MPRI 2-2 TD 1 du 13/11/2018 (with solutions)

Thomas Ehrhard

A coherence space is a pair $E=\left(|E|, \varsigma_{E}\right)$ where $|E|$ is a set and $\frown_{E} \subseteq|E|^{2}$ is a reflexive and symmetric relation. Remember that $\frown_{E}=\frown_{E} \backslash\{(a, a)|a \in| E \mid\}$.

The set of cliques of E is $\operatorname{Cl}(E)=\left\{x \subseteq|E| \mid \forall a, a^{\prime} \in x a \frown_{E} a^{\prime}\right\}$. Equipped with the partial order relation $\subseteq, \mathrm{Cl}(E)$ is closed under directed unions ${ }^{1}$. Observe also that a subset of a clique is a clique, that all singletons are cliques and that \emptyset is a clique.

Let E and F be coherence spaces. A function $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ is stable is it is monotone, Scottcontinuous (that is, for all directed $D \subseteq \mathrm{Cl}(E)$, one has $f(\cup D)=\cup_{x \in D} f(x)$, or, equivalently $f(\cup D) \subseteq$ $\cup_{x \in D} f(x)$, since the converse inclusion holds by monotonicity of f) and conditionally multiplicative, that is

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cap y)=f(x) \cap f(y)
$$

or equivalently

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cap y) \supseteq f(x) \cap f(y)
$$

since the converse inclusion holds by monotonicity of f.
One says that f is linear if, moreover, $f(\emptyset)=\emptyset$ and $\forall x, y \in \mathrm{Cl}(E) x \cup y \in \mathrm{Cl}(E) \Rightarrow f(x \cup y)=$ $f(x) \cup f(y)$.

1) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$. Prove that f is linear if and only if the following property holds: for any family $\left(x_{i}\right)_{i \in I}$ of elements of $\mathrm{Cl}(E)$ (where I is finite or countable) such that $i \neq j \Rightarrow x_{i} \cap x_{j}=\emptyset$ and $\bigcup_{i \in I} x_{i} \in \mathrm{Cl}(E)$, the family $\left(f\left(x_{i}\right)\right)_{i \in I}$ satisfies the same properties (namely $i \neq j \Rightarrow f\left(x_{i}\right) \cap f\left(x_{j}\right)=\emptyset$ and $\left.\bigcup_{i \in I} f\left(x_{i}\right) \in \mathrm{Cl}(F)\right)$, and moreover $\bigcup_{i \in I} f\left(x_{i}\right)=f\left(\bigcup_{i \in I} x_{i}\right)$.

Solution \triangleright Assume first that f is linear. Let $\left(x_{i}\right)_{i \in I}$ be a family of elements of $\mathrm{Cl}(E)$ (where I is finite or countable) such that $i \neq j \Rightarrow x_{i} \cap x_{j}=\emptyset$ and $\bigcup_{i \in I} x_{i} \in \mathrm{Cl}(E)$. Let $i, j \in I$ and assume that $f\left(x_{i}\right) \cap f\left(x_{j}\right) \neq \emptyset$. Since $x_{i} \cup x_{j} \in \mathrm{Cl}(E)$ we have $f\left(x_{i}\right) \cap f\left(x_{j}\right)=f\left(x_{i} \cap x_{j}\right)$ because f is stable and hence $x_{i} \cap x_{j} \neq \emptyset$ since $f(\emptyset)=\emptyset$ by linearity. Therefore $i=j$. Since f is monotone we have $f\left(x_{i}\right) \subseteq f\left(\cup_{j \in J} x_{j}\right) \in \mathrm{Cl}(F)$ for all i and hence $\cup_{i \in I} f\left(x_{i}\right) \in \mathrm{Cl}(F)$. Last we must prove that $\cup_{i \in I} f\left(x_{i}\right)=f\left(\cup_{i \in I} x_{i}\right)$, that is $\cup_{i \in I} f\left(x_{i}\right) \supseteq f\left(\cup_{i \in I} x_{i}\right)$ since f is monotone. Let $b=f\left(\cup_{i \in I} x_{i}\right)$. Since f is continuous there is a finite clique $x_{0} \subseteq \cup_{i \in I} x_{i}$ such that $b \in f\left(x_{0}\right)$. Let $I_{0} \subseteq I$ be finite and such that $x_{0} \subseteq \cup_{i \in I_{0}} x_{i}$. We have $b \in f\left(\cup_{i \in I_{0}} x_{i}\right)$ by monotonicity and $f\left(\cup_{i \in I_{0}} x_{i}\right)=\cup_{i \in I_{0}} f\left(x_{i}\right)$ by linearity. Therefore $b \in \cup_{i \in I} f\left(x_{i}\right)$.

