
MPRI 2�2 TD 1 du 13/11/2018 (with solutions)

Thomas Ehrhard

A coherence space is a pair E = (|E|,¨E) where |E| is a set and ¨E ⊆ |E|2 is a re�exive and
symmetric relation. Remember that ˝E = ¨E \ {(a, a) | a ∈ |E|}.

The set of cliques of E is Cl(E) = {x ⊆ |E| | ∀a, a′ ∈ x a ¨E a′}. Equipped with the partial order
relation ⊆, Cl(E) is closed under directed unions1. Observe also that a subset of a clique is a clique, that
all singletons are cliques and that ∅ is a clique.

Let E and F be coherence spaces. A function f : Cl(E) → Cl(F ) is stable is it is monotone, Scott-
continuous (that is, for all directed D ⊆ Cl(E), one has f(∪D) = ∪x∈Df(x), or, equivalently f(∪D) ⊆
∪x∈Df(x), since the converse inclusion holds by monotonicity of f) and conditionally multiplicative, that
is

∀x, y ∈ Cl(E) x ∪ y ∈ Cl(E)⇒ f(x ∩ y) = f(x) ∩ f(y)

or equivalently

∀x, y ∈ Cl(E) x ∪ y ∈ Cl(E)⇒ f(x ∩ y) ⊇ f(x) ∩ f(y)

since the converse inclusion holds by monotonicity of f .
One says that f is linear if, moreover, f(∅) = ∅ and ∀x, y ∈ Cl(E) x ∪ y ∈ Cl(E) ⇒ f(x ∪ y) =

f(x) ∪ f(y).

1) Let f : Cl(E) → Cl(F ). Prove that f is linear if and only if the following property holds: for any
family (xi)i∈I of elements of Cl(E) (where I is �nite or countable) such that i 6= j ⇒ xi ∩ xj = ∅ and⋃

i∈I xi ∈ Cl(E), the family (f(xi))i∈I satis�es the same properties (namely i 6= j ⇒ f(xi) ∩ f(xj) = ∅
and

⋃
i∈I f(xi) ∈ Cl(F )), and moreover

⋃
i∈I f(xi) = f(

⋃
i∈I xi).

Solution � Assume �rst that f is linear. Let (xi)i∈I be a family of elements of Cl(E) (where I is
�nite or countable) such that i 6= j ⇒ xi ∩ xj = ∅ and

⋃
i∈I xi ∈ Cl(E). Let i, j ∈ I and assume

that f(xi) ∩ f(xj) 6= ∅. Since xi ∪ xj ∈ Cl(E) we have f(xi) ∩ f(xj) = f(xi ∩ xj) because f is
stable and hence xi ∩ xj 6= ∅ since f(∅) = ∅ by linearity. Therefore i = j. Since f is monotone we
have f(xi) ⊆ f(∪j∈Jxj) ∈ Cl(F ) for all i and hence ∪i∈If(xi) ∈ Cl(F ). Last we must prove that
∪i∈If(xi) = f(∪i∈Ixi), that is ∪i∈If(xi) ⊇ f(∪i∈Ixi) since f is monotone. Let b = f(∪i∈Ixi). Since
f is continuous there is a �nite clique x0 ⊆ ∪i∈Ixi such that b ∈ f(x0). Let I0 ⊆ I be �nite and such
that x0 ⊆ ∪i∈I0xi. We have b ∈ f(∪i∈I0xi) by monotonicity and f(∪i∈I0xi) = ∪i∈I0f(xi) by linearity.
Therefore b ∈ ∪i∈If(xi).

Conversely assume that f : Cl(E)→ Cl(F ) satis�es the stated property. Let x, x′ ∈ Cl(E) be such that
x ⊆ x′. By our assumtion we have f(x′ \ x)∩ f(x) = ∅ and f(x′) = f(x′ \ x)∪ f(x), hence f(x) ⊆ f(x′).
Let x ∈ Cl(E), by our assumption we have f(x) = f(∪a∈x{a}) = ∪a∈xf({a}). So if b ∈ f(x) there exists
a ∈ x such that b ∈ f({a}) and hence f is continuous. Moreover there is only one such a (if a′ is another
one we have b ∈ f({a}) ∩ f({a′}) which is impossible since {a} ∩ {a′} = ∅). This shows that f is stable.
Last let x, x′ ∈ Cl(E) be such that x ∪ x′ ∈ Cl(E), we have to prove that f(x) ∪ f(x′) ⊆ f(x ∪ x′) so let
b ∈ f(x)∪ f(x′) = ∪a∈x∪x′f({a}) so that there is a ∈ x∪ x′ such that b ∈ f({a}), hence b ∈ f(x)∪ f(x′)
by monotonicity of f . �

2) Let E1, E2 and F be coherence spaces. A function f : Cl(E1)× Cl(E1)→ Cl(F ) is bilinear if it is
separately linear, that is: for all x1 ∈ Cl(E1) the function Cl(E2)→ Cl(F ) which maps x2 to f(x1, x2) is
linear, and symmetrically (reversing the roles of E1 and E2).

2.1) Prove that a bilinear function f : Cl(E1)× Cl(E1)→ Cl(F ) is stable from Cl(E1 & E2)→ Cl(F )
(identifying Cl(E1) × Cl(E1) and Cl(E1 & E2), which are isomorphic posets). Give an example of a
bilinear map which is not linear. And prove that the only linear map which is bilinear is the �empty
map� (such that f(x1, x2) = ∅ for all x1, x2).

1Unions �ltrantes en français



Solution � If z ∈ Cl(E1 & E2), we use z1 and z2 for its two projections so that z = {1}×z1∪{2}×z2 =
(z1, z2) up to the identi�cation of Cl(E1 & E2) with Cl(E1) × Cl(E2). Let f : Cl(E1 & E2) → Cl(F ) be
bilinear. Let z, z′ ∈ Cl(E1 & E2) be such that z ⊆ z′. We have f(z) = f(z1, z2) ⊆ f(z′1, z2) ⊆ f(z′1, z

′
2) =

f(z′) so f is monotonic. If D ⊆ Cl(E1 & E2) is directed then the two projections Di ⊆ Cl(Ei) are
directed and ∪D = (∪D1,∪D2). By bilinearity we have f(∪D) = f(∪D1,∪D2) = ∪x1∈D1f(x1,∪D2) =
∪(x1,x2)∈D1×D2

f(x1, x2) = ∪z∈Df(z), this latter equation results from the fact that for any (x1, x2) ∈
D1 ×D2 there is z ∈ D such that xi ⊆ zi for i = 1, 2 because D is directed.

Now let z, z′ ∈ Cl(E1 & E2) be such that z ⊆ z′, we have f(z) ⊇ f(z1, z
′
2) ∩ f(z′1, z2) (a property

that we call (*) in the sequel). By separate linearity (using the �rst exercise of this sheet) we have
f(z1, z

′
2)∩f(z′1, z2) = f(z1, z2∪(z′2\z2))∩f(z1∪(z′1\z1), z2) = (f(z1, z2)∪f(z1, z

′
2\z2))∩(f(z1, z2)∪f(z′1\

z1, z2)) = f(z1, z2)∪(f(z1, z
′
2\z2)∩f(z′1\z1, z2)) (since f(z1, z2)∩f(z1, z

′
2\z2) = ∅ by separate linearity).

We have f(z1, z
′
2\z2)∩f(z′1\z1, z2) ⊆ (z′1, z

′
2\z2)∩f(z′1, z2) = ∅ by separate linearity again. Consider now

z, z′ ∈ Cl(E1 & E2) such that z∪z′ ∈ Cl(E1 & E2). Observe �rst that f(z) = f(z1∪z′1, z2)∩f(z1, z2∪z′2)
by Property (*). We have f(z∩z′) = f(z1∩z′1, z2∩z′2) = f(z1, z2∩z′2)∩f(z′1, z2∩z′2) = f(z1, z2)∩f(z1, z

′
2)∩

f(z′1, z2)∩f(z′1, z
′
2) = f(z1∪z′1, z2)∩f(z1, z2∪z′2)∩f(z1∪z′1, z′2)∩f(z1, z2∪z′2)∩f(z1∪z′1, z2)∩f(z′1, z2∪

z′2)∩f(z′1∪z1, z′2)∩f(z′1, z2∪z′2) = f(z1, z2∪z′2)∩f(z1∪z′1, z2)∩f(z′1, z2∪z′2)∩f(z1∪z′1, z′2) = f(z)∩f(z′)
by Property (*) again.

