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The signs (*) and (**) try to indicate more difficult and interesting questions. These are of course
completely subjective indications!

1. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy -
autonomy but satisfies all the other requirements. A pointed set is a structure X = (X,0x) where
X isaset and Ox € X. Given pointed sets X, X1, Xs and Y/,

e a morphism of pointed sets from X to Y is a function f: X — Y such that f(0x) = Oy

e and a bimorphism of pointed sets from X;, X to Y is a function f : X; x Xy — Y such that
f(0x,,z2) = f(z1,0x,) = Oy for each z; € X; and x5 € Xs.

(a) Prove that pointed sets together with morphisms of pointed sets form a category Sety,. What
are the isos in that category?

Solution: It suffices to observe that morphisms are closed under composition for the or-
dinary composition of functions and that the identity functions are morphisms. Since
composition of morphisms in Set is the ordinary composition of functions, an iso from X
to Y is a bijection f : X — Y such that f(0x) = Oy. Indeed this latter condition implies

f~10y) = 0x.

One sets 1 = ({01, x}) where * and 0; are are distinct chosen elements (for instance 0; is the integer
0 and = is the integer 1). Given pointed sets X; and X5 one defines X; ® X5 as follows:

X1 ®Xo = {(5617.%'2) S & X & | xr1 = OX1 = To = Oxz} and 0X1®X2 = (0X1a0X2)~

Given z; € X, for i = 1,2, one defines

Ty ® Lo = (0X170X2> if.’El:OXl or ZL‘QZOX2
! 2 (z1,22) otherwise.

(b) Prove that the function (x1,x2) — x1 ® x2 is a bimorphism from X7, Xs to X7 ® X which is
surjective as a function X; x Xy — X; ® X5 and that for any bimorphism f from X;, X5 to Y’

there is exactly one morphism fe Seto(X; ® X5,Y) such that f(z1,z2) = f(z1 ® x2) for all
z1 € X; and x5 € Xo.

Solution: The first statement results immediately from the definition of z1 ® x5 and of
X1 ® Xo, let us prove the second so let f be as stipulated. Given (z1,z2) € X5 ® X»

we set f(z1,x2) = f(x1,22). The map so defined belongs to Seto(X; ® X2,Y) because

f(0x,0x,) = f(0x,,0x,) = Oy since f is a bimorphism. Let now z; € X; and z5 € X,




we have

/ {f(OXUOXz) :OY if ! :OX1 or T2 :0X2 :f(l'l,il'g)

® frd
[z ® x2) flay, x2) otherwise.

since f is a bimorphism. Uniqueness of ffollows from the observation that any element of
X1 ® X5 is of shape z1 ® zs.

(c) Given f; € Set(X;,Y;) for i = 1,2, deduce from the above that there is exactly one morphism
f1® fa € Seto(X; ® Xo,Y; ® Ya) such that

Vo € XyVarp € Xo (f1 ® f2)(21 @ 22) = fi(21) ® fa(22) .

Solution: Let g : X; x Xy — Y1 ® Y, be defined by g(z1,22) = fi(z1) ® fa(x2). This
function is clearly a bimorphism from X, Xs to Y since fi; and f; are morphisms and
__® _is a bimorphism. Hence there is exactly one morphism f; ® fo satisfying the required
conditions.

(d) Using again the universal property of Question (b) prove that the operation on morphisms
defined in Question (c) is a functor.

Solution: Let f; € Seto(X;,Y;) and g; € Seto(Y;, Z;) for i = 1,2. We know that there
is exactly one morphism (g1 f1) ® (g2 f2) € Seto(X1 ® X2, 71 ® Z3) such that ((¢1 f1) ®
(92 f2))(x1 ® 22) = g1(fi(z1)) ® g2(fa(w2)) for all z; € X; and x2 € Xy. Observe that
(g1 ® g2) (f1 ® f2) € Set(X1 ® X5, 71 ® Z3) and that

(91 ® g2) (f1 ® f2)) (71 ®@ w2) = (91 @ g2)(f1 (1) ® fa(w2))
= g1(f1(z1)) ® ga(f2(x2))

and hence (g1 ® g2) (f1 ® f2) = (91 f1) ® (g2 f2). One has similarly Id ® Id = Id because
(ld ® |d)({E1 ® £C2) =21 ® Zs.