Conversely assume that $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ satisfies the stated property. Let $x, x^{\prime} \in \mathrm{Cl}(E)$ be such that $x \subseteq x^{\prime}$. By our assumtion we have $f\left(x^{\prime} \backslash x\right) \cap f(x)=\emptyset$ and $f\left(x^{\prime}\right)=f\left(x^{\prime} \backslash x\right) \cup f(x)$, hence $f(x) \subseteq f\left(x^{\prime}\right)$. Let $x \in \mathrm{Cl}(E)$, by our assumption we have $f(x)=f\left(\cup_{a \in x}\{a\}\right)=\cup_{a \in x} f(\{a\})$. So if $b \in f(x)$ there exists $a \in x$ such that $b \in f(\{a\})$ and hence f is continuous. Moreover there is only one such a (if a^{\prime} is another one we have $b \in f(\{a\}) \cap f\left(\left\{a^{\prime}\right\}\right)$ which is impossible since $\left.\{a\} \cap\left\{a^{\prime}\right\}=\emptyset\right)$. This shows that f is stable. Last let $x, x^{\prime} \in \mathrm{Cl}(E)$ be such that $x \cup x^{\prime} \in \mathrm{Cl}(E)$, we have to prove that $f(x) \cup f\left(x^{\prime}\right) \subseteq f\left(x \cup x^{\prime}\right)$ so let $b \in f(x) \cup f\left(x^{\prime}\right)=\cup_{a \in x \cup x^{\prime}} f(\{a\})$ so that there is $a \in x \cup x^{\prime}$ such that $b \in f(\{a\})$, hence $b \in f(x) \cup f\left(x^{\prime}\right)$ by monotonicity of f.
2) Let E_{1}, E_{2} and F be coherence spaces. A function $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is bilinear if it is separately linear, that is: for all $x_{1} \in \mathrm{Cl}\left(E_{1}\right)$ the function $\mathrm{Cl}\left(E_{2}\right) \rightarrow \mathrm{Cl}(F)$ which maps x_{2} to $f\left(x_{1}, x_{2}\right)$ is linear, and symmetrically (reversing the roles of E_{1} and E_{2}).
2.1) Prove that a bilinear function $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is stable from $\mathrm{Cl}\left(E_{1} \& E_{2}\right) \rightarrow \mathrm{Cl}(F)$ (identifying $\mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right)$ and $\mathrm{Cl}\left(E_{1} \& E_{2}\right)$, which are isomorphic posets). Give an example of a bilinear map which is not linear. And prove that the only linear map which is bilinear is the "empty map" (such that $f\left(x_{1}, x_{2}\right)=\emptyset$ for all $\left.x_{1}, x_{2}\right)$.

