MPRI 2–2 TD 1 du 13/11/2018 (with solutions)

Thomas Ehrhard

A coherence space is a pair $E = (|E|, c_E)$ where |E| is a set and $c_E \subseteq |E|^2$ is a reflexive and symmetric relation. Remember that $c_E = c_E \setminus \{(a, a) \mid a \in |E|\}$.

The set of *cliques* of E is $Cl(E) = \{x \subseteq |E| \mid \forall a, a' \in x \ a \rhd_E a'\}$. Equipped with the partial order relation \subseteq , Cl(E) is closed under directed unions¹. Observe also that a subset of a clique is a clique, that all singletons are cliques and that \emptyset is a clique.

Let E and F be coherence spaces. A function $f : \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ is *stable* is it is monotone, Scottcontinuous (that is, for all directed $D \subseteq \mathsf{Cl}(E)$, one has $f(\cup D) = \bigcup_{x \in D} f(x)$, or, equivalently $f(\cup D) \subseteq \bigcup_{x \in D} f(x)$, since the converse inclusion holds by monotonicity of f) and *conditionally multiplicative*, that is

$$\forall x, y \in \mathsf{Cl}(E) \quad x \cup y \in \mathsf{Cl}(E) \Rightarrow f(x \cap y) = f(x) \cap f(y)$$

or equivalently

$$\forall x, y \in \mathsf{Cl}(E) \quad x \cup y \in \mathsf{Cl}(E) \Rightarrow f(x \cap y) \supseteq f(x) \cap f(y)$$

since the converse inclusion holds by monotonicity of f.

One says that f is *linear* if, moreover, $f(\emptyset) = \emptyset$ and $\forall x, y \in \mathsf{Cl}(E) \ x \cup y \in \mathsf{Cl}(E) \Rightarrow f(x \cup y) = f(x) \cup f(y)$.

1) Let $f: \mathsf{Cl}(E) \to \mathsf{Cl}(F)$. Prove that f is linear if and only if the following property holds: for any family $(x_i)_{i\in I}$ of elements of $\mathsf{Cl}(E)$ (where I is finite or countable) such that $i \neq j \Rightarrow x_i \cap x_j = \emptyset$ and $\bigcup_{i\in I} x_i \in \mathsf{Cl}(E)$, the family $(f(x_i))_{i\in I}$ satisfies the same properties (namely $i \neq j \Rightarrow f(x_i) \cap f(x_j) = \emptyset$ and $\bigcup_{i\in I} f(x_i) \in \mathsf{Cl}(F)$), and moreover $\bigcup_{i\in I} f(x_i) = f(\bigcup_{i\in I} x_i)$.

Solution \triangleright Assume first that f is linear. Let $(x_i)_{i\in I}$ be a family of elements of $\mathsf{Cl}(E)$ (where I is finite or countable) such that $i \neq j \Rightarrow x_i \cap x_j = \emptyset$ and $\bigcup_{i\in I} x_i \in \mathsf{Cl}(E)$. Let $i, j \in I$ and assume that $f(x_i) \cap f(x_j) \neq \emptyset$. Since $x_i \cup x_j \in \mathsf{Cl}(E)$ we have $f(x_i) \cap f(x_j) = f(x_i \cap x_j)$ because f is stable and hence $x_i \cap x_j \neq \emptyset$ since $f(\emptyset) = \emptyset$ by linearity. Therefore i = j. Since f is monotone we have $f(x_i) \subseteq f(\bigcup_{j\in J} x_j) \in \mathsf{Cl}(F)$ for all i and hence $\bigcup_{i\in I} f(x_i) \in \mathsf{Cl}(F)$. Last we must prove that $\bigcup_{i\in I} f(x_i) = f(\bigcup_{i\in I} x_i)$, that is $\bigcup_{i\in I} f(x_i) \supseteq f(\bigcup_{i\in I} x_i)$ since f is monotone. Let $b = f(\bigcup_{i\in I} x_i)$. Since f is continuous there is a finite clique $x_0 \subseteq \bigcup_{i\in I} x_i$ such that $b \in f(x_0)$. Let $I_0 \subseteq I$ be finite and such that $x_0 \subseteq \bigcup_{i\in I_0} x_i$. We have $b \in f(\bigcup_{i\in I_0} x_i)$ by monotonicity and $f(\bigcup_{i\in I_0} x_i) = \bigcup_{i\in I_0} f(x_i)$ by linearity. Therefore $b \in \bigcup_{i\in I} f(x_i)$.

