
The Evolution of Expander Graphs

A Thesis Presented

by

David Y. Xiao

to

Computer Science

in partial fulfillment of the honors requirement

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 8th, 2003



Acknowledgements

First and foremost I’d like to thank my advisor Prof. Salil Vadhan for many fruitful discussions
and for his support and guidance. Many thanks to Prof. Michael Rabin and Minh-Huyen Nguyen
for their encouragement and help in the editing process. And my deepest gratitude to my parents
for giving me the opportunity to reach this point. All that I’ve accomplished is because of you.

i



Contents

1 Introduction and Preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Basic Graph Spectra Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Expander Graph Spectra 9
2.1 Eigenvalue Formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Vertex Expansion vs. Spectral Expansion . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Expander Graph Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Application in Randomness Reduction . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Constructing Expanders 24
3.1 The Gabber-Galil Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Zig-Zag Product Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Zig-Zag Product and the Algebra Connection 37
4.1 Group Theory Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The Semi-Direct Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 The Wide Zig-Zag Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Eigenvalue Lower Bounds for the Zig-Zag Product 42
5.1 The Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Combinatorics Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Provable Lower Bounds in Special Cases . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Experimental Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Semi-Squaring 54
6.1 Semi-Square Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Strong Semi-Square Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion 60

Bibliography 61

ii



Chapter 1

Introduction and Preliminaries

1.1 Introduction

1.1.1 History

The study of expander graphs has been a rapidly developing subject in discrete mathematics
and computer science in the past three decades. It has been motivated from many directions,
including network design, algorithms, coding, cryptography, and pseudorandomness. Why has
this kind of graph structure been so useful in so many diverse areas? Expander graphs have very
special properties, indeed properties that at first seem to be self-conflicting.

Intuitively, a regular undirected graph is an expander if it is highly connected. That is, it is
easy to get from any vertex to any other vertex in very few steps. In order for such graphs to
be interesting, we also impose that they have low degree, because in all applications the graph’s
“cost” is related to its degree. Because these two requirements are in tension, it is remarkable
that these graphs exist at all. However, a line of work initiated by Pinsker [23] and culminating
in the recent work by Friedman [11] showed using the probabilistic method that randomly chosen
graphs in fact enjoy these properties with high probability.

Many measurements have been posited to quantify this expansion property. Such measures
include vertex expansion and edge expansion, properties that unfortunately are hard to compute
[7]. However, as was shown in the classic work by Alon, Milman, and Tanner [3, 5, 27], the vertex
expansion of a graph is intimately tied to its spectrum, and in particular the second-largest
eigenvalue. This offers us an efficiently computable quantification of the expansion of a graph.
More importantly, it allows us to apply the tools of linear algebra in analyzing expander graphs.

Using this approach, Alon and Boppana [3] showed the upper bound on expansion that we can
hope for in an infinite family of graphs. Soon afterward, Lubotzky, Phillips, and Sarnak [20] and
Margulis [21] independently constructed families of graphs reaching this bound. In the process,
[20] coined the term Ramanujan graph, which has since been applied to all graphs reaching the
bound given in [3].

There has been an explosion of interest recently in expander graphs in theoretical computer
science, particularly with regard to their role in reducing the dependence of probabilistic algo-
rithms on uniformly random bits. As such, explicit constructions of expanders have been very
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important. However, until recently all of the expander graph constructions have been algebraic,
usually leveraging the theory of finite fields and the Cayley graphs of certain groups. Only re-
cently has there been any success using combinatorial tools to create families of expander graphs.
The zig-zag product of Reingold, Vadhan, and Widgerson [25] gives a recursive construction of
expander graph families that yields to a pleasingly intuitive analysis.

1.1.2 Overview

This thesis has two goals. First, we present an introduction to the line of work that began with
the study of expander graphs in the non-constructive setting, which then led to the algebraic con-
struction of expanders, and finally has recently produced combinatorial constructions. Second,
we extend the work on combinatorial constructions by new analyses and new constructions.

The thesis is arranged as follows. In Chapter 1 we define the terminology and prove several basic
results about graph spectra. In Chapter 2 we apply spectral methods to the analysis of expander
graphs and expander graph families, concluding with a discussion of the application of expander
graphs to the study of derandomization. In Chapter 3 we give two expander graph family
constructions, contrasting classical algebraic techniques and newer, more intuitive combinatorial
techniques. In Chapter 4 we present work extending the zig-zag product to a group-theoretic
interpretation. In Chapter 5 we explore the problem of finding lower bounds for the expansion
of zig-zag products. In Chapter 6 we analyze a new combinatorial operation on graphs inspired
by the zig-zag product that we call the semi-square, and we proceed to prove some results on its
relation to expanders.

1.1.3 Contributions

Specific constributions of this thesis follow. In Chapter 2 we give a novel proof of Theorem
2.3.2 which shows that infinite families of graphs have bounded expansion. In Chapter 3 we
give a new non-bipartite treatment of the Gabber-Galil construction in Theorem 3.1.1, and we
give an improvement on the original result of Theorem 3.2.6 bounding the expansion of the zig-
zag product. In Chapter 4 we coin the term wide zig-zag product and present the relationship
between the wide zig-zag product and the semi-direct product from group theory (Theorem
4.3.3) differently, and hopefully more clearly, than in the original work.

Chapters 5 and 6 present entirely new material. In Chapter 5 we explore further questions
concerning the second largest eigenvalue of the zig-zag product. We prove some results in special
cases about a lower bound on the second largest eigenvalue. In the process, we invent the semi-
square graph operation (Definition 5.3.3), a new combinatorial operation on graphs. We also
exhibit experimental data that point to universal lower bounds for the zig-zag product. Finally,
in Chapter 6 we analyze the semi-square. We show in Proposition 6.1.6 that, for certain graphs,
semi-squaring always gives better expansion than plain squaring, and in Theorem 6.2.3 we specify
completely the class of graphs where semi-squaring offers absolutely no benefit compared to
squaring.
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1.2 Definitions

There are many different ways to quantify expansion, all of them related. Here we present two
of them: vertex expansion and spectral expansion. For most of this thesis we will be concerned
with spectral expansion, but the fact that there is a link between the combinatorial property of
vertex expansion and the algebraic property of spectral expansion is inherently intriguing and
thus worth discussing. We will prove this loose equivalence in Chapter 2.

1.2.1 Graph Theory Terminology and Notation

Definition 1.2.1. We will employ the following graph theory terminology, all of which are
standard.

• An undirected multi-graph G consists of a vertex set V and an edge multi-set E ⊂ V × V .
We will use N = |V | to denote the size of the graph. The edge multi-set E is allowed to
contain repeated edges between the same pair of edges, as well as any number of self-loops.

• For any subset of vertices S ⊂ V , we define its neighbor set N(S) = {j ∈ V | ∃i ∈
S s.t. {i, j} ∈ E}.

• The degree of a vertex is the number of incident edges, where a self-loop counts as a single
edge. A graph is said to be regular with degree D if all its vertices have degree D.

• A graph is connected if for any pair of vertices i and j, there is a path of edges from i to j.

• A graph is bipartite if there is a partition of V into subsets X and Y so that there are no
edges between any two vertices of X or any two vertices of Y .

• A subgraph H of G is a set H = (V ′, E′) were V ′ ⊂ V and E′ ⊂ (V ′ × V ′) ∩ E. That is,
H’s vertices are vertices of G, and its edges are also edges in G.

• An induced subgraph H of G is a subgraph H = (V ′, E′) where E′ = (V ′ × V ′) ∩ E. H
is uniquely determined by its vertex set V ′ since its edge set includes all edges in G that
connect vertices in V ′.

• Let pi,j be a path from vertex i to vertex j, and let |pi,j | be its length. Then the distance
between i and j is the length of the shortest path between them: d(i, j) = minpi,j |pi,j |.

• The diameter K of the graph is longest of the distances between any pair of vertices,
K = maxi,j d(i, j).

Remark 1.2.2. We will work almost exclusively with connected regular undirected non-bipartite
multi-graphs, which we will simply call graphs unless otherwise noted.1Also, unless otherwise
noted, we will adopt the convention of labelling the vertices of a graph on N vertices using the
integers [N ] = {1, 2, . . . , N}.

1The study of expander graphs has many interesting results on bipartite graphs, and indeed much of the
classical work was done in a bipartite setting. However, because most recent work has focused on the non-
bipartite setting, we will cast the classical results in this light.

3



1.2.2 Vertex Expansion

Definition 1.2.3. A graph G = (V, E) on N vertices is called a γ-vertex expander if

S ⊂ V, |S| ≤ N/2 =⇒ |N(S)| ≥ γ|S|

We would like γ to be as large as possible, and in particular we would like γ > 1, since then the
neighbor set of a subset of vertices will be larger than the starting subset. It is evident that this
definition matches our intuition of expansion: any set of vertices will “expand” into a larger set
of vertices when we follow the edges of some subset of vertices.

1.2.3 Algebra Terminology and Notation

Definition 1.2.4. We will employ the following algebra terminology. Most of the terminology
is standard, and we preface non-standard definitions with ∗∗.

• We will work mainly over R, though sometimes we will pass into C. Where applicable
below, our definitions over R extend to C in the obvious way.

• Let Rn×m denote the space of n ×m real matrices. Let Mn(R) = Rn×n. We will usually
treat column vectors v ∈ Rn as matrices in Rn×1.

• Let In denote the n× n identity matrix. We write I when there is no confusion about the
size of the matrix.

• Let At denote the matrix transpose of A. A is symmetric if A = At. A is orthogonal if
AAt = I.

• The hermitian adjoint of a matrix A ∈ Mn(C) is denoted by A∗ = At, i.e. the conjugate
transpose of A. A is hermitian if A = A∗. A is unitary if AA∗ = I.

• A real matrix A ∈ Mn(R) with entries aij ≥ 0 is called doubly stochastic if
∑

j akj =∑
i aik = 1 for all k.

• The dot product of two vectors is 〈x, x〉 = x∗x. The L1-norm of a vector x ∈ Rn is denoted
by |x|1 and equals

∑n
i=1 |xi|. The L2-norm of x is denoted by ‖x‖ and equals

√
〈x, x〉.

• Two vectors x, y are said to be orthogonal if 〈x, y〉 = 0. If x, y are orthogonal, we write
x ⊥ y. A set of vectors v1, . . . , vk are orthonormal if they are pair-wise orthogonal and
‖vi‖ = 1 for all i.

• λ ∈ R is an eigenvalue of A ∈ Mn(R) if there exists a corresponding non-zero eigenvector
x ∈ Rn such that Ax = λx. The set of all eigenvalues of a matrix A is called the spectrum
of A.

• The multiplicity of an eigenvalue is the number of times it is repeated in the spectrum.
Since we will work solely with diagonalizable matrices, we do not distinguish between the
algebraic and geometric multiplicities of eigenvalues.

• Let Sp(v1, . . . , vn) denote the span of vectors v1, . . . , vn.

• The span of some eigenvectors of a matrix is called an eigenspace.
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• For any subspace W ⊂ V , define the orthogonal complement W⊥ = {x ∈ V | x ⊥ w ∀w ∈
W} to be the subspace of all vectors orthogonal to all vectors in W .

• ∗∗ Let u ∈ Rn denote the uniform distribution or uniform vector, u = [ 1
n , . . . , 1

n ]t.

• ∗∗ A vector v ∈ Rn is anti-uniform if v ⊥ u.

• ∗∗ Likewise, a subspace V ⊂ Rn is anti-uniform if it is contained in Sp(u)⊥.

1.2.4 Spectral Expansion

When we refer to any algebraic properties (e.g. spectrum, eigenvectors, etc.) of a graph G, we
will mean the properties of its normalized adjacency matrix A, which is defined as follows. We
will always work with this normalized version of the adjacency matrix.

Definition 1.2.5. With our convention of labelling the vertices of G by [N ], we define the
normalized adjacency matrix of a graph G to be A = [aij ], where

aij =
dij

D

where dij is the number of edges between vertices i and j and D is the degree of the graph.

We may view A as the doubly stochastic transition matrix for the random walk on G. It is doubly
stochastic because G is regular, and therefore

∑
j akj =

∑
i aik = 1 for any fixed k. This matrix

is real, non-negative and symmetric since the graph is undirected, and so from the spectral
theorem of real symmetric matrices from linear algebra we know that all its eigenvalues are real.
We state the spectral theorem here without proof as it is a standard result; the interested reader
may refer to [6] for a proof.

Theorem 1.2.6. Let A be a real symmetric N ×N matrix. Then there exist orthogonal (equiv.
orthonormal) eigenvectors {v1, . . . , vN} corresponding to N (not necessarily distinct) real eigen-
values λ1, . . . , λN .

We will show in the next section that 1 is an eigenvalue with the uniform distribution u as the
corresponding column eigenvector. We will also show 1 is the largest eigenvalue in absolute value.
All other eigenvalues are at most 1 in absolute value, and we will be interested in the second-
largest eigenvalue in absolute value. From here on, “second largest eigenvalue” will always refer
to the second largest eigenvalue in absolute value unless otherwise noted.