[^0]Solution \triangleright If $z \in \mathrm{Cl}\left(E_{1} \& E_{2}\right)$, we use z_{1} and z_{2} for its two projections so that $z=\{1\} \times z_{1} \cup\{2\} \times z_{2}=$ $\left(z_{1}, z_{2}\right)$ up to the identification of $\mathrm{Cl}\left(E_{1} \& E_{2}\right)$ with $\mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{2}\right)$. Let $f: \mathrm{Cl}\left(E_{1} \& E_{2}\right) \rightarrow \mathrm{Cl}(F)$ be bilinear. Let $z, z^{\prime} \in \mathrm{Cl}\left(E_{1} \& E_{2}\right)$ be such that $z \subseteq z^{\prime}$. We have $f(z)=f\left(z_{1}, z_{2}\right) \subseteq f\left(z_{1}^{\prime}, z_{2}\right) \subseteq f\left(z_{1}^{\prime}, z_{2}^{\prime}\right)=$ $f\left(z^{\prime}\right)$ so f is monotonic. If $D \subseteq \mathrm{Cl}\left(E_{1} \& E_{2}\right)$ is directed then the two projections $D_{i} \subseteq \mathrm{Cl}\left(E_{i}\right)$ are directed and $\cup D=\left(\cup D_{1}, \cup D_{2}\right)$. By bilinearity we have $f(\cup D)=f\left(\cup D_{1}, \cup D_{2}\right)=\cup_{x_{1} \in D_{1}} f\left(x_{1}, \cup D_{2}\right)=$ $\cup_{\left(x_{1}, x_{2}\right) \in D_{1} \times D_{2}} f\left(x_{1}, x_{2}\right)=\cup_{z \in D} f(z)$, this latter equation results from the fact that for any $\left(x_{1}, x_{2}\right) \in$ $D_{1} \times D_{2}$ there is $z \in D$ such that $x_{i} \subseteq z_{i}$ for $i=1,2$ because D is directed.

Now let $z, z^{\prime} \in \mathrm{Cl}\left(E_{1} \& E_{2}\right)$ be such that $z \subseteq z^{\prime}$, we have $f(z) \supseteq f\left(z_{1}, z_{2}^{\prime}\right) \cap f\left(z_{1}^{\prime}, z_{2}\right)$ (a property that we call (*) in the sequel). By separate linearity (using the first exercise of this sheet) we have $f\left(z_{1}, z_{2}^{\prime}\right) \cap f\left(z_{1}^{\prime}, z_{2}\right)=f\left(z_{1}, z_{2} \cup\left(z_{2}^{\prime} \backslash z_{2}\right)\right) \cap f\left(z_{1} \cup\left(z_{1}^{\prime} \backslash z_{1}\right), z_{2}\right)=\left(f\left(z_{1}, z_{2}\right) \cup f\left(z_{1}, z_{2}^{\prime} \backslash z_{2}\right)\right) \cap\left(f\left(z_{1}, z_{2}\right) \cup f\left(z_{1}^{\prime} \backslash\right.\right.$ $\left.\left.z_{1}, z_{2}\right)\right)=f\left(z_{1}, z_{2}\right) \cup\left(f\left(z_{1}, z_{2}^{\prime} \backslash z_{2}\right) \cap f\left(z_{1}^{\prime} \backslash z_{1}, z_{2}\right)\right)$ (since $f\left(z_{1}, z_{2}\right) \cap f\left(z_{1}, z_{2}^{\prime} \backslash z_{2}\right)=\emptyset$ by separate linearity). We have $f\left(z_{1}, z_{2}^{\prime} \backslash z_{2}\right) \cap f\left(z_{1}^{\prime} \backslash z_{1}, z_{2}\right) \subseteq\left(z_{1}^{\prime}, z_{2}^{\prime} \backslash z_{2}\right) \cap f\left(z_{1}^{\prime}, z_{2}\right)=\emptyset$ by separate linearity again. Consider now $z, z^{\prime} \in \mathrm{Cl}\left(E_{1} \& E_{2}\right)$ such that $z \cup z^{\prime} \in \mathrm{Cl}\left(E_{1} \& E_{2}\right)$. Observe first that $f(z)=f\left(z_{1} \cup z_{1}^{\prime}, z_{2}\right) \cap f\left(z_{1}, z_{2} \cup z_{2}^{\prime}\right)$ by Property (*). We have $f\left(z \cap z^{\prime}\right)=f\left(z_{1} \cap z_{1}^{\prime}, z_{2} \cap z_{2}^{\prime}\right)=f\left(z_{1}, z_{2} \cap z_{2}^{\prime}\right) \cap f\left(z_{1}^{\prime}, z_{2} \cap z_{2}^{\prime}\right)=f\left(z_{1}, z_{2}\right) \cap f\left(z_{1}, z_{2}^{\prime}\right) \cap$ $f\left(z_{1}^{\prime}, z_{2}\right) \cap f\left(z_{1}^{\prime}, z_{2}^{\prime}\right)=f\left(z_{1} \cup z_{1}^{\prime}, z_{2}\right) \cap f\left(z_{1}, z_{2} \cup z_{2}^{\prime}\right) \cap f\left(z_{1} \cup z_{1}^{\prime}, z_{2}^{\prime}\right) \cap f\left(z_{1}, z_{2} \cup z_{2}^{\prime}\right) \cap f\left(z_{1} \cup z_{1}^{\prime}, z_{2}\right) \cap f\left(z_{1}^{\prime}, z_{2} \cup\right.$ $\left.z_{2}^{\prime}\right) \cap f\left(z_{1}^{\prime} \cup z_{1}, z_{2}^{\prime}\right) \cap f\left(z_{1}^{\prime}, z_{2} \cup z_{2}^{\prime}\right)=f\left(z_{1}, z_{2} \cup z_{2}^{\prime}\right) \cap f\left(z_{1} \cup z_{1}^{\prime}, z_{2}\right) \cap f\left(z_{1}^{\prime}, z_{2} \cup z_{2}^{\prime}\right) \cap f\left(z_{1} \cup z_{1}^{\prime}, z_{2}^{\prime}\right)=f(z) \cap f\left(z^{\prime}\right)$ by Property (*) again.

