MPRI 2-2 Final exam, 5/3/2020

Authorized documents: all documents, no electronic devices. You may answer the questions in French or English.

NB:

- A few questions are more difficult, they are highlighted by a "*". Of course additional points will be associated with these questions.
- Questions are written in such a way that you can easily skip them if you wish. However for solving a question you may need results stated in earlier questions.
- 1) Let M be the following term of PCF:

$$M = fix(\lambda x^{\iota} \underline{succ}(x))$$

- 1.1) Provide a typing derivation showing that $\vdash M : \iota$.
- 1.2) Prove that $[M] = \emptyset$ (in the relational model).
- 1.3) Give a typing derivation and compute the relational semantics of the term

$$\lambda f^{\iota \to \iota} (f) M$$
.

[Hint: You can use the "intersection type system" presented during the lectures for computing the semantics, Section 7.2.4 in the Lecture Notes.]

2) We record that a $t \in \mathbf{Rel}(E, F)$ is an isomorphism in \mathbf{Rel} (that is there is $t' \in \mathbf{Rel}(F, E)$ such that $t't = \mathsf{Id}$ and $tt' = \mathsf{Id}$) if and only if t is a bijection (identified with its graph, that is, there is a bijection $f: E \to F$ such that $t = \{(a, f(a)) \mid a \in E\}$).

Given a set E, we define $!^{\mathsf{T}}E$ as the least set such that

- $0 \in !^T E$
- if $a \in E$ then $(1, a) \in !^{\mathsf{T}}E$
- and if $\sigma, \tau \in !^{\mathsf{T}}E$ then $(2, (\sigma, \tau)) \in !^{\mathsf{T}}E$.

To increase readability, we use the following notations: $\langle \rangle = 0$, $\langle a \rangle = (1, a)$ (for $a \in E$) and $\langle \sigma, \tau \rangle = (2, (\sigma, \tau))$. An element of !^TE can be seen as a binary tree with two kind of leaves: "empty leaves" $\langle a \rangle$ and "singleton leaves" $\langle a \rangle$ labeled by an element a of E. The main tool of reasoning with such trees is of course induction on their size or structure.

The goal of this exercise is to show that !^T is "almost" an exponential on **Rel**.

- 2.1) Given $t \in \mathbf{Rel}(E, F)$, we define !^T t as the least subset of !^T $E \multimap !^T F$ such that
 - $(\langle \rangle, \langle \rangle) \in !^{\mathsf{T}} t$
 - $(a,b) \in t \Rightarrow (\langle a \rangle, \langle b \rangle) \in !^{\mathsf{T}} t$
 - $(\sigma_1, \tau_1), (\sigma_2, \tau_2) \in !^\mathsf{T} t \Rightarrow (\langle \sigma_1, \sigma_2 \rangle, \langle \tau_1, \tau_2 \rangle) \in !^\mathsf{T} t$.

Prove that !^T is a functor. [Hint: Let $s \in \mathbf{Rel}(E, F)$ and $t \in \mathbf{Rel}(F, G)$. By induction on $\sigma \in !^T E$ prove that for any $\varphi \in !^T G$ one has $(\sigma, \varphi) \in (!^T t) (!^T s) \Leftrightarrow (\sigma, \varphi) \in !^T (t s)$. Of course one can also use an induction on φ .]

2.2) We define $\operatorname{der}_E^\mathsf{T} \in \operatorname{\mathbf{Rel}}(!^\mathsf{T} E, E)$ by $\operatorname{der}_E^\mathsf{T} = \{(\langle a \rangle, a) \mid a \in E\}$. Prove that it is a natural transformation $!^\mathsf{T} \Rightarrow \operatorname{\mathsf{Id}}$. [Hint: For this, consider $t \in \operatorname{\mathbf{Rel}}(E, F)$ and $(\sigma, b) \in !^\mathsf{T} E \times F$. By induction on σ , prove that $(\sigma, b) \in \operatorname{\mathsf{der}}_F^\mathsf{T}(!^\mathsf{T} t) \Leftrightarrow (\sigma, b) \in t \operatorname{\mathsf{der}}_E^\mathsf{T}$. You will see in particular that when σ is not of shape $\langle a \rangle$ for some $a \in E$, the two sides of this equivalence are false and hence the equivalence holds trivially.]

