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The signs (*) and (**) try to indicate more di�cult and interesting questions. These are of course
completely subjective indications!

1. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy ∗-
autonomy but satis�es all the other requirements. A pointed set is a structure X = (X, 0X) where
X is a set and 0X ∈ X. Given pointed sets X, X1, X2 and Y ,

� a morphism of pointed sets from X to Y is a function f : X → Y such that f(0X) = 0Y

� and a bimorphism of pointed sets from X1, X2 to Y is a function f : X1 ×X2 → Y such that
f(0X1

, x2) = f(x1, 0X2
) = 0Y for each x1 ∈ X1 and x2 ∈ X2.

(a) Prove that pointed sets together with morphisms of pointed sets form a category Set0. What
are the isos in that category?

Solution: It su�ces to observe that morphisms are closed under composition for the or-
dinary composition of functions and that the identity functions are morphisms. Since
composition of morphisms in Set0 is the ordinary composition of functions, an iso from X
to Y is a bijection f : X → Y such that f(0X) = 0Y . Indeed this latter condition implies
f−1(0Y ) = 0X .

One sets 1 = ({01, ∗}) where ∗ and 01 are are distinct chosen elements (for instance 01 is the integer
0 and ∗ is the integer 1). Given pointed sets X1 and X2 one de�nes X1 ⊗X2 as follows:

X1 ⊗X2 = {(x1, x2) ∈ X1 ×X2 | x1 = 0X1
⇔ x2 = 0X2

} and 0X1⊗X2
= (0X1

, 0X2
) .

Given xi ∈ Xi for i = 1, 2, one de�nes

x1 ⊗ x2 =

{
(0X1

, 0X2
) if x1 = 0X1

or x2 = 0X2

(x1, x2) otherwise.

(b) Prove that the function (x1, x2) 7→ x1 ⊗ x2 is a bimorphism from X1, X2 to X1 ⊗X2 which is
surjective as a function X1 ×X2 → X1 ⊗X2 and that for any bimorphism f from X1, X2 to Y

there is exactly one morphism f̃ ∈ Set0(X1 ⊗X2, Y ) such that f(x1, x2) = f̃(x1 ⊗ x2) for all
x1 ∈ X1 and x2 ∈ X2.

Solution: The �rst statement results immediately from the de�nition of x1 ⊗ x2 and of
X1 ⊗X2, let us prove the second so let f be as stipulated. Given (x1, x2) ∈ X1 ⊗X2

we set f̃(x1, x2) = f(x1, x2). The map so de�ned belongs to Set0(X1 ⊗ X2, Y ) because

f̃(0X1⊗X2
) = f(0X1

, 0X1
) = 0Y since f is a bimorphism. Let now x1 ∈ X1 and x2 ∈ X2,
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we have

f̃(x1 ⊗ x2) =

{
f̃(0X1 , 0X2) = 0Y if x1 = 0X1 or x2 = 0X2

f(x1, x2) otherwise.
= f(x1, x2)

since f is a bimorphism. Uniqueness of f̃ follows from the observation that any element of
X1 ⊗X2 is of shape x1 ⊗ x2.

(c) Given fi ∈ Set0(Xi, Yi) for i = 1, 2, deduce from the above that there is exactly one morphism
f1 ⊗ f2 ∈ Set0(X1 ⊗X2, Y1 ⊗ Y2) such that

∀x1 ∈ X1 ∀x2 ∈ X2 (f1 ⊗ f2)(x1 ⊗ x2) = f1(x1)⊗ f2(x2) .

Solution: Let g : X1 × X2 → Y1 ⊗ Y2 be de�ned by g(x1, x2) = f1(x1) ⊗ f2(x2). This
function is clearly a bimorphism from X1, X2 to Y since f1 and f2 are morphisms and
_⊗_ is a bimorphism. Hence there is exactly one morphism f1⊗f2 satisfying the required
conditions.

(d) Using again the universal property of Question (b) prove that the operation on morphisms
de�ned in Question (c) is a functor.

Solution: Let fi ∈ Set0(Xi, Yi) and gi ∈ Set0(Yi, Zi) for i = 1, 2. We know that there
is exactly one morphism (g1 f1) ⊗ (g2 f2) ∈ Set0(X1 ⊗ X2, Z1 ⊗ Z2) such that ((g1 f1) ⊗
(g2 f2))(x1 ⊗ x2) = g1(f1(x1)) ⊗ g2(f2(x2)) for all x1 ∈ X1 and x2 ∈ X2. Observe that
(g1 ⊗ g2) (f1 ⊗ f2) ∈ Set0(X1 ⊗X2, Z1 ⊗ Z2) and that

((g1 ⊗ g2) (f1 ⊗ f2))(x1 ⊗ x2) = (g1 ⊗ g2)(f1(x1)⊗ f2(x2))
= g1(f1(x1))⊗ g2(f2(x2))

and hence (g1 ⊗ g2) (f1 ⊗ f2) = (g1 f1) ⊗ (g2 f2). One has similarly Id ⊗ Id = Id because
(Id⊗ Id)(x1 ⊗ x2) = x1 ⊗ x2.

