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Thomas Ehrhard

1) The goal of this exercise is to understand the structure of the category PoLR! (the category of
coalgebras of the comonad ! on the category PoLR). We refer to the lecture notes for all basic definitions
and notations.

1.1) Given a preorder S, we set hS = {(a, u0) ∈ |S| × |!S| | ∀a′ ∈ u0 a′ ≤S a}. Prove that hS ∈
PoLR(S, !S).

Solution � Let (a, u0) ∈ hS and (b, v0) ∈ |S ( !S| be such that (b, v0) ≤S(!S (a, u0), that is, a ≤S b
and v0 ≤!S u

0, we must prove that (b, v0) ∈ hS . So let b′ ∈ v0, let a′ ∈ u0 be such that b′ ≤S a′ (using
v0 ≤!S u

0), we know that a′ ≤S a since (a, u0) ∈ hS and hence b′ ≤S a′ ≤S a ≤S b. So ∀b′ ∈ v0 b′ ≤S b
as required. �

1.2) Is the family of morphisms (hS)S natural in S? That is, is it true that hT t = !t hS for all
t ∈ PoLR(S, T )?

Solution � We postpone the answer to Question 1.9. �

1.3) Prove that derS hS = IdS .

Solution � We have to prove an equality of sets, so we prove both inclusions. Let (a, a′) ∈ |S ( S|.
Assume first that (a, a′) ∈ derS hS . So there exists u0 ∈ |!S| such that (a, u0) ∈ hS and (u0, a′) ∈ derS .
By the second condition there is a′′ ∈ u0 such that a′ ≤S a′′. By the first condition, a′′ ≤S a so a′ ≤S a
that is (a, a′) ∈ IdS .

Conversely assume that (a, a′) ∈ IdS , that is a′ ≤S a. Then ({a′}, a′) ∈ derS and (a, {a′}) ∈ hS so
(a, a′) ∈ derS hS . �

1.4) Prove that digS hS = !hS hS . So we have shown that (S, hS) is an object of PoLR!: any preorder
has a canonical structure of coalgebra. We prove now that this structure is unique.

Solution � Assume first that (a, U0) ∈ !hS hS . So let u0 ∈ |!S| be such that (a, u0) ∈ hS and (u0, U0) ∈
!hS . The second condition means that ∀v0 ∈ U0 ∃a′ ∈ u0 (a′, v0) ∈ hS . Let b ∈ ∪U0. Let v0 ∈ U0

be such that b ∈ v0. By the first condition there is a′ ∈ u0 such that b ≤S a′ (a′ satisfies this for all
the elements of v0 actually). Then a′ ≤S a by the first condition. Therefore ({a}, U0) ∈ digS and since
(a, {a}) ∈ hS we have (a, U0) ∈ digS hS .

Conversely assume that (a, U0) ∈ digS hS , so let u0 ∈ |!S| be such that (a, u0) ∈ hS and (u0, U0) ∈
digS , that is ∪U0 ≤!S u0 (and hence ∀v0 ∈ U0 v0 ≤!S u0 ≤!S {a}). Hence ({a}, U0) ∈ !hS and since
(a, {a}) ∈ hS we have (a, U0) ∈ !hS hS as required. �

1.5) Let h ∈ PoLR(S, !S) be a coalgebra structure. Using the fact that derS h ⊆ IdS prove that
h ⊆ hS (take (a, u0) ∈ h and then for any a′ ∈ u0 observe that (u0, a′) ∈ derS).

Solution � Let (a, u0) ∈ h. Let a′ ∈ u0, we have (u0, a′) ∈ derS and hence (a, a′) ∈ IdS since
derS h ⊆ IdS . Therefore a′ ≤S a which shows that h ⊆ hS . �

1.6) Using the fact that IdS ⊆ derS h, prove that (a, {a}) ∈ h for all a ∈ |S| (do not forget that
h ∈ PoLR(S, !S)!).