- 2.3) We define a function flat : $!^T!^TE \rightarrow !^TE$ by induction on trees as follows:
 - $flat(\langle \rangle) = \langle \rangle$,
 - $flat(\langle \sigma \rangle) = \sigma$ and
 - $\operatorname{flat}(\langle \Sigma_1, \Sigma_2 \rangle) = \langle \operatorname{flat}(\Sigma_1), \operatorname{flat}(\Sigma_2) \rangle$.

We define $\mathsf{digg}_E^\mathsf{T} \in \mathbf{Rel}(!^\mathsf{T}E, !^\mathsf{T}!^\mathsf{T}E)$ by $\mathsf{digg}_E^\mathsf{T} = \{(\mathsf{flat}(\Sigma), \Sigma) \mid \Sigma \in !^\mathsf{T}!^\mathsf{T}E\}$. Prove that digg^T is a natural transformation $!^\mathsf{T} \Rightarrow (!^\mathsf{T} \circ !^\mathsf{T})$. $[\mathit{Hint} : \mathsf{Let} \ t \in \mathbf{Rel}(E, F) \ \mathsf{and} \ (\sigma, b) \in !^\mathsf{T}E \times F$. By induction on $\Theta \in !^\mathsf{T}!^\mathsf{T}F$, prove that for all $\sigma \in !^\mathsf{T}E$, one has $(\sigma, \Theta) \in \mathsf{digg}_F^\mathsf{T}(!^\mathsf{T}t) \Leftrightarrow (\sigma, \Theta) \in (!^\mathsf{T}!^\mathsf{T}t) \ \mathsf{digg}_E^\mathsf{T}$.

- 2.4) Prove that (!T, derT, diggT) is a comonad.
- 2.5) We record that, given sets $(E_i)_{i \in I}$, their cartesian product $E = \&_{i \in I} E_i$ in **Rel** is defined by $E = \bigcup_{i \in I} (\{i\} \times E_i)$. For each $i \in I$ we define a function $\mathsf{p}_i^\mathsf{T} : !^\mathsf{T} E \to !^\mathsf{T} E_i$ by induction as follows:
 - $p_i^{\mathsf{T}}(\langle \rangle) = \langle \rangle$,
 - $\mathbf{p}_i^{\mathsf{T}}(\langle (i,a) \rangle) = \langle a \rangle$
 - $\mathbf{p}_i^{\mathsf{T}}(\langle (j,a)\rangle) = \langle \rangle \text{ if } j \neq i,$
 - and $\mathbf{p}_i^{\mathsf{T}}(\langle \sigma_1, \sigma_2 \rangle) = \langle \mathbf{p}_i^{\mathsf{T}}(\sigma_1), \mathbf{p}_i^{\mathsf{T}}(\sigma_2) \rangle$.

Provide a counter-example showing that it is not true that the function \mathbf{p}_i^T coincides (as a graph) with $!^\mathsf{T}\mathsf{pr}_i \in \mathbf{Rel}(!^\mathsf{T}E,!^\mathsf{T}E_i)$, where $\mathsf{pr}_i \in \mathbf{Rel}(E,E_i)$ is the *i*-th projection of the cartesian product, that is $\mathsf{pr}_i = \{((i,a),a) \mid a \in E\}$.

2.6) Then we define $\mathsf{m}_{E_1,E_2}^\mathsf{T} \in \mathbf{Rel}(!^\mathsf{T} E_1 \otimes !^\mathsf{T} E_2, !^\mathsf{T} (E_1 \& E_2))$ as

$$\mathbf{m}_{E_1,E_2}^{\mathsf{T}} = \{ ((\mathbf{p}_1^{\mathsf{T}}(\theta), \mathbf{p}_2^{\mathsf{T}}(\theta)), \theta) \mid \theta \in !^{\mathsf{T}}(E_1 \& E_2) \}.$$

We admit that this morphism is natural in E_1 and E_2 . Provide a counter-example showing that $\mathbf{m}_{E_1,E_2}^\mathsf{T}$ is not an isomorphism in general.

