1) Let us say that a PCS is a distribution space if $\mathrm{P}(X)=\left\{u \in \mathbb{R}_{\geq 0}^{|X|} \mid \sum_{a \in|X|} u_{a} \leq 1\right\}$. Remember that X is a distribution space iff $\mathrm{P}\left(X^{\perp}\right)=\left\{u^{\prime} \in \mathbb{R}_{\geq 0}^{|X|}|\forall a \in| X \mid u_{a} \leq 1\right\}$ and that N is the distribution space such that $|\mathrm{N}|=\mathbb{N}$.
1.1) Prove that if X and Y are distribution spaces then $X \otimes Y$ is a distribution space.
1.2) If $x \subseteq I$ we define $\chi_{x} \in \mathbb{R}_{>_{0}}^{I}$ by $\left(\chi_{x}\right)_{i}=1$ if $i \in x$ and $\left(\chi_{x}\right)_{i}=0$ if $i \notin x$. Let X and Y be distribution spaces and $f \subseteq|X| \times|Y|$. Prove that $\chi_{f} \in \mathbf{P} \operatorname{coh}(X, Y)$ iff f is (the graph of) a partial function $|X| \rightarrow|Y|$.
1.3) Let $f \subseteq(\mathbb{N} \times \mathbb{N}) \times \mathbb{N}$ be defined by $f=\{((n, p), n+p) \mid n, p \in \mathbb{N}\}$. Given $u, v \in \mathrm{P}(\mathbb{N})$, compute $\left(\chi_{f} \cdot(u \otimes v)\right)_{k}$ for each $k \in \mathbb{N}$.
1.4) Let $r \in[0,1]$. Compute $\left(\chi_{f} \cdot(u \otimes v)\right)_{k}$ when $u=v \in \mathrm{P}(\mathrm{N})$ is given by $u_{n}=(1-r) r^{n}$ (explain why $u \in \mathrm{P}(\mathrm{N})$).
1.5) Remember that if $u \in \mathrm{P}(\mathbb{N})$ then $\|u\|=\sum_{n \in \mathbb{N}} u_{n}$. Prove that $\left\|\chi_{f} \cdot(u \otimes v)\right\|=\|u\|\|v\|$.
1.6) Let $f \subseteq|X| \times|Y|$ be (the graph of) a partial function, where X and Y a distribution spaces. Prove that the two following properties are equivalent:

- f is a total function
- $\forall u \in \mathrm{P}(\mathrm{N})\left\|\chi_{f} \cdot u\right\|=\|u\|$.

2) Using the fact that $\mathbf{P c o h}$ is an SMCC, prove that there is a $C \in \mathbf{P} \operatorname{coh}(((\mathrm{~N} \multimap \mathrm{~N}) \otimes(\mathrm{N} \multimap \mathrm{N})), \mathrm{N} \multimap$ $\mathrm{N})$ such that, for any $s, t \in \mathrm{P}(\mathrm{N} \multimap \mathrm{N})$, one has $C \cdot(s \otimes t)=\frac{1}{2}(s t+t s)$. Given $n_{1}, p_{1}, n_{2}, p_{2}, n, p \in \mathbb{N}$, give the value of $C_{\left(\left(n_{1}, p_{1}\right),\left(n_{2}, p_{2}\right)\right),(n, p)} \in \mathbb{R}_{\geq 0}$.
3) Let X and Y be probabilistic coherence spaces (PCSs) and let $f: \mathrm{P}(X) \rightarrow \mathrm{P}(Y)$. Prove that if f satisfies

- for all $u^{1}, u^{2} \in \mathrm{P}(X)$ such that $u^{1}+u^{2} \in \mathrm{P}(X)$, one has $f\left(u^{1}+u^{2}\right)=f\left(u^{1}\right)+f\left(u^{2}\right)$,
- for all $u \in \mathrm{P}(X)$ and $\lambda \in[0,1]$ one has $f(\lambda u)=\lambda f(u)$
- for any non-decreasing sequence $(u(n))_{n \in \mathbb{N}}$ of elements of $\mathrm{P}(X)$, one has $f\left(\sup _{n \in \mathbb{N}} u(n)\right)=\sup _{n \in \mathbb{N}} f(u(n))$
then there is exactly one $s \in \mathrm{P}(X \multimap Y)$ such that $\forall u \in \mathrm{P}(X) f(u)=s \cdot u$.
[Hint: Observe that the first condition implies that f is monotone]

