MPRI 22  TD 1 du 13/11/2018 (with solutions)
Thomas Ehrhard

A coherence space is a pair E = (|E|,og) where |E| is a set and g C |E|? is a reflexive and
symmetric relation. Remember that ~g = <g \ {(a,a) | a € |E|}.

The set of cliques of E is CI(E) = {x C |E| | Va,a’ € x a =g d'}. Equipped with the partial order
relation C, CI(E) is closed under directed unions!. Observe also that a subset of a clique is a clique, that
all singletons are cliques and that () is a clique.

Let E and F be coherence spaces. A function f : CI(E) — CI(F) is stable is it is monotone, Scott-
continuous (that is, for all directed D C CI(E), one has f(UD) = Uzep f(x), or, equivalently f(UD) C
Uzep f(x), since the converse inclusion holds by monotonicity of f) and conditionally multiplicative, that
is

Ve,y € C(E) zUy e Cl(E)= flzny) = f(z)N f(y)
or equivalently
Ve,y € C(E) zUy e Cl(E)= flxny) D flx)N f(y)

since the converse inclusion holds by monotonicity of f.
One says that f is linear if, moreover, f(§)) = @ and Vz,y € CI(E) z Uy € CI(E) = f(zUy) =
flx) U f(y).

1) Let f: CI(E) — CI(F). Prove that f is linear if and only if the following property holds: for any
family (z;);cr of elements of CI(E) (where I is finite or countable) such that ¢ # j = z; Nz; = 0 and
Uier z: € CI(E), the family (f(x;))ics satisfies the same properties (namely i # j = f(z;) N f(x;) = 0
and (J;¢; f(x;) € CI(F)), and moreover J;.; f(z:) = f(U;c; 7i)-

Solution > Assume first that f is linear. Let (z;);c; be a family of elements of CI(E) (where I is
finite or countable) such that i # j = z; Nx; = ) and J,.; 2; € CI(E). Let 4,5 € I and assume
that f(xz;) N f(z;) # 0. Since z; Ux; € CI(E) we have f(z;) N f(xz;) = f(xz; N x;) because f is
stable and hence x; Nx; # 0 since f(@) = O by linearity. Therefore i = j. Since f is monotone we
have f(z;) € f(Ujesz;) € CI(F) for all i and hence U;crf(z;) € CI(F). Last we must prove that
Userf(z;) = f(Uierx;), that is Userf(z;) 2O f(Uierx;) since f is monotone. Let b = f(U;erx;). Since
f is continuous there is a finite clique ¢ C U;cyx; such that b € f(xzg). Let Iy C I be finite and such
that o C User ;. We have b € f(U;er,z;) by monotonicity and f(Ujer,zi) = Uier, f(z;) by linearity.
Therefore b € U;er f(x;).

Conversely assume that f : CI(E) — CI(F) satisfies the stated property. Let z, 2’ € CI(E) be such that
x C a’. By our assumtion we have f(z'\z)N f(z) =0 and f(z') = f(2’ \ z)U f(z), hence f(z) C f(2').
Let x € CI(E), by our assumption we have f(z) = f(Ugez{a}) = Uaezf({a}). So if b € f(x) there exists
a € z such that b € f({a}) and hence f is continuous. Moreover there is only one such a (if @’ is another
one we have b € f({a}) N f({a’}) which is impossible since {a} N {a’} = ). This shows that f is stable.
Last let z, 2’ € CI(E) be such that 2 Ua’ € CI(E), we have to prove that f(z) U f(2’) C f(zU2’) so let
be f(z)U f(z') = Ugegua f({a}) so that there is a € x Ua’ such that b € f({a}), hence b € f(x) U f(a')
by monotonicity of f. <

2) Let Eq, Ey and F be coherence spaces. A function f : CI(Ey) x CI(Ey) — CI(F) is bilinear if it is
separately linear, that is: for all x; € CI(E}) the function Cl(E2) — CI(F) which maps z3 to f(z1,z2) is
linear, and symmetrically (reversing the roles of E7 and E5).

2.1) Prove that a bilinear function f : CI(E;) x CI(Ey) — CI(F) is stable from CI(E; & E») — CI(F)
(identifying CI(E4y) x CI(Ey) and CI(E; & E5), which are isomorphic posets). Give an example of a
bilinear map which is not linear. And prove that the only linear map which is bilinear is the “empty
map” (such that f(x1,z9) =0 for all z1,x2).

