MPRI 2-2 Final exam, 5/3/2020

Authorized documents: all documents, no electronic devices. You may answer the questions in French or English.

NB:

- A few questions are more difficult, they are highlighted by a "*". Of course additional points will be associated with these questions.
- Questions are written in such a way that you can easily skip them if you wish. However for solving a question you may need results stated in earlier questions.

1) Let M be the following term of PCF:

$$
M=\operatorname{fix}\left(\lambda x^{\iota} \underline{\operatorname{succ}}(x)\right)
$$

1.1) Provide a typing derivation showing that $\vdash M: \iota$.
1.2) Prove that $[M]=\emptyset$ (in the relational model).
1.3) Give a typing derivation and compute the relational semantics of the term

$$
\lambda f^{\iota \rightarrow \iota}(f) M
$$

[Hint: You can use the "intersection type system" presented during the lectures for computing the semantics, Section 7.2.4 in the Lecture Notes.]
2) We record that a $t \in \operatorname{Rel}(E, F)$ is an isomorphism in Rel (that is there is $t^{\prime} \in \operatorname{Rel}(F, E)$ such that $t^{\prime} t=\mathrm{Id}$ and $t t^{\prime}=\mathrm{Id}$) if and only if t is a bijection (identified with its graph, that is, there is a bijection $f: E \rightarrow F$ such that $t=\{(a, f(a)) \mid a \in E\})$.

Given a set E, we define ! ${ }^{\top} E$ as the least set such that

- $0 \in!^{\top} E$
- if $a \in E$ then $(1, a) \in!^{\top} E$
- and if $\sigma, \tau \in!^{\top} E$ then $(2,(\sigma, \tau)) \in!^{\top} E$.

To increase readability, we use the following notations: $\rangle=0,\langle a\rangle=(1, a)$ (for $a \in E)$ and $\langle\sigma, \tau\rangle=(2,(\sigma, \tau)$). An element of $!^{\top} E$ can be seen as a binary tree with two kind of leaves: "empty leaves" \rangle and "singleton leaves" $\langle a\rangle$ labeled by an element a of E. The main tool of reasoning with such trees is of course induction on their size or structure.

The goal of this exercise is to show that ! ${ }^{\top}$ is "almost" an exponential on Rel.
2.1) Given $t \in \boldsymbol{\operatorname { R e l }}(E, F)$, we define ! ${ }^{\top} t$ as the least subset of ! ${ }^{\top} E \multimap!^{\top} F$ such that

- $\left(\rangle,\langle \rangle) \in!^{\top} t\right.$
- $(a, b) \in t \Rightarrow(\langle a\rangle,\langle b\rangle) \in!^{\top} t$
- $\left(\sigma_{1}, \tau_{1}\right),\left(\sigma_{2}, \tau_{2}\right) \in!^{\top} t \Rightarrow\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle,\left\langle\tau_{1}, \tau_{2}\right\rangle\right) \in!^{\top} t$.

Prove that $!^{\top}$ is a functor. [Hint: Let $s \in \boldsymbol{\operatorname { R e l }}(E, F)$ and $t \in \boldsymbol{\operatorname { R e l }}(F, G)$. By induction on $\sigma \in!^{\top} E$ prove that for any $\varphi \in!^{\top} G$ one has $(\sigma, \varphi) \in\left(!^{\top} t\right)\left(!^{\top} s\right) \Leftrightarrow(\sigma, \varphi) \in!^{\top}(t s)$. Of course one can also use an induction on φ.]
2.2) We define $\operatorname{der}_{E}^{\top} \in \operatorname{Rel}\left(!^{\top} E, E\right)$ by $\operatorname{der}_{E}^{\top}=\{(\langle a\rangle, a) \mid a \in E\}$. Prove that it is a natural transformation $!^{\top} \Rightarrow$ Id. [Hint: For this, consider $t \in \operatorname{Rel}(E, F)$ and $(\sigma, b) \in!^{\top} E \times F$. By induction on σ, prove that $(\sigma, b) \in \operatorname{der}_{F}^{\top}\left(!{ }^{\top} t\right) \Leftrightarrow(\sigma, b) \in t \operatorname{der}_{E}^{\top}$. You will see in particular that when σ is not of shape $\langle a\rangle$ for some $a \in E$, the two sides of this equivalence are false and hence the equivalence holds trivially.]
2.3) We define a function flat : $!^{\top}!^{\top} E \rightarrow!^{\top} E$ by induction on trees as follows:

- flat $(\rangle)=\langle \rangle$,
- flat $(\langle\sigma\rangle)=\sigma$ and
- flat $\left(\left\langle\Sigma_{1}, \Sigma_{2}\right\rangle\right)=\left\langle\operatorname{flat}\left(\Sigma_{1}\right)\right.$, flat $\left.\left(\Sigma_{2}\right)\right\rangle$.

We define $\operatorname{digg}_{E}^{\top} \in \operatorname{Rel}\left(!^{\top} E,!^{\top}!^{\top} E\right)$ by $\operatorname{digg}_{E}^{\top}=\left\{(\operatorname{flat}(\Sigma), \Sigma) \mid \Sigma \in!^{\top}!^{\top} E\right\}$. Prove that $\operatorname{digg}^{\top}$ is a natural transformation $!^{\top} \Rightarrow\left(!^{\top} \circ!^{\top}\right)$. [Hint: Let $t \in \operatorname{Rel}(E, F)$ and $(\sigma, b) \in!^{\top} E \times F$. By induction on $\Theta \in!^{\top}!^{\top} F$, prove that for all $\sigma \in!^{\top} E$, one has $(\sigma, \Theta) \in \operatorname{digg}_{F}^{\top}\left(!^{\top} t\right) \Leftrightarrow(\sigma, \Theta) \in\left(!^{\top}!^{\top} t\right) \operatorname{digg}_{E}^{\top}$.]
2.4) Prove that (! ${ }^{\top}, \operatorname{der}^{\top}, \operatorname{digg}^{\top}$) is a comonad.
2.5) We record that, given sets $\left(E_{i}\right)_{i \in I}$, their cartesian product $E=\&_{i \in I} E_{i}$ in Rel is defined by $E=$ $\cup_{i \in I}\left(\{i\} \times E_{i}\right)$. For each $i \in I$ we define a function $\mathrm{p}_{i}^{\top}:!^{\top} E \rightarrow!^{\top} E_{i}$ by induction as follows:

- $\mathrm{p}_{i}^{\top}(\langle \rangle)=\langle \rangle$,
- $\mathrm{p}_{i}^{\mathrm{T}}(\langle(i, a)\rangle)=\langle a\rangle$,
- $\mathrm{p}_{i}^{\top}(\langle(j, a)\rangle)=\langle \rangle$ if $j \neq i$,
- and $\mathbf{p}_{i}^{\top}\left(\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right)=\left\langle\mathbf{p}_{i}^{\top}\left(\sigma_{1}\right), \mathbf{p}_{i}^{\top}\left(\sigma_{2}\right)\right\rangle$.

Provide a counter-example showing that it is not true that the function p_{i}^{\top} coincides (as a graph) with $!^{\top} \mathrm{pr}_{i} \in \operatorname{Rel}\left(!^{\top} E,!^{\top} E_{i}\right)$, where $\mathrm{pr}_{i} \in \operatorname{Rel}\left(E, E_{i}\right)$ is the i-th projection of the cartesian product, that is $\mathrm{pr}_{i}=\{((i, a), a) \mid a \in E\}$.
2.6) Then we define $\mathrm{m}_{E_{1}, E_{2}}^{\top} \in \boldsymbol{\operatorname { R e l }}\left(!^{\top} E_{1} \otimes!^{\top} E_{2},!^{\top}\left(E_{1} \& E_{2}\right)\right)$ as

$$
\mathrm{m}_{E_{1}, E_{2}}^{\top}=\left\{\left(\left(\mathrm{p}_{1}^{\top}(\theta), \mathrm{p}_{2}^{\top}(\theta)\right), \theta\right) \mid \theta \in!^{\top}\left(E_{1} \& E_{2}\right)\right\}
$$

We admit that this morphism is natural in E_{1} and E_{2}. Provide a counter-example showing that $\mathrm{m}_{E_{1}, E_{2}}^{\top}$ is not an isomorphism in general.
2.7) Prove that the following diagram commutes (lax monoidality).

$$
\begin{aligned}
& \left(!^{\top} E_{1} \otimes!^{\top} E_{2}\right) \otimes!^{\top} E_{3} \longrightarrow!^{\top} E_{1} \otimes\left(!^{\top} E_{2} \otimes!^{\top} E_{3}\right) \\
& \begin{array}{lr}
\downarrow \mathbf{m}_{E_{1}, E_{2}}^{\top} \otimes \mathbf{l d} \\
\left.E_{2}\right) \otimes!^{\top} E_{3} & !^{\top} \mathbf{l d}_{2} \otimes \mathbf{m}_{E_{2}, E_{3}}^{\top} \otimes!^{\top}\left(E_{2} \& E_{3}\right)
\end{array} \\
& !^{\top}\left(E_{1} \& E_{2}\right) \otimes!^{\top} E_{3} \\
& \downarrow \mathrm{~m}_{E_{1} \& E_{2}, E_{3}}^{\top} \quad!^{\top}\left(\left\langle\mathrm{pr}_{1} \mathrm{pr}_{1},\left\langle\mathrm{pr}_{2} \mathrm{pr}_{1}, \mathrm{pr}_{2}\right\rangle\right\rangle\right) \quad \downarrow \mathrm{m}_{E_{1}, E_{2} \& E_{3}}^{\top} \\
& !^{\top}\left(\left(E_{1} \& E_{2}\right) \& E_{3}\right) \xrightarrow{!^{\top}\left(\left\langle\mathrm{pr}_{1} \mathrm{pr}_{1},\left\langle\mathrm{pr}_{2} \mathrm{pr}_{1}, \mathrm{pr}_{2}\right\rangle\right\rangle\right)}!^{\mathrm{T}}\left(E_{1} \&\left(E_{2} \& E_{3}\right)\right)
\end{aligned}
$$

[Hint: Define two functions $f, g:!^{\top}\left(E_{1} \&\left(E_{2} \& E_{3}\right)\right) \rightarrow\left(!^{\top} E_{1} \otimes!^{\top} E_{2}\right) \otimes!^{\top} E_{3}$ allowing to describe simply the two morphisms that have to be proven equal. Prove that these two functions are equal.]
2.8) We define a function ms : ${ }^{\top} E \rightarrow!E$ (where $!E$ is the set $\mathcal{M}_{\text {fin }}(E)$ of finite multisets of elements of E, the exponential on Rel presented during the lectures) as follows:

- $\mathrm{ms}(\rangle)=[]$,
- $\operatorname{ms}(\langle a\rangle)=[a]$ and
- $\mathrm{ms}(\langle\sigma, \tau\rangle)=\mathrm{ms}(\sigma)+\mathrm{ms}(\tau)$.

We define $\mathrm{ms}_{E}=\left\{(\sigma, \mathrm{ms}(\sigma)) \mid \sigma \in!^{\top} E\right\}$. Prove that this is a natural transformation $!^{\top} \Rightarrow!$.
2.9) Prove that the following diagrams are commutative

where m is the morphism $!^{\top}!^{\top} E \rightarrow!!E$ defined in two different ways by the left hand diagram.
3) Remember that a coherence space E is a pair $\left(|E|, \frown_{E}\right)$ where $|E|$ is a set (the web) and \frown_{E} is a binary symmetric and reflexive relation on $|E|$ (coherence relation), and that the cliques of E form a domain that we will denote as $\mathrm{Cl}(E)$. Remember that \frown_{E} is the strict coherence relation: $a \frown_{E} b$ if $a \neq b$ and $a \frown_{E} b$.

Remember also that, given coherence spaces E and F one defines a coherence space $E \multimap F$ whose cliques are the linear morphisms from E to $F\left(|E \multimap F|=|E| \times|F|,\left(a_{1}, a_{2}\right) \frown_{E \multimap F}\left(b_{1}, b_{2}\right)\right.$ if $a_{1} \frown_{E} a_{2} \Rightarrow b_{1} \frown_{F} b_{2}$ and $a_{1} \frown_{E} a_{2} \Rightarrow b_{1} \frown_{F} b_{2}$). We use Coh for the category of coherence spaces and linear maps, composition being defined as relational composition and identities being the diagonal relations. We also write $t: E \multimap F$ when $t \in \mathrm{Cl}(E \multimap F)=\mathbf{C o h}(E, F)$.

Given coherence spaces E and F, we say that a function $f:|E| \rightarrow|F|$ is an embedding if

- f is injective
- and $\forall a, a^{\prime} \in|E| a \frown_{E} a^{\prime} \Leftrightarrow f(a) \frown_{F} f\left(a^{\prime}\right)$. [Warning: this has to be an equivalence, not a simple implication!]

We use Coh ${ }^{\text {e }}$ for the category of coherence spaces and embeddings. We write $f: E \triangleleft F$ when $f \in$ $\operatorname{Coh}^{\mathrm{e}}(E, F)$.

Let $S=\left(E_{n}, f_{n}\right)_{n \in \mathbb{N}}$ be a family where the E_{n} are coherence spaces and $f_{n}: E_{n} \triangleleft E_{n+1}$. Such a family will be called an embedding system. If $n, p \in \mathbb{N}$ with $n \leq p$, we set $f_{n, p}=f_{p-1} \circ \cdots \circ f_{n}: E_{n} \triangleleft E_{p}$. In particular $f_{n, n}=\mathrm{Id}$.

Let $A=\cup_{n \in \mathbb{N}}\left(\{n\} \times\left|E_{n}\right|\right)$. We say that an element (n, a) of A is root if $n=0$, or if $n>0$ and there is no $a^{\prime} \in\left|E_{n-1}\right|$ such that $f_{n-1}\left(a^{\prime}\right)=a$, or equivalently $a \in\left|E_{n}\right| \backslash f_{n-1}\left(\left|E_{n-1}\right|\right)$. Let A_{0} be the set of all root elements of A.
3.1) Prove that for any $(n, a) \in A$ there is exactly one $(p, b) \in A_{0}$ such that $p \leq n$ and $f_{p, n}(b)=a$. We set $\operatorname{root}(n, a)=(p, b)$. [Hint: By induction on n, prove that the property holds for all $a \in\left|E_{n}\right|$.]

We define a "limit" coherence space $E=\operatorname{Lim} S$ by taking $|E|=A_{0}$ and coherence specified as follows. Let $(n, a),(p, b) \in|E|=A_{0}$. We say that $(n, a) \frown_{E}(p, b)$ if

- $n=p$ and $a \frown_{E_{n}} b$
- or $n<p$ and $f_{n, p}(a) \frown_{E_{p}} b$ (notice that, in that case, necessarily $f_{n, p}(a) \neq b$ because b is root)
- or $n>p$ and $a \frown_{E_{n}} f_{p, n}(b)$ (similar remark).
3.2) For each $n \in \mathbb{N}$, prove that the function $g_{n}:\left|E_{n}\right| \rightarrow|E|$ defined by $g_{n}(a)=\operatorname{root}(n, a)$ is an injection.
3.3) Prove that $g_{n}: E_{n} \triangleleft E$.

We consider now three examples of embedding systems. Let the sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ of coherence spaces be defined as follows: $E_{0}=\top$ (the coherence space such that $\left.|T|=\emptyset\right)$ and $E_{n+1}=\left(1 \&\left(1 \oplus E_{n}\right)\right)$. In other words (up to an isomorphism) $\left|E_{n}\right|=\{1, \ldots, n\} \times\{1,-1\}$ and $(i, \varepsilon) \frown_{E_{n}}\left(i^{\prime}, \varepsilon^{\prime}\right)$ if

- $i<i^{\prime}$ and $\varepsilon=1$
- or $i^{\prime}<i$ and $\varepsilon^{\prime}=1$
- or $i=i^{\prime}$.

Hence (with the notations above), $A=\{(n, i, \varepsilon) \mid n, i \in \mathbb{N}, 1 \leq i \leq n$ and $\varepsilon \in\{1,-1\}\}$.
3.4) Let $n, p \in \mathbb{N}$ with $n \leq p$ and let $\varphi:\{1, \ldots, n\} \rightarrow\{1, \ldots, p\}$ be an injection. Let $f:\left|E_{n}\right| \rightarrow\left|E_{p}\right|$ be defined by $f(i, \varepsilon)=(\varphi(i), \varepsilon)$. Prove that $f: E_{n} \triangleleft E_{p}$ if and only if φ is monotone (that is $i \leq j \Rightarrow \varphi(i) \leq$ $\varphi(j))$.
3.5) We define $S=\left(E_{n}, f_{n}\right)_{n \in \mathbb{N}}$ where $f_{n}(i, \varepsilon)=(i, \varepsilon)$ for all $(i, \varepsilon) \in\left|E_{n}\right|$. Prove that each f_{n} is an embedding and that an element (n, i, ε) is root if and only if $i=n$. [Hint: By induction on $n \in \mathbb{N}$ prove that for all $i \in\{1, \ldots, n\},(n, i, \varepsilon)$ is root if and only if $i=n$.].
3.6) For $(n, i, \varepsilon) \in A$ (so that $1 \leq i \leq n)$ prove that $\operatorname{root}(n, i, \varepsilon)=(i, i, \varepsilon)$.
3.7) Let $E=\operatorname{Lim} S$, we can identify $|E|$ with $\mathbb{N} \times\{1,-1\}$. With this identification, prove that $(i, \varepsilon) \frown_{E}\left(i^{\prime}, \varepsilon^{\prime}\right)$ if

- $i<i^{\prime}$ and $\varepsilon=1$
- or $i^{\prime}<i$ and $\varepsilon^{\prime}=1$
- or $i=i^{\prime}$.
3.8) We define another embedding system $T=\left(E_{n}, g_{n}\right)_{n \in \mathbb{N}}$ where $g_{n}(i, \varepsilon)=(i+1, \varepsilon)$ for all $(i, \varepsilon) \in\left|E_{n}\right|$. Prove that each g_{n} is an embedding and that an element (n, i, ε) is root if and only if $i=1$.
3.9) Prove that for any $(n, i, \varepsilon) \in A$, one has $\operatorname{root}(n, i, \varepsilon)=(n-i+1,1, \varepsilon)$.
3.10) Let $F=\operatorname{Lim} T$. We identify $|F|$ with $\mathbb{N} \times\{1,-1\}$ by mapping a root element $(n, 1, \varepsilon) \in A$ to $(n, \varepsilon) \in \mathbb{N} \times\{1,-1\}$. With this identification, prove that $(n, \varepsilon) \frown_{F}\left(n^{\prime}, \varepsilon^{\prime}\right)$ if and only if
- $n=n^{\prime}$ or
- $n>n^{\prime}$ and $\varepsilon=1$ or
- $n^{\prime}>n$ and $\varepsilon^{\prime}=1$.
3.11)* Prove that $\operatorname{Lim} S$ and $\operatorname{Lim} T$ are not isomorphic (an isomorphism from a coherence space from E to F is the same thing as an embedding $E \triangleleft F$ which, as a function, is a bijection).
3.12) ${ }^{*}$ As in questions (3.5)-(3.7) and (3.8)-(3.10), work out the following example: let $H_{n}=E_{2^{n}}$ and $h_{n}: H_{n} \triangleleft H_{n+1}$ be defined by $h_{n}(i, \varepsilon)=(2 i, \varepsilon)$. Let $U=\left(H_{n}, h_{n}\right)_{n \in \mathbb{N}}$. Prove that $G=\operatorname{Lim} U$ can be described as follows: $|G|=\{r \in \mathbb{D} \mid r>0\} \times\{1,-1\}$ where \mathbb{D} is the set of rational numbers which can be written $\frac{k}{2^{n}}$ (dyadic numbers) and $(r, \varepsilon) \frown_{G}\left(r^{\prime}, \varepsilon^{\prime}\right)$ if
- $r=r^{\prime}$
- or $r<r^{\prime}$ and $\varepsilon=1$
- or $r^{\prime}<r$ and $\varepsilon^{\prime}=1$.
3.13)* Prove that $\operatorname{Lim} U$ is neither isomorphic to $\operatorname{Lim} S$ nor to $\operatorname{Lim} T$.

4)

4.1) Given probabilistic coherence spaces (PCS for short) X, Y and Z and $t \in \mathbb{R}_{\geq 0}^{|(X \otimes!Y)-O|}$, prove that $t \in \mathbf{P} \operatorname{coh}(X \otimes!Y, Z)$ if and only if

$$
\forall u \in \mathrm{P}(X) \forall v \in \mathrm{P}(Y) \quad t \cdot\left(u \otimes v^{(!)}\right) \in \mathrm{P}(Z)
$$

We use e_{i} for the element of $\mathbb{R}_{\geq 0}^{I}$ such that $\left(\mathrm{e}_{i}\right)_{j}=\delta_{i, j}$ ($=1$ if $i=j$ and 0 otherwise).
Given an at most countable set I, we use \bar{I} for the probabilistic coherence space such that $|\bar{I}|=I$ and $\mathrm{P}(\bar{I})=\left\{u \in \mathbb{R}_{\geq 0}^{I} \mid \sum_{i \in I} u_{i} \leq 1\right\}$. Notice that (up to a trivial isomorphism) $\bar{I}=\bigoplus_{i \in I} 1$. Let $B=\{0,1\}$ and let $W=B^{*}$ (the set of finite sequences of elements of B).
4.2) For each $w \in W$ we define a function $f_{w}: \mathrm{P}(\bar{B}) \rightarrow \mathbb{R}_{>0}^{B}$ by induction on w (using \rangle for the empty word and $a w$ for prefixing $w \in W$ with $a \in B)$: for all $u \in \mathrm{P}(\bar{B})$,

- $f_{\langle \rangle}(u)=\mathrm{e}_{0}$
- $f_{0 w}(u)=u_{0} f_{w}(x)+u_{1} \mathrm{e}_{1}$
- $f_{1 w}(u)=u_{0} \mathrm{e}_{0}+u_{1} f_{w}(x)$

By induction on w, prove that there is a family $\left(t_{w}\right)_{w \in W}$ of elements of $\mathrm{P}(!\bar{B} \multimap \bar{B})$ such that

$$
\forall u \in \mathrm{P}(\bar{B}) \quad f_{w}(u)=t_{w} \cdot u^{(!)} .
$$

[Hint: Prove first that if $s \in \mathrm{P}(!\bar{B} \multimap \bar{B})$ and $i \in B$ then $s^{(i)} \in \mathbb{R}_{\geq 0}^{|\bar{B}-o \bar{B}|}$ defined by $s_{m, b}^{(i)}=s_{m+[i], b}$ satisfies $s^{(i)} \in \mathrm{P}(!\bar{B} \multimap \bar{B})$ and $\left.\forall u \in \mathrm{P}(B) s^{(i)} \cdot u^{(!)}=u_{i}\left(s \cdot u^{(!)}\right).\right]$
4.3) Prove that there is a morphism $t \in \operatorname{Pcoh}(\bar{W} \otimes!\bar{B}, \bar{B})$ such that $\forall w \in W \forall u \in \mathrm{P}(B) \quad t \cdot\left(\mathrm{e}_{w} \otimes u^{(!)}\right)=$ $f_{w}(u)$.
4.4) Given a word $w \in W$ let len (w) be its length and $\mathrm{nb}(w)$ the number w represents in binary notation (if w is the word $a_{n-1} \cdots a_{0}$ then $\operatorname{len}(w)=n$ and $\mathrm{nb}(w)=\sum_{i=0}^{n-1} a_{i} 2^{i}$ so that $\left.0 \leq \mathrm{nb}(w) \leq 2^{n}-1\right)$. Prove that

$$
\forall w \in W \quad f_{w}\left(\frac{1}{2} \mathrm{e}_{0}+\frac{1}{2} \mathrm{e}_{1}\right)=\frac{\mathrm{nb}(w)+1}{2^{\operatorname{len}(w)}} \mathrm{e}_{0}+\left(1-\frac{\mathrm{nb}(w)+1}{2^{\operatorname{len}(w)}}\right) \mathrm{e}_{1}
$$

4.5) Explain the usefulness of the functions f_{w} in a programming language where the only available random number generator produces $\underline{0}$ with probability $\frac{1}{2}$ and $\underline{1}$ with probability $\frac{1}{2}$, for instance a version of our pPCF where $\operatorname{rand}(r)$ is available only for $r=\frac{1}{2}$.