Solution � Let a ∈ |S|, we have (a, a) ∈ IdS and hence (a, a) ∈ derS h. So let u0 ∈ |!S| be such that
(a, u0) ∈ h and (u0, a) ∈ derS . By the second property there is a′ ∈ u0 such that a ≤S a′ and hence
{a} ≤!S u

0. Since (a, u0) ∈ h, {a} ≤!S u
0 and h ∈ PoLR(S, !S), we have (a, {a}) ∈ h. �

1.7) Prove that h = hS .

Solution � It suffices to prove that hS ⊆ h, so let (a, u0) ∈ hS . We have seen that (a, {a}) ∈ h and by
our assumption we have u0 ≤S {a}. Since h ∈ PoLR(S, !S) we conclude that (a, u0) ∈ h as required. �



Strangely enough we have not used the equation digS h = !hh. We have shown that any object S
of PoLR has exactly one structure of !-coalgebra. Observe that one has accordingly digS = h!S , for
instance, since (!S, digS) is a typical !-coalgebra, the free one generated by S.

A natural question is whether such a phenomenon occurs in all models of LL.
1.8) (Open question) Look for a counter-example in the model of coherence spaces, that is: a coherence

space which has no coalgebra structures or which has several coalgebra structures), for the usual “ !”
comonad on coherence spaces.

1.9) Let S and T be preorders and let s ∈ PoLR(S, T ), remember that s ∈ PoLR!((S, hS), (T, hT )))
iff hT s = !s hS . Prove that this condition is equivalent to: for all a ∈ |S| and b1, . . . , bn ∈ |T | (with
n ∈ N), there is b ∈ |T | such that (a, b) ∈ s and bi ≤T b for all i iff there are a1, . . . , an ∈ |S| such that
ai ≤S a and (ai, bi) ∈ s for all i. What does this condition mean when n = 0?

Solution � Let s ∈ PoLR(S, T ). Let a ∈ |S| and v0 = {b1, . . . , bn} ∈ |!T |. Then (a, v0) ∈ hT s means
that there is b ∈ |T | such that (a, b) ∈ s and (b, v0) ∈ hT , that is bi ≤T b for all i. And (a, v0) ∈ !s hS
means that there is u0 ∈ |!S| such that (a, u0) ∈ hS (that is u0 ≤!S {a}) and (u0, v0) ∈ !s, which is
equivalent to the existence of a1, . . . , an ∈ |S| such that ai ≤ a and (ai, bi) ∈ s for each i. This proves
the equivalence.

Notice that, since we assume s ∈ PoLR(S, T ), the ⇒ direction of the equivalence is always true:
if (a, b) ∈ s and b1, . . . , bn ≤ b then it suffices to take ai = a for i = 1, . . . , n. So the criterion for
s ∈ PoLR!(S, T ) boils down to: if (ai, bi) ∈ s and ai ≤S a for i = 1, . . . , n, then there exists b ∈ |T | such
that (a, b) ∈ s and bi ≤T b for i = 1, . . . , n.

When n = 0 this criterion means that, for all a ∈ |S|, there is a b ∈ |T | such that (a, b) ∈ s. So if
|S| 6= ∅ and s ∈ PoLR!(S, T ) then s 6= ∅. Notice that this provides a negative answer to Question 1.2.
1.10) An ideal of S is a downwards-closed directed subset of |S|, that is, a subset u of |S| such that

• u 6= ∅

• ∀a1, a2 ∈ u∃a ∈ u a1, a2 ≤S a

• ∀a ∈ u∀a′ ∈ |S| a′ ≤S a⇒ a′ ∈ u.

We use Î(S) for the set of all ideals of |S| (sometimes called the ideal completion of S), ordered under
inclusion. Prove that Î(S) is a cpo (which has not necessarily a least element however). Prove that, for
any a ∈ |S|, one has ↓ a ∈ Î(S) and that ↓ a is isolated in Î(S) (see Chapter 5 in the lecture notes).
Last prove that Î(S) is algebraic (actually any algebraic cpo D is of shape Î(S) for S the set of isolated
elements of D equiped with the induced order relation).