Definition 1.2.7. Let λ1, λ2, . . . λN be the spectrum of the graph G, with the ordering 1 =
λ1 ≥ |λ2| ≥ . . . ≥ |λN |. We say that G is a λ-spectral expander if |λ2| ≤ λ. Furthermore, define
the function λ2(G) = |λ2|.

In this definition, we want |λ2| ≤ 1 to be bounded as far away from 1 as possible.

We will often augment this definition with the parameters N and D, so that a graph G is an
(N, D, λ)-spectral expander if it has N vertices, it is regular with degree D, and has λ2(G) ≤ λ.

We appeal to a different intuition to see the motivation behind this definition. One may say
a graph is a good expander if, starting from any initial probability distribution on its vertices,
taking a random walk on the graph will converge to the uniform distribution on the vertices
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very quickly. This matches up with our above intuition because the graph must be “highly
connected” in order for this to happen.

Translating this to the spectral domain, consider any probability distribution x ∈ RN over the
vertices of the graph, where ∀i xi ≥ 0 and

∑N
i=1 xi = 1. Since A is real and symmetric, we

know from the spectral theorem that we can write x as a linear combination of the eigenvectors
v1, . . . , vN , corresponding to λ1, . . . , λN , where v1 = u the uniform distribution and the other
vi are anti-uniform. It is clear the coefficient of u in this decomposition is 1 since

∑N
i=1 xi = 1.

Therefore we have
x = u + c2v2 + . . . + cNvN

where ci ∈ R. If we repeatedly apply the normalized adjacency matrix A, we see that

Akx = u + λk
2c2v2 + . . . + λk

NcNvN

Now if we consider the distance of Akx from u, say using the L2 norm, it is clear that the smaller
λ2, the quicker the higher-order terms vanish and the faster Akx converges to u. In terms of
being an expander, this means the smaller λ2 is, the fewer steps it takes to reach all vertices in
the graph with (almost) equal probability.

Remark 1.2.8. Another useful way of looking at the action of A on a distribution x is to envision
each vertex i sending an equal amount of its old weight along each edge to its neighbors, and in
turn receiving its new weight from its neighbors in the same manner. This is borne out in the
formula for matrix product: (Ax)i = 1

D

∑
{i,j}∈E xj .

1.3 Basic Graph Spectra Properties

To gain an intuition of how a graph’s spectrum is related to its structure and to build the
tools that we will use to analyze graphs, we begin by proving some simple results about the
relationship between certain elementary graph properties and the eigenvalues of the graph.

Lemma 1.3.1. The eigenvalues of any graph G have absolute value at most 1. G has an
eigenvalue of 1 with the uniform vector u as an eigenvector.

Proof. Consider any eigenvalue λ of G and its corresponding eigenvector v. There is some i such
that |vi| = maxj |vj |, and where |vi| > 0 since v 6= 0. Then, using the triangle inequality and
the fact that |vi| is maximal, we have that |λ| ≤ 1 because

|λ||vi| =
∣∣∣∣∣∣
∑

j

aijvj

∣∣∣∣∣∣
≤ |vi| ·

∑

j

|aij | = |vi|

∑
j |aij | = 1 because A is non-negative and doubly stochastic. The formula above shows that

equality occurs for the uniform distribution u. ¤

Remark 1.3.2. Equality occurs only if we have either

1. ∀j, aij 6= 0 =⇒ vj = vi

2. ∀j, aij 6= 0 =⇒ vj = −vi

For example, this occurs with u.
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Because we wish to bound the second largest eigenvalue of a graph in absolute value, it is often
convenient to have a guarantee that the eigenvalues of the graph are non-negative. To assure
this is the case, we will often work with the square of a graph G2:

Definition 1.3.3. The square of a graph G = (V, E) is the graph G2 = (V,E2) where (with
appropriate multiplicity) {i, j} ∈ E2 ⇔ ∃k ∈ V s.t. {i, k} ∈ E and {k, j} ∈ E. If the normalized
adjacency matrix of G is A, then the normalized adjacency matrix of G2 is the matrix square
A2.

It is clear that if λ is an eigenvalue of G, then λ2 is an eigenvalue of G2 with the same eigenvector.

Using these simple tools, we may relate the spectrum of a graph G to the properties of connect-
edness and bipartiteness.

Lemma 1.3.4. A graph G is connected if and only if the eigenvalue 1 occurs with multiplicity
1.

Proof. Suppose G is disconnected, then we show that the eigenvalue 1 has multiplicity at least
2. G has a connected component X ( V , and let Y = V −X. For any set S ⊂ V , let χS be its
characteristic vector, i.e. it is 1 for all elements of S and 0 elsewhere. We claim that x = χX

and y = χY are both eigenvectors with eigenvalue 1.

(Ax)i =
∑

j

aijxj =
∑

j∈X

aijxj =
{

1, i ∈ X
0, i /∈ X

which immediately implies Ax = x. An analogous argument holds for y.

Now suppose 1 occurs with multiplicity > 1. Then there is some anti-uniform eigenvector x ⊥ u
with eigenvalue 1. Let X = {i | xi = maxj xj}. Since λ = 1, from Remark 1.3.2, this means for
any i ∈ X, and for any aij 6= 0, it must be that xi = xj . So aij = 0 for all i ∈ X, j ∈ V −X,
and so X is not connected to V −X. ¤

Remark 1.3.5. This lemma is easily generalized in one direction to non-regular graphs. The
statement is that if G is disconnected, then the eigenvalues of each of its connected components
occur with the same multiplicity in the spectrum of G. Let v be an eigenvector of a connected
component H with eigenvalue λ, then the vector v̂ is also an eigenvector of G with eigenvalue
λ, where v̂ is equal to v on H and is 0 on all vertices outside H.

Lemma 1.3.6. A connected graph G is bipartite if and only if it has an eigenvalue of −1.

Proof. If a graph is bipartite, then its square is disconnected. By Lemma 1.3.4, G2 has eigenvalue
1 with multiplicity 2. Each eigenvalue of G2 is the square of an eigenvalue of G. Since G is
connected, it has eigenvalue 1 with multiplicity 1, so this corresponds with one of G2’s eigenvalues
of 1. Since the other eigenvalue 1 of G2 must also be the square of an eigenvalue of G, G must
have an eigenvalue of −1.

If the graph has an eigenvalue of −1, then there is an eigenvector x ⊥ u such that Ax = −x.
Let X = {i | xi = maxj xj} and Y = V −X. Since λ = −1, from Remark 1.3.2 we have for any
i ∈ X, and for any aij 6= 0, it must be that xi = −xj . So aij = 0 for any i, j ∈ X. Furthermore,
since G is connected this means ∀i ∈ Y we have xi = −maxj xj , so therefore there are no edges
between vertices in Y . So G is bipartite with left side X and right side Y . ¤
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We may interpret both these results in terms of the random walk intuition. If the graph is
disconnected, then no random walk can take us from one component to another, and so the
distributions on each component is independent. Hence, the eigenvalue 1 occurs with multiplicity
equal to the number of components, since they don’t interact.

Similarly, when the graph is bipartite then we can take two “almost-independent” random walks
simultaneously. One walk starts on the left-hand side and has negative weight, while the other
starts on the right-hand side and has positive weight. The steps alternate between the two sides,
and one may think of the sign of the weights as denoting to which of the walks the weight belongs
to. Hence, the (−1)-eigenvector is uniform on each side but with different sign.

These elementary results hint at the power of the connection between a graph’s spectrum and its
combinatorial properties. [9] and [14] gives a detailed introduction to this study, relating other
graph properties to the spectrum, including girth, diameter, and chromatic number. In the next
chapter, we will elaborate on spectral characteristics peculiar to expander graphs.

8



Chapter 2

Expander Graph Spectra

In this chapter, we highlight some of the fundamental results of expanders independent of their
construction. We develop the main lemmas that will be used to analyze expander graph family
constructions. We establish the correspondence between vertex expansion and spectral expan-
sion, and go on to show that there is a limit to how good the expansion of an infinite family
of graphs may be. We conclude by showing how spectral analysis is used in the application of
expander graphs to randomness reduction.

2.1 Eigenvalue Formulæ

We begin by reviewing the classical Rayleigh quotient from linear algebra, which will provide
the necessary tool to calculate bounds on the second largest eigenvalue.

Lemma 2.1.1. Let A ∈ Mn(R) be symmetric. Let λ1 ≥ . . . ≥ λn be its spectrum with the
corresponding orthonormal eigenvectors {v1, . . . , vn}. For any k ∈ [n], define Wk ( Rn to be the
proper subspace Sp(v1, . . . , vk). Then we have for all k that

x ∈ Wk \ {0} =⇒ 〈Ax, x〉
〈x, x〉 ≥ λk (2.1)

y ∈ W⊥
k \ {0} =⇒ 〈Ay, y〉

〈y, y〉 ≤ λk+1 (2.2)

Equality holds exactly when x, y are the eigenvectors corresponding to λk, λk+1 respectively.

Proof. Since v1, . . . vk form a basis of Wk, we may write x =
∑k

i=1 civi for some constants ci ∈ R.
By orthonormality, we get

〈Ax, x〉
〈x, x〉 =

∑k
i=1 λic

2
i ‖vi‖2

〈x, x〉 =
∑k

i=1 λic
2
i

〈x, x〉

≥
∑k

i=1 λkc2
i

〈x, x〉 =
λk

∑k
i=1 c2

i

〈x, x〉
= λk

9



Similarly, since v1, . . . vn span Rn, this means W⊥
k = Sp(vk+1, . . . vn). Thus, using an analogous

argument gives the upper bound on 〈Ay,y〉
〈y,y〉 .

The equality condition is obvious given the above derivation. ¤

The following lemma uses the Rayleigh quotient and provides us with our primary method of
upper-bounding the second largest eigenvalue of an arbitrary graph.

Lemma 2.1.2. For any graph G with normalized adjacency matrix A,

λ2(G) = max
x⊥u

|〈Ax, x〉|
〈x, x〉 (2.3)

= max
x⊥u

‖Ax‖
‖x‖ (2.4)

= max
x⊥u

∣∣∣∣∣∣
1− 1

D‖x‖2
∑

{i,j}∈E

(xi − xj)2

∣∣∣∣∣∣
(2.5)

Proof. Label the eigenvalues and eigenvectors as in Lemma 2.1.1. From Lemma 1.3.1 we know
the spectrum of G has λ1 = 1 and v1 = u.

First we show Equation (2.3). If λ2(G) > 0, then λ2(G) = λ2, so the Equation (2.2) from
Lemma 2.1.1 becomes an equality by taking k = 1 and letting y = v2 ∈ W⊥

1 . If λ2(G) < 0, then
λ2(G) = λn, so take k = n and x = vn ∈ Wn, and thus Equation (2.1) becomes an equality with
〈Ax,x〉
〈x,x〉 = λn and hence |〈Ax,x〉|

〈x,x〉 = |λn|.

To show Equation (2.4), we see that ‖Ax‖ =
√
|〈Ax,Ax〉| =

√
|〈A2x, x〉|. By Equation (2.3),

the maximum of this is λ2(G) · ‖x‖.
To show Equation (2.5), we have by the definition of dot product that

|〈Ax, x〉| =

∣∣∣∣∣∣
∑

i,j

aijxixj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2
D

∑

{i,j}∈E

xixj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
‖x‖2 − 1

D


‖x‖2D −

∑

{i,j}∈E

2xixj




∣∣∣∣∣∣

=

∣∣∣∣∣∣
‖x‖2 − 1

D

∑

{i,j}∈E

(xi − xj)2

∣∣∣∣∣∣

where last equality holds because ‖x‖2 ·D =
∑
{i,j}∈E(x2

i + x2
j ). ¤

Remark 2.1.3. We can compute any eigenvalue λn of G using Equations (2.3) or (2.5) by remov-
ing the absolute value and restricting our choice of x to the appropriate subspace as stated in
Lemma 2.1.1 instead of simply restricting x ⊥ u. If we are just concerned with the eigenvalues
of matrices, we may use Equations (2.3) and (2.4) to compute the eigenvalues of A a complex
hermitian matrix, since it is well-known that the eigenvalues of a hermitian matrix are real [6].

In order to more precisely quantify the expansion of certain graphs, we will also be interested in
lower-bounding the second-largest eigenvalue. One useful tool for this is the following eigenvalue
interlacing theorem originally stated by Courant and Hilbert.