Erratum: Contrarily to what I have claimed during the Nov. 13th session, it is no true that a Scott continuous $f: \mathrm{Cl}\left(E_{1} \& E_{2}\right) \rightarrow \mathrm{Cl}(F)$ which is separately stable is stable. Take indeed $E_{1}=E_{2}=F=1$ where 1 is the coherence space whose web is a singleton $\{*\}$. Take $f: \mathrm{Cl}(1) \times \mathrm{Cl}(1) \rightarrow \mathrm{Cl}(1)$ defined by $f(z)=\emptyset$ if $z=\emptyset$ and $f(z)=\{*\}$ otherwise. Then f is separately stable but not stable because $\{*\}=f(\{*\}, \emptyset) \cap f(\emptyset,\{*\})$ and $f((\{*\}, \emptyset) \cap(\emptyset,\{*\}))=f(\emptyset, \emptyset)=\emptyset$. The function f is a simplified version of the "parallel or" non stable function.
2.2) Check that the function $\tau: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{2}\right) \rightarrow \mathrm{Cl}\left(E_{1} \otimes E_{2}\right)$ such that $\tau\left(x_{1}, x_{2}\right)=x_{1} \otimes x_{2}=x_{1} \times x_{2}$ is bilinear.

Solution \triangleright This is straightforward. Observe that $\operatorname{Tr}(\tau)=\left\{\left(\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\},\left(a_{1}, a_{2}\right)\left|a_{i} \in\right| E_{i} \mid\right.\right.$ for $i=$ $1,2\}$.
2.3) Prove that if $f: \mathrm{Cl}\left(E_{1}\right) \times \mathrm{Cl}\left(E_{1}\right) \rightarrow \mathrm{Cl}(F)$ is bilinear then there is exactly one linear morphism $\tilde{f}: \mathrm{Cl}\left(E_{1} \otimes E_{2}\right) \rightarrow F$ such that $f=\tilde{f} \circ \tau$.