(e) Exhibit isomorphisms λX ∈ Set0(1 ⊗ X,X) and αX1,X2,X3
∈ Set0((X1 ⊗X2) ⊗ X3, X1 ⊗

(X2 ⊗X3)).

Solution: We have 1⊗X = {(i, x) ∈ {01, ∗} × X | i = 01 ⇔ x = 0X} = {(01, 0X)} ∪
{(∗, x) | x ∈ X \ {0X}} and the second projection 1⊗X → X is the sought isomorphism.
Given xi ∈ Xi for i = 1, 2, 3, there are two possibilites:

� either xi = 0Xi
for some i ∈ {1, 2, 3} and in that case (x1 ⊗ x2)⊗ x3 = 0(X1⊗X2)⊗X3

and x1 ⊗ (x2 ⊗ x3) = 0X1⊗(X2⊗X3)

� or xi ∈ Xi \ {0Xi
} for i = 1, 2, 3 and in that case (x1 ⊗ x2)⊗ x3 = ((x1, x2), x3) and

x1 ⊗ (x2 ⊗ x3) = (x1, (x2, x3))

and we can de�ne α as follows:

α(0(X1⊗X2)⊗X3
) = 0X1⊗(X2⊗X3)

and α((x1, x2), x3) = (x1, (x2, x3)) if xi ∈ Xi \ {0Xi} for i = 1, 2, 3

which a bijection which preserves 0 and hence an isomorphism.

So Set0 is an SMC (there is a symmetry iso γX1,X2
∈ Set0(X1⊗X2, X2⊗X1) such that γX1,X2

(x1⊗
x2) = x2 ⊗ x1 which is quite easy to de�ne, and the McLane coherence diagrams commute).
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(f) One de�nes X ( Y by X ( Y = Set0(X,Y ) and for 0X(Y we take the function such that
0X(Y (x) = 0Y for all x ∈ X. Let e : X ( Y × X → Y be de�ned by e(f, x) = f(x). Prove
that e is a bimorphism and that the SMC Set0 is closed.

Solution: For all x ∈ X we have e(0X(Y , x) = 0Y by de�nition of 0X(Y and for all
f ∈ Set0(X,Y ) we have e(f, 0X) = 0Y by de�nition of morphisms. Therefore e is a
bimorphism and there is a unique ev = ẽ ∈ Set0((X ( Y )⊗X,Y ) such that ev(f ⊗ x) =
e(f, x) = f(x) for all f ∈ Set0(X,Y ) and x ∈ X. Let f ∈ Set0(Z ⊗ X,Y ) so that the
function g : X × Y → Z de�ned by g(z, x) = f(z ⊗ x) is a bimorphism. Therefore for each
z ∈ Z the function fz : X → Y de�ned by fz(x) = g(z, x) = f(z ⊗ x) is a morphism, that
is fz ∈ X ( Y . Moreover f0Z = 0X(Y and hence the map cur f = z 7→ fz belongs to
Set0(Z,X ( Y ). By de�nition ev(cur f ⊗ IdX)(z ⊗ x) = ev(fz ⊗ x) = fz(x) = f(z ⊗ x)
for all z ∈ Z and x ∈ X and hence ev(cur f ⊗ IdX) = f . It remains to check that cur f
is the unique g ∈ Set0(Z,X ( Y ) such that ev(g ⊗ IdX) = f but this condition implies
g(z)(x) = f(z ⊗ x) for all z ∈ Z and x ∈ X, that is g(z) = fz = (cur f)(z).

(g) Prove that there is no object ⊥ of Set0 which turns this symmetric monoidal closed category
into a ∗-autonomous category.

Solution: ⊥ most contain at least 0⊥. If ⊥ = {0⊥} then ⊥ is the terminal object and hence
(X ( ⊥) ( ⊥ is a singleton so that X cannot always be isomorphic to (X ( ⊥) ( ⊥.
Otherwise let z ∈ ⊥ with z 6= 0⊥. Then for each subset I of X \ {0X} we can de�ne a
function fI : X → ⊥ by

fI(x) =

{
z if x ∈ I
0⊥ otherwise

and one has fI ∈ Set0(X,⊥). Moreover fI = fJ ⇒ I = J so that #(X ( ⊥) >

2#(X\{0X}) > #X as soon as#X > 1. Therefore when#X > 1 we have#((X ( ⊥) ( ⊥) >
#X.

