @7 o fun'(I(s)) o ¥s. We have f(u) = vr(fun'(I(s))(u')) =
Yr(I(s)u') = ¥r(stu') = Pr((s u!)!) = Yr(pr(su')) = su' = Fun(s)(u). So, up to these isos, we have
Fun(s) = fun'(I(s)) so that I is the inclusion functor from the category of Scott continuous functions on
prime-algebraic lattices (the lattices of shape Z(5)) into the category of Scott continuous functions on
algebraic cpos (those of shape Z(S5)).

2) Remember that Z € PoLR,((S = S) = S5,(S=S5) = S) has been defined during a lesson
as a morphism such that, setting F' = Fun Z, one has Fun (F(Y))(s) = Funs(FunY(s)) for all s €
POLR! (S, S)

2.1) [There was a mistake in this question!] Given ¢t € PoLR(T, T, we set ¢(t) = [J,~,(Funt)"(0) €
Z(T), the least fixed point of Funt. Prove that ¢(t) is the least element of Z(T') such that (Funt)(u) C u.

Solution > Let v € Z(T) be such that (Funt)(u) C u, one proves by induction on n that (Funt)"(¢) C u
for all n, and hence p(t) C u (write down the details).

Observe that, if (u®,b) € t with u® C ((t) then b € () because (Funt)(p(t)) C ¢(t). Conversely if
b € ¢(t), there is n such that b € (Funt)™(f)). We cannot have n = 0 and hence there is u° such that
(u®,b) € t and u® C (Funt)"1(0) C ().



So b€ p(t) & Fu’ (u0b) € t and u® C p(t). <

2.2) Weset Yo =¢(2) € Z((S = S) = 5). Prove that FunYy(s) = ¢(Funs) for all s € Z(S = ).
To this end, prove that Fun (F™(0))(s) = (Funs)™(@) by induction on n. Use also the fact that Fun _
is an order isomorphism (between PoLR, (T, U) ordered by inclusion and PoC(Z(T),Z(U)) ordered by
the pointwise ordering on functions).

Solution > We prove Fun (F™(0))(s) = (Funs)™(@) by induction on n. For n = 0 both sides are 0.
Assume that the equations holds for n. We have
Fun (F™T1(0))(s) = Fun (F(Y))(s) where Y = F"™(0)
= Funs(FunY(s))
= Fun s((Fun $)™(0)) by inductive hypothesis
= (Funs)"T1(0)

as required. Then FunYy(s) = Fun (U, —, F™(0))(s) = U,—, Fun (F™())(s) by the mentioned property

n=0
of Fun _ and this proves our contention. <

2.3) Prove that (V°,b) € Yy iff there exists u° such that (ug,b) € | VY and W' € u° (VO,¥) € Yp.

Solution > (V°,b) € Yy iff b € Fun (Yy)(1 V°) = ¢(} Vo). The equivalence to be proven is then a special
case of the observations of the first question (write down the details). <

3) Using the semantic typing system of LPCF, compute the Scott semantics of the following terms
(given with their types).

e Oy where Q4 = fixa? - 2.

e  fixz' - succ(x) : ¢ (give a recursive description of the interpretation of this term).
o FAztif(z,Q2-0):¢— .

o b Aztfixa' ™" Aytif(y,z,z -succ((a) z)) it — ¢ — ¢

Solution > We deal only with the last question the others are simpler.
Let M = Az*fixa* 7 - Ay“if(y, z, z - succ((a) z)) and N = if(y, z, z - succ((a) 2)).
Any derivation of = M : (u%, (v°,n)) : ¢ — ¢ — ¢ is of shape

p
x:ul ok fixa 7t Ayt Nz (00, n)

M (u® (0% n)) = —

where p is of shape

A
z:ul:i,a:U%: 0=,y L FN:in:y

riulia: U e oM N:(0%n) e —0 (p(v',n)) (o1 mryevo

x:ul ek fixa ™t - Ayt Nz (00, n)

with one derivation p(v°,n') for each (v',n’) € U°. Coming back to the definition of N, we see that
there are two possibilities as to A. The first one is

¢Ced® {n} < u®

riuli,a: U 0=y iy rxiuli,a: U =y ik zin

z:uli,a:U% 0=,y FN:in:y

where we use the observation that if ¢ is comparable in L with an element n’ of |L| then n’ = (.
The second possibility for A is (with n = sucw?)



{ﬁwo} <iL Y (/u'(n/))n/éwl
O Fy:sucuw’

C
= (z:u:0,a:U% 10— 1,y:0° ) F N:sucw! 10

®,z:w’ b succ((a)z) :sucw! o

where, for each n’ € w!, yu(n’) is the derivation

{(’Ulv n/)} S!LwL UO

O, z:uw':ika:(vhn) = (v(n',m))mevt

O, z:uwliuk(a)z:n 0
where for each m € v! the derivation v(n’,m) is

{m} <y w®

S, z:wl:ikzim:y

Hence on has + M : (u°, (v°,n)) : ¢ — ¢ — ¢ iff one of the two following conditions hold:
e ( € v and {n} <y ug (indeed in that case we can take U" = 0)).

e n =sucw! and there is w® € |IL| such that {sucw’} <, v°. Moreover, for each n’ € w! there is
vt € |IL] such that + M : (u°, (vt,n')) : ¢ — ¢ — ¢ and {m} <, w® for each m € v!.
This equivalence characterizes [M]: it is the least set of tuples (u°, (v°,n)) which satisfies this equivalence.

<