2.7) Prove that the following diagram commutes (lax monoidality).

$$\begin{array}{c} (!^{\mathsf{T}}E_1 \otimes !^{\mathsf{T}}E_2) \otimes !^{\mathsf{T}}E_3 & \xrightarrow{\alpha} & !^{\mathsf{T}}E_1 \otimes (!^{\mathsf{T}}E_2 \otimes !^{\mathsf{T}}E_3) \\ & \downarrow^{\mathsf{m}_{E_1,E_2}^{\mathsf{T}} \otimes \mathsf{Id}} & \downarrow^{\mathsf{Id} \otimes \mathsf{m}_{E_2,E_3}^{\mathsf{T}}} \\ !^{\mathsf{T}}(E_1 \& E_2) \otimes !^{\mathsf{T}}E_3 & !^{\mathsf{T}}E_1 \otimes !^{\mathsf{T}}(E_2 \& E_3) \\ & \downarrow^{\mathsf{m}_{E_1\&E_2,E_3}^{\mathsf{T}}} & \downarrow^{\mathsf{m}_{E_1,E_2\&E_3}^{\mathsf{T}}} \\ !^{\mathsf{T}}((E_1 \& E_2) \& E_3) & \xrightarrow{!^{\mathsf{T}}((\mathsf{pr}_1\,\mathsf{pr}_1,\langle\mathsf{pr}_2\,\mathsf{pr}_1,\mathsf{pr}_2\rangle\rangle))} \\ !^{\mathsf{T}}(E_1 \& (E_2 \& E_3)) \end{array}$$

[Hint: Define two functions $f, g: !^{\mathsf{T}}(E_1 \& (E_2 \& E_3)) \to (!^{\mathsf{T}}E_1 \otimes !^{\mathsf{T}}E_2) \otimes !^{\mathsf{T}}E_3$ allowing to describe simply the two morphisms that have to be proven equal. Prove that these two functions are equal.]

- 2.8) We define a function $ms: !^TE \to !E$ (where !E is the set $\mathcal{M}_{fin}(E)$ of finite multisets of elements of E, the exponential on **Rel** presented during the lectures) as follows:
 - $\mathsf{ms}(\langle \rangle) = [],$
 - $\mathsf{ms}(\langle a \rangle) = [a]$ and
 - $\operatorname{ms}(\langle \sigma, \tau \rangle) = \operatorname{ms}(\sigma) + \operatorname{ms}(\tau)$.

We define $\mathsf{ms}_E = \{(\sigma, \mathsf{ms}(\sigma)) \mid \sigma \in !^\mathsf{T} E\}$. Prove that this is a natural transformation $!^\mathsf{T} \Rightarrow !$.

2.9) Prove that the following diagrams are commutative

$$\begin{array}{ccc} !^{\mathsf{T}}!^{\mathsf{T}}E & \overset{!^{\mathsf{T}}\mathsf{ms}_E}{\longrightarrow} !^{\mathsf{T}}!E & !^{\mathsf{T}}E & \overset{\mathrm{digg}^{\mathsf{T}}E}{\longrightarrow} !^{\mathsf{T}}!^{\mathsf{T}}E \\ & \mathsf{ms}_{!^{\mathsf{T}}E} \downarrow & \downarrow \mathsf{ms}_{!E} & \mathsf{ms}_E \downarrow & \downarrow m \\ & !!^{\mathsf{T}}E & \overset{!^{\mathsf{T}}\mathsf{ms}_E}{\longrightarrow} !!E & !E & \overset{\mathsf{digg}^{\mathsf{T}}E}{\longrightarrow} !!E \end{array}$$

where m is the morphism $!^T!^TE \to !!E$ defined in two different ways by the left hand diagram.