Solution \triangleright The trace $\operatorname{Tr}(f) \in \operatorname{Cl}\left(E_{1} \& E_{2} \multimap F\right)$ of f is the set of all $\left(z^{0}, b\right) \in \mathrm{Cl}_{\text {fin }}\left(E_{1} \& E_{2}\right) \times|F|$ such that $b \in f\left(z^{0}\right)$ and z^{0} is minimal with this property. Necessarily z^{0} has shape $\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}$ with $a_{i} \in\left|E_{i}\right|$: by bilinearity we have $f\left(z^{0}\right)=\cup_{a_{1} \in z_{1}^{0}} f\left(\left\{a_{1}\right\}, z_{2}^{0}\right)=\cup_{a_{1} \in z_{1}^{0}, a_{2} \in z_{2}^{0}} f\left(\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}\right)$ so if $b \in f\left(z^{0}\right)$ there is some $\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\} \subseteq z^{0}$ such that $b \in f\left(\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}\right)$ hence z^{0} must be \subseteq in one of these $\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}$. Written as a couple, a strict subset of $\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}$ is of shape $\left(\emptyset, z_{2}\right)$ or $\left(z_{1}, \emptyset\right)$ and therefore is mapped to \emptyset by f, by bilinearity. So if $\left(z^{0}, b\right) \in \operatorname{Tr}(f), z^{0}$ has shape $\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}$ (this shows btw. that there is no f which is at the same time linear and bilinear, apart from the completely undefined f such that $\operatorname{Tr}(f)=\emptyset$). Now we define \tilde{f} by its linear trace $\left\{\left(\left(a_{1}, a_{2}\right), b\right) \mid\left(\left\{\left(1, a_{1}\right),\left(2, a_{2}\right)\right\}, b\right) \in \operatorname{Tr} f\right\} \in \mathrm{Cl}\left(E_{1} \otimes E_{2} \multimap F\right)$.
3) Let E be a coherence space and let $u \in \mathrm{Cl}(E)$. One defines a coherence space E_{u} as follows: $\left|E_{u}\right|=\left\{a \in|E| \mid \forall b \in u a \frown_{E} b\right\}$ and $\frown_{E_{u}}=\frown_{E} \cap\left|E_{u}\right|^{2}$. Observe that $\mathrm{Cl}\left(E_{u}\right) \subseteq \mathrm{Cl}(E)$ and that, if $x \in \mathrm{Cl}\left(E_{u}\right)$ then $x \cap u=\emptyset$ and $x \cup u \in \mathrm{Cl}(E)$, which defines a linear map $\mathrm{Cl}\left(E_{1} \otimes E_{2}\right) \rightarrow \mathrm{Cl}(F)$ that we also denote as \tilde{f}.

Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a monotone and Scott-continuous function. Given $u \in \mathrm{Cl}(E)$ one defines a function $\Delta_{u} f: \mathrm{Cl}\left(E_{u}\right) \rightarrow \mathrm{Cl}(F)$ by $\Delta_{u} f(x)=f(x \cup u) \backslash f(x)$.
3.1) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a stable function. Compute $\Delta_{u} f$ when f is constant, and when f is linear (that is $f(\emptyset)=\emptyset$ and $f(x \cup y)=f(x) \cup f(y)$ if $x, y \in \mathrm{Cl}(E)$ satisfy $x \cup y \in \mathrm{Cl}(E))$.
Solution \triangleright Let $x \in \mathrm{Cl}\left(E_{u}\right)$. If f is constant then $\Delta_{u} f(x)=\emptyset$. If f is linear then $\Delta_{u} f(x)=f(x \cup u) \backslash$ $f(x)=(f(x) \cup f(u)) \backslash f(x)=f(u)$ because $f(x) \cap f(u)=f(x \cap u)=f(\emptyset)=\emptyset$.
3.2) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a monotone and Scott-continuous function. Prove that if $\Delta_{u} f$ is monotone for all $u \in \mathrm{Cl}(E)$, then f is stable.