Solution � Î(S) is a cpo: it suffices to prove that, if D ⊆ Î(S) is directed then ∪D ∈ Î(S) since then
∪D is necessarily the least upper bound of D in Î(S) (which is ordered under inclusion). Since D 6= ∅
and u 6= ∅ for all u ∈ D, we have ∪D 6= ∅. Next let a ∈ ∪D and let a′ ∈ |S| be such that a′ ≤S a. Let
u ∈ D be such that a ∈ u. Since u ∈ Î(S) we have a′ ∈ u and hence a′ ∈ ∪D. Last let a1, a2 ∈ ∪D.
Let u1, u2 ∈ D be such that ai ∈ ui for i = 1, 2. Since D is directed there is u ∈ D such that ui ⊆ u for
i = 1, 2 and hence a1, a2 ∈ u. But u ∈ Î(S) hence u is directed, so there is a ∈ u such that ai ≤S a for
i = 1, 2. We have a ∈ ∪D since u ∈ D and this ends the proof that ∪D ∈ Î(S). �

Isolated elements: first, if a ∈ |S| it is clear that ↓ a ∈ Î(S), let us prove that it is isolated. So let
D ⊆ Î(S) be directed and such that ↓ a ⊆ ∪D. Then a ∈ ∪D so there is u ∈ D such that a ∈ u,
but then ↓ a ⊆ u since u ∈ Î(S), which ends the proof that ↓ a is isolated. Conversely let u0 ∈ ↓ S be
isolated. Let D = {↓ a | a ∈ u0}. Then D is a directed subset of Î(S) (because u0 is directed) and clearly
∪D = u0. So since u0 is isolated there must be a ∈ u0 such that u0 ⊆ ↓ a. Since the converse inclusion
holds because u0 ∈ Î(S), we must have u0 = ↓ a.
Î(S) is algebraic: this is obvious since for all u ∈ Î(S), one has u = ∪{↓ a | a ∈ u} (the set

{↓ a | a ∈ u} is directed in Î(S), it is the set of all isolated lower bounds of u).

1.11) Exhibit a canonical bijection between Î(S) and PoLR!((1, h1), (S, hS)) (remember that 1 =

({∗},=) so that simply h1 = {(∗, ∗)}). Using it prove that, if s ∈ PoLR!((S, hS), (T, hT )) and u ∈ Î(S)

one has s u ∈ Î(T ) (you can also prove this directly). We use fun!(s) for this function Î(S)→ Î(T ).



Solution � Canonical bijection: let u ∈ Î(S), then we claim that {∗} × u ∈ PoLR!((1, h1), (S, hS)).
First we have {∗}×u ∈ PoLR(1, S) because u is downwards closed. By Question 1.9, it suffices to prove
if b1, . . . , bn ∈ u then there is b ∈ u such that bi ≤S b for all i which results immediately from the fact
that u ∈ Î(S). Conversely if s ∈ PoLR!((1, h1), (S, hS)) then u = {a | (∗, a) ∈ s} ∈ Î(S) again by 1.9
and by the fact that s ∈ PoLR(1, S). We set θ(u) = {∗} × u.

Action of morphisms: let s ∈ PoLR!((S, hS), (T, hT )). Then θ(fun!(s)(u)) = s θ(u) ∈ PoLR!(1, T )

and hence fun!(s)(u) ∈ Î(T ). �

1.12) Prove that fun!(s) is Scott-continuous. Conversely, given a Scott-continuous function f : Î(S)→
Î(T ), define tr!(f) = {(a, b) ∈ |S| × |T | | b ∈ f(↓ a)}. Prove that tr!(f) ∈ PoLR!((S, hS), (T, hT )).

Solution � Scott continuity is obvious: by its definition fun!(s) is monotonic and commutes with all
existing unions, so in particular with directed ones (the only ones which certainly exist in Î(S)). Let
f : Î(S)→ Î(T ) be Scott continuous. Observe first that tr!(f) ∈ PoLR(S, T ) holds by monotonicity of
f .

We prove that the criterion of Question 1.9 holds for tr!(f), so let a ∈ |S| and b1, . . . , bn ∈ |T |. Assume
that we have a1, . . . , an such that ai ≤S a ∈ |S| and (ai, bi) ∈ tr!(f) for each i. Then bi ∈ f(↓ ai) ⊆ f(↓ a)

and since f(↓ a) ∈ Î(T ) there exists b ∈ f(↓ a) such that bi ≤T b for each i. Since (a, b) ∈ tr!(f) we have
proven our contention. �

1.13) Prove that the operations fun!(_) and tr!(_) are inverse of each other.