(h) Given a family (Xi)i∈I of objects of Set0 we de�ne an object X as follows: X =
∏

i∈I Xi and
0X = (0Xi)i∈I ∈ X so that the the projections πi : X → Xi ar obviously morphisms of Set0.
Prove that X, together with these projections, is the cartesian product of the family (Xi)i∈I
that we denote as

˘
i∈I Xi.

Solution: Let (fi)i∈I with fi ∈ Set0(Y,Xi). The function g : Y → X given by g(y) =
(fi(y))i∈I is a morphism since g(0Y ) = (0Xi

)i∈I since each fi is a morphism. By de�nition
πi g = fi for all i ∈ I and g is the unique function satisfying these equations so the universal
property of the product is satis�ed.

Notice that the terminal object (which is the product of an empty family of objects) is > =
({0>}, 0>).
Contrarily to Rel, the category Set0 has all (projective) limits. It seems rather di�cult to build
∗-autonomous categories which are at the same type complete. A noticeable exception is the category
of complete lattices.

Given an object X of Set0, we de�ne !X by !X = {(0, 0!)} ∪ {1} ×X where 0! is a chosen element
(for instance, a given integer) and 0!X = (0, 0!). Notice that (1, 0X) ∈ !X but 0!X 6= (1, 0X).

Given f ∈ Set0(X,Y ), we de�ne !f ∈ Set0(!X, !Y ) by !f(0!X) = 0!Y and !f(1, x) = (1, f(x)). This
obviously de�nes a functor Set0 → Set0.

(i) We de�ne derX : Set0(!X,X) by derX(0!X) = 0X and derX(1, x) = x. Prove that this is a
natural transformation.
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Solution: Let f ∈ Set0(X,Y ). We have (derY !f)(0, 0!) = derY (0, 0!) = 0Y and
(f derX)(0, 0!) = f(0X) = 0Y . And if x ∈ X we have (derY !f)(1, x) = derY (1, f(x)) = f(x)
and (f derX)(1, x) = f(x). We have proven that derY !f = f derX .

(j) We de�ne digX ∈ Set0(!X, !!X) by digX(0, 0!) = (0, 0!), that is digX(0!X) = 0!!X , and digX(1, x) =
(1, (1, x)) which is easily seen to be a natural transformation. Prove that equipped with the
natural transformations der and dig the functor !_ is a comonad.

Solution: We have

der!X(digX(0!X)) = der!X(0!!X) = 0!X

der!X(digX(1, x)) = der!X(1, (1, x)) = (1, x)

!derX(digX(0!X)) = !derX(0!!X) = 0!X

!derX(digX(1, x)) = !derX(1, (1, x)) = (1, derX(1, x)) = (1, x)

dig!X(digX(0!X)) = dig!X(0!!X) = 0!!!X

!digX(digX(0!X)) = !digX(0!!X) = 0!!!X

dig!X(digX(1, x)) = dig!X(1, (1, x)) = (1, (1, (1, x)))

!digX(digX(1, x)) = !digX(1, (1, x)) = (1, digX(1, x)) = (1, (1, (1, x)))

(k) Given two objects X and Y of Set0, exhibit an isomorphism between !(X & Y ) and !X ⊗ !Y .

Solution: We de�ne m2
X,Y : !X ⊗ !Y → !(X & Y ) by

m2
X,Y (0!X , 0!Y ) = 0!(X&Y )

m2
X,Y ((1, x), (1, y)) = (1, (x, y)) where x ∈ X and y ∈ Y .

These are the only cases we have to consider due to the de�nition of the operation ⊗ on
pointed sets. Since 0!X⊗!Y = (0!X , 0!Y ) this function m2

X,Y is a morphism of Set0. Moreover
it is an injective function because (1, (x, y)) 6= 0!(X&Y ) for each x, y. It is surjective because
an element of !(X & Y ) is either 0!(X&Y ) or of shape (1, (x, y)) and hence m2

X,Y is also
surjective. So it is a bijective morphism and hence an isomorphism.

2. In this exercise we study a model of linear logic which is based on complete sup-semilattices and
linear maps. A complete sup-semilattice is a partially ordered set S (the order relation will always
be denoted as ≤ or ≤S if required) such that any subset A of S has a least upper bound

∨
A ∈ S.

Remember that this means

� ∀x ∈ A x ≤
∨
A

� ∀x ∈ S (∀y ∈ A y ≤ x)⇒
∨
A ≤ x.

In particular we have two elements 0 =
∨
∅ which is the least element of S and 1 =

∨
S which is the

greatest element of S.

A subset A of S is down-closed if for all x ∈ A and all y ∈ S, if y ≤ x then y ∈ A. Given x ∈ S we
set ↓ x = {y ∈ S | y ≤ x}.
A linear morphism of sup-semilattices from S to T is a function f : S → T such that for all
A ⊆ S f(

∨
A) =

∨
f(A) where we de�ne as usual f(A) = {f(x) | x ∈ A}. Notice that this implies

that f is monotone: given x ≤ y in S we have f(y) = f(
∨
{x, y}) = f(x)∨ f(y), that is f(x) ≤ f(y).

Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps
of sup-semilattices. We set ⊥ = {0 < 1} for the object of Slat which has exactly two elements.

It is important to remember that any inf-semilattice, partially ordered set S where each A ⊆ S has
an inf (greatest lower bound)

∧
A, is also a sup-semilattice:

∨
A =

∧
{x ∈ S | ∀y ∈ A y ≤ x}.
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It is easy to check that Slat is cartesian. The product of a family (Sj)j∈J of objects of Slat is the usual
cartesian product

∏
j∈J Sj equipped with the product order and projection de�ned in the usual way.

We also use S =
˘

j∈J Sj for this product and πj ∈ Slat(S, Sj) for the projections. The terminal
object is > = {0}.
(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.

Solution: The condition is clearly necessary since if f is an iso of inverse f−1 then f−1

is also the inverse of f in Set and hence f is a bijection. If f is a linear morphism
which is a bijection it su�ces to prove that

∧
f is linear, so let B ⊆ T . We must prove

that f−1(
∨
B) =

∨
f−1(B) and for this, since f is bijective, it su�ces to prove that

f(f−1(
∨
B)) = f(

∨
f−1(B)) which results from the linearity of f .

(b) Given a set X we denote as P(X) its powerset (that is, the set of all of its subsets) ordered
under inclusion, so that P(X) is a sup-semilattice for

∨
A =

⋃
A for any A ⊆ P(X). Given

t ∈ Rel(X,Y ) we de�ne t̂ : P(X) → P(Y ) by t̂(x) = t · x = {b ∈ Y | ∃a ∈ x (a, b) ∈ t}.
Prove that t̂ ∈ Slat(P(X),P(Y )) and that, for any f ∈ Slat(P(X),P(Y )) there is exactly one
t = trf ∈ Rel(X,Y ) such that f = t̂. In other words, the functor L : Rel → Slat which maps
X to P(X) and t to t̂ is full and faithful.

Solution: The fact that t̂ commutes with unions (and hence belongs to Slat(P(X),P(Y )))
follows immediately from the de�nition. Let now f ∈ Slat(P(X),P(Y )) and let us set
t = trf = {(a, b) | b ∈ f({a})} ∈ Rel(X,Y ). Let x ∈ P(X), we have

t̂(x) = {b ∈ Y | ∃a ∈ x (a, b) ∈ t}

=
⋃
a∈x

f({a})

= f(x)

since f commutes with unions. This shows that t 7→ t̂ is surjective. On the other hand
given t ∈ Rel(X,Y ) we have

tr t̂ = {(a, b) ∈ X × Y | b ∈ t̂({a})} = t

by de�nition of t̂ which shows that t 7→ t̂ is injective.

(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat and
f, g ∈ Slat(S, T ) there is an object E of Slat and a morphism e ∈ Slat(E,S) such that f e = g e
and, for any object V of Slat and any morphism h ∈ Slat(V, S) such that f h = g h, there is
exactly one morphism h0 ∈ Slat(V,E) such that h = e h0.

Solution: We take E = {x ∈ S | f(x) = g(x)}, equipped with the induced order relation
(that is x ≤E y is x ≤S y). Given A ⊆ E we have A ⊆ S so let x0 be the sup of A in S.
Since f and g are linear we have

f(x0) =
∨
f(A)

=
∨
g(A) since A ⊆ E

= g(x0)

and hence x0 ∈ E. Next one proves that x0 is the sup of A in E. First given x ∈ A one has
x ≤S x0 and hence x ≤E x0 since x, x0 ∈ E. Next let y ∈ E be such that ∀x ∈ A x ≤E y,
we have ∀x ∈ A x ≤S y and hence x0 ≤S y, that is x0 ≤E y since x0, y ∈ E.
The inclusion map e : E → S (that is e(x) = x) is linear since we have seen that the sups
are computed in E exactly as in S.
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Let now V be a sup-semilattice and h ∈ Slat(V, S) be such that f h = g h. This means that
actually ∀v ∈ V h(v) ∈ E. So we can de�ne h0 : V → E by h0(v) = h(v). Again, the
linearity of h0 results from the fact that the sups in E are computed exactly as in S so that
h0 ∈ Slat(V,E). Last the uniqueness of h0 results from the fact that e is injective.