Conversely assume that $f: \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ satisfies the stated property. Let $x, x' \in \mathsf{Cl}(E)$ be such that $x \subseteq x'$. By our assumption we have $f(x' \setminus x) \cap f(x) = \emptyset$ and $f(x') = f(x' \setminus x) \cup f(x)$, hence $f(x) \subseteq f(x')$. Let $x \in \mathsf{Cl}(E)$, by our assumption we have $f(x) = f(\bigcup_{a \in x} \{a\}) = \bigcup_{a \in x} f(\{a\})$. So if $b \in f(x)$ there exists $a \in x$ such that $b \in f(\{a\})$ and hence f is continuous. Moreover there is only one such a (if a' is another one we have $b \in f(\{a\}) \cap f(\{a'\})$ which is impossible since $\{a\} \cap \{a'\} = \emptyset$). This shows that f is stable. Last let $x, x' \in \mathsf{Cl}(E)$ be such that $x \cup x' \in \mathsf{Cl}(E)$, we have to prove that $f(x) \cup f(x') \subseteq f(x \cup x')$ so let $b \in f(x) \cup f(x') = \bigcup_{a \in x \cup x'} f(\{a\})$ so that there is $a \in x \cup x'$ such that $b \in f(\{a\})$, hence $b \in f(x) \cup f(x')$ so let $b \in f(x) \cup f(x') = \bigcup_{a \in x \cup x'} f(\{a\})$ so that there is $a \in x \cup x'$ such that $b \in f(\{a\})$, hence $b \in f(x) \cup f(x') \subseteq f(x) \cup f(x')$ by monotonicity of f.

2) Let E_1 , E_2 and F be coherence spaces. A function $f : Cl(E_1) \times Cl(E_1) \rightarrow Cl(F)$ is bilinear if it is separately linear, that is: for all $x_1 \in Cl(E_1)$ the function $Cl(E_2) \rightarrow Cl(F)$ which maps x_2 to $f(x_1, x_2)$ is linear, and symmetrically (reversing the roles of E_1 and E_2).

2.1) Prove that a bilinear function $f : \mathsf{Cl}(E_1) \times \mathsf{Cl}(E_1) \to \mathsf{Cl}(F)$ is stable from $\mathsf{Cl}(E_1 \& E_2) \to \mathsf{Cl}(F)$ (identifying $\mathsf{Cl}(E_1) \times \mathsf{Cl}(E_1)$ and $\mathsf{Cl}(E_1 \& E_2)$, which are isomorphic posets). Give an example of a bilinear map which is not linear. And prove that the only linear map which is bilinear is the "empty map" (such that $f(x_1, x_2) = \emptyset$ for all x_1, x_2).

¹Unions filtrantes en français

Solution \triangleright If $z \in \mathsf{Cl}(E_1 \& E_2)$, we use z_1 and z_2 for its two projections so that $z = \{1\} \times z_1 \cup \{2\} \times z_2 = (z_1, z_2)$ up to the identification of $\mathsf{Cl}(E_1 \& E_2)$ with $\mathsf{Cl}(E_1) \times \mathsf{Cl}(E_2)$. Let $f : \mathsf{Cl}(E_1 \& E_2) \to \mathsf{Cl}(F)$ be bilinear. Let $z, z' \in \mathsf{Cl}(E_1 \& E_2)$ be such that $z \subseteq z'$. We have $f(z) = f(z_1, z_2) \subseteq f(z'_1, z_2) \subseteq f(z'_1, z'_2) = f(z'_1, z'_2) = f(z'_1)$ so f is monotonic. If $D \subseteq \mathsf{Cl}(E_1 \& E_2)$ is directed then the two projections $D_i \subseteq \mathsf{Cl}(E_i)$ are directed and $\cup D = (\cup D_1, \cup D_2)$. By bilinearity we have $f(\cup D) = f(\cup D_1, \cup D_2) = \bigcup_{x_1 \in D_1} f(x_1, \cup D_2) = \bigcup_{(x_1, x_2) \in D_1 \times D_2} f(x_1, x_2) = \bigcup_{z \in D} f(z)$, this latter equation results from the fact that for any $(x_1, x_2) \in D_1 \times D_2$ there is $z \in D$ such that $x_i \subseteq z_i$ for i = 1, 2 because D is directed.

