
MPRI 2–2 Models of programming languages: domains,
categories, games

TD1

Thomas Ehrhard

December 10, 2021

The signs (*) and (**) try to indicate more difficult and interesting questions. These are of course
completely subjective indications!

1. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy ∗-
autonomy but satisfies all the other requirements. A pointed set is a structure X = (X, 0X) where
X is a set and 0X ∈ X. Given pointed sets X, X1, X2 and Y ,

• a morphism of pointed sets from X to Y is a function f : X → Y such that f(0X) = 0Y

• and a bimorphism of pointed sets from X1, X2 to Y is a function f : X1 ×X2 → Y such that
f(0X1

, x2) = f(x1, 0X2
) = 0Y for each x1 ∈ X1 and x2 ∈ X2.

(a) Prove that pointed sets together with morphisms of pointed sets form a category Set0. What
are the isos in that category?

One sets 1 = ({01, ∗}) where ∗ and 01 are are distinct chosen elements (for instance 01 is the integer
0 and ∗ is the integer 1). Given pointed sets X1 and X2 one defines X1 ⊗X2 as follows:

X1 ⊗X2 = {(x1, x2) ∈ X1 ×X2 | x1 = 0X1
⇔ x2 = 0X2

} and 0X1⊗X2
= (0X1

, 0X2
) .

Given xi ∈ Xi for i = 1, 2, one defines

x1 ⊗ x2 =

{
(0X1

, 0X2
) if x1 = 0X1

or x2 = 0X2

(x1, x2) otherwise.

(b) Prove that the function (x1, x2) 7→ x1 ⊗ x2 is a bimorphism from X1, X2 to X1 ⊗X2 which is
surjective as a function X1 ×X2 → X1 ⊗X2 and that for any bimorphism f from X1, X2 to Y
there is exactly one morphism f̃ ∈ Set0(X1 ⊗X2, Y ) such that f(x1, x2) = f̃(x1 ⊗ x2) for all
x1 ∈ X1 and x2 ∈ X2.

(c) Given fi ∈ Set0(Xi, Yi) for i = 1, 2, deduce from the above that there is exactly one morphism
f1 ⊗ f2 ∈ Set0(X1 ⊗X2, Y1 ⊗ Y2) such that

∀x1 ∈ X1 ∀x2 ∈ X2 (f1 ⊗ f2)(x1 ⊗ x2) = f1(x1)⊗ f2(x2) .

(d) Using again the universal property of Question (b) prove that the operation on morphisms
defined in Question (c) is a functor.

(e) Exhibit isomorphisms λX ∈ Set0(1 ⊗ X,X) and αX1,X2,X3
∈ Set0((X1 ⊗X2) ⊗ X3, X1 ⊗

(X2 ⊗X3)).

So Set0 is an SMC (there is a symmetry iso γX1,X2
∈ Set0(X1⊗X2, X2⊗X1) such that γX1,X2

(x1⊗
x2) = x2 ⊗ x1 which is quite easy to define, and the McLane coherence diagrams commute).
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(f) One defines X ( Y by X ( Y = Set0(X,Y ) and for 0X(Y we take the function such that
0X(Y (x) = 0Y for all x ∈ X. Let e : X ( Y × X → Y be defined by e(f, x) = f(x). Prove
that e is a bimorphism and that the SMC Set0 is closed.

(g) Prove that there is no object ⊥ of Set0 which turns this symmetric monoidal closed category
into a ∗-autonomous category.

(h) Given a family (Xi)i∈I of objects of Set0 we define an object X as follows: X =
∏

i∈I Xi and
0X = (0Xi)i∈I ∈ X so that the the projections πi : X → Xi ar obviously morphisms of Set0.
Prove that X, together with these projections, is the cartesian product of the family (Xi)i∈I
that we denote as

˘
i∈I Xi.

Notice that the terminal object (which is the product of an empty family of objects) is > =
({0>}, 0>).
Contrarily to Rel, the category Set0 has all (projective) limits. It seems rather difficult to build
∗-autonomous categories which are at the same type complete. A noticeable exception is the category
of complete lattices.
Given an object X of Set0, we define !X by !X = {(0, 0!)} ∪ {1} ×X where 0! is a chosen element
(for instance, a given integer) and 0!X = (0, 0!). Notice that (1, 0X) ∈ !X but 0!X 6= (1, 0X).
Given f ∈ Set0(X,Y ), we define !f ∈ Set0(!X, !Y ) by !f(0!X) = 0!Y and !f(1, x) = (1, f(x)). This
obviously defines a functor Set0 → Set0.
(i) We define derX : Set0(!X,X) by derX(0!X) = 0X and derX(1, x) = x. Prove that this is a

natural transformation.
(j) We define digX ∈ Set0(!X, !!X) by digX(0, 0!) = (0, 0!), that is digX(0!X) = 0!!X , and digX(1, x) =

(1, (1, x)) which is easily seen to be a natural transformation. Prove that equipped with the
natural transformations der and dig the functor !_ is a comonad.