Solution � First let s ∈ PoLR!(S, T ) and let us prove that tr!(fun!(s)) = s. Let (a, b) ∈ s, then
b ∈ fun!(s)(↓ a) and hence (a, b) ∈ tr!(fun!(s)). Conversely assume that (a, b) ∈ tr!(fun!(s)), which means
that b ∈ fun!(s)(↓ a), that is (a′, b) ∈ s for some a′ such that a′ ≤S a. Since s ∈ PoLR(S, T ) we have
(a, b) ∈ s.

Now let f : Î(S) → Î(T ) be Scott continuous and let us prove first that f = fun!(tr!(f)). Let
u ∈ Î(S) and let us prove that f(u) ⊆ fun!(tr!(f))(u). Let b ∈ f(u) = f(

⋃
a∈u ↓ a) =

⋃
a∈u f(↓ a) by

Scott continuity (remember that, since u ∈ Î(S), the set {↓ a | a ∈ u} is directed in Î(S)). So there exists
a ∈ u such that (a, b) ∈ tr!(f). Hence b ∈ fun!(tr!(f))(u) and we are done. Conversely we prove that
fun!(tr!(f))(u) ⊆ f(u). Let b ∈ fun!(tr!(f))(u). Let a ∈ u be such that (a, b) ∈ tr!(f), that is b ∈ f(↓ a).
Since a ∈ u we have ↓ a ⊆ u and hence b ∈ f(u) by monotonicity of f . �

1.14) Prove that PoLR! is cartesian (with cartesian product defined using ⊗ and not &) and also co-
cartesian (with co-product defined using ⊕). Describe the corresponding operations on cpos. Compare
with what happens in PoLR for & and ⊕.

Solution � If S is a preorder, we use simply the notation S for the unique associated object (S, hS) of
PoLR!.

Cartesian product: Observe first that 1 is the terminal object of PoLR!. Indeed PoLR!(S, 1) has
exactly one element, namely {(a, ∗) | a ∈ |S|}. More generally, let (Si)i∈I be a family of preorders (for I
finite). Let T be the preorder defined by |T | =

∏
i∈I |Si| and (ai)i∈I ≤T (a′i)i∈I if ai ≤Si a

′
i for all i ∈ I (in

other words T =
⊗

i∈I Si). We define projections pr!
j ∈ PoLR!(T, Sj) as pr!

j = {((ai)i∈I , a′) | a′ ≤Sj
aj}.

Clearly pr!
j ∈ PoLR(T, Sj), let us check that pr!

j ∈ PoLR!(T, Sj). So let ~a = (ai)i∈I ∈ |T | and
(~a(l), a′l) ∈ pr!

j with ~a(l) ≤T ~a for l = 1, . . . , k. Then we have a′l ≤ a(l)j ≤S aj for all l, and (~a, aj) ∈ pr!
j ,

showing that the criterion of 1.9 holds for pr!
j .

Now let si ∈ PoLR!(U, Si) for i = 1, . . . , n. We define t ⊆ |U | × |T | by t = {c, (ai)i∈I | (c, ai) ∈
si for i = 1, . . . , n}. The fact that t ∈ PoLR(U, T ) results easily from the fact that si ∈ PoLR(U, Si)
for each i. We prove that t ∈ PoLR!(U, T ), so let c ∈ |U | and (cl,~a(l)) ∈ t with cl ≤U c for l = 1, . . . , k.
Let i ∈ {1, . . . , n}, we have (cl, a(l)i) ∈ si for l = 1, . . . , k so, applying 1.9 to si, we can find ai ∈ |Si|
such that (c, ai) ∈ si and a(l)i ≤ ai for l = 1, . . . k. Now (c,~a = (ai)i∈I) ∈ t by definition of t, and
~a(l) ≤T ~a for l = 1, . . . , k. We have proven that t satisfies Criterion 1.9 so t ∈ PoLR!(U, T ). The fact
that pr!

i ◦ t = si for i = 1, . . . , n immediately results from the definitions. Uniqueness of t also results
from the fact that we must have pr!

i ◦ t = si for i = 1, . . . , n.
Cpo description of the product: one checks easily (do it!) that Î(

⊗
i∈I Si) =

∏
i∈I Î(Si) up to

canonical order isomorphism (check the details).