1Unions filtrantes en francais



Solution > If z € CI(Eq & E3), we use z; and 2, for its two projections so that z = {1} x 23 U{2} x 2z =
(21, 22) up to the identification of CI(E; & E5) with CI(E7) x CI(E2). Let f : CI(Ey & E2) — CI(F) be
bilinear. Let z, 2’ € CI(Ey & E») be such that z C z’. We have f(z) = f(z1,22) C f(21,22) C f(2],2) =
f(z") so f is monotonic. If D C CI(E; & Es) is directed then the two projections D; C CI(E;) are
directed and UD = (UD;,UDs3). By bilinearity we have f(UD) = f(UD1,UD3) = Uy, ep, f(z1,UD3) =
U(ey,z0)eDr x Do f (21, 2) = Uzep f(2), this latter equation results from the fact that for any (z1,22) €
D1 X Dqy there is z € D such that x; C z; for i = 1,2 because D is directed.

Now let z,2" € CI(E; & E») be such that z C 2/, we have f(z) 2 f(z1,25) N f(21,22) (a property
that we call (*) in the sequel). By separate linearity (using the first exercise of this sheet) we have
flz1, )N f (21, 22) = f(21,220(25\ 22)) N f(21U(21\ 21), 22) = (f (21, 22)U f (21, 23\ 22)) N (f (21, 22) U f (21 \
z1,22)) = f(z1,22)U(f(21, 25\ z2) N f(2] \ 71, 22)) (since f(z1,22)N f (21,25 \22) = 0 by separate linearity).
We have f(z1, 25\ 22)Nf (2] \ 21, 22) C (21, 25\ 22)Nf(2], 22) = 0 by separate linearity again. Consider now
z,%2" € CI(Ey & Es) such that zUz" € CI(E; & E3). Observe first that f(z) = f(z1Uz], 22) N f(21, 22U 25)
by Property (*). We have f(2Nz2") = f(21N2],22Nz%) = f(z1,22N25)N[f (2], 22N24) = f(z1, 22)Nf (21, 25)N
F( )0 f(#h 24) = F(s1 U2, 20) 1 f (1, 22 U2) O (21 Uzt ) 1 f (21, 20 2) 1 (21 UZ4, 22) 0 (24, 22U
2N f(Z1Uz1, 25)N f(2], 22U28) = f(21,22U25) N f(21U2], 22) N f (2], 22Uz5) N f(z1 U2, 25) = f(z)Nf(Z)
by Property (*) again.

Erratum: Contrarily to what I have claimed during the Nov. 13th session, it is no true that a Scott
continuous f : CI(Ey & E3) — CI(F') which is separately stable is stable. Take indeed E; = Fy = F =1
where 1 is the coherence space whose web is a singleton {*}. Take f : Cl(1) x CI(1) — CI(1) defined
by f(z) = 0 if 2 = 0 and f(z) = {*} otherwise. Then f is separately stable but not stable because
{x} = f({x}, )N f(0,{}) and f(({*},0)N (0, {x})) = f(0,0) = 0. The function f is a simplified version
of the “parallel or” non stable function.

2.2) Check that the function 7 : CI(Eq) x Cl(E2) — CI(Eq1 ® Es) such that 7(z1,x2) = 1®@z9 = x1 X2
is bilinear.

Solution > This is straightforward. Observe that Tr(7) = {({(1, 1), (2,a2)}, (a1,a2) | a; € |E;| for i =
1,2}. <
2.3) Prove that if f: CI(Ey) x CI(Ey) — CI(F) is bilinear then there is exactly one linear morphism

I ClI(Ey ® E9) — F such that f = foT.