(e) Exhibit isomorphisms Ay € Seto(l ® X,X) and ax, x, x, € Seto((X; ® X2) ® X3, X1 ®
(X2 ® X3)).

Solution: We have 1® X = {(i,z) € {01,*} x X | i =0; & 2 = 0x} = {(01,0x)} U
{(*,z) | z € X \ {Ox}} and the second projection 1 ® X — X is the sought isomorphism.
Given z; € X; for ¢ = 1,2, 3, there are two possibilites:

o either z; = O, for some i € {1,2,3} and in that case (21 ® ¥2) ® 23 = 0(x,0x,)0 X,
and z1 ® (IQ ® xB) = 0X1®(X2®X3)

e or z; € X; \ {Ox,} for i = 1,2,3 and in that case (z1 ® x2) ® x3 = ((@1,x2),x3) and
r1 & (CUZ ® Zg) = (xla (anxB))

and we can define « as follows:

a(0(x,0x2)0X3) = 0X,0(X20X)
and a((z1,x2),23) = (21, (2, 23)) if & € X5 \ {Ox,} fori=1,2,3

which a bijection which preserves 0 and hence an isomorphism.

So Setg is an SMC (there is a symmetry iso vx, x, € Seto(X1 ® X2, X2 ® X1) such that vx, x,(x1®
Z9) = x2 ® x1 which is quite easy to define, and the McLane coherence diagrams commute).



(f) One defines X — Y by X —o Y = Seto(X,Y) and for Ox_.y we take the function such that
Ox—oy(z) =0y forall z € X. Let e: X oY x X — Y be defined by e(f,z) = f(x). Prove
that e is a bimorphism and that the SMC Set is closed.

Solution: For all 2 € X we have e(0x_.y,z) = 0y by definition of 0x_.y and for all
f € Seto(X,Y) we have e(f,0x) = Oy by definition of morphisms. Therefore e is a
bimorphism and there is a unique ev = ¢ € Seto((X —Y) ® X,Y) such that ev(f ® z) =
e(f,x) = f(z) for all f € Seto(X,Y) and x € X. Let f € Seto(Z ® X,Y) so that the
function g : X x Y — Z defined by ¢(z,z) = f(z ® x) is a bimorphism. Therefore for each
z € Z the function f, : X — Y defined by f,(z) = g(z,z) = f(z ® x) is a morphism, that
is f, € X Y. Moreover fy, = Ox_y and hence the map cur f = z — f, belongs to
Seto(Z,X — Y). By definition ev(cur f @ ldx)(z @ ) = ev(f, @ ) = f.(x) = f(z @ x)
for all z € Z and = € X and hence ev(cur f ® Idx) = f. It remains to check that cur f
is the unique g € Sety(Z, X —o Y) such that ev(g ® Idx) = f but this condition implies
g(z)(x) = f(z®@x) for all z € Z and = € X, that is g(z) = f, = (cur f)(2).

(g) Prove that there is no object L of Sety which turns this symmetric monoidal closed category
into a *-autonomous category.

Solution: L most contain at least 0, . If 1L = {0, } then L is the terminal object and hence
(X — 1) — 1 is a singleton so that X cannot always be isomorphic to (X — 1) —o L.
Otherwise let z € L with z # 0,. Then for each subset I of X \ {Ox} we can define a
function f; : X — L by

0, otherwise

f[(x)Z{Z ifzel

and one has f; € Seto(X,Ll). Moreover f; = f; = I = J so that #(X — 1) >
2#X\0x}) > 4 X assoon as #X > 1. Therefore when #X > 1 we have #((X — L) —o 1) >
#X.

(h) Given a family (X;);cr of objects of Sety we define an object X as follows: X = [],.; X; and
0x = (0x,)icr € X so that the the projections m; : X — X, ar obviously morphisms of Set.
Prove that X, together with these projections, is the cartesian product of the family (X;);er

that we denote as &7,; Xi.

Solution: Let (f;)icr with f; € Seto(Y, X;). The function g : ¥ — X given by g(y) =
(fi(y))ier is a morphism since g(0y) = (Ox, )icr since each f; is a morphism. By definition
m; g = f; for all © € I and ¢ is the unique function satisfying these equations so the universal
property of the product is satisfied.

