MPRI 2-2 Models of programming languages: domains, categories, games TD1

Thomas Ehrhard

December 10, 2021

The signs $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ try to indicate more difficult and interesting questions. These are of course completely subjective indications!

1. This exercise develops a somehow degenerate model of Linear Logic which does not satisfy *autonomy but satisfies all the other requirements. A pointed set is a structure $X=\left(\underline{X}, 0_{X}\right)$ where \underline{X} is a set and $0_{X} \in \underline{X}$. Given pointed sets X, X_{1}, X_{2} and Y,

- a morphism of pointed sets from X to Y is a function $f: \underline{X} \rightarrow \underline{Y}$ such that $f\left(0_{X}\right)=0_{Y}$
- and a bimorphism of pointed sets from X_{1}, X_{2} to Y is a function $f: \underline{X_{1}} \times \underline{X_{2}} \rightarrow \underline{Y}$ such that $f\left(0_{X_{1}}, x_{2}\right)=f\left(x_{1}, 0_{X_{2}}\right)=0_{Y}$ for each $x_{1} \in \underline{X_{1}}$ and $x_{2} \in \underline{X_{2}}$
(a) Prove that pointed sets together with morphisms of pointed sets form a category Set_{0}. What are the isos in that category?

One sets $1=\left(\left\{0_{1}, *\right\}\right)$ where $*$ and 0_{1} are are distinct chosen elements (for instance 0_{1} is the integer 0 and $*$ is the integer 1). Given pointed sets X_{1} and X_{2} one defines $X_{1} \otimes X_{2}$ as follows:

$$
\underline{X_{1} \otimes X_{2}}=\left\{\left(x_{1}, x_{2}\right) \in \underline{X_{1}} \times \underline{X_{2}} \mid x_{1}=0_{X_{1}} \Leftrightarrow x_{2}=0_{X_{2}}\right\} \quad \text { and } \quad 0_{X_{1} \otimes X_{2}}=\left(0_{X_{1}}, 0_{X_{2}}\right) .
$$

Given $x_{i} \in \underline{X_{i}}$ for $i=1,2$, one defines

$$
x_{1} \otimes x_{2}= \begin{cases}\left(0_{X_{1}}, 0_{X_{2}}\right) & \text { if } x_{1}=0_{X_{1}} \text { or } x_{2}=0_{X_{2}} \\ \left(x_{1}, x_{2}\right) & \text { otherwise } .\end{cases}
$$

(b) Prove that the function $\left(x_{1}, x_{2}\right) \mapsto x_{1} \otimes x_{2}$ is a bimorphism from X_{1}, X_{2} to $X_{1} \otimes X_{2}$ which is surjective as a function $\underline{X_{1}} \times \underline{X_{2}} \rightarrow \underline{X_{1} \otimes X_{2}}$ and that for any bimorphism f from X_{1}, X_{2} to Y there is exactly one morphism $\widetilde{f} \in \operatorname{Set}_{0}\left(X_{1} \otimes X_{2}, Y\right)$ such that $f\left(x_{1}, x_{2}\right)=\widetilde{f}\left(x_{1} \otimes x_{2}\right)$ for all $x_{1} \in \underline{X_{1}}$ and $x_{2} \in \underline{X_{2}}$.
(c) Given $f_{i} \in \operatorname{Set}_{0}\left(X_{i}, Y_{i}\right)$ for $i=1,2$, deduce from the above that there is exactly one morphism $f_{1} \otimes f_{2} \in \operatorname{Set}_{0}\left(X_{1} \otimes X_{2}, Y_{1} \otimes Y_{2}\right)$ such that

$$
\forall x_{1} \in \underline{X_{1}} \forall x_{2} \in \underline{X_{2}} \quad\left(f_{1} \otimes f_{2}\right)\left(x_{1} \otimes x_{2}\right)=f_{1}\left(x_{1}\right) \otimes f_{2}\left(x_{2}\right) .
$$

(d) Using again the universal property of Question (b) prove that the operation on morphisms defined in Question (c) is a functor.
(e) Exhibit isomorphisms $\lambda_{X} \in \operatorname{Set}_{0}(1 \otimes X, X)$ and $\alpha_{X_{1}, X_{2}, X_{3}} \in \operatorname{Set}_{0}\left(\left(X_{1} \otimes X_{2}\right) \otimes X_{3}, X_{1} \otimes\right.$ $\left.\left(X_{2} \otimes X_{3}\right)\right)$.