Solution 1> The trace Tr(f) € Cl(E1 & Ey — F) of f is the set of all (2°,b) € Clgn(E1 & E2) X |F|
such that b € f(2°) and 2° is minimal with this property. Necessarily 2" has shape {(1,a1),(2,a2)}
with a; € |E;|: by bilinearity we have f(2°) = Ualezgf({al},zg) = Uq,e20,a,e20f ({(1,a1), (2, a2)}) so
if b € f(2°) there is some {(1,a1),(2,a2)} C 2° such that b € f({(1,a1),(2,az2)}) hence z° must be
C in one of these {(1,a1),(2,a2)}. Written as a couple, a strict subset of {(1,a;),(2,a2)} is of shape
(0, 22) or (z1,0) and therefore is mapped to @) by f, by bilinearity. So if (2°,b) € Tr(f), 2° has shape
{(1,a1),(2,a2)} (this shows btw. that there is no f which is at the same time linear and bilinear,
apart from the completely undefined f such that Tr(f) = 0). Now we define f by its linear trace
{((a1,02),8) | ({(L,a1), (2,02)},b) € Tef} € Cl(Ey © B, —o F). <

3) Let E be a coherence space and let u € CI(E). One defines a coherence space E, as follows:
|Eu] ={a € |E| | Vb €ua~gb}and op, = <pn|E,% Observe that CI(E,) C CI(E) and that, if
xz € CI(E,) then z Nu =0 and  Uwu € CI(E), which defines a linear map ClI(E; ® Es) — CI(F) that we
also denote as f

Let f: CI(E) — CI(F') be a monotone and Scott-continuous function. Given u € CI(E) one defines a
function A, f : CI(E,) — CI(F) by A, f(z) = f(x Uu) \ f(z).

3.1) Let f: CI(E) — CI(F) be a stable function. Compute A, f when f is constant, and when f is
linear (that is f(0) =0 and f(zUy) = f(z) U f(y) if z,y € CI(E) satisfy x Uy € CI(E)).
Solution > Let x € CI(E,). If f is constant then A, f(z) = 0. If f is linear then A, f(z) = f(z Uu) \
f(@) = (f(2) U f(u) \ fz) = f(u) because f(x) N f(u) = f(z Nu) = f(0) = 0. <

3.2) Let f : CI(E) — CI(F) be a monotone and Scott-continuous function. Prove that if A, f is
monotone for all u € CI(E), then f is stable.



Solution > Let z,2’ € CI(E) be such that z Uz’ € CI(E), we must prove that f(z)N f(z') C f(zNna’).
Let b € f(z) N f(z') and assume that b ¢ f(zNz'). Let u =z \ (x Nz’), then ' Nu = @ and hence
2’ € CI(E,), so we have A, f(zNa') C A, f(z'). By our assumption b € A, f(zNz’) since (xNa’)Uu = x
and hence b € A, f(2') = f(z' Uu) \ f(2') which implies b ¢ f(2'), contradiction. <

3.3) Conversely, prove that, if f is stable, then A, f is stable for all u € CI(E). In particular, f is
stable if and only if A, f is monotone for all u € CI(E).

Solution > Let u € CI(E). Let us first prove that A, f is monotone so let z, 2" € CI(E,) be such that
x Ca'. Let be Ay f(z) = f(xUu)\ f(z). By monotonicity of f we have b € f(z'Uwu). Il b € f(2') then
be flxUu)n f(z') = f((x Uu) Na’) by stability (observe indeed that zUuUz’ CuUz’ € CI(E)) and
this is impossible because (x Uu) Nz’ =z and b € A, f(z). So b € f(a' Uu)\ f(z') = A, f(2).

Now we prove that A, f is continuous, so let € CI(E,,) and let b € A, f(z) = f(zUw)\ f(x). Since
f is continuous there is a finite clique z; C z Uw such that b € f(z1). Let xg = x Nxy € CI(E,). We
have b € f(z1) C f(xoUu) by monotonicity of f, and for the same reason b ¢ f(x() since we know that
b¢ f(x). Hence b € A, f(xo).

Last we prove that A, f is conditionally multiplicative, so let z,2’ € CI(E,) be such that x Uz’ €
CI(E,) (equivalently x Uz’ € CI(E) by definition of the coherence space F,). We must prove that
Auf@)NAuf(a’) CAyf(xna’), solet b e Ayf(x) N Ay f(z'). This implies b € f(z Uw) N f(z' Uwu).
But we have (x Uu) U (¢' Uu) = 2 U2’ Uu € CI(E) by our assumption on z and 2/, and hence
be f((xUu)N (@' Uu)) = f((xNa’) Uu) by stability of f. Since b € A, f(x), we know moreover that
b¢ f(x) and hence b ¢ f(xzNz') by monotonicity of f, hence b ¢ f(xzNa’). So we have b € A, f(xNa’).
<

Let f,g: CI(E) — CI(F) be stable functions. One says that f is stably less than g (notation f < g)
if

Ve,y e C(E) zCy= f(x)=f(y)Ng(x).