Notice that the terminal object (which is the product of an empty family of objects) is T =
({01}, 07).
Contrarily to Rel, the category Sety has all (projective) limits. It seems rather difficult to build
x-autonomous categories which are at the same type complete. A noticeable exception is the category
of complete lattices.
Given an object X of Setg, we define !X by !X = {(0,01)} U {1} x X where 0 is a chosen element
(for instance, a given integer) and O;x = (0,0,). Notice that (1,0x) € !X but O1x # (1,0x).
Given f € Seto(X,Y), we define ! f € Seto(!X,!Y) by !f(01x) = Oy and !f(1,2) = (1, f(z)). This
obviously defines a functor Sety — Sety.

(i) We define dery : Seto(!X,X) by derx(0ix) = Ox and derx(1l,z) = x. Prove that this is a

natural transformation.



Solution: Let f € Seto(X,Y). We have (dery !f)(0,0,) = dery (0,0;) = Oy and
(f derx)(0,0) = f(0x) =0y. And if x € X we have (dery !f)(1,z) = dery (1, f(z)) = f(x)
and (f derx)(1,2) = f(x). We have proven that dery !f = f derx.

(j) Wedefine digx € Seto(!X,!'X) by digx(0,01) = (0, 0y), that is digx (01x) = Onx, and digx (1, z) =
(1,(1,z)) which is easily seen to be a natural transformation. Prove that equipped with the
natural transformations der and dig the functor ! is a comonad.

Solution: We have

derix (digx (01x)) = denx(Onx) = Oix

derix(digy(1,z)) = denx(1,(1,2)) = (1, 2)

lderx (digx (01x)) = !derx (Onx) = Oix

lderx (digx (1,2)) = !derx (1, (1,z)) = (1,derx(1,2)) = (1,2)

digx (digx (O1x)) = digyx (Oux) = Omx

ldig x (digx (Orx)) = !digx (Oux) = Omx

digyx (digx (1,2) = digix (1, (1,2)) = (1, (1, (1,2)))

dig y (dig (1,2)) = ldig (1, (1,2)) = (1, digx (1,2)) = (L, (1, (1,)))

(k) Given two objects X and Y of Setg, exhibit an isomorphism between (X & V') and !X @ Y.

Solution: We define m% y : I X @Y = (X & Y) by

m% y (O1x, Ory) = Oy xeey)
my v ((1,2),(1,9) = (1,(z,y)) wherez € X andy €Y.

These are the only cases we have to consider due to the definition of the operation ® on
pointed sets. Since 0;x gy = (01x, 01y ) this function mX y is a morphism of Setq. Moreover
it is an injective function because (1, (z,y)) # Oy(x&y) for each x ,y. It is surjective because
an element of !(X & Y') is either 0, xgy) or of shape (1,(x,y)) and hence mg(,y is also

surjective. So it is a bijective morphism and hence an isomorphism.

2. In this exercise we study a model of linear logic which is based on complete sup-semilattices and
linear maps. A complete sup-semilattice is a partially ordered set S (the order relation will always
be denoted as < or <g if required) such that any subset A of S has a least upper bound \/ A € S.
Remember that this means

eVzeAx<\A
eVzeS(WweAdy<z)=\VA<Lua.

In particular we have two elements 0 = \/ () which is the least element of S and 1 =\/ S which is the
greatest element of S.

A subset A of S is down-closed if for all x € A and all y € S, if y < x then y € A. Given x € S we
set Jz={ye S|y <z}

A linear morphism of sup-semilattices from S to T is a function f : S — T such that for all
ACS f(VA) =V f(A) where we define as usual f(A) = {f(z) | = € A}. Notice that this implies
that f is monotone: given z < y in S we have f(y) = f(V{z,y}) = f(x)V f(y), that is f(z) < f(y).
Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps
of sup-semilattices. We set L = {0 < 1} for the object of Slat which has exactly two elements.

It is important to remember that any inf-semilattice, partially ordered set S where each A C S has
an inf (greatest lower bound) A A, is also a sup-semilattice: VA= A{z €S |Vye Ay <z}



It is easy to check that Slat is cartesian. The product of a family (S}),c s of objects of Slat is the usual
cartesian product [].. ;S; equipped with the product order and projection defined in the usual way.
We also use S = & .. ;S; for this product and 7; € Slat(S, S;) for the projections. The terminal
object is T = {0}.

(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.

jeJ
jeJ

Solution: The condition is clearly necessary since if f is an iso of inverse f~! then f~!
is also the inverse of f in Set and hence f is a bijection. If f is a linear morphism
which is a bijection it suffices to prove that A f is linear, so let B C T. We must prove
that f~1(\/ B) = \/ f~1(B) and for this, since f is bijective, it suffices to prove that
f(f~YV B)) = f(\V f~1(B)) which results from the linearity of f.