Lemma 2.1.4 ([10]). Let A be a real symmetric n × n matrix, and let R be a n ×m matrix
such that RtR = I. Then B = RtAR is a m ×m matrix whose eigenvalues interlace those of

10



A. That is, if we let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A and µ1 ≥ µ2 ≥ . . . ≥ µm be the
eigenvalues of B, then for all k ∈ [m] we have

λk ≥ µk ≥ λn−m+k

Proof. Let v1, . . . , vn be the orthogonal eigenvectors of A corresponding to λ1, . . . , λn and let
w1, . . . , wn be the orthogonal eigenvectors of B corresponding to µ1, . . . , µm. Let Vk = Sp(v1, . . . , vk)
and let Wk = Sp(w1, . . . , wk). For any k, the dimension of Wk is k, while the dimension of RtVk−1

is at most k − 1, so its orthogonal complement has dimension at least n− k + 1. Thus Wk and
(RtVk−1)⊥ have a non-zero intersection, so there is some non-zero vector y ∈ Wk ∩ (RtVk−1)⊥.
By definition, 〈y,Rtvi〉 = 0 for all i ∈ [k − 1], and so by symmetry we have 〈Ry, vi〉 = 0 so we
have Ry ∈ V ⊥

k−1. We may now apply RtR = I, RtAR = B, and Lemma 2.1.1 to get

λk ≥ 〈ARy,Ry〉
〈Ry, Ry〉 =

〈By, y〉
〈y, y〉 ≥ µk

Applying the same analysis with −A and −B gives the lower bound. ¤

This theorem is often stated in the special case where R contains an identity submatrix and is
otherwise zero, in which case B is a principal submatrix of A. However, we will need the more
general form above in order to use it to analyze graphs.

We can immediately apply Lemma 2.1.4 to the analysis of spectral expansion. The corresponding
statement is that the expansion of a graph G is bounded by the expansion of any of its induced
subgraphs. However, we need to clarify the normalized adjacency matrix we use to describe the
subgraph, which is different than usual because we normalize the degrees with respect to the
host graph.

Definition 2.1.5. The normalized adjacency matrix of H as a subgraph of G is given by the
matrix B = [bij ]

bij =
dij

D

where dij is the number of edges between vertices i and j in H and D is the degree of the host
graph G.

Let M be the size of H. The spectrum of H as a subgraph of G is of the form 1 ≥ λG
1 ≥

|λG
2 | ≥ . . . ≥ |λG

M |, where λG
1 is not necessarily 1 since B is not necessarily doubly stochastic.

Let λG
i (H) = |λG

i |.
Corollary 2.1.6 ([14]). Let G be a graph with second largest eigenvalue λ2(G). Let H be any
induced subgraph of G. Then λG

2 (H) ≤ λ2(G).

Proof. Let N be the size of G and M be the size of H, and let the vertices in the induced
subgraph be {n1, . . . , nM} ⊂ [N ]. Let R = [rij ] be the N ×M matrix defined as

rij =
{

1, i = nj

0, else

A simple computation shows RtR = I. We claim B = RtAR is the normalized adjacency matrix
of H. This is because if we let B = [bij ], we get

bij =
∑

k,`

rkiak`r`j = aninj

11



So by Lemma 2.1.4 the eigenvalues of H interlace the eigenvalues of G, and therefore λG
2 (H) ≤

λ2(G). ¤

We can compute λG
i (H) for any i using Equations (2.3) or (2.4) from Lemma 2.1.2 and restricting

to the appropriate subspace. However, we cannot use Equation (2.5) directly because part of its
proof assumed the graph is regular. The following is the analogue for the case of λG

i (H).

Lemma 2.1.7. Let H be an induced subgraph of G with adjacency matrix B = RtAR. Let M
be the size of H. Then, with the maximum restricted to the appropriate subspace as specified in
Lemma 2.1.1,

λG
i (H) = max

x

∣∣∣∣∣∣
1− 1

D

∑

{i,j}∈E

((Rx)i − (Rx)j)

∣∣∣∣∣∣
(2.6)

where E is the edge set of G (not H)

Proof. We know
λG

i (H) = max
x
|〈RtARx, x〉| = max

x
|〈ARx, Rx〉|

Thus we may apply the analysis for Equation (2.5) using Rx instead of x. ¤

These are the main tools that we will use in our analysis of expander graphs. More case-specific
techniques will be developed later, of course, but it is worthwhile to remark that these two
results, and especially Lemma 2.1.2, will be referred to throughout this thesis.

2.2 Vertex Expansion vs. Spectral Expansion

We are now ready to prove the relationship between the two definitions of expansion given in
Section 1.2. This remarkable relationship was first discovered in a series of works by Alon,
Milman, and Tanner [3, 5, 27]. They provide the conceptual bridge between the combinatorial
notion of vertex expansion and the algebraic notion of spectral expansion.

This connection is useful in several contexts. For example, it has been shown that computing the
vertex expansion of a graph is coNP-complete [7], whereas computing the spectrum of a graph
can be done in polynomial time. However, computing the spectrum is still unwieldy because
it takes time polynomial in the size of the graph (the number of vertices). Unfortunately, the
representation of a graph is often logarithmic in its size; for example it may simply be a function
that computes the c’th neighbor of a vertex i.

A more important result of this relationship is that we are now able to apply tools from linear
algebra and analysis in analyzing the expansion of families of graph. Thus, constructing a family
of good spectral expanders immediately implies constructing a family of good vertex expanders.
In many cases, we can prove interesting results about applications of expander graphs directly
using spectral expansion.

However, in some contexts it is more convenient to use the vertex expansion formulation. For
example, Sipser and Spielman [26] use a form of vertex expansion to construct expander codes.

The relationship is given in the following two theorems, which show that there is a loose equiv-
alence between the two forms of expansion.

12



Theorem 2.2.1 ([5, 27]). If G is a λ-spectral expander, then it is also a 2
λ2+1 -vertex expander.

Proof. Our intuition for the theorem is as follows: for any S ⊂ V , consider the probability
distribution uS = 1

|S|χS that is uniform on S and zero elsewhere. Because λ < 1, we know that
applying the normalized adjacency matrix A “flattens” the distribution considerably according
to the L2 norm. Since the L1 norm remains unchanged, this means that the weight previously
resting solely on S must have been spread to a larger set N(S).

Formally, we can write u⊥S = uS−u, where we can check u⊥S ⊥ u since 〈u⊥S , u〉 = 〈uS , u〉−〈u, u〉 =
0. Simple linear algebra shows that ‖u⊥S ‖2 = ‖uS‖2 − ‖u‖2 = 1

|S| − 1
N .

Claim. For any distribution x, ‖x‖2 ≥ 1
|x+| , where x+ = {i | xi > 0} is the support of x.

This follows from the Cauchy-Schwarz inequality:

1 =


 ∑

i∈x+

xi




2

= 〈χS , x〉2 ≤ ‖χS‖2‖x‖2 = |x+| ·
∑

i∈x+

x2
i

which immediately implies the claim.

Using these facts we see that

1
|N(S)| =

1
|(AuS)+| ≤ ‖AuS‖2

A simple computation reveals Au⊥S ⊥ u, so we may write

1
|N(S)| −

1
N
≤ ‖AuS‖2 − ‖u‖2 = ‖A(uS − u)‖2 = ‖Au⊥S ‖2

By Lemma 2.1.2, we know

‖Au⊥S ‖2 ≤ λ2‖u⊥S ‖2 = λ2

(
1
|S| −

1
N

)

and so we can conclude
1

|N(S)| −
1
N
≤ λ2

(
1
|S| −

1
N

)

Rearranging gives us that

|N(S)| ≥ 1

λ2(1− |S|
N ) + |S|

N

|S|

and the theorem follows since |S| ≤ N
2 . ¤

Note that this relationship behaves as we expect: the smaller the λ, the better the vertex
expansion. Furthermore, λ strictly less than 1 implies vertex expansion strictly greater than
1. Kahale [18] presents a tighter relationship between spectral and vertex expansion, which we
omit here because it does not present further intuition into the relationship.

The next theorem gives the converse relationship: the better the vertex expansion, the better
the spectral expansion.
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Theorem 2.2.2 ([3]). If G is a (1 + α)-vertex expander, then it is also a λ-spectral expander

for λ =
√

1− α2

D2·(8+4α2) .

Proof. Let A2 be the normalized adjacency matrix of G2. For the remainder of the proof, we work
with G2 = (V,E) in order to guarantee that all eigenvalues are positive. The vertex expansion of
G2 must be at least 1+α: for any subset S ⊂ V of size at most N/2, we know |N(S)| ≥ (1+α)|S|.
Now if |N(S)| ≤ N/2, we may apply vertex expansion again. If |N(S)| > N/2, we may consider
any subset S′ ⊂ N(S) of size N/2, and we get

|N(N(S))| ≥ |N(S′)| ≥ (1 + α)N/2 ≥ (1 + α)|S|

Let x be the eigenvector of A2 with eigenvalue λ2(G2), the second largest eigenvalue, which in
this case must be positive. Since x ⊥ u, x must have both positive and negative entries. Define

V+ = {i | xi > 0} V− = {i | xi ≤ 0}
Both V+ and V− are non-empty, and we take w.l.o.g. |V+| ≤ N/2. Finally, define the vector x̄
where

x̄i =
{

xi, xi > 0
0, else

A simple computation verifies that

λ2(G2) =
〈A2x, x̄〉
〈x̄, x̄〉

We wish to change this expression into a form similar to Equation (2.5) from Lemma 2.1.2. We
perform the following manipulations to do this:

〈A2x, x̄〉 =
∑

i,j

aijxix̄j

= ‖x̄‖2 − 1
D2


‖x̄‖

2D2 −
∑

i∈V+

{i,j}∈E

2x̄ixj




= ‖x̄‖2 − 1
D2


‖x̄‖

2D2 −
∑

i,j∈V+

{i,j}∈E

2x̄ix̄j −
∑

i∈V+, j /∈V+

{i,j}∈E

2x̄ixj




where D2 is the degree of G2. Since xj ≤ 0 for j /∈ V+, the above becomes

|〈A2x, x̄〉| ≤ ‖x̄‖2 − 1
D2


‖x̄‖2D2 −

∑

{i,j}∈E

2x̄ix̄j




≤ ‖x̄‖2 − 1
D2

∑

{i,j}∈E

(x̄i − x̄j)2

and therefore

λ2(G2) ≤ 1− 1
D2

∑
{i,j}∈E(x̄i − x̄j)2∑

i∈V x̄2
i

(2.7)
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Note the direction of this inequality is opposite from the one obtained from Equation (2.5).

Now we appeal to the max-flow min-cut theorem. Let us construct the directed weighted graph
Ḡ with vertex set {s, t}∪V+ ∪V where s is the source and t is the sink, with the understanding
that here V+ and V are copies, so as to be disjoint. We define the edges and weights in the
graph as follows:

1. For each i ∈ V+, the edge (s, i) has capacity 1 + α.

2. For each i ∈ V+, j ∈ V , the edge (i, j) has capacity 1 if {i, j} ∈ E in the original graph,
and zero otherwise.

3. For each j ∈ V , the edge (j, t) has capacity 1.

The min-cut of this network is (1 + α) · |V+|. It is clear that the cut consisting of all arcs (s, i)
for all i ∈ V+ has this capacity. To see that it is the minimum, consider any other cut C, and
let W = {i ∈ V+ | (s, i) /∈ C}. The intuition behind the reason this directed graph is linked with
G2’s expansion is because these sets W must expand by at least (1 + α). Therefore, the flow
through them is large enough so as to be greater than the cut constructed above.

Formally, since |W | ≤ N
2 , we must have |N(W )| ≥ (1 + α)|W |, and for each j ∈ N(W ), C must

contain an edge incident to j. So the capacity of the cut must be at least (1 + α)|V+ −W | +
|N(W )| ≥ (1 + α)|V+|.
Because the min-cut is large, by the max-flow min-cut theorem, there then exists a function
F : V × V → R with the following properties. Here, Ẽ is the set of ordered edges: {i, j} ∈
E =⇒ (i, j), (j, i) ∈ Ẽ.

1. ∀(i, j) /∈ Ẽ, F (i, j) = 0, and ∀(i, j) ∈ Ẽ, 0 ≤ F (i, j) ≤ 1

2. For any fixed i ∈ V+,
∑

j|(i,j)∈Ẽ F (i, j) = 1 + α and F (i, j) = 0 for i /∈ V+

3. For any fixed j ∈ V ,
∑

i|(i,j)∈Ẽ F (i, j) ≤ 1.

This function F is the crucial link we need to show the vertex expansion of G2. We will be able
to use the following two bounds to bound expression (2.7).