Remember that the Cantor space is the set {0, 1}ω of all in�nites sequences α of 0 and 1 equipped
with the following topology (which is the product topology of the discrete space {0, 1}): a subset U
of {0, 1}ω is open i� for any α ∈ U there is a �nite pre�x w of α such that, for any β ∈ {0, 1}ω, if w
is a pre�x of β then β ∈ U . In other words, a subset F of {0, 1}ω is closed i� it has the following
property: if α ∈ {0, 1}ω is such that, for any �nite pre�x w of α there exists β ∈ F such that w is
a pre�x of β, then α ∈ F . As in any topological spaces, if F is a set of closed subsets then

⋂
F is

closed (you are advised to check this directly using the characterization above of closed subsets).

So the set of closed subsets of {0, 1}ω is an inf-semilattice and hence also a sup-semilattice: the sup
of a set of closed sets is the closure of its union (the intersectin of all closed sets which contain this
union).

(d) (**) Let W = {0, 1}∗ be the set of all �nite sequences of 0 and 1. If w = 〈a1, . . . , an〉 ∈ W
is such a sequence and a ∈ {0, 1} let wa = 〈a1, . . . , an, a〉. Let θ = {(wa,w) | w ∈ W and a ∈
{0, 1}} ∈ Rel(W,W ). Let (C, c) be the equalizer of Id, θ̂ ∈ Slat(P(W ),P(X)) (so that C is a
sup-semilattice and c ∈ Slat(C,P(W )). Exhibit an order isomorphism between C and the set
of all closed subsets of the Cantor space ordered under inclusion.

Solution: We know that C = {x ⊆ W | θ · x = x}. So for x ⊆ W , the condition x ∈ C
means:

� θ · x ⊆ x, that is, if wa ∈ x then w ∈ x, that is, x is pre�x-closed

� and x ⊆ θ · x that is, if w ∈ x then there is a ∈ {0, 1} such that wa ∈ x: any element
of x has an extension in x.

So we see such an x as the set of pre�xes of a set of elements of {0, 1}ω. More precisely let
ϕ(x) be the set of all α ∈ {0, 1}ω such that, for any w ∈ W which is a pre�x of α, one has
w ∈ x.
Then ϕ(x) is a closed subset of {0, 1}ω. Let indeed α ∈ {0, 1}ω be such that for all w < α
(meaning that w ∈ W and w is a pre�x of α) there is β ∈ {0, 1}ω such that β ∈ ϕ(x) and
w < β. This implies ∀w ∈W w < α⇒ w ∈ x and hence α ∈ ϕ(x), so ϕ(x) is closed. Notice
that the map ϕ is monotone (with respect to set inclusion).

Conversely given a closed F ⊆ {0, 1}ω let ψ(F ) = {w ∈ W | ∃α ∈ F w < α}. Then we
clearly have ψ(F ) ∈ C and it is also clear that ψ is monotone. Let us prove that ϕ(ψ(F )) =
F . We �rst prove that F ⊆ ϕ(ψ(F )) so let α ∈ F . For all w < α we have w ∈ ψ(F ) by
de�nition of ψ, and hence α ∈ ϕ(ψ(F )) by de�nition of ϕ. Conversely let α ∈ ϕ(ψ(F )).
This means ∀w ∈ W w < α ⇒ w ∈ ψ(F ) that is ∀w ∈ W w < α ⇒ ∃β ∈ F w < β which
implies α ∈ F because F is closed. So we have proven that ϕ ◦ ψ = Id, we prove now that
ψ ◦ ϕ = Id.

Let x ∈ C, we prove �rst that x ⊆ ψ(ϕ(x)). Let w ∈ x. Using the assumption that x ∈ C
we can build a sequence a1, a2, . . . of elements of {0, 1} such that, for all n ∈ N, one has
wa1 . . . an ∈ x for all n ∈ N. So let α = wa1a2 · · · ∈ {0, 1}ω. If w′ < α we have either
w′ = wa1 . . . an for some n or w′ is a pre�x of w. Hence w′ ∈ x. This shows that α ∈ ϕ(x).
Since w < α it follows that w ∈ ψ(ϕ(x)). Conversely let w ∈ ψ(ϕ(x)). Let α ∈ ϕ(x) be
such that w < α. By de�nition of ϕ(x), we have w ∈ x.
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Given a lattice S, we say that x ∈ S is prime if

∀A ⊆ S x ≤
∨
A⇒ ∃y ∈ A x ≤ y

(e) (*) Prove that, for a set X, the prime elements of P(X) ∈ Slat are exactly the singletons. Prove
that C, in sharp contrast with the previous case, has no prime elements.

[Hint: prove �rst that if F is prime, it must be a singleton {α} and then prove that no such
singleton is prime. For this notice that, for a collection F of closed subsets of {0, 1}ω, the closed
set

∨
F is the closure of

⋃
F (the intersection of all closed sets which contain

⋃
F). So consider

a set F of shape F = {{α(n)} | n ∈ N} where α(n)→n→∞ α and ∀n ∈ N α(n) 6= α. ]

Solution: For the �rst part observe that for any x ⊆ X one has x =
⋃

a∈x {a}. So if x
is prime we must have x ⊆ {a} for some a ∈ X. We cannot have x = ∅ since ∅ =

⋃
∅.