Now let $z, z' \in \mathsf{Cl}(E_1 \& E_2)$ be such that $z \subseteq z'$, we have $f(z) \supseteq f(z_1, z'_2) \cap f(z'_1, z_2)$ (a property that we call (*) in the sequel). By separate linearity (using the first exercise of this sheet) we have $f(z_1, z'_2) \cap f(z'_1, z_2) = f(z_1, z_2 \cup (z'_2 \setminus z_2)) \cap f(z_1 \cup (z'_1 \setminus z_1), z_2) = (f(z_1, z_2) \cup f(z_1, z'_2 \setminus z_2)) \cap (f(z_1, z_2) \cup f(z'_1 \setminus z_1, z_2)) = f(z_1, z_2) \cup (f(z_1, z'_2 \setminus z_2) \cap f(z'_1 \setminus z_1, z_2))$ (since $f(z_1, z_2) \cap f(z_1, z'_2 \setminus z_2) = \emptyset$ by separate linearity). We have $f(z_1, z'_2 \setminus z_2) \cap f(z'_1 \setminus z_1, z_2) \subseteq (z'_1, z'_2 \setminus z_2) \cap f(z'_1, z_2) = \emptyset$ by separate linearity again. Consider now $z, z' \in \mathsf{Cl}(E_1 \& E_2)$ such that $z \cup z' \in \mathsf{Cl}(E_1 \& E_2)$. Observe first that $f(z) = f(z_1 \cup z'_1, z_2) \cap f(z_1, z_2 \cup z'_2)$ by Property (*). We have $f(z \cap z') = f(z_1 \cap z'_1, z_2 \cap z'_2) = f(z_1, z_2 \cap z'_2) \cap f(z'_1, z_2 \cap f(z'_1, z_2) \cap f(z'_1, z'_2) \cap f(z'_1, z'_2$

Erratum: Contrarily to what I have claimed during the Nov. 13th session, it is no true that a Scott continuous $f : \mathsf{Cl}(E_1 \& E_2) \to \mathsf{Cl}(F)$ which is separately stable is stable. Take indeed $E_1 = E_2 = F = 1$ where 1 is the coherence space whose web is a singleton $\{*\}$. Take $f : \mathsf{Cl}(1) \times \mathsf{Cl}(1) \to \mathsf{Cl}(1)$ defined by $f(z) = \emptyset$ if $z = \emptyset$ and $f(z) = \{*\}$ otherwise. Then f is separately stable but not stable because $\{*\} = f(\{*\}, \emptyset) \cap f(\emptyset, \{*\})$ and $f((\{*\}, \emptyset) \cap (\emptyset, \{*\})) = f(\emptyset, \emptyset) = \emptyset$. The function f is a simplified version of the "parallel or" non stable function.

2.2) Check that the function $\tau : Cl(E_1) \times Cl(E_2) \rightarrow Cl(E_1 \otimes E_2)$ such that $\tau(x_1, x_2) = x_1 \otimes x_2 = x_1 \times x_2$ is bilinear.

Solution \triangleright This is straightforward. Observe that $\operatorname{Tr}(\tau) = \{(\{(1, a_1), (2, a_2)\}, (a_1, a_2) \mid a_i \in |E_i| \text{ for } i = 1, 2\}.$

2.3) Prove that if $f : \mathsf{Cl}(E_1) \times \mathsf{Cl}(E_1) \to \mathsf{Cl}(F)$ is bilinear then there is exactly one linear morphism $\tilde{f} : \mathsf{Cl}(E_1 \otimes E_2) \to F$ such that $f = \tilde{f} \circ \tau$.