In the summations below, we take care to write (i, j) ∈ Ẽ to specify summing over ordered pairs
(so that each {i, j} ∈ E is counted twice). Applying the above and the fact that 2(a2 + b2) ≥
(a + b)2 for any real a, b gives

∑

(i,j)∈Ẽ

F 2(i, j)(x̄i + x̄j)2 ≤ 2
∑

(i,j)∈Ẽ

F 2(i, j)(x̄2
i + x̄2

j )

= 2
∑

i∈V

x̄2
i


 ∑

(i,j)∈Ẽ

F 2(i, j) +
∑

(i,j)∈Ẽ

F 2(j, i)




≤ (4 + 2α2)
∑

i∈V

x̄2
i

∑

(i,j)∈Ẽ

F (i, j)(x̄2
i − x̄2

j ) =
∑

i∈V

x̄2
i


 ∑

(i,j)∈Ẽ

F (i, j)−
∑

(i,j)∈Ẽ

F (j, i)




≥ α
∑

i∈V

x̄2
i
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Multiplying by expression (2.7) by 1 =
P

(i,j)∈Ẽ F 2(i,j)(x̄i+x̄j)
2P

(i,j)∈Ẽ F 2(i,j)(x̄i+x̄j)2
and then applying Cauchy-Schwarz,

we get that

λ2(G2) ≤ 1− 1
D2

∑
{i,j}∈E(x̄i − x̄j)2∑

i∈V x̄2
i

= 1− 1
D2

∑
{i,j}∈E(x̄i − x̄j)2 ·

∑
(i,j)∈Ẽ F 2(i, j)(x̄i + x̄j)2∑

i∈V x̄2
i ·

∑
(i,j)∈Ẽ F 2(i, j)(x̄i + x̄j)2

≤ 1− 1
D2

(
∑

(i,j)∈Ẽ F (i, j)(x̄2
i − x̄2

j ))
2

2(4 + 2α2)(
∑

i∈V x̄2
i )2

≤ 1− α2

D2(8 + 4α2)

From this bound on λ2(G2), it immediately follows that λ2(G) ≤
√

1− α2

D2(8+4α2) . ¤

Remark 2.2.3. The above bound may be substantially improved if we know that the second
largest eigenvalue of G is positive. In that case, we can analyze G directly instead of G2, and
the bound becomes 1− α2

D(8+4α2) .

2.3 Expander Graph Families

For many applications we do not know a priori the size of the expander we wish to employ.
So instead of focusing on specific graphs with good expansion, we will be interested in infinite
families of graphs where each graph exhibits good expansion. Beginning with a simple cased
proven in Pinsker [23], there has been a large body of work that uses the probabilistic method
to show that nearly all large enough graphs are expanders. Friedman [11] recently proved Alon’s
original conjecture of that nearly all large enough graphs are expanders in an extremely general
setting. Because the result is very recent and the proof is extremely long and technical, we
simply state the result here without proof.

Theorem 2.3.1 ([11]). Fix any ε > 0 and an even positive integer D. Then ∃c > 0 such that
for a random degree D graph on N vertices, we have with probability 1− c

nΩ(
√

D) that

|λ2(G)| ≤ 2
√

D − 1
D

+ ε

For a description of the distribution from which these graphs are drawn, please see Definition
5.4.1.

The above bound is indicative of a fundamental limit on the spectral expansion of increasingly
large graphs. [22] proved a matching negative result, which has become something of a “gold
standard” in evaluating the quality of infinite expander families. Currently, the only known
families that achieve the lower bound are algebraic constructions, such as the Ramanujan graphs
of [20].

Theorem 2.3.2 ([22]). For any infinite family {Gi} of degree D graphs, limi→∞ λ2(Gi) ≥√
2D−1
D .
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Here we give a novel proof of the result. To analyze a bound on an infinite family of graphs,
we need a property of the graph that goes to infinity as N → ∞. In this case, the appropriate
property is the diameter K of a graph.

Lemma 2.3.3. For any degree D graph on N vertices, K = Ω(log N).

Proof. We prove this by showing a bound on N given D and K. Let i be one endpoint of the
path whose length is K. We examine the worst case, which is when the graph is a tree rooted at
i with maximal branching. In such a graph, at depth 0 from the root we have the single vertex
i, at depth 1 we have at most D distinct children, and so on so that at depth n we have at most
D(D − 1)n−1 vertices. The depth is at most K, so we have

N ≤ 1 + D + D(D − 1) + . . . + D(D − 1)K−1 =
D(D − 1)K − 2

D − 2

Treating D as constant and solving for K gives us the lemma. ¤

Proof of Theorem 2.3.2. We will show that, for any graph G, λ2(G) ≥ 2
√

D−1
D −O( 1

K ). Here we
assume w.l.o.g. that λ2(G) ≥ 0 since for any family {Gi} we can bound its eigenvalues in the
limit by analyzing the family {G2

i }. Since any infinite family of graphs must have unbounded
N , by Lemma 2.3.3 we have N →∞ =⇒ K →∞ and so the theorem follows.

Let e1 = {i1, i2}, e2 = {j1, j2} be two edges of G where the distance from either endpoint of
e1 to either endpoint of e2 is at least 2k + 2. We use the distance between two edges instead
of two vertices purely to simplify the notation of later expressions; it is easy to check from this
definition that k = Θ(K) where K is the diameter of the graph.

The intuition behind the proof is that we can exhibit a disconnected induced subgraph H of G.
Let HI and HJ be the connected components of H, which by construction are centered about
e1 and e2 respectively. Since H is disconnected, Remark 1.3.5 says that λG

2 (H) is at least the
minimum of λG

1 (HI), λG
1 (HJ ) the largest eigenvalues of HI and HJ . Then, using the induced

subgraph eigenvalue bound given in Corollary 2.1.6, we have that λ2(G) ≥ λG
2 (H).

For any set S ⊂ V , we define Cr(S) ⊂ V to be the circle of radius r about S. For any vertex
i ∈ Cr(S), the distance of i from some vertex in S is exactly r, and from all other vertices in S
the distance is at least r. Formally, we have:

Cr(S) = {i ∈ V | ∃j0 ∈ S s.t. d(i, j0) = r and ∀j ∈ S, d(i, j) ≥ r}

Let us define the set Ir = Cr({i1, i2}). Define I =
⊔k

r=0 Ir the disjoint union of the Ir. |Ir+1| ≤
(D − 1)|Ir| for all 0 ≤ r ≤ k − 1 because each vertex in Ir can have at most D − 1 neighbors in
the direction away from {i1, i2}. Let HI be the induced subgraph with vertices in I.

We can lower-bound the largest eigenvalue λG
1 (HI) of HI by applying Lemma 2.1.7 without any

restrictions on x (see Remark 2.1.3). To compute the lower bound, we adapt a construction
invented in [22]. Note that λG

1 (HI) is positive because the normalized adjacency matrix of HI is
non-negative. Also, note that HI is necessarily non-regular since the vertices on the outermost
circle Ik have degree < D, so its largest eigenvalue is strictly less than 1.

For convenience, we restrict ‖x‖ = 1. Let us construct x where xi = a(D− 1)−r/2 iff i ∈ Ir, and
where we pick a ∈ R such that ‖x‖ = 1. To summarize, x is constructed such that

1 = ‖x‖2 = a2
k∑

r=0

|Ir|
(D − 1)r

(2.8)
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We know the normalized adjacency matrix of HI has the form B = RtAR, where A is the
normalized adjacency matrix of G and R has the form shown in Lemma 2.1.6. Lemma 2.1.7 tells
us

λG
1 (HI) ≥ 1− 1

D

∑

{i,j}∈E

((Rx)i − (Rx)j)2

There are at most D − 1 edges from any vertex i ∈ Ir to vertices in Ir+1. Substituting our
choice of x, and noticing that vertices in HI are connected only to vertices in HI except for the
outermost circle Ik, we get

λG
1 (HI) ≥ 1− 1

D

(
a2

(
k−1∑
r=0

|Ir|(D − 1)
(

1
(D − 1)r/2

− 1
(D − 1)(r+1)/2

)2

+ |Ik| D − 1
(D − 1)k

))

Note that |Ir|
(D−1)r never increases with increasing r, which means 1

k+1
|Ik|

(D−1)k ≤ ∑k
r=0

|Ir|
(D−1)r .

Using this fact and a little manipulation, we get

λG
1 (HI) ≥ 1− 1

D

(
(D − 2

√
D − 1) ·

(
a2

k∑
r=0

|Ir|
(D − 1)r

)
+

2
√

D − 1− 1
k + 1

·
(

a2
k∑

r=0

|Ir|
(D − 1)r

))

Applying Equation (2.8) gives

λG
1 (HI) ≥ 1− 1

D

(
(D − 2

√
D − 1) · 1 +

2
√

D − 1− 1
k + 1

· 1
)

=
2
√

D − 1
D

+
2
√

D − 1− 1
D(k + 1)

(2.9)

We may construct a graph HJ similarly starting with {j1, j2}, and an identical analysis follows
to get the same bound on λG

1 (HJ). The graphs HI and HJ have no edges between them because
the distance between edges e1, e2 is at least 2k +2. So the induced subgraph H on vertices I ∪J
is disconnected with connected components HI and HJ . By Remark 1.3.5 we know since H
is disconnected that λG

2 (H) ≥ min{λG
1 (HI), λG

1 (HJ)}. Corollary 2.1.6 tells us that, because of
interlacing, we have λ2(G) ≥ λG

2 (H). Applying Equation (2.9) above and using k = Θ(K), we
have λ2(G) ≥ 2

√
D−1
D as K →∞. ¤

2.4 Application in Randomness Reduction

As we noted in the introduction, expander graphs are useful in many areas of computer science.
They have been applied in constructing efficient computer networks [8], in the study of complexity
[28], and in generating error-correcting codes [26]. More recently, they have found a prominent
place in the study of derandomization and pseudorandomness. In particular, they are useful in
reducing the amount of randomness required for probabilistic algorithms.

Probabilistic algorithms have proven extremely useful in solving diverse classes of problems;
many protocols such as zero-knowledge proofs, any secure cryptosystem, and many others could
not exist without randomness. These algorithms also offer massive performance gains in some
cases when deterministic algorithms are known, such as primality testing [24, 1].

However, the analysis of these algorithms usually depends on a uniform, unbiased source of
random bits, which is difficult to implement. True physical randomness is hard to capture both
because natural sources tend to produce biased bits and because of the deterministic nature of
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the available hardware. Programmers usually resort to using pseudorandom generators (PRG’s)
as a substitute for truly random bits. The most popular family of PRG’s are linear congruential
generators, and in general it is unknown how well randomized algorithms perform when using
bits from such a PRG (though Impagliazzo and Zuckerman [16] do present some positive results
in this area). In some cases it has been shown that these generators are completely useless, for
example in most cryptographic applications. The study of pseudorandomness is most concerned
with finding ways to “amplify” random bits, and, ideally, to obviate the need for them at all.

One of the earliest examples of expanders being used in the context of derandomization was in
the parallel sorting algorithm given by Ajtai, Komlós, and Szemerédi [2]. Indeed, their algorithm
is remarkable in that they used expander graphs to transform a randomized algorithm into a
wholy deterministic one. In general, such results are not known to hold, and expanders are used
most often to reduce the number of random bits a randomized algorithm requires to achieve
exponentially small error.

We present the results of using expanders to reduce the number of random bits to get ex-
ponentially small error for algorithms in the three most basic randomized complexity classes
RP, coRP,BPP. For the following definitions, we take all languages to be a subset of {0, 1}∗.
If x ∈ {0, 1}∗, we let |x| denote the binary length of x. By x

R← X, we mean take x to be an
element of X chosen uniformly (here X must be finite).

2.4.1 Expander walks for RP and coRP

Definition 2.4.1. A language L ⊂ {0, 1}∗ is said to be in RP if there exists a polynomial-time
algorithm A and a polynomial r with the following properties: for every x ∈ {0, 1}∗ and for
s

R← S, where S = {0, 1}r and r = r(|x|), we have that

1. If x ∈ L, then A accepts x with probability at least 1/2, i.e.

Pr
s

R←S

[A(x, s) = 1] ≥ 1/2

2. If x /∈ L, then A always rejects x, i.e. A(x, s) = 0 for all s ∈ {0, 1}r.

As usual, the class coRP is defined as all languages L such that L ∈ RP. The error for
algorithms in RP vanishes exponentially with repeated independent trials, since if x ∈ L, then

Pr
s1...sn

R←S

[A(x, s1) = 0 ∧ . . . ∧A(x, sn) = 0] ≤ 2−n

An analogous result holds for coRP. However, note that it takes nr random bits in order to
reduce the error exponentially in this fashion. Since randomness is a valuable resource, we would
like to reduce this quantity. To do so, we use the following technique of taking a random walk on
an expander to show that we can get a similar exponential reduction in error using only r+O(n)
random bits.

We state the technique for RP; the case for coRP is entirely similar. Let L be any RP language,
and define A and r as above in Definition 2.4.1. Let us also suppose we have a graph G = (V, E)
that is a (N = 2r, D, λ)-spectral expander for some fixed constant λ < 1 and where D ¿ N .
We perform a random walk of length n starting at a randomly chosen inital vertex, and we use
each vertex that we hit in the walk as the r-bit random input to S. That is, we pick s1

R← V
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using some r random bits. Then at each step i < n in the walk, we pick a random neighbor
si+1

R← N({si}). Note that picking a random neighbor only takes log2 D bits. Finally, we
evaluate A(x, ·) at each of the points s1 . . . sn, and if any of them accept, we accept x.

Theorem 2.4.2 ([15]). Using the above technique, a random string of length r+log2 D ·n gives
us a probability of error 2−Ω(n).