(b) Given a set X we denote as P(X) its powerset (that is, the set of all of its subsets) ordered
under inclusion, so that P(X) is a sup-semilattice for \/ A = [J A for any A C P(X). Given
t € Rel(X,Y) we define t : P(X) - P(Y) by t(z) =t-z ={be Y |3ac z (a,b) € t}.
Prove that ¢ € Slat(P(X),P(Y)) and that, for any f € Slat(P(X),P(Y)) there is exactly one
t =trf € Rel(X,Y) such that f = t. In other words, the functor L : Rel — Slat which maps
X to P(X) and t to £ is full and faithful.

Solution: The fact that £ commutes with unions (and hence belongs to Slat(P(X), P(Y)))
follows immediately from the definition. Let now f € Slat(P(X),P(Y)) and let us set
t=trf ={(a,b) | b€ f({a})} € Rel(X,Y). Let z € P(X), we have

tz)={beY |Jacz(ab) et}
= J rap)

acr

= f(z)

since f commutes with unions. This shows that ¢ — ¢ is surjective. On the other hand
given ¢t € Rel(X,Y) we have

tri={(a,b) € X x Y | bei({a))} =t

by definition of ¢ which shows that ¢ — ¢ is injective.

(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat and
f,g € Slat(S, T) there is an object F of Slat and a morphism e € Slat(E, S) such that fe=ge
and, for any object V of Slat and any morphism h € Slat(V,S) such that fh = gh, there is
exactly one morphism hg € Slat(V, E) such that h = e hg.

Solution: We take F = {z € S| f(z) = g(z)}, equipped with the induced order relation
(that is + <gp y is ¢ <g y). Given A C F we have A C S so let xg be the sup of A in S.
Since f and g are linear we have

Feo) =\ £(4)
= \/g(A) since ACE
= 9(xo)

and hence zy € E. Next one proves that zq is the sup of A in E. First given z € A one has
x <g xg and hence x <p z( since x,zg € E. Next let y € E be such that Vo € A = <p y,
we have Vo € A x <g y and hence ¢ <g y, that is g <g y since zg,y € FE.

The inclusion map e : E — S (that is e(z) = ) is linear since we have seen that the sups
are computed in E exactly as in S.




Let now V be a sup-semilattice and h € Slat(V,S) be such that fh = gh. This means that
actually Yv € V h(v) € E. So we can define hy : V — E by ho(v) = h(v). Again, the
linearity of hg results from the fact that the sups in E are computed exactly as in S so that
ho € Slat(V, E). Last the uniqueness of hg results from the fact that e is injective.

Remember that the Cantor space is the set {0,1}* of all infinites sequences a of 0 and 1 equipped
with the following topology (which is the product topology of the discrete space {0,1}): a subset U
of {0,1}* is open iff for any o € U there is a finite prefix w of a such that, for any 8 € {0,1}*, if w
is a prefix of 8 then 3 € U. In other words, a subset F of {0,1}“ is closed iff it has the following
property: if a € {0,1}* is such that, for any finite prefix w of « there exists 3 € F such that w is
a prefix of 3, then a € F. As in any topological spaces, if F is a set of closed subsets then (| F is
closed (you are advised to check this directly using the characterization above of closed subsets).

So the set of closed subsets of {0,1}“ is an inf-semilattice and hence also a sup-semilattice: the sup
of a set of closed sets is the closure of its union (the intersectin of all closed sets which contain this
union).

(d) (**) Let W = {0,1}" be the set of all finite sequences of 0 and 1. If w = (a1,...,

an) € W
is such a sequence and a € {0,1} let wa = (a1, ...,an,a). Let § = {(wa,w) | w € W and a €
{0,1}} € Rel(W,W). Let (C,c) be the equalizer of Id,d € Slat(P(W),P(X)) (so that C is a
sup-semilattice and ¢ € Slat(C,P(W)). Exhibit an order isomorphism between C and the set
of all closed subsets of the Cantor space ordered under inclusion.

Solution: We know that C = {&# C W | -z = z}. So for z C W, the condition z € C
means:

e 0-x C x, that is, if wa € x then w € z, that is, x is prefix-closed

e and x C - x that is, if w € x then there is a € {0,1} such that wa € z: any element
of x has an extension in x.