Coproduct: given a (potentially infinite) family (Si)i∈I of preorders, we show that T =
⊕

i∈Si
(as

defined in the course, that is |T | = ∪i∈I{i} × |Si|) together with the usual injections ini ∈ PoLR(Si, T )
is the coproduct of the Si’s in PoLR!. One needs first to prove that ini ∈ PoLR!(Si, T ) so let a ∈ Si
and (a1, (j1, a

′
1)), . . . , (ak, (jk, a

′
k)) ∈ ini with a1, . . . , ak ≤S a. Then by definition of ini we know that

j1 = · · · = jk = i and a′1, . . . , a
′
k ≤Si a, so (j1, a

′
1), . . . , (jk, a

′
k) ≤T (i, a) and Criterion 1.9 holds since

(a, (i, a)) ∈ ini.
Then let si ∈ PoLR!(Si, U), we define t ∈ PoLR(T,U) as in PoLR, setting t = {((i, a), c) | (a, c) ∈

si}. We have to prove that t ∈ PoLR!(T,U) and for this we use again Criterion 1.9. Let (i, a) ∈ |T |
(so that a ∈ |Si|) and ((j1, a1), c1), . . . , ((jk, ak), ck) ∈ t with (jl, al) ≤T (i, a) for l = 1, . . . k. This means
that jl = i and al ≤Si

a for l = 1, . . . , k. So we actually have (al, cl) ∈ si for l = 1, . . . , k and hence,
by Criterion 1.9 applied to si, there exists c ∈ |U | such that (a, c) ∈ si and hence ((i, a), c) ∈ t, so that
Criterion 1.9 holds for t. The fact that t ini = si and that t is unique with these properties are obvious.

Cpo description of the coproduct: one checks easily (do it!) that Î(
⊕

i∈I Si) is (isomorphic to) the
disjoint union of the Î(Si)’s

⋃
i∈I{i} × Î(Si) with the disjoint union of the order relations. Notice that

this means that such a coproduct (if non-trivial) has no least element. Notice also that the unit of this
coproduct is the prorder 0 such that |0| = ∅ and that Î(0) = ∅ (whereas I(0) = {∅}). �

1.15) Prove that Î(!S) = I(S). Using this observation explain how the canonical inclusion functor
PoLR! → PoLR! (from free coalgebras into general ones), which maps S to !S and s ∈ PoLR!(S, T )
to s! = !s digS can simply be described as an inclusion of categories in that special case (using the
characterization of PoLR!(S, T ) as the set of Scott-contuous functions I(S)→ I(T )).

Solution � We define a function ϕS : Î(!S)→ P(|S|) by ϕS(U) =
⋃
U = {a ∈ |S| | ∃u ∈ U a ∈ u}. We

prove that ϕS(U) ∈ I(S). Let a ∈ ϕS(U) and a′ ∈ |S| such that a′ ≤S a. Let u ∈ U be such that a ∈ u.
We have {a′} ≤!S u and hence {a′} ∈ U since U ∈ Î(!S), therefore a′ ∈ ϕS(U). So ϕS : Î(!S) → I(S).
It is clear that ϕS is monotonic. Conversely let ψS : I(S)→ P(|!S|) be defined by ψS(u) = u! = Pfin(u)

(the set of finite subsets of u). We prove that ψS(u) ∈ Î(!S). Let u0 ∈ Pfin(u) and let v0 ∈ |!S| such
that v0 ≤!S u

0. Let a ∈ v0. There is a′ ∈ u0 such that a ≤S a′. We have a′ ∈ u and since u ∈ I(S) it
follows that a ∈ u. Therefore v0 ∈ ψS(u). So ψS(u) ∈ I(!S). We have ∅ ∈ ψS(u) and hence ψS(u) 6= ∅.
Last let u1, u2 ∈ ψS(u), we have u1∪u2 ∈ ψS(u) and hence ψS(u) is directed, so ψS(u) ∈ Î(S). We have
shown that ψS : I(S)→ Î(!S). This map ψS is obviously monotonic.