Conversely it is obvious that if a is a singleton then {a} is prime.

Concerning C notice �rst that each singleton {α} is closed and hence {α} ∈ C. Now let F be
closed and assume that F is not a singleton. If F = ∅ then F is not prime because

∨
∅ = ∅.

So let α, β ∈ F with α 6= β. Let w < α be such that w 6< β. Let G = {γ ∈ {0, 1}ω | w < γ}.
This set is closed and open as easily checked. Hence F ∩G and F \G are both closed and
satisfy (F ∩G)∨ (F \G) = F , so F is not prime since α, β ∈ F , β /∈ F ∩G and α /∈ F \G.
Now we prove that {α} is never prime, whetever be α = 〈a1, a2, . . .〉. For each n ∈ N let
α(n) ∈ {0, 1}ω be de�ned (for instance) by

α(n) = 〈a1, . . . , an−1, 1− an, 0, 0, . . .〉

so that α(n)→n→∞ α. It follows that

α ∈
∞∨

n=1

{α(n)}

but by construction α 6= α(n) for all n. It follows that {α} is not prime and hence C has
no prime elements.

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it
has no equalizer for the two maps θ, Id ∈ Rel(W,W ) because the equalizer of θ̂ and Id in Slat is not
an object of Rel (one would need a further proof to make this argument completely rigorous!).

(f) Prove that the set of linear morphisms S → T , equipped with the pointwise order (that is f ≤ g
if ∀x ∈ S f(x) ≤ g(x)), is a sup-semilattice. We denote it as S ( T .

Solution: Let F be a set of linear functions S → T . Let g : S → T be de�ned by

g(x) =
∨
f∈F

f(x) .

Let A ⊆ S, we have

g(
∨
A) =

∨
f∈F

f(
∨
A)

=
∨
f∈F

∨
x∈A

f(x) by linearity of the elements of A

=
∨
x∈A

∨
f∈F

f(x) easy property of
∨

=
∨
g(A)
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which shows that g ∈ S ( T . By de�nition we have f ≤ g for each f ∈ F . Let now
h ∈ S ( T such that f ≤ h for each f ∈ F . This means that, for each x ∈ S, we have
f(x) ≤ h(x) for all f ∈ F , and hence g(x) ≤ h(x). Therefore g ≤ h and we have shown
that g is the sup of the set F .

(g) Given x ∈ S de�ne a function x∗ : S → ⊥ by

x∗(y) =

{
1 if y 6≤ x
0 if y ≤ x

Prove that x∗ ∈ S ( ⊥.

Solution: Let A ⊆ S. We have

x∗(
∨
A) = 1⇔

∨
A 6≤ x

⇔ ∃y ∈ A y 6≤ x
⇔ ∃y ∈A x∗(y) = 1

⇔
∨
x∗(y) = 1

(h) Given a sup-semilattice S, we use Sop for the same set S equipped with the reverse order:
x ≤Sop y if y ≤S x. Prove that the map x 7→ x∗ is an order isomorphism from the poset
Sop to S ( ⊥. Warning: one must prove that it is monotone in both directions because
a monotone bijection is not necessarily an order isomorphism! Call k : (S ( ⊥) → Sop the
inverse isomorphism.

Solution: Let x1, x2 ∈ S with x1 ≤ x2. Given y ∈ S, one has x1
∗(y) = 0 ⇔ y ≤ x1 ⇒

y ≤ x2 ⇔ x2
∗(y) = 0 and hence x2

∗ ≤ x1
∗. Hence the map x 7→ x∗ is monotone. Given

x′ ∈ S ( ⊥ let k(x′) =
∨
{x ∈ S | x′(x) = 0} ∈ S. If x′1 ≤ x′2 then x′2(x) = 0⇒ x′1(x) = 0

and hence k(x′2) ≤S k(x′1) so k is monotone (S ( ⊥)→ Sop. Now let x ∈ S, we have

k(x∗) =
∨
{y ∈ S | x∗(y) = 0} =

∨
{y ∈ S | y ≤ x} = x

and let x′ ∈ S ( ⊥, for each y ∈ S we have

k(x′)
∗
(y) = 0⇔ y ≤ k(x′)⇔ x′(y) = 0

because x′(k(x′)) = 0 by linearity of x′.

(i) (*) Given f ∈ (S ( T ) de�ne f∗ : (T ( ⊥) → (S ( ⊥) by f∗(y′) = y′ f . Prove that f∗ ∈
Slat(T ( ⊥, S ( ⊥). Let f⊥ ∈ Slat(T op, Sop) be the associated morphism (through the iso k
de�ned above, that is f⊥(y) = k(f∗(y∗)) ). Prove that

∀x ∈ S ∀y ∈ T f(x) ≤ y ⇔ x ≤ f⊥(y) .