So we see such an x as the set of prefixes of a set of elements of {0,1}*. More precisely let
©(z) be the set of all a € {0,1}* such that, for any w € W which is a prefix of a, one has
w e .

Then p(x) is a closed subset of {0,1}*. Let indeed a € {0,1}* be such that for all w < «
(meaning that w € W and w is a prefix of ) there is 3 € {0,1}* such that 8 € ¢(z) and
w < . This implies Vw € W w < @ = w € x and hence « € p(z), so () is closed. Notice
that the map ¢ is monotone (with respect to set inclusion).

Conversely given a closed F' C {0,1}* let ¢¥(F) = {w € W | 3a € F w < a}. Then we
clearly have ¢(F') € C and it is also clear that ¢ is monotone. Let us prove that ¢(¢(F)) =
F. We first prove that F' C o(¢(F)) so let @ € F. For all w < o we have w € ¢(F) by
definition of v, and hence o € p(y(F')) by definition of . Conversely let a € ¢(¢(F)).
This means Vw € W w < a = w € ¢¥(F) that is Vw € W w < o« = 38 € F w < 8 which
implies a € F' because F' is closed. So we have proven that ¢ o ¢ = Id, we prove now that
o p=Id.

Let x € C, we prove first that z C ¢(¢(x)). Let w € z. Using the assumption that z € C
we can build a sequence aq,as,... of elements of {0,1} such that, for all n € N, one has
way ...a, € z for all n € N. So let a = wajas--- € {0,1}*. If w’ < a we have either
w' = way ...a, for some n or w' is a prefix of w. Hence w’ € x. This shows that « € p(z).
Since w < «a it follows that w € ¥ (p(x)). Conversely let w € ¥ (p(z)). Let a € ¢(x) be
such that w < a. By definition of ¢(x), we have w € x.




Given a lattice S, we say that € S is prime if

VACS z<\/[A=3Fyedz<y

(e) (*) Prove that, for a set X, the prime elements of P(X) € Slat are exactly the singletons. Prove
that C, in sharp contrast with the previous case, has no prime elements.
| Hint: prove first that if F' is prime, it must be a singleton {a} and then prove that no such
singleton is prime. For this notice that, for a collection F of closed subsets of {0,1}“, the closed
set \/ F is the closure of | J F (the intersection of all closed sets which contain | JF). So consider
a set F of shape F = {{a(n)} | n € N} where a(n) =00 @ and Vn € N a(n) # a.]

Solution: For the first part observe that for any x C X one has x = |J,., {a}. Soif =
is prime we must have z C {a} for some a € X. We cannot have z = () since ) = [J0.
Conversely it is obvious that if a is a singleton then {a} is prime.

Concerning C notice first that each singleton {a} is closed and hence {a} € C. Now let F' be
closed and assume that F' is not a singleton. If F' = () then F is not prime because \/ ) = 0.
Solet o, 8 € F with a # 8. Let w < a be such that w £ 3. Let G = {y € {0,1}* | w < v}.
This set is closed and open as easily checked. Hence F'NG and F' \ G are both closed and
satisfy (FNG)V (F\ G) = F, so F is not prime since a, § € F, 8 ¢ FNG and a ¢ F\ G.
Now we prove that {a} is never prime, whetever be o = (a1, as,...). For each n € N let
a(n) € {0,1}* be defined (for instance) by

a(n) = <a17‘~~7an7171_an,0,07...>

so that a(n) =, @. It follows that

but by construction o # «(n) for all n. It follows that {a} is not prime and hence C has
no prime elements.

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it
has no equalizer for the two maps 6, ld € Rel(W, W) because the equalizer of § and Id in Slat is not
an object of Rel (one would need a further proof to make this argument completely rigorous!).

(f) Prove that the set of linear morphisms S — T, equipped with the pointwise order (that is f < g
itve e S f(z) < g(x)), is a sup-semilattice. We denote it as S —o T.

Solution: Let F' be a set of linear functions S — T. Let g : S — T be defined by

g(x) = \/ f(@).

feF

Let A C S, we have

gV 4a)=\ 1V 4

fer

= \/ \/ f(x) Dby linearity of the elements of A
fEF z€A

= \/ \/ f(x) easy property of \/
z€A feF

=\/g(4)




which shows that ¢ € S — T. By definition we have f < g for each f € F. Let now
h € S — T such that f < h for each f € F. This means that, for each x € S, we have
f(z) < h(zx) for all f € F, and hence g(x) < h(x). Therefore ¢ < h and we have shown
that ¢ is the sup of the set F.