Now we prove that ψS ◦ ϕS = Id so let U ∈ Î(!S). Let u0 = {a1, . . . , an} ∈ ψS(ϕS(U)), that is
ai ∈ ψS(U) for each i = 1, . . . , n. So for each i there is ui ∈ U such that ai ∈ ui. Since U is directed
there is v0 ∈ U such that ui ⊆ v0 for i = 1, . . . , n. It follows that u0 ≤!S v0 and hence u0 ∈ U since
U ∈ Î(!S). Conversely let u0 ∈ U , we have u0 ⊆

⋃
U , that is u0 ∈ ψS(ϕS(U)). We have shown that

ψS ◦ ϕS = Id. Conversely, let u ∈ I(S), we have ϕS(ψS(u)) =
⋃
Pfin(u) = u. So ϕS ◦ ψS = Id.

Let s ∈ PoLR!(S, T ), we have Fun(s) : I(S) → I(T ) defined by Fun(s)(u) = s u!. Let I :
PoLR! → PoLR! be the mentioned inclusion functor. Then, thanks to the above isomorphism,
fun!(I(s)) : Î(!S) → Î(!T ) can be considered as a Scott continuous function I(S) → I(T ). More
precisely, this latter function is f = ϕT ◦ fun!(I(s)) ◦ ψS . We have f(u) = ψT (fun!(I(s))(u!)) =

ψT (I(s)u!) = ψT (s! u!) = ψT ((s u!)
!
) = ψT (ϕT (s u!)) = s u! = Fun(s)(u). So, up to these isos, we have

Fun(s) = fun!(I(s)) so that I is the inclusion functor from the category of Scott continuous functions on
prime-algebraic lattices (the lattices of shape I(S)) into the category of Scott continuous functions on
algebraic cpos (those of shape Î(S)).

2) Remember that Z ∈ PoLR!((S ⇒ S) ⇒ S, (S ⇒ S) ⇒ S) has been defined during a lesson
as a morphism such that, setting F = FunZ, one has Fun (F (Y ))(s) = Fun s(FunY (s)) for all s ∈
PoLR!(S, S).

2.1) [There was a mistake in this question!] Given t ∈ PoLR!(T, T ), we set ϕ(t) =
⋃∞
n=0(Fun t)n(∅) ∈

I(T ), the least fixed point of Fun t. Prove that ϕ(t) is the least element of I(T ) such that (Fun t)(u) ⊆ u.
Solution � Let u ∈ I(T ) be such that (Fun t)(u) ⊆ u, one proves by induction on n that (Fun t)n(∅) ⊆ u
for all n, and hence ϕ(t) ⊆ u (write down the details).

Observe that, if (u0, b) ∈ t with u0 ⊆ ϕ(t) then b ∈ ϕ(t) because (Fun t)(ϕ(t)) ⊆ ϕ(t). Conversely if
b ∈ ϕ(t), there is n such that b ∈ (Fun t)n(∅). We cannot have n = 0 and hence there is u0 such that
(u0, b) ∈ t and u0 ⊆ (Fun t)n−1(∅) ⊆ ϕ(t).



So b ∈ ϕ(t)⇔ ∃u0 (u0, b) ∈ t and u0 ⊆ ϕ(t). �

2.2) We set Y0 = ϕ(Z) ∈ I((S ⇒ S) ⇒ S). Prove that FunY0(s) = ϕ(Fun s) for all s ∈ I(S ⇒ S).
To this end, prove that Fun (Fn(∅))(s) = (Fun s)n(∅) by induction on n. Use also the fact that Fun_
is an order isomorphism (between PoLR!(T,U) ordered by inclusion and PoC(I(T ), I(U)) ordered by
the pointwise ordering on functions).