4) Let $S=\{0,1\}^{<\omega}$ (the set of finite words of 0 and 1), equipped with the prefix order: $s \leq t$ if $s, t \in S$ and s is a prefix of t, that is $s=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $s=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ with $n \leq k$. If $\alpha \in\{0,1\}^{\omega}$ (the ω-indexed sequences of 0 and 1), we use $\downarrow \alpha$ for the set of all $s \in S$ which are prefixes of α.
4.1) A tree is a non-empty subset T of S such that if $s \in T$ and if $t \leq s$ then $t \in T$. One says that $\alpha \in\{0,1\}^{\omega}$ is an infinite branche of T if $\downarrow \alpha \subseteq T$. Prove König's Lemma: a tree which has no infinite branches is finite (as a set). [Hint: By contradiction.]
4.2) A subset A of S is an antichain if any two elements of A are either equal or incomparable for the prefix order. Prove that an antichain A is finite if it satisfies $\forall \alpha \in\{0,1\}^{\omega} A \cap \downarrow \alpha \neq \emptyset$. [Hint: If A is non-empty, apply König's Lemma to the tree $\downarrow A=\{s \in S \mid \exists t \in A s \leq t\}$.].
4.3) Let \mathcal{P} be the set of $u \in \mathbb{R}_{\geq 0}^{S}$ such that, for any antichain A, one has $\sum_{s \in A} u_{s} \leq 1$. Prove that (S, \mathcal{P}) is a PCS, that we will denote as \mathcal{C}.
4.4) Prove that for any $\alpha \in\{0,1\}^{\omega}$, one has $\sum_{s \in \downarrow \alpha} \mathrm{e}_{s} \in \mathrm{P}(\mathcal{C})$ and that this defines an injection from $\{0,1\}^{\omega}$ (the Cantor space) to $\mathrm{P}(\mathcal{C})$.

We say that $u \in \mathrm{P}(\mathcal{C})$ is uniform if, for all $s \in S$, one has $u_{s}=u_{s 0}+u_{s 1}$ (where, if $s=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, then $s a=\left\langle a_{1}, \ldots, a_{n}, a\right\rangle$.
4.5) Give examples of $u \in \mathrm{P}(\mathcal{C})$ which are not uniform and examples of $u \in \mathrm{P}(\mathcal{C})$ which are uniform.

We assume that u is uniform.
We say that $U \subseteq\{0,1\}^{\omega}$ is open if, for all $\alpha \in U$, there is $s \in \downarrow \alpha$ such that $\uparrow s \subseteq U$, where $\uparrow s=\left\{\beta \in\{0,1\}^{\omega} \mid s \in \downarrow \beta\right\}$.
4.6) Let $U \subseteq\{0,1\}^{\omega}$ be open. Prove that there is an antichain A such that $U=\bigcup_{s \in A} \uparrow s$. If A is such an antichain we set $\mu_{A}(U)=\sum_{s \in A} u_{s}$ so that $\mu_{A}(U) \in[0,1]$.
4.7) Let $s \in S$ and $A \subseteq S$ be an antichain such that $\forall t \in A s \leq t$ and for all $\alpha \in \uparrow s$ one has $A \cap \downarrow \alpha \neq \emptyset$. Prove that A is finite and that $u_{s}=\sum_{t \in A} u_{t}$.
4.8) Let $U \subseteq\{0,1\}^{\omega}$ be open and let A and B be antichains such that $U=\bigcup_{s \in A} \uparrow s=\bigcup_{s \in B} \uparrow s$. Prove that $\mu_{A}(U)=\mu_{B}(U)$. We set $\mu(U)=\mu_{A}(U)$. [Hint: Building possibly a third antichain which has the same property as A and B with respect to U, one can assume that $\forall t \in B \exists s \in A s \leq t$.]
4.9) Let $U, V \subseteq\{0,1\}^{\omega}$ be open and such that $U \cap V=\emptyset$. Prove that $\mu(U \cup V)=\mu(U)+\mu(V)$.
5) Remember that if X is a PCS, the associated norm is the function $\left\|_{-}\right\|_{X}: \mathrm{P}(X) \rightarrow[0,1]$ defined by

$$
\|u\|_{X}=\sup _{u^{\prime} \in \mathrm{P}\left(X^{\perp}\right)}\left\langle u, u^{\prime}\right\rangle \in[0,1]
$$

5.1) Prove that this operation features the usual properties of a norm, namely:

- $\|u\|_{X}=0 \Rightarrow u=0$ (we recall that 0 is the element of $\mathrm{P}(X)$ which maps each element of $|X|$ to 0).
- If $u^{1}, u^{2} \in \mathrm{P}(X)$ satisfy $u^{1}+u^{2} \in \mathrm{P}(X)$, then $\left\|u^{1}+u^{2}\right\|_{X} \leq\left\|u^{1}\right\|_{X}+\left\|u^{2}\right\|_{X}$.
- If $u \in \mathrm{P}(X)$ and $\lambda \in[0,1]$ then $\|\lambda u\|_{X}=\lambda\|u\|_{X}$.
5.2) Prove that, if $u \leq v \in \mathrm{P}(X)$, then $\|u\|_{X} \leq\|v\|_{X}$. Prove also that the norm is Scott-continuous (that is if $(u(n))_{n \in \mathbb{N}}$ is a non-decreasing sequence in $\mathrm{P}(X)$, then $\left.\left\|\sup _{n \in \mathbb{N}} u(n)\right\|_{X}=\sup _{n \in \mathbb{N}}\|u(n)\|_{X}\right)$.
5.3) Let $t \in \mathrm{P}(X \multimap Y)$, prove that $\|t\|_{X \multimap Y}=\sup _{u \in \mathrm{P}(X)}\|t \cdot u\|_{Y}$ and that $\left\|t^{\perp}\right\|_{Y^{\perp} \multimap X^{\perp}}=\|t\|_{X \rightarrow Y}$.
5.4) Prove that if $u \in \mathrm{P}(X)$ and $v \in \mathrm{P}(Y)$ then $\|u \otimes v\|_{X \otimes Y}=\|u\|_{X}\|v\|_{Y}$.
5.5) Prove that if $t \in \mathrm{P}((X \otimes Y) \multimap Z)$ then $\|t\|_{(X \otimes Y) \multimap Z}=\sup _{u \in \mathrm{P}(X), v \in \mathrm{P}(Y)}\|t \cdot(u \otimes v)\|_{Z}$.

6) $B=1 \oplus 1$ is the PCS of booleans, which can be described as follows: $|B|=\{0,1\}$ and $\mathrm{P}(B)=$ $\left\{u \in \mathbb{R}_{\geq 0}^{\{0,1\}} \mid u_{0}+u_{1} \leq 1\right\}$. We identify $|!B \multimap 1|$ with $\mathbb{N} \times \mathbb{N}$ (explain why this is possible). Let $s \in$ $\mathbb{R}_{\geq 0}^{|!B-1| \mid}$ be defined by $s_{n, p}=\left(1-\delta_{n, 0}\right) \delta_{n, p} 2^{n}$. Prove that $s \in \operatorname{Pcoh}_{!}(B, 1)$.
7) We admit that there is $s \in \mathbf{P c o h}_{!}((1 \Rightarrow 1) \& 1,1)$ such that, for all $t \in \mathrm{P}(1 \Rightarrow 1)$ and $u \in \mathrm{P}(1)$ (so that we can consider that $u \in[0,1]$ and that $(t, u) \in \mathrm{P}((1 \Rightarrow 1) \& 1))$:

$$
\widehat{s}(t, u)=\frac{1}{2}+\frac{1}{2} u \widehat{t}(u)^{2} .
$$

The existence of such an s is essentially a consequence of the cartesian closeness of $\mathbf{P c o h} \mathbf{c o s}_{!}$. So we have $\operatorname{Cur}(s) \in \mathbf{P c o h}_{!}(1 \Rightarrow 1,1 \Rightarrow 1)$ and hence a Scott-continuous function $\widehat{\operatorname{Cur}(s)}: \mathrm{P}(1 \Rightarrow 1) \rightarrow \mathrm{P}(1 \Rightarrow 1)$, let $t \in \operatorname{Pcoh}_{!}(1,1)$ be the least fixed point of $\widehat{\operatorname{Cur}(s)}$.
7.1) Prove that necessarily the function $\widehat{t}:[0,1] \rightarrow[0,1]$ is given by

$$
\widehat{t}(u)= \begin{cases}\frac{1-\sqrt{1-u}}{u} & \text { if } 0<u \leq 1 \\ \frac{1}{2} & \text { if } u=0\end{cases}
$$

7.2) Identifying $|!1 \multimap 1|$ with \mathbb{N} and using the expression above as well as the Taylor expansion of $\sqrt{1-u}$, give the value of t_{n} for each $n \in \mathbb{N}$.