(g) Given z € S define a function z* : S — 1 by

x*(y):{l ifyLax

0 ify<z

Prove that 2* € S — 1.

Solution: Let A C S. We have

(A =1e\/AZz
SJyecAy<Lx
s Jyedz*(y) =1

e\ 'y =1

(h) Given a sup-semilattice S, we use S°P for the same set S equipped with the reverse order:
x <gw y if y <g z. Prove that the map x — z* is an order isomorphism from the poset
S°P to § — 1. Warning: one must prove that it is monotone in both directions because
a monotone bijection is not necessarily an order isomorphism! Call k : (S — L) — S°P the
inverse isomorphism.

Solution: Let x1,29 € S with 21 < 29. Given y € S, one has z;*(y) =0 y < 1 =
y < z2 < 22*(y) = 0 and hence z2* < z1*. Hence the map = — z* is monotone. Given
eSS —olletk(z)=V{xeS|z'(x)=0}eS. If 2} <af then z4(zx) =0= z(z) =0
and hence k(z}) <g k(z}) so k is monotone (S — L) — S°P. Now let z € S, we have

k(z)=\{yesS|a*(y) =0} =\/{ye S|y<az}==
and let ' € S — 1, for each y € S we have
k(z')"(y) =0 &y < k(@) & a'(y) =0

because z’(k(z")) = 0 by linearity of x’.

(i) (*) Given f € (S — T) define f*: (T — 1) = (S — L) by f*(y') = ¢’ f. Prove that f* €
Slat(T — 1,8 — 1). Let f+ € Slat(T°P, S°P) be the associated morphism (through the iso k
defined above, that is f*(y) = k(f*(y*))). Prove that

VeeSVyeT flx)<yex<fr(y).

One says that f and f* define a Galois connection between S and 7T'. Last prove that f++ = f.

Solution: Let B’ C T — 1, we have that f*(\/ B’) € S — L satisfies f*(\/ B')(z) =
VB)f()=Vyep ¥ (f(2) =Vyep [*W)(@) = (V,ep [ () (x) which proves that

f* is linear.




Let x € S and y € T, one has

v < fHy) e e <k(f (YY)

sz <\ eS| f (y) (@) =0}

ez < \/{a € S|y (f(a1)) =0}

sz <\{o €S| f(a1) <y}

& flz) <y
In the last equivalence we have f(z) <y =z < \{z1 € 5| f(z1) <y} because if f(z) <y
then x € {1 € S | f(z1) < y} and conversely if z < \/{z1 € S | f(x1) < y} then
f@) < f(\M{zr € S| f(x1) <w}) = V{f(z1) € S| flz1) <y} <.
Let f € Slat(S,T) so that f+ € Slat(7T°P,S°) and f++ € Slat(S,T). We have z <g
fHy) & f(2) <ryand y <ge fHH(2) & fH(y) <se @ that is y >7 fHH(2) & fH(y) >s

. Soweget Vo € S,y €T f(z) <r y & f++(x) <r y. Taking y = f(x) and then
y = [+ (z) we get fHH(z) = f(2).

(j) Given sup-semilattices S and T we define S ® T as the set of all I C S x T such that
e [ is down-closed

e and, for all AC S and B CT,if A and B satisfy A x B C I then (\/ 4,\/ B) € I.

Prove that (S ® T, C) is an inf-semilattice (that is, is closed under arbitrary intersections). As
a consequence, it is also a sup-semilattice: f ZC S® T then /I =({I € S®T |UZ C I}.
But notice that in this sup-semilattice, the sups are not defined as unions in general.

Solution: Let Z C S®T and let I =(Z. Let A C S and B C T be such that Ax B C I.
For each J € S ® T we have A x B C J and hence (\/ A,\/ B) € J. It follows that

(VAVB) el

(k) Prove that the least element of S ® T is Osgr = S x {0} U {0} x T.

Solution: Notice first that Oggr is down-closed. Let A C S and B C T be such that
A x B C 0ggr. Notice that we must have A C {0} or B C {0}. Indeed otherwise we can
find z € A\ {0} and y € B\ {0}, but then we have (x,y) € A x B C 0ggr which is not
possible. It follows that (\/ A,\/ B) € Oggr. Let now I € S®T, then we have ) = ) xT C I
and hence (0,1) = (\/0,\/T) € I. Similarly (1,0) € I, which shows that Oggr C I since I
is down-closed.