Erratum: Contrarily to what I have claimed during the Nov. 13th session, it is no true that a Scott
continuous f : Cl(E1 & E2)→ Cl(F ) which is separately stable is stable. Take indeed E1 = E2 = F = 1
where 1 is the coherence space whose web is a singleton {∗}. Take f : Cl(1) × Cl(1) → Cl(1) de�ned
by f(z) = ∅ if z = ∅ and f(z) = {∗} otherwise. Then f is separately stable but not stable because
{∗} = f({∗}, ∅)∩ f(∅, {∗}) and f(({∗}, ∅)∩ (∅, {∗})) = f(∅, ∅) = ∅. The function f is a simpli�ed version
of the �parallel or� non stable function.

2.2) Check that the function τ : Cl(E1)×Cl(E2)→ Cl(E1 ⊗ E2) such that τ(x1, x2) = x1⊗x2 = x1×x2
is bilinear.

Solution � This is straightforward. Observe that Tr(τ) = {({(1, a1), (2, a2)}, (a1, a2) | ai ∈ |Ei| for i =
1, 2}. �

2.3) Prove that if f : Cl(E1) × Cl(E1) → Cl(F ) is bilinear then there is exactly one linear morphism
f̃ : Cl(E1 ⊗ E2)→ F such that f = f̃ ◦ τ .

Solution � The trace Tr(f) ∈ Cl(E1 & E2 ( F ) of f is the set of all (z0, b) ∈ Clfin(E1 & E2) × |F |
such that b ∈ f(z0) and z0 is minimal with this property. Necessarily z0 has shape {(1, a1), (2, a2)}
with ai ∈ |Ei|: by bilinearity we have f(z0) = ∪a1∈z0

1
f({a1}, z02) = ∪a1∈z0

1 ,a2∈z0
2
f({(1, a1), (2, a2)}) so

if b ∈ f(z0) there is some {(1, a1), (2, a2)} ⊆ z0 such that b ∈ f({(1, a1), (2, a2)}) hence z0 must be
⊆ in one of these {(1, a1), (2, a2)}. Written as a couple, a strict subset of {(1, a1), (2, a2)} is of shape
(∅, z2) or (z1, ∅) and therefore is mapped to ∅ by f , by bilinearity. So if (z0, b) ∈ Tr(f), z0 has shape
{(1, a1), (2, a2)} (this shows btw. that there is no f which is at the same time linear and bilinear,
apart from the completely unde�ned f such that Tr(f) = ∅). Now we de�ne f̃ by its linear trace
{((a1, a2), b) | ({(1, a1), (2, a2)}, b) ∈ Trf} ∈ Cl(E1 ⊗ E2 ( F ). �

3) Let E be a coherence space and let u ∈ Cl(E). One de�nes a coherence space Eu as follows:
|Eu| = {a ∈ |E| | ∀b ∈ u a ˝E b} and ¨Eu

= ¨E ∩ |Eu|2. Observe that Cl(Eu) ⊆ Cl(E) and that, if
x ∈ Cl(Eu) then x ∩ u = ∅ and x ∪ u ∈ Cl(E), which de�nes a linear map Cl(E1 ⊗ E2)→ Cl(F ) that we
also denote as f̃ .

Let f : Cl(E)→ Cl(F ) be a monotone and Scott-continuous function. Given u ∈ Cl(E) one de�nes a
function ∆uf : Cl(Eu)→ Cl(F ) by ∆uf(x) = f(x ∪ u) \ f(x).

3.1) Let f : Cl(E) → Cl(F ) be a stable function. Compute ∆uf when f is constant, and when f is
linear (that is f(∅) = ∅ and f(x ∪ y) = f(x) ∪ f(y) if x, y ∈ Cl(E) satisfy x ∪ y ∈ Cl(E)).

Solution � Let x ∈ Cl(Eu). If f is constant then ∆uf(x) = ∅. If f is linear then ∆uf(x) = f(x ∪ u) \
f(x) = (f(x) ∪ f(u)) \ f(x) = f(u) because f(x) ∩ f(u) = f(x ∩ u) = f(∅) = ∅. �

3.2) Let f : Cl(E) → Cl(F ) be a monotone and Scott-continuous function. Prove that if ∆uf is
monotone for all u ∈ Cl(E), then f is stable.