3) Remember that a coherence space E is a pair $(|E|, \circ_E)$ where |E| is a set (the web) and \circ_E is a binary symmetric and reflexive relation on |E| (coherence relation), and that the cliques of E form a domain that we will denote as Cl(E). Remember that \circ_E is the strict coherence relation: $a \circ_E b$ if $a \neq b$ and $a \circ_E b$.

Remember also that, given coherence spaces E and F one defines a coherence space $E \multimap F$ whose cliques are the linear morphisms from E to F ($|E \multimap F| = |E| \times |F|$, $(a_1, a_2) \circ_{E \multimap F} (b_1, b_2)$ if $a_1 \circ_E a_2 \Rightarrow b_1 \circ_F b_2$ and $a_1 \circ_E a_2 \Rightarrow b_1 \circ_F b_2$). We use **Coh** for the category of coherence spaces and linear maps, composition being defined as relational composition and identities being the diagonal relations. We also write $t : E \multimap F$ when $t \in \mathsf{Cl}(E \multimap F) = \mathsf{Coh}(E, F)$.

Given coherence spaces E and F, we say that a function $f:|E|\to |F|$ is an embedding if

- f is injective
- and $\forall a, a' \in |E|$ $a \circ_E a' \Leftrightarrow f(a) \circ_F f(a')$. [Warning: this has to be an equivalence, not a simple implication!]

We use $\mathbf{Coh^e}$ for the category of coherence spaces and embeddings. We write $f: E \triangleleft F$ when $f \in \mathbf{Coh^e}(E, F)$.

Let $S = (E_n, f_n)_{n \in \mathbb{N}}$ be a family where the E_n are coherence spaces and $f_n : E_n \triangleleft E_{n+1}$. Such a family will be called an *embedding system*. If $n, p \in \mathbb{N}$ with $n \leq p$, we set $f_{n,p} = f_{p-1} \circ \cdots \circ f_n : E_n \triangleleft E_p$. In particular $f_{n,n} = \mathsf{Id}$.

Let $A = \bigcup_{n \in \mathbb{N}} (\{n\} \times |E_n|)$. We say that an element (n, a) of A is root if n = 0, or if n > 0 and there is no $a' \in |E_{n-1}|$ such that $f_{n-1}(a') = a$, or equivalently $a \in |E_n| \setminus f_{n-1}(|E_{n-1}|)$. Let A_0 be the set of all root elements of A.

3.1) Prove that for any $(n,a) \in A$ there is exactly one $(p,b) \in A_0$ such that $p \le n$ and $f_{p,n}(b) = a$. We set $\mathsf{root}(n,a) = (p,b)$. [*Hint*: By induction on n, prove that the property holds for all $a \in |E_n|$.]

We define a "limit" coherence space E = Lim S by taking $|E| = A_0$ and coherence specified as follows. Let $(n, a), (p, b) \in |E| = A_0$. We say that $(n, a) \circ_E (p, b)$ if

- n = p and $a \circ_{E_n} b$
- or n < p and $f_{n,p}(a) \circ_{E_p} b$ (notice that, in that case, necessarily $f_{n,p}(a) \neq b$ because b is root)
- or n > p and $a \subset_{E_n} f_{p,n}(b)$ (similar remark).
- 3.2) For each $n \in \mathbb{N}$, prove that the function $g_n : |E_n| \to |E|$ defined by $g_n(a) = \mathsf{root}(n, a)$ is an injection.
- 3.3) Prove that $g_n: E_n \triangleleft E$.

We consider now three examples of embedding systems. Let the sequence $(E_n)_{n\in\mathbb{N}}$ of coherence spaces be defined as follows: $E_0 = \top$ (the coherence space such that $|\top| = \emptyset$) and $E_{n+1} = (1 \& (1 \oplus E_n))$. In other words (up to an isomorphism) $|E_n| = \{1, \ldots, n\} \times \{1, -1\}$ and $(i, \varepsilon) \simeq_{E_n} (i', \varepsilon')$ if

- i < i' and $\varepsilon = 1$
- or i' < i and $\varepsilon' = 1$
- or i = i'.