(k) Given two objects X and Y of Set0, exhibit an isomorphism between !(X & Y ) and !X ⊗ !Y .

2. In this exercise we study a model of linear logic which is based on complete sup-semilattices and
linear maps. A complete sup-semilattice is a partially ordered set S (the order relation will always
be denoted as ≤ or ≤S if required) such that any subset A of S has a least upper bound

∨
A ∈ S.

Remember that this means

• ∀x ∈ A x ≤
∨
A

• ∀x ∈ S (∀y ∈ A y ≤ x)⇒
∨
A ≤ x.

In particular we have two elements 0 =
∨
∅ which is the least element of S and 1 =

∨
S which is the

greatest element of S.

A subset A of S is down-closed if for all x ∈ A and all y ∈ S, if y ≤ x then y ∈ A. Given x ∈ S we
set ↓ x = {y ∈ S | y ≤ x}.
A linear morphism of sup-semilattices from S to T is a function f : S → T such that for all
A ⊆ S f(

∨
A) =

∨
f(A) where we define as usual f(A) = {f(x) | x ∈ A}. Notice that this implies

that f is monotone: given x ≤ y in S we have f(y) = f(
∨
{x, y}) = f(x)∨ f(y), that is f(x) ≤ f(y).

Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps
of sup-semilattices. We set ⊥ = {0 < 1} for the object of Slat which has exactly two elements.

It is important to remember that any inf-semilattice, partially ordered set S where each A ⊆ S has
an inf (greatest lower bound)

∧
A, is also a sup-semilattice:

∨
A =

∧
{x ∈ S | ∀y ∈ A y ≤ x}.

It is easy to check that Slat is cartesian. The product of a family (Sj)j∈J of objects of Slat is the usual
cartesian product

∏
j∈J Sj equipped with the product order and projection defined in the usual way.

We also use S =
˘

j∈J Sj for this product and πj ∈ Slat(S, Sj) for the projections. The terminal
object is > = {0}.
(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.
(b) Given a set X we denote as P(X) its powerset (that is, the set of all of its subsets) ordered

under inclusion, so that P(X) is a sup-semilattice for
∨
A =

⋃
A for any A ⊆ P(X). Given

t ∈ Rel(X,Y ) we define t̂ : P(X) → P(Y ) by t̂(x) = t · x = {b ∈ Y | ∃a ∈ x (a, b) ∈ t}.

2



Prove that t̂ ∈ Slat(P(X),P(Y )) and that, for any f ∈ Slat(P(X),P(Y )) there is exactly one
t = trf ∈ Rel(X,Y ) such that f = t̂. In other words, the functor L : Rel → Slat which maps
X to P(X) and t to t̂ is full and faithful.

(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat and
f, g ∈ Slat(S, T ) there is an object E of Slat and a morphism e ∈ Slat(E,S) such that f e = g e
and, for any object V of Slat and any morphism h ∈ Slat(V, S) such that f h = g h, there is
exactly one morphism h0 ∈ Slat(V,E) such that h = e h0.

Remember that the Cantor space is the set {0, 1}ω of all infinites sequences α of 0 and 1 equipped
with the following topology (which is the product topology of the discrete space {0, 1}): a subset U
of {0, 1}ω is open iff for any α ∈ U there is a finite prefix w of α such that, for any β ∈ {0, 1}ω, if w
is a prefix of β then β ∈ U . In other words, a subset F of {0, 1}ω is closed iff it has the following
property: if α ∈ {0, 1}ω is such that, for any finite prefix w of α there exists β ∈ F such that w is
a prefix of β, then α ∈ F . As in any topological spaces, if F is a set of closed subsets then

⋂
F is

closed (you are advised to check this directly using the characterization above of closed subsets).
So the set of closed subsets of {0, 1}ω is an inf-semilattice and hence also a sup-semilattice: the sup
of a set of closed sets is the closure of its union (the intersectin of all closed sets which contain this
union).

(d) (**) Let W = {0, 1}∗ be the set of all finite sequences of 0 and 1. If w = 〈a1, . . . , an〉 ∈ W
is such a sequence and a ∈ {0, 1} let wa = 〈a1, . . . , an, a〉. Let θ = {(wa,w) | w ∈ W and a ∈
{0, 1}} ∈ Rel(W,W ). Let (C, c) be the equalizer of Id, θ̂ ∈ Slat(P(W ),P(X)) (so that C is a
sup-semilattice and c ∈ Slat(C,P(W )). Exhibit an order isomorphism between C and the set
of all closed subsets of the Cantor space ordered under inclusion.