Solution \triangleright The trace $\operatorname{Tr}(f) \in \operatorname{Cl}(E_1 \& E_2 \multimap F)$ of f is the set of all $(z^0, b) \in \operatorname{Cl}_{\operatorname{fin}}(E_1 \& E_2) \times |F|$ such that $b \in f(z^0)$ and z^0 is minimal with this property. Necessarily z^0 has shape $\{(1, a_1), (2, a_2)\}$ with $a_i \in |E_i|$: by bilinearity we have $f(z^0) = \bigcup_{a_1 \in z_1^0} f(\{a_1\}, z_2^0) = \bigcup_{a_1 \in z_1^0, a_2 \in z_2^0} f(\{(1, a_1), (2, a_2)\})$ so if $b \in f(z^0)$ there is some $\{(1, a_1), (2, a_2)\} \subseteq z^0$ such that $b \in f(\{(1, a_1), (2, a_2)\})$ hence z^0 must be \subseteq in one of these $\{(1, a_1), (2, a_2)\}$. Written as a couple, a strict subset of $\{(1, a_1), (2, a_2)\}$ is of shape $\{(\emptyset, z_2) \text{ or } (z_1, \emptyset)$ and therefore is mapped to \emptyset by f, by bilinearity. So if $(z^0, b) \in \operatorname{Tr}(f), z^0$ has shape $\{(1, a_1), (2, a_2)\}$ (this shows btw. that there is no f which is at the same time linear and bilinear, apart from the completely undefined f such that $\operatorname{Tr}(f) = \emptyset$). Now we define \tilde{f} by its linear trace $\{((a_1, a_2), b) \mid (\{(1, a_1), (2, a_2)\}, b) \in \operatorname{Tr} f\} \in \operatorname{Cl}(E_1 \otimes E_2 \multimap F)$.

3) Let *E* be a coherence space and let $u \in \mathsf{Cl}(E)$. One defines a coherence space E_u as follows: $|E_u| = \{a \in |E| \mid \forall b \in u \ a \ \gamma_E \ b\}$ and $\gamma_{E_u} = \gamma_E \cap |E_u|^2$. Observe that $\mathsf{Cl}(E_u) \subseteq \mathsf{Cl}(E)$ and that, if $x \in \mathsf{Cl}(E_u)$ then $x \cap u = \emptyset$ and $x \cup u \in \mathsf{Cl}(E)$, which defines a linear map $\mathsf{Cl}(E_1 \otimes E_2) \to \mathsf{Cl}(F)$ that we also denote as \tilde{f} .

Let $f : \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be a monotone and Scott-continuous function. Given $u \in \mathsf{Cl}(E)$ one defines a function $\Delta_u f : \mathsf{Cl}(E_u) \to \mathsf{Cl}(F)$ by $\Delta_u f(x) = f(x \cup u) \setminus f(x)$.

3.1) Let $f : \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be a stable function. Compute $\Delta_u f$ when f is constant, and when f is linear (that is $f(\emptyset) = \emptyset$ and $f(x \cup y) = f(x) \cup f(y)$ if $x, y \in \mathsf{Cl}(E)$ satisfy $x \cup y \in \mathsf{Cl}(E)$).

Solution \triangleright Let $x \in \mathsf{Cl}(E_u)$. If f is constant then $\Delta_u f(x) = \emptyset$. If f is linear then $\Delta_u f(x) = f(x \cup u) \setminus f(x) = (f(x) \cup f(u)) \setminus f(x) = f(u)$ because $f(x) \cap f(u) = f(x \cap u) = f(\emptyset) = \emptyset$.

3.2) Let $f : \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be a monotone and Scott-continuous function. Prove that if $\Delta_u f$ is monotone for all $u \in \mathsf{Cl}(E)$, then f is stable.

Solution \triangleright Let $x, x' \in \mathsf{Cl}(E)$ be such that $x \cup x' \in \mathsf{Cl}(E)$, we must prove that $f(x) \cap f(x') \subseteq f(x \cap x')$. Let $b \in f(x) \cap f(x')$ and assume that $b \notin f(x \cap x')$. Let $u = x \setminus (x \cap x')$, then $x' \cap u = \emptyset$ and hence $x' \in \mathsf{Cl}(E_u)$, so we have $\Delta_u f(x \cap x') \subseteq \Delta_u f(x')$. By our assumption $b \in \Delta_u f(x \cap x')$ since $(x \cap x') \cup u = x$ and hence $b \in \Delta_u f(x') = f(x' \cup u) \setminus f(x')$ which implies $b \notin f(x')$, contradiction.

3.3) Conversely, prove that, if f is stable, then $\Delta_u f$ is stable for all $u \in Cl(E)$. In particular, f is stable if and only if $\Delta_u f$ is monotone for all $u \in Cl(E)$.

Solution \triangleright Let $u \in \mathsf{Cl}(E)$. Let us first prove that $\Delta_u f$ is monotone so let $x, x' \in \mathsf{Cl}(E_u)$ be such that $x \subseteq x'$. Let $b \in \Delta_u f(x) = f(x \cup u) \setminus f(x)$. By monotonicity of f we have $b \in f(x' \cup u)$. Il $b \in f(x')$ then $b \in f(x \cup u) \cap f(x') = f((x \cup u) \cap x')$ by stability (observe indeed that $x \cup u \cup x' \subseteq u \cup x' \in \mathsf{Cl}(E)$) and this is impossible because $(x \cup u) \cap x' = x$ and $b \in \Delta_u f(x)$. So $b \in f(x' \cup u) \setminus f(x') = \Delta_u f(x')$.