Solution � Let x, x′ ∈ Cl(E) be such that x∪ x′ ∈ Cl(E), we must prove that f(x)∩ f(x′) ⊆ f(x∩ x′).
Let b ∈ f(x) ∩ f(x′) and assume that b /∈ f(x ∩ x′). Let u = x \ (x ∩ x′), then x′ ∩ u = ∅ and hence
x′ ∈ Cl(Eu), so we have ∆uf(x∩x′) ⊆ ∆uf(x′). By our assumption b ∈ ∆uf(x∩x′) since (x∩x′)∪u = x
and hence b ∈ ∆uf(x′) = f(x′ ∪ u) \ f(x′) which implies b /∈ f(x′), contradiction. �

3.3) Conversely, prove that, if f is stable, then ∆uf is stable for all u ∈ Cl(E). In particular, f is
stable if and only if ∆uf is monotone for all u ∈ Cl(E).

Solution � Let u ∈ Cl(E). Let us �rst prove that ∆uf is monotone so let x, x′ ∈ Cl(Eu) be such that
x ⊆ x′. Let b ∈ ∆uf(x) = f(x∪ u) \ f(x). By monotonicity of f we have b ∈ f(x′ ∪ u). Il b ∈ f(x′) then
b ∈ f(x ∪ u) ∩ f(x′) = f((x ∪ u) ∩ x′) by stability (observe indeed that x ∪ u ∪ x′ ⊆ u ∪ x′ ∈ Cl(E)) and
this is impossible because (x ∪ u) ∩ x′ = x and b ∈ ∆uf(x). So b ∈ f(x′ ∪ u) \ f(x′) = ∆uf(x′).

Now we prove that ∆uf is continuous, so let x ∈ Cl(Eu) and let b ∈ ∆uf(x) = f(x∪ u) \ f(x). Since
f is continuous there is a �nite clique x1 ⊆ x ∪ u such that b ∈ f(x1). Let x0 = x ∩ x1 ∈ Cl(Eu). We
have b ∈ f(x1) ⊆ f(x0 ∪ u) by monotonicity of f , and for the same reason b /∈ f(x0) since we know that
b /∈ f(x). Hence b ∈ ∆uf(x0).

Last we prove that ∆uf is conditionally multiplicative, so let x, x′ ∈ Cl(Eu) be such that x ∪ x′ ∈
Cl(Eu) (equivalently x ∪ x′ ∈ Cl(E) by de�nition of the coherence space Eu). We must prove that
∆uf(x) ∩∆uf(x′) ⊆ ∆uf(x ∩ x′), so let b ∈ ∆uf(x) ∩∆uf(x′). This implies b ∈ f(x ∪ u) ∩ f(x′ ∪ u).
But we have (x ∪ u) ∪ (x′ ∪ u) = x ∪ x′ ∪ u ∈ Cl(E) by our assumption on x and x′, and hence
b ∈ f((x ∪ u) ∩ (x′ ∪ u)) = f((x ∩ x′) ∪ u) by stability of f . Since b ∈ ∆uf(x), we know moreover that
b /∈ f(x) and hence b /∈ f(x∩ x′) by monotonicity of f , hence b /∈ f(x∩ x′). So we have b ∈ ∆uf(x∩ x′).
�

Let f, g : Cl(E)→ Cl(F ) be stable functions. One says that f is stably less than g (notation f ≤st g)
if

∀x, y ∈ Cl(E) x ⊆ y ⇒ f(x) = f(y) ∩ g(x) .

Observe that f ≤st g ⇒ f ≤ext g (where f ≤ext g means ∀x ∈ Cl(E) f(x) ⊆ g(x)): take x = y in the
de�nition above.

3.4) Prove that f ≤st g if and only if f ≤ext g and ∀u ∈ Cl(E) ∆uf ≤ext ∆ug.

Solution � Assume �rst that f ≤st g and let us prove that ∆uf ≤ext ∆ug (where u ∈ Cl(E)). Let
x ∈ Cl(Eu) and assume that b ∈ ∆uf(x) = f(x∪ u) \ f(x). Since f ≤ext g we have b ∈ g(x∪ u). Assume
that b ∈ g(x). Since f ≤st g we have f(x) = f(x ∪ u) ∩ g(x) and hence b ∈ f(x), contradiction. Hence
b ∈ ∆ug(x), which shows that ∆uf ≤ext ∆ug.