So Set_{0} is an SMC (there is a symmetry iso $\gamma_{X_{1}, X_{2}} \in \operatorname{Set}_{0}\left(X_{1} \otimes X_{2}, X_{2} \otimes X_{1}\right)$ such that $\gamma_{X_{1}, X_{2}}\left(x_{1} \otimes\right.$ $\left.x_{2}\right)=x_{2} \otimes x_{1}$ which is quite easy to define, and the McLane coherence diagrams commute).
(f) One defines $X \multimap Y$ by $X \multimap Y=\operatorname{Set}_{0}(X, Y)$ and for $0_{X \multimap Y}$ we take the function such that $0_{X \rightarrow Y}(x)=0_{Y}$ for all $x \in \underline{X}$. Let $e: \underline{X} \multimap Y \times \underline{X} \rightarrow \underline{Y}$ be defined by $e(f, x)=f(x)$. Prove that e is a bimorphism and that the SMC Set $_{0}$ is closed.
(g) Prove that there is no object \perp of Set_{0} which turns this symmetric monoidal closed category into a $*$-autonomous category.
(h) Given a family $\left(X_{i}\right)_{i \in I}$ of objects of $\boldsymbol{S e t}_{0}$ we define an object X as follows: $\underline{X}=\prod_{i \in I} \underline{X_{i}}$ and $0_{X}=\left(0_{X_{i}}\right)_{i \in I} \in \underline{X}$ so that the the projections $\pi_{i}: \underline{X} \rightarrow \underline{X_{i}}$ ar obviously morphisms of Set_{0}. Prove that X, together with these projections, is the cartesian product of the family $\left(X_{i}\right)_{i \in I}$ that we denote as $\&_{i \in I} X_{i}$.

Notice that the terminal object (which is the product of an empty family of objects) is $\top=$ ($\left\{0_{\top}\right\}, 0_{\top}$).
Contrarily to Rel, the category Set $_{0}$ has all (projective) limits. It seems rather difficult to build *-autonomous categories which are at the same type complete. A noticeable exception is the category of complete lattices.
Given an object X of $\mathbf{S e t}_{0}$, we define $!X$ by $!X=\left\{\left(0,0_{!}\right)\right\} \cup\{1\} \times \underline{X}$ where 0 ! is a chosen element (for instance, a given integer) and $0_{!X}=\left(0,0_{!}\right)$. Notice that $\left(1,0_{X}\right) \in!X$ but $0_{!X} \neq\left(1,0_{X}\right)$.
Given $f \in \boldsymbol{S e t}_{0}(X, Y)$, we define $!f \in \boldsymbol{\operatorname { S e t }}_{0}(!X,!Y)$ by $!f\left(0_{!X}\right)=0_{!Y}$ and $!f(1, x)=(1, f(x))$. This obviously defines a functor $\mathbf{S e t}_{0} \rightarrow$ Set $_{0}$.
(i) We define $\operatorname{der}_{X}: \operatorname{Set}_{0}(!X, X)$ by $\operatorname{der}_{X}\left(0_{!X}\right)=0_{X}$ and $\operatorname{der}_{X}(1, x)=x$. Prove that this is a natural transformation.
(j) We define $\operatorname{dig}_{X} \in \operatorname{Set}_{0}(!X,!!X)$ by $\operatorname{dig}_{X}\left(0,0_{!}\right)=\left(0,0_{!}\right)$, that is $\operatorname{dig}_{X}\left(0_{!X}\right)=0!!X$, and $\operatorname{dig}_{X}(1, x)=$ $(1,(1, x))$ which is easily seen to be a natural transformation. Prove that equipped with the natural transformations der and dig the functor !_ is a comonad.
(k) Given two objects X and Y of $\boldsymbol{S e t}_{0}$, exhibit an isomorphism between $!(X \& Y)$ and $!X \otimes!Y$.
2. In this exercise we study a model of linear logic which is based on complete sup-semilattices and linear maps. A complete sup-semilattice is a partially ordered set S (the order relation will always be denoted as \leq or \leq_{S} if required) such that any subset A of S has a least upper bound $\bigvee A \in S$. Remember that this means

- $\forall x \in A x \leq \bigvee A$
- $\forall x \in S(\forall y \in A y \leq x) \Rightarrow \bigvee A \leq x$.