Given a lattice S, we say that x ∈ S is prime if

∀A ⊆ S x ≤
∨
A⇒ ∃y ∈ A x ≤ y

(e) (*) Prove that, for a set X, the prime elements of P(X) ∈ Slat are exactly the singletons. Prove
that C, in sharp contrast with the previous case, has no prime elements.
[Hint: prove first that if F is prime, it must be a singleton {α} and then prove that no such
singleton is prime. For this notice that, for a collection F of closed subsets of {0, 1}ω, the closed
set

∨
F is the closure of

⋃
F (the intersection of all closed sets which contain

⋃
F). So consider

a set F of shape F = {{α(n)} | n ∈ N} where α(n)→n→∞ α and ∀n ∈ N α(n) 6= α. ]

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it
has no equalizer for the two maps θ, Id ∈ Rel(W,W ) because the equalizer of θ̂ and Id in Slat is not
an object of Rel (one would need a further proof to make this argument completely rigorous!).

(f) Prove that the set of linear morphisms S → T , equipped with the pointwise order (that is f ≤ g
if ∀x ∈ S f(x) ≤ g(x)), is a sup-semilattice. We denote it as S ( T .

(g) Given x ∈ S define a function x∗ : S → ⊥ by

x∗(y) =

{
1 if y 6≤ x
0 if y ≤ x

Prove that x∗ ∈ S ( ⊥.
(h) Given a sup-semilattice S, we use Sop for the same set S equipped with the reverse order:

x ≤Sop y if y ≤S x. Prove that the map x 7→ x∗ is an order isomorphism from the poset
Sop to S ( ⊥. Warning: one must prove that it is monotone in both directions because
a monotone bijection is not necessarily an order isomorphism! Call k : (S ( ⊥) → Sop the
inverse isomorphism.

(i) (*) Given f ∈ (S ( T ) define f∗ : (T ( ⊥) → (S ( ⊥) by f∗(y′) = y′ f . Prove that f∗ ∈
Slat(T ( ⊥, S ( ⊥). Let f⊥ ∈ Slat(T op, Sop) be the associated morphism (through the iso k
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defined above, that is f⊥(y) = k(f∗(y∗)) ). Prove that

∀x ∈ S ∀y ∈ T f(x) ≤ y ⇔ x ≤ f⊥(y) .

One says that f and f⊥ define a Galois connection between S and T . Last prove that f⊥⊥ = f .

(j) Given sup-semilattices S and T we define S ⊗ T as the set of all I ⊆ S × T such that

• I is down-closed
• and, for all A ⊆ S and B ⊆ T , if A and B satisfy A×B ⊆ I then (

∨
A,

∨
B) ∈ I.

Prove that (S ⊗ T,⊆) is an inf-semilattice (that is, is closed under arbitrary intersections). As
a consequence, it is also a sup-semilattice: if I ⊆ S ⊗ T then

∨
I =

⋂
{I ∈ S ⊗ T |

⋃
I ⊆ I}.

But notice that in this sup-semilattice, the sups are not defined as unions in general.

(k) Prove that the least element of S ⊗ T is 0S⊗T = S × {0} ∪ {0} × T .
(l) We say that a map f : S×T → U (where S, T, U are sup-semilattices) is bilinear if for all A ⊆ S

and B ⊆ T we have
∨
f(A × B) = f(

∨
A × B). Prove that this condition is equivalent to the

following:

• for all x ∈ S and B ⊆ T , one has f(x,
∨
B) =

∨
y∈B f(x, y)

• and for all y ∈ T and A ⊆ S, one has f(
∨
A, y) =

∨
x∈A f(x, y)

that is, f is separately linear in both variables.

(m) (*) Given x ∈ S and y ∈ T let x⊗ y = ↓ (x, y) ∪ 0S⊗T ⊆ S × T . Prove that x⊗ y ∈ S ⊗ T and
that the function τ : (x, y) 7→ x⊗ y is a bilinear map S × T → S ⊗ T .

(n) Let (S, T ) ( U be the set of all bilinear maps S × T → U ordered pointwise (that is f ≤ g if
∀(x, y) ∈ S × T f(x, y) ≤ g(x, y)). Prove that (S, T ) ( U ' (S ( (T ( U)). Deduce from
this fact that (S, T ) ( U is a sup-semilattice.

(o) Given I ∈ X ⊗ Y let f I : S × T → ⊥ be given by

f I(x, y) =

{
0 if (x, y) ∈ I
1 otherwise.

Prove that f I is bilinear. Conversely given f ∈ (S, T ) ( ⊥ prove that ker2f = {(x, y) ∈ S×T |
f(x, y) = 0} belongs to S⊗T . Prove that these operations define an order isomorphism between
S ⊗ T and ((S, T ) ( ⊥)op.

To be continued. . .
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