Observe that f < g = [ <ext 9 (Where f <o g means Vo € CI(E) f(z) C g(x)): take x = y in the
definition above.

3.4) Prove that f < ¢ if and only if f <e g and Vu € CI(E) Ay f <ext Aug-

Solution > Assume first that f < ¢ and let us prove that A, f <e& Aug (where u € CI(E)). Let
x € CI(E,) and assume that b € A, f(x) = f(zxUwu) \ f(x). Since f <o g we have b € g(z Uu). Assume
that b € g(z). Since f <g g we have f(x) = f(zx Uu)Ng(z) and hence b € f(z), contradiction. Hence
b e Ayg(x), which shows that A, f <ext Aug-

Assume conversely that [ <e g and Vu € CI(E) A, f <ext Aug and let us prove that f <q g. So let
z,2" € CI(E) be such that # C 2/, we must prove that f(z') Ng(z) C f(z) (the other inclusion results
from our assumption that f <e« g). Let b € f(2’) N g(x) and assume towards a contradiction that
b¢ f(x). Let u= 2"\ z, so that x € CI(E,). By our assumption b € f(z') \ f(z) = Auf(z) C Ayg(z)
(since Ay f <ext Ayg) and hence b ¢ g(x), contradiction. <

Remember that, if f : CI(E) — CI(F) is a stable function, one defines the trace Trf of f as the set of
all pairs (xg,b) where b € |Y| and z is minimal such that b € f(z¢) (and is therefore finite by continuity
of f). Remember also that, if (zq,b), (yo,b) € Trf satisfy xg Uyo € CI(E), then g = yo.

3.5) Let f:CI(E) — CI(F) be a stable function. Prove that

Tr(Auf) ={(yo \ v, 0) | (y0,0) € Trf, yoNu# 0 and yo Uu € CI(E)} .

Solution > Let (xo,b) € Tr(A.f) so that zg € Clgn(Ey), b € f(xoUu) \ f(zo) and xg minimal with
these properties. Since b € f(xo U u) there is a uniquely defined yo C 2o U u such that (yo,b) € Trf.
We cannot have yo C z since b ¢ f(z¢) and hence yo Nu # 0. Last yo Uu C xg Uu € CI(E) since
o € C|(Eu)

Conversely let (yo,b) € Trf be such that yo Nu # @ and yo Uu € CI(E). Let zg = yo \ u, we
have 2o € CI(E,) and b € f(yo) \ f(z0) by minimality of yo. Hence b € A, f(xg) since yo C xo U u.
We prove that xo is minimal with that property so let x, C xo be such that b € A, f(z{). We have
b e fyo) N flzygUu) and yo UziUu C zp Uu € CI(E) hence, by stability, b € f(yo N (x5 Uu)). By
minimality of yo we must have yo C z{, Uu and hence zo = yo \ v C (z{ Uu) \ u = z{ since zj Nu = (),
so xf, = x¢ which proves the minimality of xg. <



4) If F and F are coherence spaces, one says that E is a subspace of F and writes E C F if |E| C |F|
and

Va17a2€|E\ a1 g ag <~ a1 g ag.

Let Cohc be the class of all coherence spaces, equiped with this order relation C.
4.1) Prove that any monotone sequence of coherence spaces E; C Ey C FEs--- has a least upper
bound (a sup) in Cohc.

4.2) Let ® : Cohc — Cohc be defined by ®(E) = 1@ |E (where 1 is the coherence space which has
only one element in its web). Prove that ® is monotone and commutes with the least upper bounds of
monotone sequences of coherence spaces.

4.3) Prove that ® has a least fixpoint in Cohc, that we denote as L and call “object of lazy integers”.

4.4) Prove that one defines a function ¢ : N — CI(L) by setting: ¢(0) = {(1,*)} (where x is the
unique element of |1|) and p(n + 1) = {(2,u0) | uo C ¢(n) and uy finite}. Give the values of ¢(0), ¢(1)
and ¢(2).