In particular we have two elements $0=\bigvee \emptyset$ which is the least element of S and $1=\bigvee S$ which is the greatest element of S.
A subset A of S is down-closed if for all $x \in A$ and all $y \in S$, if $y \leq x$ then $y \in A$. Given $x \in S$ we set $\downarrow x=\{y \in S \mid y \leq x\}$.
A linear morphism of sup-semilattices from S to T is a function $f: S \rightarrow T$ such that for all $A \subseteq S f(\bigvee A)=\bigvee f(A)$ where we define as usual $f(A)=\{f(x) \mid x \in A\}$. Notice that this implies that f is monotone: given $x \leq y$ in S we have $f(y)=f(\bigvee\{x, y\})=f(x) \vee f(y)$, that is $f(x) \leq f(y)$. Let Slat be the category whose objects are the sup-semilattices and morphisms are the linear maps of sup-semilattices. We set $\perp=\{0<1\}$ for the object of Slat which has exactly two elements.
It is important to remember that any inf-semilattice, partially ordered set S where each $A \subseteq S$ has an \inf (greatest lower bound) $\bigwedge A$, is also a sup-semilattice: $\bigvee A=\bigwedge\{x \in S \mid \forall y \in A y \leq x\}$.
It is easy to check that Slat is cartesian. The product of a family $\left(S_{j}\right)_{j \in J}$ of objects of Slat is the usual cartesian product $\prod_{j \in J} S_{j}$ equipped with the product order and projection defined in the usual way. We also use $S=\&_{j \in J} S_{j}$ for this product and $\pi_{j} \in \operatorname{Slat}\left(S, S_{j}\right)$ for the projections. The terminal object is $T=\{0\}$.
(a) Show that the isomorphisms of Slat are the linear morphisms which are bijections.
(b) Given a set X we denote as $\mathcal{P}(X)$ its powerset (that is, the set of all of its subsets) ordered under inclusion, so that $\mathcal{P}(X)$ is a sup-semilattice for $\bigvee A=\bigcup A$ for any $A \subseteq \mathcal{P}(X)$. Given $t \in \operatorname{Rel}(X, Y)$ we define $\widehat{t}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ by $\widehat{t}(x)=t \cdot x=\{b \in Y \mid \exists a \in x(a, b) \in t\}$.

Prove that $\hat{t} \in \operatorname{Slat}(\mathcal{P}(X), \mathcal{P}(Y))$ and that, for any $f \in \operatorname{Slat}(\mathcal{P}(X), \mathcal{P}(Y))$ there is exactly one $t=\operatorname{tr} f \in \operatorname{Rel}(X, Y)$ such that $f=\widehat{t}$. In other words, the functor $L: \mathbf{R e l} \rightarrow$ Slat which maps X to $\mathcal{P}(X)$ and t to \widehat{t} is full and faithful.
(c) Prove that the category Slat has all equalizers, in other words: given objects S and T of Slat and $f, g \in \operatorname{Slat}(S, T)$ there is an object E of Slat and a morphism $e \in \operatorname{Slat}(E, S)$ such that $f e=g e$ and, for any object V of Slat and any morphism $h \in \operatorname{Slat}(V, S)$ such that $f h=g h$, there is exactly one morphism $h_{0} \in \operatorname{Slat}(V, E)$ such that $h=e h_{0}$.

Remember that the Cantor space is the set $\{0,1\}^{\omega}$ of all infinites sequences α of 0 and 1 equipped with the following topology (which is the product topology of the discrete space $\{0,1\}$): a subset U of $\{0,1\}^{\omega}$ is open iff for any $\alpha \in U$ there is a finite prefix w of α such that, for any $\beta \in\{0,1\}^{\omega}$, if w is a prefix of β then $\beta \in U$. In other words, a subset F of $\{0,1\}^{\omega}$ is closed iff it has the following property: if $\alpha \in\{0,1\}^{\omega}$ is such that, for any finite prefix w of α there exists $\beta \in F$ such that w is a prefix of β, then $\alpha \in F$. As in any topological spaces, if \mathcal{F} is a set of closed subsets then $\bigcap \mathcal{F}$ is closed (you are advised to check this directly using the characterization above of closed subsets).
So the set of closed subsets of $\{0,1\}^{\omega}$ is an inf-semilattice and hence also a sup-semilattice: the sup of a set of closed sets is the closure of its union (the intersectin of all closed sets which contain this union).
(d) $\left(^{* *}\right)$ Let $W=\{0,1\}^{*}$ be the set of all finite sequences of 0 and 1 . If $w=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in W$ is such a sequence and $a \in\{0,1\}$ let $w a=\left\langle a_{1}, \ldots, a_{n}, a\right\rangle$. Let $\theta=\{(w a, w) \mid w \in W$ and $a \in$ $\{0,1\}\} \in \operatorname{Rel}(W, W)$. Let (C, c) be the equalizer of $\operatorname{Id}, \widehat{\theta} \in \operatorname{Slat}(\mathcal{P}(W), \mathcal{P}(X))$ (so that C is a sup-semilattice and $c \in \operatorname{Slat}(C, \mathcal{P}(W))$. Exhibit an order isomorphism between C and the set of all closed subsets of the Cantor space ordered under inclusion.

Given a lattice S, we say that $x \in S$ is prime if

$$
\forall A \subseteq S \quad x \leq \bigvee A \Rightarrow \exists y \in A x \leq y
$$

(e) $\left(^{*}\right.$) Prove that, for a set X, the prime elements of $\mathcal{P}(X) \in$ Slat are exactly the singletons. Prove that C, in sharp contrast with the previous case, has no prime elements.
[Hint: prove first that if F is prime, it must be a singleton $\{\alpha\}$ and then prove that no such singleton is prime. For this notice that, for a collection \mathcal{F} of closed subsets of $\{0,1\}^{\omega}$, the closed set $\bigvee \mathcal{F}$ is the closure of $\bigcup \mathcal{F}$ (the intersection of all closed sets which contain $\bigcup \mathcal{F}$). So consider a set \mathcal{F} of shape $\mathcal{F}=\{\{\alpha(n)\} \mid n \in \mathbb{N}\}$ where $\alpha(n) \rightarrow_{n \rightarrow \infty} \alpha$ and $\forall n \in \mathbb{N} \alpha(n) \neq \alpha$.]

This example is a concrete illustration of the fact that the category Rel is not complete, indeed it has no equalizer for the two maps $\theta, \operatorname{Id} \in \operatorname{Rel}(W, W)$ because the equalizer of $\widehat{\theta}$ and Id in Slat is not an object of Rel (one would need a further proof to make this argument completely rigorous!).
(f) Prove that the set of linear morphisms $S \rightarrow T$, equipped with the pointwise order (that is $f \leq g$ if $\forall x \in S f(x) \leq g(x))$, is a sup-semilattice. We denote it as $S \multimap T$.
(g) Given $x \in S$ define a function $x^{*}: S \rightarrow \perp$ by

$$
x^{*}(y)= \begin{cases}1 & \text { if } y \not \leq x \\ 0 & \text { if } y \leq x\end{cases}
$$