Solution \triangleright Let $x, x^{\prime} \in \mathrm{Cl}(E)$ be such that $x \cup x^{\prime} \in \mathrm{Cl}(E)$, we must prove that $f(x) \cap f\left(x^{\prime}\right) \subseteq f\left(x \cap x^{\prime}\right)$. Let $b \in f(x) \cap f\left(x^{\prime}\right)$ and assume that $b \notin f\left(x \cap x^{\prime}\right)$. Let $u=x \backslash\left(x \cap x^{\prime}\right)$, then $x^{\prime} \cap u=\emptyset$ and hence $x^{\prime} \in \mathrm{Cl}\left(E_{u}\right)$, so we have $\Delta_{u} f\left(x \cap x^{\prime}\right) \subseteq \Delta_{u} f\left(x^{\prime}\right)$. By our assumption $b \in \Delta_{u} f\left(x \cap x^{\prime}\right)$ since $\left(x \cap x^{\prime}\right) \cup u=x$ and hence $b \in \Delta_{u} f\left(x^{\prime}\right)=f\left(x^{\prime} \cup u\right) \backslash f\left(x^{\prime}\right)$ which implies $b \notin f\left(x^{\prime}\right)$, contradiction.
3.3) Conversely, prove that, if f is stable, then $\Delta_{u} f$ is stable for all $u \in \mathrm{Cl}(E)$. In particular, f is stable if and only if $\Delta_{u} f$ is monotone for all $u \in \mathrm{Cl}(E)$.
Solution \triangleright Let $u \in \mathrm{Cl}(E)$. Let us first prove that $\Delta_{u} f$ is monotone so let $x, x^{\prime} \in \mathrm{Cl}\left(E_{u}\right)$ be such that $x \subseteq x^{\prime}$. Let $b \in \Delta_{u} f(x)=f(x \cup u) \backslash f(x)$. By monotonicity of f we have $b \in f\left(x^{\prime} \cup u\right)$. Il $b \in f\left(x^{\prime}\right)$ then $b \in f(x \cup u) \cap f\left(x^{\prime}\right)=f\left((x \cup u) \cap x^{\prime}\right)$ by stability (observe indeed that $x \cup u \cup x^{\prime} \subseteq u \cup x^{\prime} \in \mathrm{Cl}(E)$) and this is impossible because $(x \cup u) \cap x^{\prime}=x$ and $b \in \Delta_{u} f(x)$. So $b \in f\left(x^{\prime} \cup u\right) \backslash f\left(x^{\prime}\right)=\Delta_{u} f\left(x^{\prime}\right)$.

Now we prove that $\Delta_{u} f$ is continuous, so let $x \in \mathrm{Cl}\left(E_{u}\right)$ and let $b \in \Delta_{u} f(x)=f(x \cup u) \backslash f(x)$. Since f is continuous there is a finite clique $x_{1} \subseteq x \cup u$ such that $b \in f\left(x_{1}\right)$. Let $x_{0}=x \cap x_{1} \in \mathrm{Cl}\left(E_{u}\right)$. We have $b \in f\left(x_{1}\right) \subseteq f\left(x_{0} \cup u\right)$ by monotonicity of f, and for the same reason $b \notin f\left(x_{0}\right)$ since we know that $b \notin f(x)$. Hence $b \in \Delta_{u} f\left(x_{0}\right)$.

Last we prove that $\Delta_{u} f$ is conditionally multiplicative, so let $x, x^{\prime} \in \mathrm{Cl}\left(E_{u}\right)$ be such that $x \cup x^{\prime} \in$ $\mathrm{Cl}\left(E_{u}\right)$ (equivalently $x \cup x^{\prime} \in \mathrm{Cl}(E)$ by definition of the coherence space E_{u}). We must prove that $\Delta_{u} f(x) \cap \Delta_{u} f\left(x^{\prime}\right) \subseteq \Delta_{u} f\left(x \cap x^{\prime}\right)$, so let $b \in \Delta_{u} f(x) \cap \Delta_{u} f\left(x^{\prime}\right)$. This implies $b \in f(x \cup u) \cap f\left(x^{\prime} \cup u\right)$. But we have $(x \cup u) \cup\left(x^{\prime} \cup u\right)=x \cup x^{\prime} \cup u \in \mathrm{Cl}(E)$ by our assumption on x and x^{\prime}, and hence $b \in f\left((x \cup u) \cap\left(x^{\prime} \cup u\right)\right)=f\left(\left(x \cap x^{\prime}\right) \cup u\right)$ by stability of f. Since $b \in \Delta_{u} f(x)$, we know moreover that $b \notin f(x)$ and hence $b \notin f\left(x \cap x^{\prime}\right)$ by monotonicity of f, hence $b \notin f\left(x \cap x^{\prime}\right)$. So we have $b \in \Delta_{u} f\left(x \cap x^{\prime}\right)$. \triangleleft