One says that f and f⊥ de�ne a Galois connection between S and T . Last prove that f⊥⊥ = f .

Solution: Let B′ ⊆ T ( ⊥, we have that f∗(
∨
B′) ∈ S ( ⊥ satis�es f∗(

∨
B′)(x) =

(
∨
B′)(f(x)) =

∨
y′∈B′ y′(f(x)) =

∨
y′∈B′ f∗(y′)(x) = (

∨
y′∈B′ f∗(y′))(x) which proves that

f∗ is linear.
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Let x ∈ S and y ∈ T , one has

x ≤ f⊥(y)⇔ x ≤ k(f∗(y∗))

⇔ x ≤
∨
{x1 ∈ S | f∗(y∗)(x1) = 0}

⇔ x ≤
∨
{x1 ∈ S | y∗(f(x1)) = 0}

⇔ x ≤
∨
{x1 ∈ S | f(x1) ≤ y}

⇔ f(x) ≤ y

In the last equivalence we have f(x) ≤ y ⇒ x ≤
∨
{x1 ∈ S | f(x1) ≤ y} because if f(x) ≤ y

then x ∈ {x1 ∈ S | f(x1) ≤ y} and conversely if x ≤
∨
{x1 ∈ S | f(x1) ≤ y} then

f(x) ≤ f(
∨
{x1 ∈ S | f(x1) ≤ y}) =

∨
{f(x1) ∈ S | f(x1) ≤ y} ≤ y.

Let f ∈ Slat(S, T ) so that f⊥ ∈ Slat(T op, Sop) and f⊥⊥ ∈ Slat(S, T ). We have x ≤S

f⊥(y)⇔ f(x) ≤T y and y ≤T op f⊥⊥(x)⇔ f⊥(y) ≤Sop x that is y ≥T f⊥⊥(x)⇔ f⊥(y) ≥S

x. So we get ∀x ∈ S, y ∈ T f(x) ≤T y ⇔ f⊥⊥(x) ≤T y. Taking y = f(x) and then
y = f⊥⊥(x) we get f⊥⊥(x) = f(x).

(j) Given sup-semilattices S and T we de�ne S ⊗ T as the set of all I ⊆ S × T such that

� I is down-closed

� and, for all A ⊆ S and B ⊆ T , if A and B satisfy A×B ⊆ I then (
∨
A,

∨
B) ∈ I.

Prove that (S ⊗ T,⊆) is an inf-semilattice (that is, is closed under arbitrary intersections). As
a consequence, it is also a sup-semilattice: if I ⊆ S ⊗ T then

∨
I =

⋂
{I ∈ S ⊗ T |

⋃
I ⊆ I}.

But notice that in this sup-semilattice, the sups are not de�ned as unions in general.

Solution: Let I ⊆ S ⊗ T and let I =
⋂
I. Let A ⊆ S and B ⊆ T be such that A×B ⊆ I.

For each J ∈ S ⊗ T we have A × B ⊆ J and hence (
∨
A,

∨
B) ∈ J . It follows that

(
∨
A,

∨
B) ∈ I.

(k) Prove that the least element of S ⊗ T is 0S⊗T = S × {0} ∪ {0} × T .

Solution: Notice �rst that 0S⊗T is down-closed. Let A ⊆ S and B ⊆ T be such that
A × B ⊆ 0S⊗T . Notice that we must have A ⊆ {0} or B ⊆ {0}. Indeed otherwise we can
�nd x ∈ A \ {0} and y ∈ B \ {0}, but then we have (x, y) ∈ A × B ⊆ 0S⊗T which is not
possible. It follows that (

∨
A,

∨
B) ∈ 0S⊗T . Let now I ∈ S⊗T , then we have ∅ = ∅×T ⊆ I

and hence (0, 1) = (
∨
∅,
∨
T ) ∈ I. Similarly (1, 0) ∈ I, which shows that 0S⊗T ⊆ I since I

is down-closed.

(l) We say that a map f : S×T → U (where S, T, U are sup-semilattices) is bilinear if for all A ⊆ S
and B ⊆ T we have

∨
f(A × B) = f(

∨
(A × B)) = f(

∨
A,

∨
B). Prove that this condition is

equivalent to the following:

� for all x ∈ S and B ⊆ T , one has f(x,
∨
B) =

∨
y∈B f(x, y)

� and for all y ∈ T and A ⊆ S, one has f(
∨
A, y) =

∨
x∈A f(x, y)

that is, f is separately linear in both variables.