Now we prove that $\Delta_u f$ is continuous, so let $x \in \mathsf{Cl}(E_u)$ and let $b \in \Delta_u f(x) = f(x \cup u) \setminus f(x)$. Since f is continuous there is a finite clique $x_1 \subseteq x \cup u$ such that $b \in f(x_1)$. Let $x_0 = x \cap x_1 \in \mathsf{Cl}(E_u)$. We have $b \in f(x_1) \subseteq f(x_0 \cup u)$ by monotonicity of f, and for the same reason $b \notin f(x_0)$ since we know that $b \notin f(x)$. Hence $b \in \Delta_u f(x_0)$.

Last we prove that $\Delta_u f$ is conditionally multiplicative, so let $x, x' \in \mathsf{Cl}(E_u)$ be such that $x \cup x' \in \mathsf{Cl}(E_u)$ (equivalently $x \cup x' \in \mathsf{Cl}(E)$ by definition of the coherence space E_u). We must prove that $\Delta_u f(x) \cap \Delta_u f(x') \subseteq \Delta_u f(x \cap x')$, so let $b \in \Delta_u f(x) \cap \Delta_u f(x')$. This implies $b \in f(x \cup u) \cap f(x' \cup u)$. But we have $(x \cup u) \cup (x' \cup u) = x \cup x' \cup u \in \mathsf{Cl}(E)$ by our assumption on x and x', and hence $b \in f((x \cup u) \cap (x' \cup u)) = f((x \cap x') \cup u)$ by stability of f. Since $b \in \Delta_u f(x)$, we know moreover that $b \notin f(x)$ and hence $b \notin f(x \cap x')$ by monotonicity of f, hence $b \notin f(x \cap x')$. So we have $b \in \Delta_u f(x \cap x')$.

Let $f, g: \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be stable functions. One says that f is stably less than g (notation $f \leq_{\mathsf{st}} g$) if

$$\forall x, y \in \mathsf{Cl}(E) \quad x \subseteq y \Rightarrow f(x) = f(y) \cap g(x) \,.$$

Observe that $f \leq_{st} g \Rightarrow f \leq_{ext} g$ (where $f \leq_{ext} g$ means $\forall x \in Cl(E) f(x) \subseteq g(x)$): take x = y in the definition above.

3.4) Prove that $f \leq_{st} g$ if and only if $f \leq_{ext} g$ and $\forall u \in \mathsf{Cl}(E) \ \Delta_u f \leq_{ext} \Delta_u g$.

Solution \triangleright Assume first that $f \leq_{st} g$ and let us prove that $\Delta_u f \leq_{ext} \Delta_u g$ (where $u \in \mathsf{Cl}(E)$). Let $x \in \mathsf{Cl}(E_u)$ and assume that $b \in \Delta_u f(x) = f(x \cup u) \setminus f(x)$. Since $f \leq_{ext} g$ we have $b \in g(x \cup u)$. Assume that $b \in g(x)$. Since $f \leq_{st} g$ we have $f(x) = f(x \cup u) \cap g(x)$ and hence $b \in f(x)$, contradiction. Hence $b \in \Delta_u g(x)$, which shows that $\Delta_u f \leq_{ext} \Delta_u g$.

Assume conversely that $f \leq_{\mathsf{ext}} g$ and $\forall u \in \mathsf{Cl}(E) \Delta_u f \leq_{\mathsf{ext}} \Delta_u g$ and let us prove that $f \leq_{\mathsf{st}} g$. So let $x, x' \in \mathsf{Cl}(E)$ be such that $x \subseteq x'$, we must prove that $f(x') \cap g(x) \subseteq f(x)$ (the other inclusion results from our assumption that $f \leq_{\mathsf{ext}} g$). Let $b \in f(x') \cap g(x)$ and assume towards a contradiction that $b \notin f(x)$. Let $u = x' \setminus x$, so that $x \in \mathsf{Cl}(E_u)$. By our assumption $b \in f(x') \setminus f(x) = \Delta_u f(x) \subseteq \Delta_u g(x)$ (since $\Delta_u f \leq_{\mathsf{ext}} \Delta_u g$) and hence $b \notin g(x)$, contradiction.