Proof. Let B be the set of bad vertices for a particular x ∈ L.

B = {s ∈ V | A(x, s) = 0}

Define α = |B|
|V | ≤ 1/2. We want to show that the probability of a random walk staying entirely

in B goes down exponentially.

To do this, we define the restriction matrix R that restricts a vector to B. That is, if we let
R = [rij ] where

rij =
{

1, i = j and i ∈ B
0, else

then (Rv)i > 0 =⇒ i ∈ B. The probability that a walk of length n stays entirely in B is
then |R(AR)nu|1, where u is our initial uniform vector. This is because R effectively removes
the part of the distribution that falls outside of B, so applying it at each step keeps exactly the
components of (AR)ku that come only from walks that have stayed entirely within B.

Noticing that R is idempotent (i.e. R2 = R) and using Cauchy-Schwarz, we may write

|R(AR)nu|1 = |(RAR)nu|1 ≤
√

N‖(RAR)nu‖ (2.10)

We may use the expansion of G to bound ‖(RAR)nx‖ for all x. Let us define y = Rx. Recall
that we can separate y = y‖ + y⊥ where, since y is non-negative, y‖ = |y|1

N u and y⊥ ⊥ u. We
compute

|〈RARx, x〉| = |〈ARx, Rx〉|
= |〈Ay, y〉|
= |〈A(y‖ + y⊥), y‖ + y⊥〉|
= |〈Ay‖, y‖〉+ 2〈Ay‖, y⊥〉+ 〈y⊥, y⊥〉|

We may apply Lemma 2.1.2 and the fact that Ay‖ = y‖ to get that

|〈RARx, x〉| = |〈Ay‖, y‖〉+ 〈Ay⊥, y⊥〉|
≤ ‖y‖‖2 + λ‖y⊥‖2

Since y‖ = |y|1
N · u, we have ‖y‖‖ = |y|1

N · ‖u‖ = |y|1√
N

. We can use Cauchy-Schwarz and the fact
that y is non-negative to check

|y|1 =
N∑

i=1

|yi| ≤ ‖χB‖ · ‖y‖ =
√

αN‖y‖

This gives us ‖y‖‖ ≤ √
α · ‖y‖.
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Applying this to the above, we have that

|〈RARx, x〉| ≤ ‖y‖‖2 + λ‖y⊥‖2
= ‖y‖‖2 + λ(‖y‖2 − ‖y‖‖2)
= ‖y‖‖2(1− λ) + λ‖y‖2
≤ α‖y‖2(1− λ) + λ‖y‖2
= (α + λ(1− α))‖x‖2

where the last line applies ‖y‖2 ≤ ‖x‖2.
Since the above bound holds for all x, we may apply Lemma 2.1.2 without the restriction that
x ⊥ u, to get that maxx

|〈RARx,x〉|
〈x,x〉 = maxx

‖RARx‖
‖x‖ . This implies

‖RARx‖ ≤ (α + λ(1− α))‖x‖

for all x. Applying this to Equation (2.10), we obtain

‖(RAR)nu‖ ≤ (α + λ(1− α))n‖u‖
|(RAR)nu|1 ≤ (α + λ(1− α))n

Since λ < 1 and α ≤ 1
2 , it follows that

‖(RAR)nu‖ ≤ 2−Ω(n)

¤

2.4.2 Expander Walks for BPP

The classes RP and coRP are rather restrictive since they do not allow for decision algorithms
that may err in both directions. We define the class BPP that allows for decision algorithms
that may err in both directions:

Definition 2.4.3. A language L ⊂ {0, 1}∗ is said to be in BPP if there exists a polynomial-
time algorithm A and a polynomial r with the following properties: for every x ∈ {0, 1}∗ and
for s

R← S, where S = {0, 1}r and r = r(|x|), we have that

1. If x ∈ L, then A accepts x with probability at least 2/3, i.e.

Pr
s

R←S

[A(x, s) = 1] ≥ 2/3

2. If x /∈ L, then A accepts x with probability at most 1/3, i.e.

Pr
s

R←S

[A(x, s) = 1] ≤ 1/3

We use a Chernoff bound to show that repeated independent samples and taking a majority
vote produces exponentially small error. The Chernoff bound gives us an exponentially small
of deviating away from the mean when taking the average of an increasingly large number of
independent samples.
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Proposition 2.4.4. For any language L ∈ BPP with decision algorithm A and for any string
x, let V (x, s1 . . . sn) be the majority vote of A(x, s1) . . . A(x, sn). Then

Pr
s1...sn

R←S

[V (x, s1 . . . sn) incorrect] ≤ 2−Ω(n)

We begin by proving the following Chernoff bound.

Lemma 2.4.5. Let X1, . . . , Xn be independent {0, 1} random variables, and where Pr[Xi = 1] =
p for all i. Let X = 1

n

∑n
i=1 Xi be their mean, then

Pr[X > p + ε] ≤ e−2ε2n

Proof. We raise e to the power of the above quantities multiplied by an optimization factor γ to
be set later, and then apply Markov’s inequality and use independence to get the following:

Pr[eγX > eγ(p+ε)] ≤ e−γ(p+ε)E[eγX ]

= e−γ(p+ε)(1− p + peγ/n)n

= e−γε(e−
γp
n (1− p) + pe

γ(1−p)
n )n

Applying the fact from analysis that e−
γp
n (1−p)+pe

γ(1−p)
n ≤ e(γ/n)2/8 for 0 ≤ p ≤ 1, and solving

for the γ that minimizes the exponent, we get γ = 4εn, and substituting in gives us

Pr[X > p + ε] ≤ e−4ε2n+2ε2n

= e−2ε2n

¤

Proof of Proposition 2.4.4. We examine the case for input x /∈ L; the case for x ∈ L follows
analogously from a symmetric Chernoff bound. Let p = Pr

s
R←S

[A(x, s) = 1] ≤ 1/3, then from
Lemma 2.4.5 we have that

Pr[V (x, s1 . . . sn) incorrect] = Pr

[
1
n

n∑

i=1

A(x, si) ≥ 1/2

]

≤ e−n/18

= 2−Ω(n)

¤

Again, we use nr random bits to achieve this error reduction. As with the RP and coRP case,
using a random walk on an expander gives us an improved efficiency of r + O(n). Gillman [13]
showed that this randomness-efficient procedure gives a similar exponentional reduction in error
similar to that for RP.

Theorem 2.4.6 ([13]). For any language L ∈ BPP with decision algorithm A and any string x,
we may use a random walk on an expander to produce strings s1 . . . sn, and output the majority
vote V (x, s1 . . . sn). Then the probability of deciding x in error is 2−Ω(n).
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Proof Sketch. We sketch a simplified version of Gillman’s proof for the case x /∈ L. The proof
has a similar flavor to the proof of the Chernoff bound in Lemma 2.4.5, where we begin by raising
the terms to an exponent and introduce an optimization factor γ, employ Markov’s inequality
to get a bound, and then use independence and some analysis result to optimize the resulting
bound.

Define t(s1 . . . sn) =
∑n

i=1 A(x, si) to be the time spent inside the set B of “bad vertices” (where
A(x, s) = 1). We wish to bound

Pr[V (x, s1 . . . sn) incorrect] = Pr[t(s1 . . . sn) ≥ n/2] (2.11)
= Pr[eγt ≥ eγn/2] (2.12)
≤ e−γn/2E[eγt] (2.13)

where γ is the optimization factor and the last line follows from Markov’s inequality. The
probabilities are taken over s1 . . . sn, which are taken from a random walk. We notice that
E[eγt] is the average of eγt(s1...sn) over all walks s1 . . . sn. To express it more concretely, we
define a perturbation matrix A(γ) = [αij ] of the normalized adjacency matrix A with entries

αij =
{

eγaij , i = j, i ∈ B
aij , else

From this definition, we can show that E[eγt] = |A(γ)nu|1. Consider |Anu|1, which is the sum
of the probabilities all length n walks. The probability of a walk is the product of the chain of
aij defining the walk. But taking |A(γ)nu|1 gives us an extra factor of eγ each time the walk
hits an element of B, and so summing over all walks we get E[eγt].

Let µ(γ) be the largest eigenvalue of A(γ). Cauchy-Schwarz gives us |A(γ)nu|1 ≤
√

N‖A(γ)nu‖,
and we know ‖A(γ)nu‖ ≤ µ(γ)n

√
N

. Applying this to Equation (2.13) gives us the following:

Pr[t(s1 . . . sn) ≥ n/2] ≤ e−γn/2|A(γ)nu|1
≤ e−γn/2µ(γ)n

= e−n(γ/2−log µ(γ))

Here, as in the proof of the generic Chernoff bound, we require a result from analysis to bound
the exponent. In this case, a much more difficult result is needed, and [13] uses some deep
analysis and linear algebra results to show that log µ(γ) ≤ γ/3 + 5γ2/(1 − λ2(G)). Using this
fact, we get that

Pr[t(s1 . . . sn) ≥ n/2] ≤ e−n(γ/6−5γ2/(1−λ2(G)))

We may choose γ to maximize γ/6− 5γ2/(1− λ2(G)), which gives us

Pr[t(s1 . . . sn) ≥ n/2] ≤ e−n
(1−λ2(G))

720

= 2−Ω(n)

This shows that ∀x /∈ L, the probability of error is 2−Ω(n). A similar proof shows the analogous
result ∀x ∈ L. ¤
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Chapter 3

Constructing Expanders

In this chapter we examine two constructions of expander graph families. The classical con-
structions of expanders are drawn from algebra (some examples may be found in [9]), notably
the study of linear and cyclic groups. Their analyses usually draw on advanced algebra results,
and sometimes obscure the relationship between the graph’s structure and its expansion. To
give a taste of the somewhat esoteric techniques used in the proof of expansion for algebraic
expander constructions, we first present the Gabber-Galil Construction. This will contrast with
the Zig-Zag Product Construction, presented later in this chapter, whose analysis meshes more
closely with intuition.

3.1 The Gabber-Galil Construction

The original construction [12] gave a family of bipartite expander graphs. Here we modify the
construction to give a family of non-bipartite expanders with bounded second eigenvalue. We
base our proof on the technique introduced by Jimbo and Maruoka [17].

Theorem 3.1.1 ([12, 17]). Let Gn = {Vn, En}. Let Zn be the ring of integers modulo n, and
set V = Zn × Zn. We define any (x, y) ∈ V to be connected to the vertices ρi(x, y) with ρi as
defined below:

ρ1(x, y) = (x, y + 2x) ρ2(x, y) = (x, y + 2x + 1) ρ3(x, y) = (x, y − 2x) ρ4(x, y) = (x, y − 2x− 1)
ρ5(x, y) = (x + 2y, y) ρ6(x, y) = (x + 2y + 1, y) ρ7(x, y) = (x− 2y, y) ρ8(x, y) = (x− 2y − 1, y)

Then λ2(Gn) ≤ 5
√

2
8 for all n, and {Gn} is a family of (n2, 8, 5

√
2

8 )-spectral expanders.

It is difficult to see intuitively why these graphs are good expanders. One interpretation might
be that the permutations ρi operate on the two coordinates “independently”, and so it is easy
to get from one coordinate pair to another. In addition, the +1 introduced in ρ2, ρ6 make sure
we avoid problems with parity, since otherwise even coordinates would only go to other even
coordinates. However, even this very weak intuition is not used in the proof of expansion, which
directly attacks the problem of bounding the eigenvalue using analytic and algebraic techniques.

Because the proof does not follow a clear intuition, we outline the structure here. First, we
use the Fourier transform to find a matrix A′ that is similar to A and study it instead. This
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facilitates the analysis because the Fourier transform has nice properties when applied to the
matrices of the above permutations ρi. In particular, A′ has a distinct submatrix for which we
need only analyze the largest eigenvalue instead of the second largest, and it is this submatrix
which admits to the 5

√
2

8 bound.

For this proof we will use much of the algebra terminology defined in Subsection 1.2.3.

For convenience and for simplicity of notation, for the duration of this section we will adopt the
convention of indexing n2 × n2 matrices by coordinates i, j ∈ Z2

n. As usual, i indexes the row
and j indexes the column. For example, if n = 10 and A is a n2 × n2 matrix, then the entry
((0, 5), (9, 2)) is in row (0, 5) and in column (9, 2).

We will extend the notation of λi(B) to also refer to the i’th largest eigenvalue in absolute value
of some matrix B.

Finally, let ω = exp(2π
√−1/n), and let 0 = (0, 0).

We begin by defining the Fourier transform we use.

Definition 3.1.2. Let F be the normalized matrix of the discrete two-dimensional Fourier
transform from Cn×n → Cn×n. To represent it in two dimensions, we consider the matrix in
F ∈ Mn2(C) where F = [fij ] is given by

fij =
1
n

ω〈i,j〉

where 〈i, j〉 is the standard dot product of i, j ∈ Z2
n.