Let $f, g: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be stable functions. One says that f is stably less than g (notation $f \leq_{\text {st }} g$) if

$$
\forall x, y \in \mathrm{Cl}(E) \quad x \subseteq y \Rightarrow f(x)=f(y) \cap g(x) .
$$

Observe that $f \leq_{\text {st }} g \Rightarrow f \leq_{\text {ext }} g$ (where $f \leq_{\text {ext }} g$ means $\forall x \in \operatorname{Cl}(E) f(x) \subseteq g(x)$): take $x=y$ in the definition above.
3.4) Prove that $f \leq_{\text {st }} g$ if and only if $f \leq_{\text {ext }} g$ and $\forall u \in \operatorname{Cl}(E) \Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$.

Solution \triangleright Assume first that $f \leq_{\text {st }} g$ and let us prove that $\Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$ (where $u \in \mathrm{Cl}(E)$). Let $x \in \mathrm{Cl}\left(E_{u}\right)$ and assume that $b \in \Delta_{u} f(x)=f(x \cup u) \backslash f(x)$. Since $f \leq_{\text {ext }} g$ we have $b \in g(x \cup u)$. Assume that $b \in g(x)$. Since $f \leq_{\text {st }} g$ we have $f(x)=f(x \cup u) \cap g(x)$ and hence $b \in f(x)$, contradiction. Hence $b \in \Delta_{u} g(x)$, which shows that $\Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$.

Assume conversely that $f \leq_{\text {ext }} g$ and $\forall u \in \mathrm{Cl}(E) \Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$ and let us prove that $f \leq_{\text {st }} g$. So let $x, x^{\prime} \in \mathrm{Cl}(E)$ be such that $x \subseteq x^{\prime}$, we must prove that $f\left(x^{\prime}\right) \cap g(x) \subseteq f(x)$ (the other inclusion results from our assumption that $f \leq_{\text {ext }} g$). Let $b \in f\left(x^{\prime}\right) \cap g(x)$ and assume towards a contradiction that $b \notin f(x)$. Let $u=x^{\prime} \backslash x$, so that $x \in \mathrm{Cl}\left(E_{u}\right)$. By our assumption $b \in f\left(x^{\prime}\right) \backslash f(x)=\Delta_{u} f(x) \subseteq \Delta_{u} g(x)$ (since $\Delta_{u} f \leq_{\text {ext }} \Delta_{u} g$) and hence $b \notin g(x)$, contradiction.

Remember that, if $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ is a stable function, one defines the trace $\operatorname{Tr} f$ of f as the set of all pairs $\left(x_{0}, b\right)$ where $b \in|Y|$ and x_{0} is minimal such that $b \in f\left(x_{0}\right)$ (and is therefore finite by continuity of f). Remember also that, if $\left(x_{0}, b\right),\left(y_{0}, b\right) \in \operatorname{Tr} f$ satisfy $x_{0} \cup y_{0} \in \mathrm{Cl}(E)$, then $x_{0}=y_{0}$.
3.5) Let $f: \mathrm{Cl}(E) \rightarrow \mathrm{Cl}(F)$ be a stable function. Prove that

$$
\operatorname{Tr}\left(\Delta_{u} f\right)=\left\{\left(y_{0} \backslash u, b\right) \mid\left(y_{0}, b\right) \in \operatorname{Tr} f, y_{0} \cap u \neq \emptyset \text { and } y_{0} \cup u \in \operatorname{Cl}(E)\right\} .
$$