Solution: Assume �rst that f is bilinear, then with these notations we have f(x,
∨
B) =

f(
∨
{x}×B) =

∨
f({x}×B) =

∨
y∈B f(x, y). Conversely assume that f is separately linear,

given A ⊆ S and B ⊆ T , we have f(
∨
A,

∨
B) =

∨
b∈B f(

∨
A, y) =

∨
y∈B

∨
x∈A f(x, y) =∨

f(A×B).

(m) (*) Given x ∈ S and y ∈ T let x⊗ y = ↓ (x, y) ∪ 0S⊗T ⊆ S × T . Prove that x⊗ y ∈ S ⊗ T and
that the function τ : (x, y) 7→ x⊗ y is a bilinear map S × T → S ⊗ T .
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Solution: First x ⊗ y is down-closed as a union of down-closed sets. Next let A ⊆ S and
B ⊆ T be such that A× B ⊆ x⊗ y. For any x1 ∈ A \ {0} and y1 ∈ B \ {0} we must have
x1 ≤ x and y1 ≤ y since (x1, y1) ∈ (A×B)\0S⊗T , it follows that (

∨
A,

∨
B) ≤ (x, y). This

shows that x⊗ y ∈ S ⊗ T .
To prove the bilinearity of τ we must show that

∨
τ(A × B) =

∨
A ⊗

∨
B. We have∨

τ(A × B) ⊆
∨
A ⊗

∨
B because the map τ is clearly monotone so it su�ces to prove

the converse inclusion
∨
A ⊗

∨
B ⊆

∨
τ(A × B). This amounts to proving that for any

I ∈ S⊗T , if
⋃
τ(A×B) ⊆ I then

∨
A⊗

∨
B ⊆ I. Since we already know that 0S⊗T ⊆ I, it

su�ces to see that (
∨
A,

∨
B) ∈ I. We know that

⋃
τ(A×B) ⊆ I, that is

⋃
(x,y)∈A×B(↓ x×

↓ y) ∪ 0S⊗T ⊆ I and hence A×B ⊆ I so that (
∨
A,

∨
B) ∈ I since I ∈ S ⊗ T .

(n) Let (S, T ) ( U be the set of all bilinear maps S × T → U ordered pointwise (that is f ≤ g if
∀(x, y) ∈ S × T f(x, y) ≤ g(x, y)). Prove that (S, T ) ( U ' (S ( (T ( U)). Deduce from
this fact that (S, T ) ( U is a sup-semilattice.

Solution: Given f ∈ (S, T ) ( U let λ(f) : S → UT be de�ned by λ(f)(x)(y) = f(x, y).
By bilinearity of f , for each x the function λ(f)(x) : T → U is linear, and the map λ(f)
itself is linear because T ( U is ordered pointwise. The fact that λ is an order isomorphism
is an easy veri�cation.

(o) Given I ∈ X ⊗ Y let f I : S × T → ⊥ be given by

f I(x, y) =

{
0 if (x, y) ∈ I
1 otherwise.

Prove that f I is bilinear. Conversely given f ∈ (S, T ) ( ⊥ prove that ker2f = {(x, y) ∈ S×T |
f(x, y) = 0} belongs to S⊗T . Prove that these operations de�ne an order isomorphism between
S ⊗ T and ((S, T ) ( ⊥)op.

Solution: Let �rst I ∈ S ⊗ T and let use prove that f I ∈ (S, T ) ( ⊥. Observe that
f I is monotone because I is down-closed. Let A ⊆ S and B ⊆ T , it su�ces to prove
that f I(

∨
A,

∨
B) ≤

∨
f I(A × B) so assume that

∨
f I(A × B) = 0. This means that

∀(x, y) ∈ A × B f I(x, y) = 0, that is A × B ⊆ I. So we have (
∨
A,

∨
B) ∈ I, that is

f I(
∨
A,

∨
B) = 0 and hence f I is bilinear. If I, J ∈ S ⊗ T are such that I ⊆ J , we have

f I(x, y) = 0⇒ (x, y) ∈ I ⇒ (x, y) ∈ J ⇒ fJ(x, y) = 0 so that fJ ≤ f I in (S, T ) ( ⊥.
Conversely if f ∈ (S, T ) ( ⊥ we have ker2f ∈ S⊗T by bilinearity of f . If f ≤ g we clearly
have ker2g ⊆ ker2f .

Let I ∈ S ⊗ T , we have (x, y) ∈ ker2f
I ⇔ f I(x, y) = 0 ⇔ (x, y) ∈ I so that ker2f

I = I.
And given f ∈ (S, T ) ( ⊥ we have fker2f (x, y) = 0⇔ (x, y) ∈ ker2f ⇔ f(x, y) = 0 so that
fker2f = f . So we have exhibited the required iso between ((S, T ) ( ⊥)op and S ⊗ T .

To be continued. . .
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