Lemma 3.1.3. For any graph G with normalized adjacency matrix A, we have that

FAF∗ =




1 0 . . . 0
0
... H
0




where H is a (n2 − 1) × (n2 − 1) hermitian matrix. Furthermore, λ2(G) is equal to λ1(H) the
largest eigenvalue of H in absolute value.

Proof. Since A is symmetric and real, it is hermitian, and therefore FAF∗ is hermitian, so H
must be hermitian.

Let FAF∗ = [bij ], then we have
bij =

∑

k,`

fikak` f̄j`

From the definition of F, we have f0,k = 1
n for any k. Recall that

∑
i aij =

∑
i aji = 1 for any j,

so we get b0,0 = 1
n2 ·

∑
k,` ak,` = 1. Using the same facts we can also compute for j 6= 0 that

b0,j =
∑

k,`

f0,kak,` f̄j,` =
∑

`

f0,` f̄j,` = [FF∗]0,j = 0

where the last equality follows because of the well-known fact that F is unitary. bj,0 is computed
similarly, and so FAF∗ has the form stated. Also, FAF−1 = FAF∗ since F is unitary, so FAF∗ is
similar to A. Therefore they have the same eigenvalues. Since we already have an eigenvalue of
1 on the diagonal (with the first standard basis e1 as eigenvector), the largest eigenvalue of H
in absolute value must equal the second largest eigenvalue of A. ¤
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We will use the following two lemmas to analyze the largest eigenvalue of the submatrix H. In
both lemmas we implicitly use the fact that if B is a real symmetric matrix with non-negative
entries, then its largest eigenvalue non-negative.

Lemma 3.1.4. Let H ∈ Mn(C) be hermitian, and let B ∈ Mn(R) be non-negative and symmet-
ric. If |hij | ≤ bij for all i, j, then for λ1(H) the largest eigenvalue of H in absolute value, we
have λ1(H) ≤ λ1(B) the largest eigenvalue of B.

Proof. By Remark 2.1.3, we can extend Lemma 2.1.2 to compute the largest eigenvalue of com-
plex hermitian matrices, which gives

λ1(H) = max
‖x‖=1

|〈Hx, x〉|

We apply this to get

λ1(H) = max
‖x‖=1

|〈Hx, x〉| = max
‖x‖=1

∣∣∣∣∣∣
∑

i,j

hij x̄ixj

∣∣∣∣∣∣
≤ max
‖x‖=1

∑

i,j

|hij ||x̄i||xj | ≤ max
‖x‖=1

∑

i,j

bijxixj = λ1(B)

where the last inequality holds since max
∑

bijxixj occurs on a vector x with non-negative
entries. This is because we have removed the restriction that x ⊥ u. ¤

Lemma 3.1.5. Let B ∈ Mn(R) be symmetric, and where bij ≥ 0 if i 6= j. Let λ1(B) be the
largest eigenvalue of B. Take dij for 1 ≤ i, j ≤ n to be arbitrary real numbers that for all i, j
have dij > 0 and dij = 1

dji
. Then λ1(B) ≤ maxi

∑
j bijdij.

Proof. Let x be the eigenvector of B with maximal eigenvalue λ1(B), normalized so that ‖x‖ = 1.
Simple computation reveals that

λ1(B) = 〈Bx, x〉 =
∑

i,j

bijxixj =
1
2

∑

i,j

2bijxixj

Using the simple fact that, for any α, β ∈ R and any d > 0, we have (
√

dα− β√
d
)2 = dα2 + β2

d −
2αβ ≥ 0, which implies 2αβ ≤ dα2 + β2

d , we get

〈Bx, x〉 ≤ 1
2

∑

i,j

bij(dijx
2
i + djix

2
j )

≤ 1
2

∑

i,j

(bijdijx
2
i + bjidjix

2
j )

=
∑

i,j

bijdijx
2
i

≤

max

i

∑

j

bijdij




(∑

i

x2
i

)

= max
i

∑

j

bijdij

¤
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Now we consider how F acts on certain permutations of Z2
n, the vertex set of the graph. For any

matrix in B ∈ M2(Zn), we denote the (linear) permutation Z2
n → Z2

n defined by B by where
σB(i) = Bi. Likewise, for any t ∈ Z2

n, we denote the (translation) permutation Z2
n → Z2

n defined
by t by σt(i) = i + t. We will use M to denote the group of affine permutations generated by
permutations of the form σB and σt.

Let P (σ) ∈ Mn2({0, 1}) denote the permutation matrix of any permutation on Z2
n. More for-

mally, taking δ(i, j) be the Kronecker delta, we may define P (σ) to have entries δ(i, σ(j)). It is
clear that P (σσ′) = P (σ)P (σ′) and that P (σ−1) = P (σ)t.

Lemma 3.1.6. Let B ∈ M2(Zn) be an invertible matrix. Then we have

FP (σB)F∗ = P (σ(B−1)t)

Proof. Using the definition of F and P (σB), we get that

[FP (σB)F∗]ij =
1
n2

∑

k,`

ω〈i,k〉δ(k,B`))ω−〈j,`〉

=
1
n2

∑

`

ω〈i,B`〉−〈j,`〉

=
1
n2

∑

`

ω〈B
ti−j,`〉

It is well-known that the Fourier basis functions are orthogonal in the one-dimensional case, and
it is a simple exercise to show the same in the two-dimensional case we employ here. Therefore,
the above summation term is n2 when Bti = j and 0 otherwise, so this gives us

[FP (σB)F∗]ij = δ(i, σ(B−1)t(j))

which immediately implies the lemma. ¤

Lemma 3.1.7. Let t ∈ Z2
n. Then FP (σt)F∗ is a diagonal matrix, where the i’th entry is ω〈t,i〉.

Proof. Using the definition of F and P (σt), we get that

[FP (σt)F∗]ij =
1
n2

∑

k,`

ω〈i,k〉δ(k, ` + t)ω−〈j,`〉

=
1
n2

∑

`

ω〈i,`+t〉−〈j,`〉

=
ω〈t,i〉

n2

∑

`

ω〈i−j,`〉

= ω〈t,i〉 · δ(i, j)
¤

Proof of Theorem 3.1.1. Let A be the normalized adjacency matrix of Gn as in the statement
of the theorem. A is real and symmetric, and hence hermitian. Note that we can decompose the
normalized adjacency matrix of our graph into A = 1

8

∑8
i=1 P (ρi). It is clear ρi ∈ M for all i.

Furthermore, if we define matrices B1, B2 and vectors t1, t2 as follows:

B1 =
[
1 2
0 1

]
, B2 =

[
1 0
2 1

]
, t1 =

[
1
0

]
, t2 =

[
0
1

]
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then we may rewrite the ρi as products of the permutations σBi
and σti

, giving us

A =
1
8

2∑

i=1

((I + P (σti))P (σBi) + (I + P (σ−1
ti

))P (σ−1
Bi

)) (3.1)

We now take FAF∗, which has the form as guaranteed in Lemma 3.1.3 with a hermitian submatrix
H. To apply Lemma 3.1.4, we define the real symmetric (n2 − 1) × (n2 − 1) matrix C = [cij ]
in relation to A. Here, for the sake of simplifying notation without sacrificing correctness, we
take the unusual step of indexing C and H with indices in Z2

n without the first index, which we
write as Z2

n \ {0}. This is because we wish to define the entries of C in terms of entries of A,
but we wish to ignore the first row and column of A because C has smaller dimensions. With
this clarification, we define C as follows.

cij =
1
8


|1 + ωi1 | ·


δ(i, σB2(j)) + δ(i, σ−1

B2
(j))


 + |1 + ωi2 | ·


δ(i, σB1(j)) + δ(i, σ−1

B1
(j))







where i1, i2 are the components of i.

Using the facts that B1 = Bt
2 and 〈tj , i〉 = ij , we can check by applying applying Lemmas 3.1.6

and 3.1.7 to the decomposition of A in Equation (3.1) that in fact cij ≥ |hij | for all i, j ∈ Z2
n\{0}.

So by Lemma 3.1.4, it suffices to find the largest eigenvalue of C. We do so by applying Lemma
3.1.5. We define a sequence dij for 1 ≤ i, j ≤ n− 1 where dij = 1

dji
.

To do so, let us first specify the function φ : Z2
n \ {0} → R given by

φ(i) = cos((2π/n)i1) + cos((2π/n)i2)

where i1, i2 are the components of i. Now we take the sequence dij to be

dij =





1√
2
, φ(i) > φ(j)

1, φ(i) = φ(j)√
2, φ(i) < φ(j)

This sequence is useful because of the following claim.
Claim. Let S = {σB1 , σB2 , σ

−1
B1

, σ−1
B2
}. For any i ∈ Z2

n \ {0}, define sets

U = {σ | σ ∈ S, φ(i) > φ(σ(i))}
V = {σ | σ ∈ S, φ(i) < φ(σ(i))}

We have the following:

1. If φ(i) > 0, then |V | ≤ 1 and |U | − |V | ≥ 2.

2. Otherwise, one of |U | ≥ 1 or |V | ≤ 2 is true.

We omit the details of this claim, which follow from straightforward but tedious and uninsightful
trigonometric manipulations. The interested reader may refer to the appendix of the original
work [17] for the specifics.

Returning to the application of Lemma 3.1.5, we recall

λ1(C) ≤ max
i

∑

j

dijcij
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Since the cij are defined as a sum of δ’s, it becomes evident why the above claim is interesting:
it says that φ(i) > φ(σ(i)) occurs frequently enough so we can bound the above right-hand side
to be strictly less than 1. Formally, if we pick any i, then if φ(i) > 0, using |1 + ωik | ≤ 2 and
part 1 of the above claim we have

∑

j

dijcij ≤ 1
4

(√
2 +

3√
2

)
=

5
√

2
8

For the case φ(i) ≤ 0, suppose w.l.o.g. that |1 + ωi1 | ≥ |1 + ωi2 |. We get

∑

j

dijcij ≤ 1
8

(√
2(2|1 + ωi1 |+ |1 + ωi2 |) +

|1 + ωi2 |√
2

)
=
√

2
8
· 4|1 + ωi1 |+ 3|1 + ωi2 |

2

A simple calculation shows that for any real a, b, we have

(4a + 3b)2 = 16a2 + 9b2 + 24ab ≤ 16a2 + 9b2 + 16b2 + 9a2 = 25(a2 + b2)

Substituting in a = |1+ωi1 |
2 and b = |1+ωi2 |

2 , we now claim that a2 + b2 ≤ 1. This is because

a2 + b2 =
1
4
(|1 + ωi1 |2 + |1 + ωi2 |2)

= 1 +
1
2
<(ωi1 + ωi2) ≤ 1

where < denotes the real part of a complex number. The last line above follows because

<(ωi1 + ωi2) = cos((2π/n)i1) + cos((2π/n)i2) = φ(i) ≤ 0

Therefore 4a + 3b ≤ 5, and we get
∑

j

dijcij ≤ 5
√

2
8

¤

The construction here misses the optimal bound for infinite families given in Theorem 2.3.2 by a
factor of approximately

√
2. Lubotzky, Phillips, and Sarnak [20] and Margulis [21] independently

gave a Cayley graph (see Definition 4.1.1) construction based on PSL(2, q) that can be shown
to reach the optimal eigenvalue bound using the Ramanujan conjecture and Kazhdan’s Property
T . [20] coined the term “Ramanujan graphs” for all families of graphs that reach the optimal
eigenvalue bound. However, we will not elaborate on the constructions of [20, 21] because of
the depth of the algebraic analysis required. As our goal is to show the progression of expander
constructions from algebraic to combinatorial, we now turn to the zig-zag product.

3.2 The Zig-Zag Product Construction

3.2.1 Definition and Intuition

The zig-zag product was introduced by Reingold, Vadhan, and Widgerson [25], and offers an
elegant yet powerful recursive and combinatorial construction of expander families given a good
expander graph of fixed size. It depends on a fixed (but arbitrary) labelling of the edges, which
we define presently. In the next chapter, we present new results that indicate that this labelling
has little effect on the eigenvalues of the resulting graph.
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Definition 3.2.1. Let G = (V, E) be a graph with degree D. For each i ∈ V , we fix an ordering
of its incident edges {i, j1}, {i, j2}, . . . , {i, jD}. We define a rotation map of G to be a map
RotG : V × [D] → V × [D] such that RotG(i, c) = (j, d) if and only if i is the d’th neighbor of j
and j is the c’th neighbor of i.

Remark 3.2.2. Here we present a useful alternative formulation of rotation maps. Say that each
edge e ∈ E is colored with two colors in [D], where the colors may be the same. Each color of e
corresponds to an endpoint of e. We restrict the coloring such that no vertex has two incident
edges colored the same at that endpoint. Then we may say that RotG(i, c) = (j, d) iff there is
an edge {i, j} ∈ E is colored c at endpoint i and is colored d at endpoint j.

In the ideal and simplest case, this would be an edge-coloring of the graph using D colors, such
that RotG(i, c) = (j, c) for each edge {i, j} ∈ E. However, because it is NP-complete to compute
whether a coloring with D colors even exists [19], we allow for arbitrary rotation maps.