(1) We say that amap f: SxT — U (where S, T, U are sup-semilattices) is bilinear if for all A C §
and B C T we have \/ f(A x B) = f(\/(A x B)) = f(V A,V B). Prove that this condition is
equivalent to the following;:

o forallz € S and B C T, one has f(z,\ B) =V, cp f(z,y)
e and for all y € T'and A C S, one has f(\/ A,y) =V, c4 f(z,9)

that is, f is separately linear in both variables.

Solution: Assume first that f is bilinear, then with these notations we have f(z,\/ B) =
f(VA{z}xB) =V f({z}xB) =V ,ep f(z,y). Conversely assume that f is separately linear,
given A C S and B C T, we have f(V A,V B) = Vg [(VAY) = V,ep Viea f(z,9) =
V f(A x B).

(m) (*) Givenz e SandyeTlet z @y =] (z,y) UOggr €S x T. Prove that z ® y € S® T and
that the function 7 : (z,y) — x ® y is a bilinear map S x T — S® T.



Solution: First z ® y is down-closed as a union of down-closed sets. Next let A C S and
B C T be such that A x BC z®y. For any 1 € A\ {0} and y; € B\ {0} we must have
z1 <z and y; < ysince (z1,y1) € (A x B)\ Osgr, it follows that (\/ A,\/ B) < (x,y). This
shows that z®@y € S®T.

To prove the bilinearity of 7 we must show that \/7(A x B) = VA ® \/ B. We have
V7(A x B) C \VA® \/ B because the map 7 is clearly monotone so it suffices to prove
the converse inclusion \/ A ® \/ B C \/7(A4 x B). This amounts to proving that for any
IeST,if|JT(AxB) CIthen\/A®\/ B C I. Since we already know that Osgr C I, it
suffices to see that (\/ A,V B) € I. We know that |J7(Ax B) C I, that is U, ,)eaxp({ © X
Ly)UOsgr € I and hence A x B C I so that (\/ A,\/B) € I since I € S®T.

(n) Let (S,T) —o U be the set of all bilinear maps S x T" — U ordered pointwise (that is f < g if
V(z,y) € S x T f(z,y) < g(x,y)). Prove that (S,T) — U ~ (S — (T'— U)). Deduce from
this fact that (S,T) — U is a sup-semilattice.

Solution: Given f € (S,T) —o U let A(f) : S — U” be defined by \(f)(z)(y) = f(z,y).
By bilinearity of f, for each x the function A(f)(z) : T — U is linear, and the map A(f)
itself is linear because T' —o U is ordered pointwise. The fact that A is an order isomorphism
is an easy verification.

(0) Given I € X ®@Y let f1: S xT — L be given by

o) = {0 if (z,y) € I

1 otherwise.

Prove that f7 is bilinear. Conversely given f € (S,T) —o L prove that kerof = {(2,y) € Sx T |
f(z,y) = 0} belongs to S®T. Prove that these operations define an order isomorphism between
S®T and ((S,T) — L),

Solution: Let first I € S ® T and let use prove that f/ € (S,7) —o L. Observe that
fI is monotone because I is down-closed. Let A C S and B C T, it suffices to prove
that f1(\/ A,V B) < \/ f(A x B) so assume that \/ f{(A x B) = 0. This means that
V(z,y) € Ax B fl(x,y) = 0, that is A x B C I. So we have (\/ A,\/ B) € I, that is
fI(\V A,\/ B) = 0 and hence f! is bilinear. If I,.J € S ® T are such that I C .J, we have
flz,y)=0= (z,y) € [ = (z,y) € J = f7(x,y) = 0o that f/ < flin (S,T) — L.
Conversely if f € (S,T) — L we have kerof € S®T by bilinearity of f. If f < g we clearly
have kerag C kers f.

Let I € S®T, we have (x,y) € kerof! & fl(x,y) = 0 & (2,y) € I so that kerof! = I.
And given f € (S,T) — L we have f "2/ (z,y) =0 < (z,y) € keraf < f(z,y) = 0 so that
fke2/ = f. So we have exhibited the required iso between ((S,T) — 1)°®® and S ® T.

To be continued. ..
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