Hence (with the notations above), $A = \{(n, i, \varepsilon) \mid n, i \in \mathbb{N}, 1 \le i \le n \text{ and } \varepsilon \in \{1, -1\}\}.$

- 3.4) Let $n, p \in \mathbb{N}$ with $n \leq p$ and let $\varphi : \{1, \ldots, n\} \to \{1, \ldots, p\}$ be an injection. Let $f : |E_n| \to |E_p|$ be defined by $f(i, \varepsilon) = (\varphi(i), \varepsilon)$. Prove that $f : E_n \triangleleft E_p$ if and only if φ is monotone (that is $i \leq j \Rightarrow \varphi(i) \leq \varphi(j)$).
- 3.5) We define $S = (E_n, f_n)_{n \in \mathbb{N}}$ where $f_n(i, \varepsilon) = (i, \varepsilon)$ for all $(i, \varepsilon) \in |E_n|$. Prove that each f_n is an embedding and that an element (n, i, ε) is root if and only if i = n. [Hint: By induction on $n \in \mathbb{N}$ prove that for all $i \in \{1, \ldots, n\}$, (n, i, ε) is root if and only if i = n.].
- 3.6) For $(n, i, \varepsilon) \in A$ (so that $1 \le i \le n$) prove that $root(n, i, \varepsilon) = (i, i, \varepsilon)$.
- 3.7) Let $E = \operatorname{Lim} S$, we can identify |E| with $\mathbb{N} \times \{1, -1\}$. With this identification, prove that $(i, \varepsilon) \circ_E (i', \varepsilon')$ if
 - i < i' and $\varepsilon = 1$
 - or i' < i and $\varepsilon' = 1$
 - or i = i'.
- 3.8) We define another embedding system $T = (E_n, g_n)_{n \in \mathbb{N}}$ where $g_n(i, \varepsilon) = (i + 1, \varepsilon)$ for all $(i, \varepsilon) \in |E_n|$. Prove that each g_n is an embedding and that an element (n, i, ε) is root if and only if i = 1.
- 3.9) Prove that for any $(n, i, \varepsilon) \in A$, one has $root(n, i, \varepsilon) = (n i + 1, 1, \varepsilon)$.
- 3.10) Let $F = \operatorname{Lim} T$. We identify |F| with $\mathbb{N} \times \{1, -1\}$ by mapping a root element $(n, 1, \varepsilon) \in A$ to $(n, \varepsilon) \in \mathbb{N} \times \{1, -1\}$. With this identification, prove that $(n, \varepsilon) \circ_F (n', \varepsilon')$ if and only if
 - n = n' or
 - n > n' and $\varepsilon = 1$ or
 - n' > n and $\varepsilon' = 1$.
- 3.11)* Prove that $\lim S$ and $\lim T$ are not isomorphic (an isomorphism from a coherence space from E to F is the same thing as an embedding $E \triangleleft F$ which, as a function, is a bijection).
- 3.12)* As in questions (3.5)-(3.7) and (3.8)-(3.10), work out the following example: let $H_n = E_{2^n}$ and $h_n : H_n \triangleleft H_{n+1}$ be defined by $h_n(i,\varepsilon) = (2i,\varepsilon)$. Let $U = (H_n,h_n)_{n\in\mathbb{N}}$. Prove that $G = \operatorname{Lim} U$ can be described as follows: $|G| = \{r \in \mathbb{D} \mid r > 0\} \times \{1,-1\}$ where \mathbb{D} is the set of rational numbers which can be written $\frac{k}{2^n}$ (dyadic numbers) and $(r,\varepsilon) \circ_G (r',\varepsilon')$ if
 - r = r'
 - or r < r' and $\varepsilon = 1$
 - or r' < r and $\varepsilon' = 1$.
- 3.13)* Prove that $\lim U$ is neither isomorphic to $\lim S$ nor to $\lim T$.