With the concept of a rotation map, we are equipped to define the zig-zag product.

Definition 3.2.3. Let G = (V1, E1) be a degree D1 graph on N vertices, and let H = (V2, E2)
be a degree D2 graph on D1 vertices. Fix rotation maps RotG of G and RotH of H. Then the
zig-zag product Γ = G©z H is a degree D2

2 graph on ND1 vertices with vertex set V = V1 × V2.
The edges of Γ are defined by the rotation map

RotΓ : (V1 × V2)× ([D2]× [D2]) → (V1 × V2)× ([D2]× [D2])

given by RotΓ((i, c), (k, `)) = ((j, d), (m,n)) where there exist some p, q ∈ V2 such that

1. RotH(c, k) = (p, n) 2. RotG(i, p) = (j, q) 3. RotH(q, `) = (d,m)

We will commonly refer to G and H in the above definition as the “large graph” and the “small
graph” respectively because of the following intuition. To grasp the reasoning behind the zig-zag
product, it is useful to imagine a graph identical to G, but with each vertex replaced by a cloud
of vertices, where each cloud is a copy of H. At the i’th cloud, the c’th vertex in H corresponds
to the c’th edge of i, as given by RotG. Taking a random step in G©z H corresponds to three
steps in the smaller graphs:

1. First we take a random step from c to p in the H-cloud.

2. Then, according to the vertex labelling of H and the edge labelling of G, we follow the edge
of G that corresponds to p, and arrive at the neighboring H-cloud. At the new H-cloud,
the edge is labelled as q.

3. At this new H-cloud, we take another random step q to d.

Example 3.2.4. We refer to Figures 3.1 and 3.2. G is the complete graph on 5 vertices and H is
the cyclic graph on 4 vertices. The zig-zag product graph Γ = G©z H in Figure 3.2 illustrates
the cloud analogy, where each of the clouds 1-5 are a copy of H. Starting at the c’th vertex of
cloud 2, we take a step inside the cloud to d. d corresponds to the edge going between clouds to
cloud 5, where it is labelled c. Finally, we take another step in cloud 5 to the d’th vertex. The
solid line from (2, c) to (5, d) represents this edge. Other edges in Γ are similar.

To see why G©z H should be a good expander if G and H are good expanders, let us consider
any distribution x on the vertices. We may break x into the sum of two orthogonal parts x⊥

and x‖: x⊥ is anti-uniform on each cloud, and x‖ is uniform on each cloud. By this, we mean
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Figure 3.1: G and H

Figure 3.2: Γ
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that if we look only at the components of x‖ that correspond to a single cloud, they are uniform.
Likewise, the components of x⊥ belonging to a single cloud are anti-uniform.

Step 1 makes x⊥ closer to uniform because it is analogous to taking a random step in H, and H
is an expander. This is enough, since steps 2 and 3 do not make x⊥ any less uniform. Step 1 has
no effect on x‖, but because step 2 is analogous to a step on G and because G is an expander,
step 2 disperses the uniformity from each cloud and mixes them. When we get to step 3, we
have that each cloud is far from uniform, so when we take a random step 3 (analogous to a
random step on H), we move closer to uniform because H is an expander. Finally, because both
components of x become more uniform, x itself becomes more uniform. We formalize this in the
next section.

3.2.2 Constructing Expander Families

To facilitate the statement of the proof of expansion, we introduce tensor terminology.

Definition 3.2.5. Let A and B be real matrices. Then their matrix tensor product is C = A⊗B,
where c(i,c),(j,d) = aij · bcd.

Furthermore, by treating vectors as n×1 matrices, we have an analogous definition of the tensor
product of two vectors. Simple computation shows that

(A⊗B)(x⊗ y) = (Ax)⊗ (By)

The key to constructing expander families using the zig-zag product is the following bound on
the expansion of the product graph. The original work [25] presents two analyses of the zig-zag
product, which we refer to as the “simple bound” and the “advanced bound”. Our analysis here
is better than the simple bound but worse than the advanced bound. However, it follows the
simple bound in form, and does not involve any geometric arguments such as those employed
in [25]’s proof of the advanced bound. Furthermore, this analysis carries over directly to the
wide zig-zag product case (Definition 4.3.1), whereas it is unclear whether the advanced bound
extends to the wide zig-zag product.

Theorem 3.2.6. If G is a (N, D1, λ)-spectral expander and H is a (D1, D2, µ)-spectral expander,
then G©z H is a (ND1, D

2
2, f(λ, µ))-spectral expander where

f(λ, µ) ≤ 1
2
(λ + µ2) +

1
2
|λ− µ2|

√
1 +

(
2µ

λ− µ2

)2

Furthermore, f(λ, µ) < 1 if λ < 1 and µ < 1.

Despite the messiness of the above bound, by splitting up the radical using the triangle inequality,
we can easily see that

f(λ, µ) ≤ max{λ + µ, µ2 + µ}

Proof. We will apply the intuition developed in the previous subsection. First we define some
notation. Let 1n be the 1’s column vector of length n. Let us index vectors x ∈ RND1 with two
coordinates, i ∈ [N ] and c ∈ [D1]. i indexes the which cloud we are in, and c indexes a vertex in
the i’th cloud. For example, a tensor such as x′ = 1N ⊗ x/N means that x′(i,c) = 1

N xc for any i;
this means that all clouds have equal weight, and the distribution within a cloud is identical on
all clouds.
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By xi we shall mean the vector in RD1 that consists of the entries of x(i,c) for all c ∈ [D1]. That
is, xi is restriction of x to the i’th cloud.

Let us first define the collection map C : RND1 → RN , where the i’th entry of C(v) is the sum
of all the weights on the i’th cloud of v. Formally, for any vector v ∈ RND1 with entries v(i,c)

we define

C(v)i =
D1∑
c=1

v(i,c)

It is clear that C is linear.

We want to decompose x into two orthogonal parts, one that is uniform on each cloud and one
that is anti-uniform on each cloud. We may use the collection map to define it as such:

x‖ = C(x)⊗ 1D1/D1

x⊥ = x− x‖

Using the above notation, we take x
‖
i to be the restriction of x‖ to the i’th cloud. It is clear that

for all i, x
‖
i is a multiple of the uniform distribution, and it immediately follows that x⊥i ⊥ u for

each i. These are exactly the vectors we discussed in the intuition for the zig-zag product.

Let A and B be the normalized adjacency matrices of G and H respectively. Let M be the
normalized adjacency matrix of G©z H. Because each step in G©z H is the composition of
three steps in the subgraphs, we may decompose M = B′A′B′, where B′ = IN ⊗B and A′ is a
permutation matrix where

a(i,c),(j,d) =
{

1, RotG(i, c) = (j, d)
0, else

Note that both A′ and B′ are symmetric.

Using Lemma 2.1.2, we try to bound the maximum of |〈Mx, x〉| = |〈B′A′B′x, x〉| where x ∈
RND1 and x ⊥ u. Applying our decomposition, we have

λ2(G©z H) = max
x⊥u

|〈B′A′B′(x‖ + x⊥), x‖ + x⊥〉|
〈x, x〉

Notice that
B′x‖ = (IN ⊗B)(C(x)⊗ 1D1/D1) = C(x)⊗ 1D1/D1 = x‖

Using this substitution and the fact that B′ is symmetric, we have

|〈B′A′B′(x‖ + x⊥), x‖ + x⊥〉| = |〈A′x‖ + A′B′x⊥, x‖ + B′x⊥〉|
Since A′ is a permutation, it is length-preserving, and we may apply Cauchy-Schwarz to get

|〈B′A′B′(x‖ + x⊥), x‖ + x⊥〉| ≤ |〈A′x‖, x‖〉|+ 2‖x‖‖ · ‖B′x⊥‖+ ‖B′x⊥‖2

We now bound each of these terms individually.

Firstly, we have
‖B′x⊥‖2 =

∑

i

‖Bx⊥i ‖2 ≤ µ
∑

i

‖x⊥i ‖2 = µ‖x⊥‖2

Secondly, recall the definition of A′. Applying A′ to x‖ distributes the weight at x
‖
i to the

neighbors of i when considered as a vertex of G. This means that C(A′ei⊗ 1D1/D1) = Aei, and
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since {ei} forms a basis of RN , and x‖ = C(x)⊗ 1D1/D1, this means we may write C(A′x‖) =
AC(x). Hence we can check that

〈A′x‖, x‖〉 =
∑

i,j

(A′x‖)(i,j)
C(x)i

D1

=
1

D1

N∑

i=1

C(x)i

D1∑

j=1

(A′x‖)(i,j)

=
1

D1

N∑

i=1

C(x)iC(A′x‖)i

=
1

D1

N∑

i=1

C(x)i(AC(x))i

=
〈AC(x), C(x)〉

D1

In the following derivation, we apply the collection map, the easily verifiable fact that ∀v, w ∈
RN , 〈v ⊗ 1D1 , w ⊗ 1D1〉 = D1〈v, w〉, and the expansion of G.

|〈A′x‖, x‖〉| =
|〈AC(x), C(x)〉|

D1

≤ λ
〈C(x), C(x)〉

D1

= λ〈x‖, x‖〉

Combining these facts with the above expression, we have

|〈B′A′B′(x‖ + x⊥), x‖ + x⊥〉| ≤ λ‖x‖‖2 + 2µ‖x‖‖ · ‖x⊥‖+ µ2‖x⊥‖2

Let θ be the angle between x‖ and x, then we may substitute cos θ = ‖x‖‖
‖x‖ and sin θ = ‖x⊥‖

‖x‖ to
get

λ2(G©z H) = max
x⊥u

|〈Mx, x〉|
〈x, x〉 ≤ max

θ∈[0, π
2 ]

λ cos2 θ + 2µ cos θ sin θ + µ2 sin2 θ

Let us define
g(θ) = λ cos2 θ + 2µ cos θ sin θ + µ2 sin2 θ

We wish to maximize g over all θ ∈ [0, π/2], so we take g′(θ) and find that θ achieves a critical
point when

tan 2θ =
2µ

λ− µ2

def= η

There are two θ that achieve this (in opposite quadrants of the Cartesian plane). We claim that
there exists a unique θ0 ∈ [0, π/2] such that tan 2θ0 = η, and where θ0 satisfies g′′(θ0) < 0, and
therefore g achieves a maximum at θ0. We can compute

g′′(θ) = −2(λ− µ2) cos 2θ − 4µ sin 2θ

Now if λ − µ2 > 0, then η > 0 and we pick the unique θ0 ∈ [0, π/4] ⊂ [0, π/2] satisfying
tan 2θ0 = η, which gives us cos 2θ0 > 0 and sin 2θ0 > 0, which implies g′′(θ0) < 0. If λ− µ2 < 0,
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then η < 0 and we pick the unique θ0 ∈ [π/4, π/2] ⊂ [0, π/2] satisfying tan 2θ0 = η, which
implies cos 2θ0 < 0 and sin 2θ0 > 0, again giving us g′′(θ0) < 0.

It is a simple exercise to see that the other critical points are never maxima in either of the
above cases, and that the endpoints of the range are never maxima. Therefore θ0 is a global
maximum in [0, π/2]. Using a little trigonometry, we get that

g(θ) =
1
2
(λ + µ2) +

1
2
(λ− µ2) cos 2θ + µ sin 2θ

In the case where η > 0, we substitute θ = θ0 to get

g(θ0) =
1
2
(λ + µ2) +

1
2
(λ− µ2)

1√
1 + η2

+ µ
η√

1 + η2

=
1
2
(λ + µ2) +

1
2
(λ− µ2)

1 + 4µ2

(λ−µ)2√
1 + η2

=
1
2
(λ + µ2) +

1
2
(λ− µ2)

√
1 + η2

If η < 0, a similar derivation gives us

g(θ0) =
1
2
(λ + µ2) +

1
2
(−λ + µ2)

√
1 + η2

This shows the first part of the theorem.

To show the last part of the theorem, we separate the two cases: when ‖x⊥‖ ≤ 1−λ
3µ ‖x‖, we have

|〈Mx, x〉| ≤ λ‖x‖2 + 2µ

(
1− λ

3µ

)
‖x‖2 + µ2

(
1− λ

3µ

)2

‖x‖ <

(
1− 1− λ

9

)
‖x‖2

If ‖x⊥‖ > 1−λ
3µ ‖x‖, then we have

|〈Mx, x〉| ≤ ‖x‖ + B′x⊥‖ = ‖x‖‖2 + ‖B′x⊥‖2 ≤
(

1− (1− λ2)
(

1− λ

3µ

)2
)
‖x‖2

Since it holds for both cases, we have f(λ, µ) < 1 for any λ, µ < 1. ¤

Theorem 3.2.6 is enough for us to construct a family of degree D2 expanders. Let us fix some
graph H which is a (D4, D, 1/5)-spectral expander. Then we may define G1 = H2 and Gi =
G2

i−1 ©z H for all i ≥ 2. It is easy to check that all graphs Gi = (Vi, Ei) in this family have
eigenvalue at most 2

5 . Unfortunately, this construction is inefficient because computing neighbors
in the graph takes time polynomial in the size Ni = |Vi| = D4i. We would like a family where
computing neighbors takes time polynomial in log Ni because in most applications, such as the
derandomization application discussed in Section 2.4, though we only look at one vertex at a
time, the size of the graphs required is actually exponential.