Assume conversely that f ≤ext g and ∀u ∈ Cl(E) ∆uf ≤ext ∆ug and let us prove that f ≤st g. So let
x, x′ ∈ Cl(E) be such that x ⊆ x′, we must prove that f(x′) ∩ g(x) ⊆ f(x) (the other inclusion results
from our assumption that f ≤ext g). Let b ∈ f(x′) ∩ g(x) and assume towards a contradiction that
b /∈ f(x). Let u = x′ \ x, so that x ∈ Cl(Eu). By our assumption b ∈ f(x′) \ f(x) = ∆uf(x) ⊆ ∆ug(x)
(since ∆uf ≤ext ∆ug) and hence b /∈ g(x), contradiction. �

Remember that, if f : Cl(E)→ Cl(F ) is a stable function, one de�nes the trace Trf of f as the set of
all pairs (x0, b) where b ∈ |Y | and x0 is minimal such that b ∈ f(x0) (and is therefore �nite by continuity
of f). Remember also that, if (x0, b), (y0, b) ∈ Trf satisfy x0 ∪ y0 ∈ Cl(E), then x0 = y0.

3.5) Let f : Cl(E)→ Cl(F ) be a stable function. Prove that

Tr(∆uf) = {(y0 \ u, b) | (y0, b) ∈ Trf, y0 ∩ u 6= ∅ and y0 ∪ u ∈ Cl(E)} .
Solution � Let (x0, b) ∈ Tr(∆uf) so that x0 ∈ Clfin(Eu), b ∈ f(x0 ∪ u) \ f(x0) and x0 minimal with
these properties. Since b ∈ f(x0 ∪ u) there is a uniquely de�ned y0 ⊆ x0 ∪ u such that (y0, b) ∈ Trf .
We cannot have y0 ⊆ x0 since b /∈ f(x0) and hence y0 ∩ u 6= ∅. Last y0 ∪ u ⊆ x0 ∪ u ∈ Cl(E) since
x0 ∈ Cl(Eu).

Conversely let (y0, b) ∈ Trf be such that y0 ∩ u 6= ∅ and y0 ∪ u ∈ Cl(E). Let x0 = y0 \ u, we
have x0 ∈ Cl(Eu) and b ∈ f(y0) \ f(x0) by minimality of y0. Hence b ∈ ∆uf(x0) since y0 ⊆ x0 ∪ u.
We prove that x0 is minimal with that property so let x′0 ⊆ x0 be such that b ∈ ∆uf(x′0). We have
b ∈ f(y0) ∩ f(x′0 ∪ u) and y0 ∪ x′0 ∪ u ⊆ x0 ∪ u ∈ Cl(E) hence, by stability, b ∈ f(y0 ∩ (x′0 ∪ u)). By
minimality of y0 we must have y0 ⊆ x′0 ∪ u and hence x0 = y0 \ u ⊆ (x′0 ∪ u) \ u = x′0 since x′0 ∩ u = ∅,
so x′0 = x0 which proves the minimality of x0. �



4) If E and F are coherence spaces, one says that E is a subspace of F and writes E ⊆ F if |E| ⊆ |F |
and

∀a1, a2 ∈ |E| a1 ¨E a2 ⇔ a1 ¨F a2 .

Let Coh⊆ be the class of all coherence spaces, equiped with this order relation ⊆.
4.1) Prove that any monotone sequence of coherence spaces E1 ⊆ E2 ⊆ E3 · · · has a least upper

bound (a sup) in Coh⊆.

4.2) Let Φ : Coh⊆ → Coh⊆ be de�ned by Φ(E) = 1⊕ !E (where 1 is the coherence space which has
only one element in its web). Prove that Φ is monotone and commutes with the least upper bounds of
monotone sequences of coherence spaces.

4.3) Prove that Φ has a least �xpoint in Coh⊆, that we denote as L and call �object of lazy integers�.

4.4) Prove that one de�nes a function ϕ : N → Cl(L) by setting: ϕ(0) = {(1, ∗)} (where ∗ is the
unique element of |1|) and ϕ(n+ 1) = {(2, u0) | u0 ⊆ ϕ(n) and u0 �nite}. Give the values of ϕ(0), ϕ(1)
and ϕ(2).