Remember that, if $f : \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ is a stable function, one defines the *trace* $\mathsf{Tr} f$ of f as the set of all pairs (x_0, b) where $b \in |Y|$ and x_0 is minimal such that $b \in f(x_0)$ (and is therefore finite by continuity of f). Remember also that, if $(x_0, b), (y_0, b) \in \mathsf{Tr} f$ satisfy $x_0 \cup y_0 \in \mathsf{Cl}(E)$, then $x_0 = y_0$.

3.5) Let $f: \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be a stable function. Prove that

$$\mathsf{Tr}(\Delta_u f) = \{ (y_0 \setminus u, b) \mid (y_0, b) \in \mathsf{Tr}f, \ y_0 \cap u \neq \emptyset \text{ and } y_0 \cup u \in \mathsf{Cl}(E) \}.$$

Solution \triangleright Let $(x_0, b) \in \operatorname{Tr}(\Delta_u f)$ so that $x_0 \in \operatorname{Cl}_{\operatorname{fin}}(E_u)$, $b \in f(x_0 \cup u) \setminus f(x_0)$ and x_0 minimal with these properties. Since $b \in f(x_0 \cup u)$ there is a uniquely defined $y_0 \subseteq x_0 \cup u$ such that $(y_0, b) \in \operatorname{Tr} f$. We cannot have $y_0 \subseteq x_0$ since $b \notin f(x_0)$ and hence $y_0 \cap u \neq \emptyset$. Last $y_0 \cup u \subseteq x_0 \cup u \in \operatorname{Cl}(E)$ since $x_0 \in \operatorname{Cl}(E_u)$.

Conversely let $(y_0, b) \in \operatorname{Tr} f$ be such that $y_0 \cap u \neq \emptyset$ and $y_0 \cup u \in \operatorname{Cl}(E)$. Let $x_0 = y_0 \setminus u$, we have $x_0 \in \operatorname{Cl}(E_u)$ and $b \in f(y_0) \setminus f(x_0)$ by minimality of y_0 . Hence $b \in \Delta_u f(x_0)$ since $y_0 \subseteq x_0 \cup u$. We prove that x_0 is minimal with that property so let $x'_0 \subseteq x_0$ be such that $b \in \Delta_u f(x'_0)$. We have $b \in f(y_0) \cap f(x'_0 \cup u)$ and $y_0 \cup x'_0 \cup u \subseteq x_0 \cup u \in \operatorname{Cl}(E)$ hence, by stability, $b \in f(y_0 \cap (x'_0 \cup u))$. By minimality of y_0 we must have $y_0 \subseteq x'_0 \cup u$ and hence $x_0 = y_0 \setminus u \subseteq (x'_0 \cup u) \setminus u = x'_0$ since $x'_0 \cap u = \emptyset$, so $x'_0 = x_0$ which proves the minimality of x_0 .

4) If E and F are coherence spaces, one says that E is a subspace of F and writes $E \subseteq F$ if $|E| \subseteq |F|$ and

$$\forall a_1, a_2 \in |E| \quad a_1 \simeq_E a_2 \Leftrightarrow a_1 \simeq_F a_2.$$

Let \mathbf{Coh}_{\subseteq} be the class of all coherence spaces, equiped with this order relation \subseteq .

4.1) Prove that any monotone sequence of coherence spaces $E_1 \subseteq E_2 \subseteq E_3 \cdots$ has a least upper bound (a sup) in \mathbf{Coh}_{\subseteq} .

4.2) Let $\Phi : \mathbf{Coh}_{\subseteq} \to \mathbf{Coh}_{\subseteq}$ be defined by $\Phi(E) = 1 \oplus !E$ (where 1 is the coherence space which has only one element in its web). Prove that Φ is monotone and commutes with the least upper bounds of monotone sequences of coherence spaces.

4.3) Prove that Φ has a least fixpoint in Coh_C, that we denote as L and call "object of lazy integers".

4.4) Prove that one defines a function $\varphi : \mathbb{N} \to \mathsf{Cl}(\mathsf{L})$ by setting: $\varphi(0) = \{(1,*)\}$ (where * is the unique element of |1|) and $\varphi(n+1) = \{(2,u_0) \mid u_0 \subseteq \varphi(n) \text{ and } u_0 \text{ finite}\}$. Give the values of $\varphi(0), \varphi(1)$ and $\varphi(2)$.