4)

4.1) Given probabilistic coherence spaces (PCS for short) X, Y and Z and $t \in \mathbb{R}^{|(X \otimes !Y) - \circ Z|}_{\geq 0}$, prove that $t \in \mathbf{Pcoh}(X \otimes !Y, Z)$ if and only if

$$\forall u \in \mathsf{P}(X) \, \forall v \in \mathsf{P}(Y) \quad t \cdot (u \otimes v^{(!)}) \in \mathsf{P}(Z) \,.$$

We use e_i for the element of $\mathbb{R}^I_{\geq 0}$ such that $(e_i)_j = \delta_{i,j}$ (= 1 if i = j and 0 otherwise).

Given an at most countable set I, we use \overline{I} for the probabilistic coherence space such that $|\overline{I}| = I$ and $P(\overline{I}) = \{u \in \mathbb{R}^I_{\geq 0} \mid \sum_{i \in I} u_i \leq 1\}$. Notice that (up to a trivial isomorphism) $\overline{I} = \bigoplus_{i \in I} 1$. Let $B = \{0, 1\}$ and let $W = B^*$ (the set of finite sequences of elements of B).

4.2) For each $w \in W$ we define a function $f_w : \mathsf{P}(\overline{B}) \to \mathbb{R}^B_{\geq 0}$ by induction on w (using $\langle \rangle$ for the empty word and aw for prefixing $w \in W$ with $a \in B$): for all $u \in \mathsf{P}(\overline{B})$,

- $f_{\langle\rangle}(u) = e_0$
- $f_{0w}(u) = u_0 f_w(x) + u_1 e_1$
- $f_{1w}(u) = u_0 e_0 + u_1 f_w(x)$

By induction on w, prove that there is a family $(t_w)_{w\in W}$ of elements of $P(!\overline{B} \multimap \overline{B})$ such that

$$\forall u \in P(\overline{B}) \quad f_w(u) = t_w \cdot u^{(!)}$$
.

[Hint: Prove first that if $s \in \mathsf{P}(!\overline{B} \multimap \overline{B})$ and $i \in B$ then $s^{(i)} \in \mathbb{R}^{|!\overline{B} \multimap \overline{B}|}_{\geq 0}$ defined by $s^{(i)}_{m,b} = s_{m+[i],b}$ satisfies $s^{(i)} \in \mathsf{P}(!\overline{B} \multimap \overline{B})$ and $\forall u \in \mathsf{P}(B)$ $s^{(i)} \cdot u^{(!)} = u_i(s \cdot u^{(!)})$.]

4.3) Prove that there is a morphism $t \in \mathbf{Pcoh}(\overline{W} \otimes !\overline{B}, \overline{B})$ such that $\forall w \in W \ \forall u \in \mathsf{P}(B) \ t \cdot (\mathsf{e}_w \otimes u^{(!)}) = f_w(u)$.

4.4) Given a word $w \in W$ let $\mathsf{len}(w)$ be its length and $\mathsf{nb}(w)$ the number w represents in binary notation (if w is the word $a_{n-1}\cdots a_0$ then $\mathsf{len}(w)=n$ and $\mathsf{nb}(w)=\sum_{i=0}^{n-1}a_i2^i$ so that $0\leq \mathsf{nb}(w)\leq 2^n-1$). Prove that

$$\forall w \in W \quad f_w(\frac{1}{2}\mathsf{e}_0 + \frac{1}{2}\mathsf{e}_1) = \frac{\mathsf{nb}(w) + 1}{2^{\mathsf{len}(w)}}\mathsf{e}_0 + \left(1 - \frac{\mathsf{nb}(w) + 1}{2^{\mathsf{len}(w)}}\right)\mathsf{e}_1$$

4.5) Explain the usefulness of the functions f_w in a programming language where the only available random number generator produces $\underline{0}$ with probability $\frac{1}{2}$ and $\underline{1}$ with probability $\frac{1}{2}$, for instance a version of our pPCF where rand(r) is available only for $r = \frac{1}{2}$.