MPRI 2-2 TD 1 du 13/11/2018

Thomas Ehrhard
A coherence space is a pair $E=\left(|E|, \varsigma_{E}\right)$ where $|E|$ is a set and $\frown_{E} \subseteq|E|^{2}$ is a reflexive and symmetric relation. Remember that $\frown_{E}=\frown_{E} \backslash\{(a, a)|a \in| E \mid\}$.

The set of cliques of E is $\mathrm{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$. Equipped with the partial order relation $\subseteq, \mathrm{Cl}(E)$ is closed under directed unions ${ }^{1}$. Observe also that a subset of a clique is a clique, that all singletons are cliques and that \emptyset is a clique.

Let E and F be coherence spaces. A function $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ is stable is it is monotone, Scottcontinuous (that is, for all directed $D \subseteq \mathrm{Cl}(E)$, one has $f(\cup D)=\cup_{x \in D} f(x)$, or, equivalently $f(\cup D) \subseteq$ $\cup_{x \in D} f(x)$, since the converse inclusion holds by monotonicity of f) and conditionally multiplicative, that is

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cap y)=f(x) \cap f(y)
$$

or equivalently

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cap y) \supseteq f(x) \cap f(y)
$$

since the converse inclusion holds by monotonicity of f.
One says that f is linear if, moreover, $f(\emptyset)=\emptyset$ and $\forall x, y \in \mathrm{Cl}(E) x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cup y)=$ $f(x) \cup f(y)$.

1) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$. Prove that f is linear if and only if the following property holds: for any family $\left(x_{i}\right)_{i \in I}$ of elements of $\mathrm{Cl}(E)$ (where I is finite or countable) such that $i \neq j \Rightarrow x_{i} \cap x_{j}=\emptyset$ and $\bigcup_{i \in I} x_{i} \in \mathrm{Cl}(E)$, the family $\left(f\left(x_{i}\right)\right)_{i \in I}$ satisfies the same properties (namely $i \neq j \Rightarrow f\left(x_{i}\right) \cap f\left(x_{j}\right)=\emptyset$ and $\left.\bigcup_{i \in I} f\left(x_{i}\right) \in \mathrm{Cl}(F)\right)$, and moreover $\bigcup_{i \in I} f\left(x_{i}\right)=f\left(\bigcup_{i \in I} x_{i}\right)$.
2) Let E_{1}, E_{2} and F be coherence spaces. A function $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is bilinear if it is separately linear, that is: for all $x_{1} \in \mathrm{Cl}\left(E_{1}\right)$ the function $\mathrm{Cl}\left(E_{2}\right) \rightarrow \mathrm{Cl}(F)$ which maps x_{2} to $f\left(x_{1}, x_{2}\right)$ is linear, and symmetrically (reversing the roles of E_{1} and E_{2}).
2.1) Prove that a bilinear function $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is stable from $\mathrm{Cl}\left(E_{1} \& E_{2}\right) \rightarrow \mathrm{Cl}(F)$ (identifying $\mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right)$ and $\mathrm{Cl}\left(E_{1} \& E_{2}\right)$, which are isomorphic posets). Give an example of a bilinear map which is not linear. And prove that the only linear map which is bilinear is the "empty map" (such that $f\left(x_{1}, x_{2}\right)=\emptyset$ for all $\left.x_{1}, x_{2}\right)$.
2.2) Check that the function $\tau: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{2}\right) \rightarrow \mathrm{Cl}\left(E_{1} \otimes E_{2}\right)$ such that $\tau\left(x_{1}, x_{2}\right)=x_{1} \otimes x_{2}=x_{1} \times x_{2}$ is bilinear.
2.3) Prove that if $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is bilinear then there is exactly one linear morphism $\tilde{f}: \mathrm{Cl}\left(E_{1} \otimes E_{2}\right) \rightarrow F$ such that $f=\tilde{f} \circ \tau$.
3) Let E be a coherence space and let $u \in \mathrm{Cl}(E)$. One defines a coherence space E_{u} as follows: $\left|E_{u}\right|=\left\{a \in|E| \mid \forall b \in u a \frown_{E} b\right\}$ and $\frown_{E_{u}}=\frown_{E} \cap\left|E_{u}\right|^{2}$. Observe that $\mathrm{Cl}\left(E_{u}\right) \subseteq \mathrm{Cl}(E)$ and that, if $x \in \mathrm{Cl}\left(E_{u}\right)$ then $x \cap u=\emptyset$ and $x \cup u \in \mathrm{Cl}(E)$.

Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a monotone and $\operatorname{Scott-continuous~function.~Given~} u \in \mathrm{Cl}(E)$ one defines a function $\Delta_{u} f: \mathrm{Cl}\left(E_{u}\right) \rightarrow \mathrm{Cl}(F)$ by $\Delta_{u} f(x)=f(x \cup u) \backslash f(x)$.
3.1) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a stable function. Compute $\Delta_{u} f$ when f is constant, and when f is linear (that is $f(\emptyset)=\emptyset$ and $f(x \cup y)=f(x) \cup f(y)$ if $x, y \in \mathrm{Cl}(E)$ satisfy $x \cup y \in \mathrm{Cl}(E)$).
3.2) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a monotone and Scott-continuous function. Prove that if $\Delta_{u} f$ is monotone for all $u \in \mathrm{Cl}(E)$, then f is stable.
3.3) Conversely, prove that, if f is stable, then $\Delta_{u} f$ is stable for all $u \in \mathrm{Cl}(E)$. In particular, f is stable if and only if $\Delta_{u} f$ is monotone for all $u \in \mathrm{Cl}(E)$.

[^0]Let $f, g: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be stable functions. One says that f is stably less than g (notation $f \leq_{\text {st }} g$) if

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \subseteq y \Rightarrow f(x)=f(y) \cap g(x)
$$

Observe that $f \leq_{\text {st }} g \Rightarrow f \leq_{\text {ext }} g$ (where $f \leq_{\text {ext }} g$ means $\forall x \in \mathrm{Cl}(E) f(x) \subseteq g(x)$): take $x=y$ in the definition above.
3.4) Prove that $f \leq_{\text {st }} g$ if and only if $f \leq_{\text {ext }} g$ and $\forall u \in \operatorname{Cl}(E) \Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$.

Remember that, if $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ is a stable function, one defines the trace $\operatorname{Tr} f$ of f as the set of all pairs $\left(x_{0}, b\right)$ where $b \in|Y|$ and x_{0} is minimal such that $b \in f\left(x_{0}\right)$ (and is therefore finite by continuity of f). Remember also that, if $\left(x_{0}, b\right),\left(y_{0}, b\right) \in \operatorname{Tr} f$ satisfy $x_{0} \cup y_{0} \in \mathrm{Cl}(E)$, then $x_{0}=y_{0}$.
3.5) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a stable function. Prove that

$$
\operatorname{Tr}\left(\Delta_{u} f\right)=\left\{\left(y_{0} \backslash u, b\right) \mid\left(y_{0}, b\right) \in \operatorname{Tr} f, y_{0} \cap u \neq \emptyset \text { and } y_{0} \cup u \in \mathrm{Cl}(E)\right\} .
$$

4) If E and F are coherence spaces, one says that E is a subspace of F and writes $E \subseteq F$ if $|E| \subseteq|F|$ and

$$
\forall a_{1}, a_{2} \in|E| \quad a_{1} \frown_{E} a_{2} \Leftrightarrow a_{1} \frown_{F} a_{2} .
$$

Let $\mathbf{C o h}_{\subseteq}$ be the class of all coherence spaces, equiped with this order relation \subseteq.
4.1) Prove that any monotone sequence of coherence spaces $E_{1} \subseteq E_{2} \subseteq E_{3} \cdots$ has a least upper bound (a sup) in $\mathbf{C o h}_{\subseteq}$.
4.2) Let $\Phi: \mathbf{C o h}_{\subseteq} \rightarrow \mathbf{C o h}_{\subseteq}$ be defined by $\Phi(E)=1 \oplus!E$ (where 1 is the coherence space which has only one element in \bar{i} ts web). Prove that Φ is monotone and commutes with the least upperbounds of monotone sequences of coherence spaces.
4.3) Prove that Φ has a least fixpoint in $\mathbf{C o h}_{\subseteq}$, that we denote as L and call "object of lazy integers".
4.4) Prove that one defines a function $\varphi: \mathbb{N} \rightarrow \mathrm{Cl}(\mathrm{L})$ by setting: $\varphi(0)=\{(1, *)\}$ (where $*$ is the unique element of $|1|)$ and $\varphi(n+1)=\left\{\left(2, u_{0}\right) \mid u_{0} \subseteq \varphi(n)\right.$ and u_{0} finite $\}$. Give the values of $\varphi(0), \varphi(1)$ and $\varphi(2)$.

[^0]: ${ }^{1}$ Unions filtrantes en français