Solution � We prove Fun (Fn(∅))(s) = (Fun s)n(∅) by induction on n. For n = 0 both sides are ∅.
Assume that the equations holds for n. We have

Fun (Fn+1(∅))(s) = Fun (F (Y ))(s) where Y = Fn(∅)
= Fun s(FunY (s))

= Fun s((Fun s)n(∅)) by inductive hypothesis

= (Fun s)n+1(∅)

as required. Then FunY0(s) = Fun (
⋃∞
n=0 F

n(∅))(s) =
⋃∞
n=0 Fun (Fn(∅))(s) by the mentioned property

of Fun_ and this proves our contention. �

2.3) Prove that (V 0, b) ∈ Y0 iff there exists u0 such that (u0, b) ∈ ↓ V 0 and ∀b′ ∈ u0 (V 0, b′) ∈ Y0.

Solution � (V 0, b) ∈ Y0 iff b ∈ Fun (Y0)(↓ V 0) = ϕ(↓ V0). The equivalence to be proven is then a special
case of the observations of the first question (write down the details). �

3) Using the semantic typing system of LPCF, compute the Scott semantics of the following terms
(given with their types).

• ` Ωι : ι where ΩA = fixxA · x.

• ` fixxι · succ(x) : ι (give a recursive description of the interpretation of this term).

• ` λxι if(x,Ωι, z · 0) : ι→ ι.

• ` λxι fix aι→ι · λyι if(y, x, z · succ((a) z)) : ι→ ι→ ι

Solution � We deal only with the last question the others are simpler.
Let M = λxι fix aι→ι · λyι if(y, x, z · succ((a) z)) and N = if(y, x, z · succ((a) z)).
Any derivation of `M : (u0, (v0, n)) : ι→ ι→ ι is of shape

ρ

x : u0 : ι ` fix aι→ι · λyιN : (v0, n)

`M : (u0, (v0, n)) : ι→ ι→ ι

where ρ is of shape

λ

x : u0 : ι, a : U0 : ι→ ι, y : v0 : ι ` N : n : ι

x : u0 : ι, a : U0 : ι→ ι ` λyιN : (v0, n) : ι→ ι (ρ(v1, n′))(v1,n′)∈U0

x : u0 : ι ` fix aι→ι · λyιN : (v0, n)

with one derivation ρ(v0, n′) for each (v1, n′) ∈ U0. Coming back to the definition of N , we see that
there are two possibilities as to λ. The first one is

ζ ∈ v0

x : u0 : ι, a : U0 : ι→ ι, y : v0 : ι ` y : ζ : ι

{n} ≤!L u
0

x : u0 : ι, a : U0 : ι→ ι, y : v0 : ι ` x : n : ι

x : u0 : ι, a : U0 : ι→ ι, y : v0 : ι ` N : n : ι

where we use the observation that if ζ is comparable in L with an element n′ of |L| then n′ = ζ.
The second possibility for λ is (with n = sucw1)



{sucw0} ≤!L v
0

Φ ` y : sucw0 : ι

(µ(n′))n′∈w1

Φ, z : w0 : ι ` succ((a) z) : sucw1 : ι

Φ = (x : u0 : ι, a : U0 : ι→ ι, y : v0 : ι) ` N : sucw1 : ι

where, for each n′ ∈ w1, µ(n′) is the derivation

{(v1, n′)} ≤!L(L U
0

Φ, z : w0 : ι ` a : (v1, n′) : ι→ ι (ν(n′,m))m∈v1

Φ, z : w0 : ι ` (a) z : n′ : ι

where for each m ∈ v1 the derivation ν(n′,m) is

{m} ≤!L w
0

Φ, z : w0 : ι ` z : m : ι

Hence on has `M : (u0, (v0, n)) : ι→ ι→ ι iff one of the two following conditions hold:

• ζ ∈ v0 and {n} ≤!L u0 (indeed in that case we can take U0 = ∅).

• n = sucw1 and there is w0 ∈ |!L| such that {sucw0} ≤!L v
0. Moreover, for each n′ ∈ w1 there is

v1 ∈ |!L| such that `M : (u0, (v1, n′)) : ι→ ι→ ι and {m} ≤!L w
0 for each m ∈ v1.

This equivalence characterizes [M ]: it is the least set of tuples (u0, (v0, n)) which satisfies this equivalence.
�


