
MPRI 2�2 Final exam, 5/3/2020

Authorized documents: all documents, no electronic devices. You may answer the questions in French or
English.

NB:

• A few questions are more di�cult, they are highlighted by a �∗�. Of course additional points will be
associated with these questions.

• Questions are written in such a way that you can easily skip them if you wish. However for solving a
question you may need results stated in earlier questions.

1) Let M be the following term of PCF:

M = fix(λxι succ(x))

1.1) Provide a typing derivation showing that `M : ι.

1.2) Prove that [M ] = ∅ (in the relational model).

1.3) Give a typing derivation and compute the relational semantics of the term

λf ι→ι (f)M .

[Hint: You can use the �intersection type system� presented during the lectures for computing the semantics,
Section 7.2.4 in the Lecture Notes. ]

2) We record that a t ∈ Rel(E,F ) is an isomorphism in Rel (that is there is t′ ∈ Rel(F,E) such that
t′ t = Id and t t′ = Id) if and only if t is a bijection (identi�ed with its graph, that is, there is a bijection
f : E → F such that t = {(a, f(a)) | a ∈ E}).

Given a set E, we de�ne !TE as the least set such that

• 0 ∈ !TE

• if a ∈ E then (1, a) ∈ !TE

• and if σ, τ ∈ !TE then (2, (σ, τ)) ∈ !TE.

To increase readability, we use the following notations: 〈〉 = 0, 〈a〉 = (1, a) (for a ∈ E) and 〈σ, τ〉 = (2, (σ, τ)).
An element of !TE can be seen as a binary tree with two kind of leaves: �empty leaves� 〈〉 and �singleton
leaves� 〈a〉 labeled by an element a of E. The main tool of reasoning with such trees is of course induction
on their size or structure.

The goal of this exercise is to show that !T is �almost� an exponential on Rel.

2.1) Given t ∈ Rel(E,F ), we de�ne !Tt as the least subset of !TE ( !TF such that

• (〈〉, 〈〉) ∈ !Tt

• (a, b) ∈ t⇒ (〈a〉, 〈b〉) ∈ !Tt

• (σ1, τ1), (σ2, τ2) ∈ !Tt⇒ (〈σ1, σ2〉, 〈τ1, τ2〉) ∈ !Tt.

Prove that !T is a functor. [Hint: Let s ∈ Rel(E,F ) and t ∈ Rel(F,G). By induction on σ ∈ !TE prove
that for any ϕ ∈ !TG one has (σ, ϕ) ∈ (!Tt) (!Ts)⇔ (σ, ϕ) ∈ !T(t s). Of course one can also use an induction
on ϕ. ]

2.2) We de�ne derTE ∈ Rel(!TE,E) by derTE = {(〈a〉, a) | a ∈ E}. Prove that it is a natural transformation
!T ⇒ Id. [Hint: For this, consider t ∈ Rel(E,F ) and (σ, b) ∈ !TE × F . By induction on σ, prove that
(σ, b) ∈ derTF (!Tt) ⇔ (σ, b) ∈ t derTE . You will see in particular that when σ is not of shape 〈a〉 for some
a ∈ E, the two sides of this equivalence are false and hence the equivalence holds trivially. ]
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2.3) We de�ne a function flat : !T!TE → !TE by induction on trees as follows:

• flat(〈〉) = 〈〉,

• flat(〈σ〉) = σ and

• flat(〈Σ1,Σ2〉) = 〈flat(Σ1), flat(Σ2)〉.

We de�ne diggT
E ∈ Rel(!TE, !T!TE) by diggT

E = {(flat(Σ),Σ) | Σ ∈ !T!TE}. Prove that diggT is a natural
transformation !T ⇒ (!T ◦ !T). [Hint: Let t ∈ Rel(E,F ) and (σ, b) ∈ !TE × F . By induction on Θ ∈ !T!TF ,
prove that for all σ ∈ !TE, one has (σ,Θ) ∈ diggT

F (!Tt)⇔ (σ,Θ) ∈ (!T!Tt) diggT
E . ]

2.4) Prove that (!T, derT, diggT) is a comonad.

2.5) We record that, given sets (Ei)i∈I , their cartesian product E =
˘
i∈I Ei in Rel is de�ned by E =

∪i∈I({i} × Ei). For each i ∈ I we de�ne a function pT
i : !TE → !TEi by induction as follows:

• pT
i (〈〉) = 〈〉,

• pT
i (〈(i, a)〉) = 〈a〉,

• pT
i (〈(j, a)〉) = 〈〉 if j 6= i,

• and pT
i (〈σ1, σ2〉) = 〈pT

i (σ1), pT
i (σ2)〉.

Provide a counter-example showing that it is not true that the function pT
i coincides (as a graph) with

!Tpri ∈ Rel(!TE, !TEi), where pri ∈ Rel(E,Ei) is the i-th projection of the cartesian product, that is
pri = {((i, a), a) | a ∈ E}.
2.6) Then we de�ne mT

E1,E2
∈ Rel(!TE1 ⊗ !TE2, !

T(E1 & E2)) as

mT
E1,E2

= {((pT
1 (θ), pT

2 (θ)), θ) | θ ∈ !T(E1 & E2)} .

We admit that this morphism is natural in E1 and E2. Provide a counter-example showing that mT
E1,E2

is
not an isomorphism in general.

2.7) Prove that the following diagram commutes (lax monoidality).

(!TE1 ⊗ !TE2)⊗ !TE3 !TE1 ⊗ (!TE2 ⊗ !TE3)

!T(E1 & E2)⊗ !TE3 !TE1 ⊗ !T(E2 & E3)

!T((E1 & E2) & E3) !T(E1 & (E2 & E3))

α

mT
E1,E2

⊗ Id Id⊗ mT
E2,E3

mT
E1&E2,E3

mT
E1,E2&E3

!T(〈pr1 pr1, 〈pr2 pr1, pr2〉〉)

[Hint: De�ne two functions f, g : !T(E1 & (E2 & E3)) → (!TE1 ⊗ !TE2) ⊗ !TE3 allowing to describe simply
the two morphisms that have to be proven equal. Prove that these two functions are equal. ]

2.8) We de�ne a function ms : !TE → !E (where !E is the setMfin(E) of �nite multisets of elements of E,
the exponential on Rel presented during the lectures) as follows:

• ms(〈〉) = [],

• ms(〈a〉) = [a] and

• ms(〈σ, τ〉) = ms(σ) + ms(τ).

We de�ne msE = {(σ,ms(σ)) | σ ∈ !TE}. Prove that this is a natural transformation !T ⇒ !.

2.9) Prove that the following diagrams are commutative
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!T!TE !T!E

!!TE !!E

!TmsE

ms
!TE ms!E

!msE

!TE !T!TE

!E !!E

diggTE

msE m

digE

where m is the morphism !T!TE → !!E de�ned in two di�erent ways by the left hand diagram.

3) Remember that a coherence space E is a pair (|E|,¨E) where |E| is a set (the web) and ¨E is a binary
symmetric and re�exive relation on |E| (coherence relation), and that the cliques of E form a domain that
we will denote as Cl(E). Remember that ˝E is the strict coherence relation: a ˝E b if a 6= b and a ˝E b.

Remember also that, given coherence spaces E and F one de�nes a coherence space E ( F whose cliques
are the linear morphisms from E to F (|E ( F | = |E| × |F |, (a1, a2) ¨E(F (b1, b2) if a1 ¨E a2 ⇒ b1 ¨F b2
and a1 ˝E a2 ⇒ b1 ˝F b2). We use Coh for the category of coherence spaces and linear maps, composition
being de�ned as relational composition and identities being the diagonal relations. We also write t : E ( F
when t ∈ Cl(E ( F ) = Coh(E,F ).

Given coherence spaces E and F , we say that a function f : |E| → |F | is an embedding if

• f is injective

• and ∀a, a′ ∈ |E| a ¨E a′ ⇔ f(a) ¨F f(a′). [ Warning: this has to be an equivalence, not a simple
implication! ]

We use Cohe for the category of coherence spaces and embeddings. We write f : E / F when f ∈
Cohe(E,F ).

Let S = (En, fn)n∈N be a family where the En are coherence spaces and fn : En / En+1. Such a family
will be called an embedding system. If n, p ∈ N with n ≤ p, we set fn,p = fp−1 ◦ · · · ◦ fn : En / Ep. In
particular fn,n = Id.

Let A = ∪n∈N({n} × |En|). We say that an element (n, a) of A is root if n = 0, or if n > 0 and there is
no a′ ∈ |En−1| such that fn−1(a′) = a, or equivalently a ∈ |En| \ fn−1(|En−1|). Let A0 be the set of all root
elements of A.

3.1) Prove that for any (n, a) ∈ A there is exactly one (p, b) ∈ A0 such that p ≤ n and fp,n(b) = a. We set
root(n, a) = (p, b). [Hint: By induction on n, prove that the property holds for all a ∈ |En|. ]

We de�ne a �limit� coherence space E = LimS by taking |E| = A0 and coherence speci�ed as follows.
Let (n, a), (p, b) ∈ |E| = A0. We say that (n, a) ¨E (p, b) if

• n = p and a ¨En
b

• or n < p and fn,p(a) ¨Ep
b (notice that, in that case, necessarily fn,p(a) 6= b because b is root)

• or n > p and a ¨En fp,n(b) (similar remark).

3.2) For each n ∈ N, prove that the function gn : |En| → |E| de�ned by gn(a) = root(n, a) is an injection.

3.3) Prove that gn : En / E.

We consider now three examples of embedding systems. Let the sequence (En)n∈N of coherence spaces
be de�ned as follows: E0 = > (the coherence space such that |>| = ∅) and En+1 = (1 & (1⊕ En)). In other
words (up to an isomorphism) |En| = {1, . . . , n} × {1,−1} and (i, ε) ¨En

(i′, ε′) if

• i < i′ and ε = 1

• or i′ < i and ε′ = 1

• or i = i′.

Hence (with the notations above), A = {(n, i, ε) | n, i ∈ N, 1 ≤ i ≤ n and ε ∈ {1,−1}}.

3



3.4) Let n, p ∈ N with n ≤ p and let ϕ : {1, . . . , n} → {1, . . . , p} be an injection. Let f : |En| → |Ep| be
de�ned by f(i, ε) = (ϕ(i), ε). Prove that f : En / Ep if and only if ϕ is monotone (that is i ≤ j ⇒ ϕ(i) ≤
ϕ(j)).

3.5) We de�ne S = (En, fn)n∈N where fn(i, ε) = (i, ε) for all (i, ε) ∈ |En|. Prove that each fn is an
embedding and that an element (n, i, ε) is root if and only if i = n. [Hint: By induction on n ∈ N prove
that for all i ∈ {1, . . . , n}, (n, i, ε) is root if and only if i = n. ].

3.6) For (n, i, ε) ∈ A (so that 1 ≤ i ≤ n) prove that root(n, i, ε) = (i, i, ε).

3.7) Let E = LimS, we can identify |E| with N×{1,−1}. With this identi�cation, prove that (i, ε) ¨E (i′, ε′)
if

• i < i′ and ε = 1

• or i′ < i and ε′ = 1

• or i = i′.

3.8) We de�ne another embedding system T = (En, gn)n∈N where gn(i, ε) = (i + 1, ε) for all (i, ε) ∈ |En|.
Prove that each gn is an embedding and that an element (n, i, ε) is root if and only if i = 1.