Prove that $x^{*} \in S \multimap \perp$.
(h) Given a sup-semilattice S, we use $S^{\text {op }}$ for the same set S equipped with the reverse order: $x \leq_{S^{\text {op }}} y$ if $y \leq_{S} x$. Prove that the map $x \mapsto x^{*}$ is an order isomorphism from the poset S^{op} to $S \multimap \perp$. Warning: one must prove that it is monotone in both directions because a monotone bijection is not necessarily an order isomorphism! Call k : $S \multimap \perp$) $\rightarrow S^{\text {op }}$ the inverse isomorphism.
(i) $\left(^{*}\right.$) Given $f \in(S \multimap T)$ define $f^{*}:(T \multimap \perp) \rightarrow(S \multimap \perp)$ by $f^{*}\left(y^{\prime}\right)=y^{\prime} f$. Prove that $f^{*} \in$ $\operatorname{Slat}(T \multimap \perp, S \multimap \perp)$. Let $f^{\perp} \in \operatorname{Slat}\left(T^{\circ \mathrm{p}}, S^{\mathrm{op}}\right)$ be the associated morphism (through the iso k
defined above, that is $\left.f^{\perp}(y)=\mathrm{k}\left(f^{*}\left(y^{*}\right)\right)\right)$. Prove that

$$
\forall x \in S \forall y \in T \quad f(x) \leq y \Leftrightarrow x \leq f^{\perp}(y) .
$$

One says that f and f^{\perp} define a Galois connection between S and T. Last prove that $f^{\perp \perp}=f$.
(j) Given sup-semilattices S and T we define $S \otimes T$ as the set of all $I \subseteq S \times T$ such that

- I is down-closed
- and, for all $A \subseteq S$ and $B \subseteq T$, if A and B satisfy $A \times B \subseteq I$ then $(\bigvee A, \bigvee B) \in I$.

Prove that $(S \otimes T, \subseteq)$ is an inf-semilattice (that is, is closed under arbitrary intersections). As a consequence, it is also a sup-semilattice: if $\mathcal{I} \subseteq S \otimes T$ then $\bigvee \mathcal{I}=\bigcap\{I \in S \otimes T \mid \bigcup \mathcal{I} \subseteq I\}$. But notice that in this sup-semilattice, the sups are not defined as unions in general.
(k) Prove that the least element of $S \otimes T$ is $0_{S \otimes T}=S \times\{0\} \cup\{0\} \times T$.
(l) We say that a map $f: S \times T \rightarrow U$ (where S, T, U are sup-semilattices) is bilinear if for all $A \subseteq S$ and $B \subseteq T$ we have $\bigvee f(A \times B)=f(\bigvee A \times B)$. Prove that this condition is equivalent to the following:

- for all $x \in S$ and $B \subseteq T$, one has $f(x, \bigvee B)=\bigvee_{y \in B} f(x, y)$
- and for all $y \in T$ and $A \subseteq S$, one has $f(\bigvee A, y)=\bigvee_{x \in A} f(x, y)$
that is, f is separately linear in both variables.
(m) (*) Given $x \in S$ and $y \in T$ let $x \otimes y=\downarrow(x, y) \cup 0_{S \otimes T} \subseteq S \times T$. Prove that $x \otimes y \in S \otimes T$ and that the function $\tau:(x, y) \mapsto x \otimes y$ is a bilinear map $S \times T \rightarrow S \otimes T$.
(n) Let $(S, T) \multimap U$ be the set of all bilinear maps $S \times T \rightarrow U$ ordered pointwise (that is $f \leq g$ if $\forall(x, y) \in S \times T f(x, y) \leq g(x, y))$. Prove that $(S, T) \multimap U \simeq(S \multimap(T \multimap U))$. Deduce from this fact that $(S, T) \multimap U$ is a sup-semilattice.
(o) Given $I \in X \otimes Y$ let $f^{I}: S \times T \rightarrow \perp$ be given by

$$
f^{I}(x, y)= \begin{cases}0 & \text { if }(x, y) \in I \\ 1 & \text { otherwise }\end{cases}
$$

Prove that f^{I} is bilinear. Conversely given $f \in(S, T) \multimap \perp$ prove that $\operatorname{ker}_{2} f=\{(x, y) \in S \times T \mid$ $f(x, y)=0\}$ belongs to $S \otimes T$. Prove that these operations define an order isomorphism between $S \otimes T$ and $((S, T) \multimap \perp)^{\circ \mathrm{op}}$.

To be continued. . .