Solution \triangleright Let $\left(x_{0}, b\right) \in \operatorname{Tr}\left(\Delta_{u} f\right)$ so that $x_{0} \in \mathrm{Cl}_{\text {fin }}\left(E_{u}\right), b \in f\left(x_{0} \cup u\right) \backslash f\left(x_{0}\right)$ and x_{0} minimal with these properties. Since $b \in f\left(x_{0} \cup u\right)$ there is a uniquely defined $y_{0} \subseteq x_{0} \cup u$ such that $\left(y_{0}, b\right) \in \operatorname{Tr} f$. We cannot have $y_{0} \subseteq x_{0}$ since $b \notin f\left(x_{0}\right)$ and hence $y_{0} \cap u \neq \emptyset$. Last $y_{0} \cup u \subseteq x_{0} \cup u \in \mathrm{Cl}(E)$ since $x_{0} \in \mathrm{Cl}\left(E_{u}\right)$.

Conversely let $\left(y_{0}, b\right) \in \operatorname{Tr} f$ be such that $y_{0} \cap u \neq \emptyset$ and $y_{0} \cup u \in \operatorname{Cl}(E)$. Let $x_{0}=y_{0} \backslash u$, we have $x_{0} \in \mathrm{Cl}\left(E_{u}\right)$ and $b \in f\left(y_{0}\right) \backslash f\left(x_{0}\right)$ by minimality of y_{0}. Hence $b \in \Delta_{u} f\left(x_{0}\right)$ since $y_{0} \subseteq x_{0} \cup u$. We prove that x_{0} is minimal with that property so let $x_{0}^{\prime} \subseteq x_{0}$ be such that $b \in \Delta_{u} f\left(x_{0}^{\prime}\right)$. We have $b \in f\left(y_{0}\right) \cap f\left(x_{0}^{\prime} \cup u\right)$ and $y_{0} \cup x_{0}^{\prime} \cup u \subseteq x_{0} \cup u \in \mathrm{Cl}(E)$ hence, by stability, $b \in f\left(y_{0} \cap\left(x_{0}^{\prime} \cup u\right)\right)$. By minimality of y_{0} we must have $y_{0} \subseteq x_{0}^{\prime} \cup u$ and hence $x_{0}=y_{0} \backslash u \subseteq\left(x_{0}^{\prime} \cup u\right) \backslash u=x_{0}^{\prime}$ since $x_{0}^{\prime} \cap u=\emptyset$, so $x_{0}^{\prime}=x_{0}$ which proves the minimality of x_{0}.
4) If E and F are coherence spaces, one says that E is a subspace of F and writes $E \subseteq F$ if $|E| \subseteq|F|$ and

$$
\forall a_{1}, a_{2} \in|E| \quad a_{1} \frown_{E} a_{2} \Leftrightarrow a_{1} \frown_{F} a_{2} .
$$

Let $\mathbf{C o h}_{\subseteq}$ be the class of all coherence spaces, equiped with this order relation \subseteq.
4.1) Prove that any monotone sequence of coherence spaces $E_{1} \subseteq E_{2} \subseteq E_{3} \cdots$ has a least upper bound (a sup) in $\mathbf{C o h}_{\subseteq}$.
4.2) Let $\Phi: \mathbf{C o h}_{\subseteq} \rightarrow \mathbf{C o h}_{\subseteq}$ be defined by $\Phi(E)=1 \oplus!E$ (where 1 is the coherence space which has only one element in its web). Prove that Φ is monotone and commutes with the least upper bounds of monotone sequences of coherence spaces.
4.3) Prove that Φ has a least fixpoint in $\mathbf{C o h}_{\subseteq}$, that we denote as L and call "object of lazy integers".
4.4) Prove that one defines a function $\varphi: \mathbb{N} \rightarrow \mathrm{Cl}(\mathrm{L})$ by setting: $\varphi(0)=\{(1, *)\}$ (where $*$ is the unique element of $|1|)$ and $\varphi(n+1)=\left\{\left(2, u_{0}\right) \mid u_{0} \subseteq \varphi(n)\right.$ and u_{0} finite $\}$. Give the values of $\varphi(0), \varphi(1)$ and $\varphi(2)$.

[^0]: ${ }^{1}$ Unions filtrantes en français