3.9) Prove that for any (n, i, ε) ∈ A, one has root(n, i, ε) = (n− i+ 1, 1, ε).

3.10) Let F = LimT . We identify |F | with N × {1,−1} by mapping a root element (n, 1, ε) ∈ A to
(n, ε) ∈ N× {1,−1}. With this identi�cation, prove that (n, ε) ¨F (n′, ε′) if and only if

• n = n′ or

• n > n′ and ε = 1 or

• n′ > n and ε′ = 1.

3.11)∗ Prove that LimS and LimT are not isomorphic (an isomorphism from a coherence space from E to
F is the same thing as an embedding E / F which, as a function, is a bijection).

3.12)∗ As in questions (3.5)�(3.7) and (3.8)�(3.10), work out the following example: let Hn = E2n and
hn : Hn / Hn+1 be de�ned by hn(i, ε) = (2i, ε). Let U = (Hn, hn)n∈N. Prove that G = LimU can be
described as follows: |G| = {r ∈ D | r > 0} × {1,−1} where D is the set of rational numbers which can be
written k

2n (dyadic numbers) and (r, ε) ¨G (r′, ε′) if

• r = r′

• or r < r′ and ε = 1

• or r′ < r and ε′ = 1.

3.13)∗ Prove that LimU is neither isomorphic to LimS nor to LimT .

4)

4.1) Given probabilistic coherence spaces (PCS for short) X, Y and Z and t ∈ R|(X⊗!Y )(Z|
≥0 , prove that

t ∈ Pcoh(X ⊗ !Y , Z) if and only if

∀u ∈ P(X)∀v ∈ P(Y ) t · (u⊗ v(!)) ∈ P(Z) .

We use ei for the element of RI≥0 such that (ei)j = δi,j (= 1 if i = j and 0 otherwise).

Given an at most countable set I, we use I for the probabilistic coherence space such that |I| = I and
P(I) = {u ∈ RI≥0 |

∑
i∈I ui ≤ 1}. Notice that (up to a trivial isomorphism) I =

⊕
i∈I 1. Let B = {0, 1} and

let W = B∗ (the set of �nite sequences of elements of B).

4.2) For each w ∈W we de�ne a function fw : P(B)→ RB≥0 by induction on w (using 〈〉 for the empty word

and aw for pre�xing w ∈W with a ∈ B): for all u ∈ P(B),
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• f〈〉(u) = e0

• f0w(u) = u0fw(x) + u1e1

• f1w(u) = u0e0 + u1fw(x)

By induction on w, prove that there is a family (tw)w∈W of elements of P(!B ( B) such that

∀u ∈ P(B) fw(u) = tw · u(!) .

[Hint: Prove �rst that if s ∈ P(!B ( B) and i ∈ B then s(i) ∈ R|!B(B|
≥0 de�ned by s

(i)
m,b = sm+[i],b satis�es

s(i) ∈ P(!B ( B) and ∀u ∈ P(B) s(i) · u(!) = ui(s · u(!)). ]

4.3) Prove that there is a morphism t ∈ Pcoh(W ⊗ !B,B) such that ∀w ∈ W ∀u ∈ P(B) t · (ew ⊗ u(!)) =
fw(u).

4.4) Given a word w ∈W let len(w) be its length and nb(w) the number w represents in binary notation (if

w is the word an−1 · · · a0 then len(w) = n and nb(w) =
∑n−1
i=0 ai2

i so that 0 ≤ nb(w) ≤ 2n − 1). Prove that

∀w ∈W fw(
1

2
e0 +

1

2
e1) =

nb(w) + 1

2len(w)
e0 +

(
1− nb(w) + 1

2len(w)

)
e1

4.5) Explain the usefulness of the functions fw in a programming language where the only available random
number generator produces 0 with probability 1

2 and 1 with probability 1
2 , for instance a version of our pPCF

where rand(r) is available only for r = 1
2 .
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