To achieve such a family, we use the graph analogue of the matrix tensor product.

Definition 3.2.7. Let G = (V1, E1) and H = (V2, E2) be degree D1, D2 graphs, respectively.
Fix some rotation maps RotG and RotH of G and H. Then their tensor product Γ = G⊗H is
the graph with vertex set V1 × V2 and with rotation map

RotΓ : (V1, V2)× ([D1]× [D2]) → (V1, V2)× ([D1]× [D2])

is given by RotΓ((i, c), (k, `)) = ((j, d), (m,n)) iff RotG(i, k) = (j,m) and RotH(c, `) = (d, n).
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A vertex in Γ can be thought of as being simultaneously two independent vertices in G and H.
Taking a step in Γ can be thought of as independently taking steps in G and H. It is easy to
check that if A and B are the normalized adjacency matrices of G and H, then A ⊗ B is the
normalized adjacency matrix G⊗H.

Lemma 3.2.8. The eigenvalues of G⊗H are exactly all λµ where λ is an eigenvalue of G and
µ is an eigenvalue of H.

Proof. Consider the eigenvectors {vi} of G with eigenvalues {λi} and the eigenvectors {wi} of
H with eigenvalues {µi}. From the definition of tensor product, we see that for any i, j:

(A⊗B)(vi ⊗ wj) = (Avi)⊗ (Bwj) = λiµj(vi ⊗ wj)

¤

Remark 3.2.9. If G and H are connected, then G⊗H is disconnected if and only if both G and
H are bipartite. If both are bipartite, then both have −1 as an eigenvalue so G⊗H has 1 with
multiplicity two, which by Lemma 1.3.4 means G ⊗H is disconnected. If at least one of G or
H is non-bipartite, then it is impossible for G ⊗ H to have a second eigenvalue of 1, so it is
connected.

Corollary 3.2.10.
λ2(G⊗H) = max(λ2(G), λ2(H))

Proof. Since 1 is an eigenvalue of both G and H, it follows that both λ2(G) and λ2(H) are
eigenvalues of G⊗H, and so the greater of the two is the second largest eigenvalue of G⊗H. ¤

Now we can construct an efficiently computable family of degree D2 expanders.

Let H be a fixed (D8, D, λ)-spectral expander for some small λ. Let G1 = H2 and G2 = H⊗H.
Then for i > 2 define

Gi =
(
Gd i−1

2 e ⊗Gb i−1
2 c

)2©z H

It is easy to check that Gi is a degree D2 graph on Ni = D8i vertices. Computing the rotation
map is efficient because the depth of the recursion is log2 i, and at each level there are 4 recursive
calls, for a total of 4log2 i = i2 for a graph on D8i vertices. The eigenvalue of Gi can be analyzed
by solving the recurrence relation given by applying Theorem 3.2.6 to the recursive definition of
Gi. [25] shows that this gives us λ2(Gi) = λ+O(λ2), which is bounded < 1 if λ is small enough.

However, note that this does not give an arbitrarily good family of expanders. Requiring λ to
be extremely small forces the degree D of the graph H to grow, and indeed the best asymptotic
behavior of the second largest eigenvalue that this construction allows is O(1/ 4

√
D). The deran-

domized zig-zag product included in [25] gives a better asymptotic bound of O(1/ 3
√

D), but it is
currently unknown how to construct an infinite family of graphs with second largest eigenvalue
O(1/

√
D) using the zig-zag product or a related graph product.

One may also ask where we obtain the base graphs H. Note that here we would like families that
do not have constant degree; instead we would like an optimal degree/eigenvalue relationship
but where the degree grows (and so the second largest eigenvalue shrinks) so that we can get
sufficiently good spectral expanders to use as base graphs in the above recursive constructions.
[25] gives a list of suggested base graphs, which are algebraic constructions based on finite fields.
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Chapter 4

The Zig-Zag Product and the
Algebra Connection

The zig-zag product is remarkable in being the first tool to construct infinite families of expander
graphs relying on combinatorial rather than algebraic arguments. It is thus somewhat ironic
that there is a natural relationship between the wide zig-zag product and one of the fundamental
operations of abstract algebra, the semi-direct product from group theory. In this chapter, we will
introduce and explain the term wide zig-zag product and present a novel and expanded exposition
of the fascinating connection established by Alon, Lubotzky, and Widgerson [4] between the wide
zig-zag product and the semi-direct product.

4.1 Group Theory Terminology

Let us first recall some definitions and simple facts from group theory. A group (A,×) is a set
of elements A and a rule of composition × : A×A → A with the three following properties.

Identity ∃1 ∈ A such that ∀a ∈ A, 1× a = a× 1 = a.

Inverse ∀a ∈ A, ∃b ∈ A such that a× b = b× a = 1. We call b = a−1.

Associativity ∀a, b, c ∈ A, we have (a× b)× c = a× (b× c).

We will usually omit the explicit symbol × and write the product of two elements implicitly
(a×b = ab). Likewise we will often refer to the group by its set of elements A without mentioning
the rule of composition.

S ⊂ A is said to generate A if we can write any a ∈ A as a finite product of elements of
S. Formally, ∀a ∈ A, ∃s1 . . . sn ∈ S where n < ∞ such that a =

∏
si. S is symmetric if

∀s ∈ S, s−1 ∈ S. We will also consider symmetric generating multi -sets S, where elements may
be repeated (their inverses being repeated with the same multiplicity).

The direct product A × B of two groups A and B is the group with elements in the Cartesian
product A×B and with the rule of composition (a, b)(c, d) = (ac, bd).

The link between algebra and graphs is provided by the notion of the Cayley graph.
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Definition 4.1.1. The Cayley graph of a group A over the symmetric generating multi-set S
is the |S|-regular graph C(A,S) = (V, E) where V = A and {a, b} ∈ E if as = b for some s ∈ S
(with appropriate multiplicity).

Note that there is a natural rotation map associated with any Cayley graph, namely RotG(a, s) =
(b, s−1) iff as = b. As a warm-up, let us consider the relationship between the direct product of
groups and the tensor product of their Cayley graphs.

Proposition 4.1.2. Let A, B be groups with respective generating multi-sets α, β. Then the
Cayley graph of A×B over α× β is isomorphic to the tensor product graph C(A,α)⊗C(B, β).

Proof. It is clear that G = C(A × B, α × β) and H = C(A, α) ⊗ C(B, β) have the same vertex
sets and are regular with the same degree. It remains to be shown that they have the same
edges.

Any edge in G has the form {(a, b), (as, bt)} for some (a, b) ∈ A × B and some (s, t) ∈ α × β.
But this means that {a, as} is an edge in C(A,α) and {b, bt} is an edge in C(B, β), so from
the definition of the graph tensor product it must be that {(a, b), (as, bt)} is an edge in H. The
reverse direction is similar. ¤

4.2 The Semi-Direct Product

We now strengthen this relationship to include a richer set of group products. We need a
little more vocabulary before proceeding. A group homomorphism between A and B is a map
φ : A → B that preserves the rule of composition:

∀a, a′ ∈ A, φ(aa′) = φ(a)φ(a′)

A homomorphism is an isomorphism if it is one-to-one and onto, and an isomorphism is an
automorphism if it maps to and from the same group. We will use Aut(G) to denote the set
of automorphisms of a group G; it is easy to check that Aut(G) is a group where the rule of
composition is the composition of maps.

Let A and B be groups. We say that B acts on A if there is a homomorphism Φ : B → Aut(A).
The action of b ∈ B on an element a ∈ A is denoted b · a = (Φ(b))(a). We will always explicitly
write the operator · to denote the action of B on A. The orbit of a ∈ A under some action of B
is the set

B · a = {a′ ∈ A | ∃b ∈ B s.t. b · a = a′}
Definition 4.2.1. The semi-direct product AnB of two groups A and B has elements in A×B
with the rule of composition

(a, b)(c, d) = (a(b · c), bd)

using the action of B on A defined by any homomorphism Φ as above.

Note that this means the semi-direct product is ambiguous unless we explicitly state which action
we are using to define b · c. Also note that in the trivial case where ∀a, b ∈ B, b · a = a (i.e. Φ in
the above definition is trivial), then the semi-direct product degenerates to the direct product.
The semi-direct product is interesting because it offers a much richer vocabulary with which to
express the structure of many common groups. Conceptually, the homomorphism defines the
behavior of a ∈ A under conjugation by an element b ∈ B.
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Example 4.2.2. As an example, consider the dihedral group Dn, which is generated by two
elements ρ and τ with the relations

ρn = τ2 = 1 τ−1ρτ = ρ−1

Recall that the dihedral group Dn may be thought of as the symmetries of the regular n-gon,
consisting of all the rotations and reflections preserving the n-gon.

We may represent Dn as the semi-direct product Cn n C2 where Cn and C2 are the cyclic
groups of orders n and 2. Let ρ be a generator of Cn and τ be a generator of C2. Then the
homomorphism Φ : C2 → Aut(Cn) of this semi-direct product is Φ(1)(x) = x ∀x ∈ Cn and
Φ(τ)(x) = x−1∀x ∈ Cn. To verify that this is Dn, we check

(ρ, 1)n = (1, τ)2 = 1 (1, τ−1)(ρ, 1)(1, τ) = (ρ−1, τ−1)(1, τ) = (ρ−1, 1)

since τ−1 = τ . Notice here that, for any a ∈ C2, the homomorphism ϕ = Φ(a), ϕ : Cn → Cn

gives exactly the result of conjugating an element of Cn by a.

We will discuss generating multi-sets α of groups A, where there is an action of some other group
B on A. We will be particularly interested when α is composed of relatively few B-orbits. If this
is the case, we can show that using α ⊂ A and β ⊂ B generating multi-sets of their respective
groups, we can define a (small) generating multi-set γ ⊂ An B such that C(An B, γ) is equal
to the wide zig-zag product of the Cayley graphs of A and B.

4.3 The Wide Zig-Zag Product

Here we introduce the wide zig-zag product, which is a natural generalization of the zig-zag
product of the previous chapter.

Definition 4.3.1. Let G = (V1, E1) be a graph on N vertices with degree nD1, and let H =
(V2, E2) be a graph on D1 vertices with degree D2. Fix an edge-labelling of G with repetitions,
such that for all vertices i, there are exactly n incident edges labelled with each of 1, . . . , D1.

Then the wide zig-zag product G©w H is defined to be the graph on ND1 vertices with degree
nD2

2 where an edge {(i, c), (j, d)} is in the graph with the same multiplicity as there are pairs
x, x′ such that:

1. {c, x} ∈ E2

2. ∃ an edge e = {i, j} ∈ E1 incident to i that is labelled x at vertex i and is labelled x′ at
vertex j

3. {x′, d} ∈ E2

A rotation map for G©w H may be defined analogous to the rotation map for the regular zig-zag
product.

This definition is similar to the definition of the standard zig-zag product, except the intermediate
step on G is “wider”: instead of a unique intermediate step defined according to the edge-
labelling, there are n such possible intermediate steps.
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Corollary 4.3.2. If G is a (N, nD1, λ)-spectral expander and H is a (D1, D2, µ)-spectral ex-
pander, then G©w H is a (ND1, nD2

2, f(λ, µ))-spectral expander for the same f as in Theorem
3.2.6.

Proof. This follows almost directly from the proof of Theorem 3.2.6. Recalling the terminology
used there, the normalized adjacency matrix M of G©w H is also a product of the form B′A′B′.
Because the intermediate step is now non-deterministic, A′ is no longer a permutation matrix.
However, it is still doubly stochastic, so the property ‖A′x‖‖ ≤ ‖x‖‖, holds.

We also desire the property 〈A′x‖, x‖〉 = 〈AC(x), C(x)〉/D1. This still holds because, as in the
original proof, C(A′(ei ⊗ 1D1/D1)) = Aei.

Since these are the only two properties of A′ that we relied on, and B′ is the same in both cases,
the proof directly carries over to the wide zig-zag product case. ¤

We now show that by appropriately defining the generating set and the edge labelling respec-
tively, the Cayley graph of the semi-direct product of two groups and the wide zig-zag product
of the Cayley graphs of the two groups are one and the same.

Theorem 4.3.3. Let α ⊂ A and β ⊂ B be generating multi-sets of their respective groups. Fix
some action of B on A. Suppose that there exists a set of ai ∈ α such that α =

⋃n
i=1 αi, where

αi is the symmetric multi-set
αi = (B · ai) ∪ (B · a−1

i )

That is, α is a union of B-orbits of n elements ai and their inverses. Let γ be the following
generating multi-set of AnB:

γ = {(1, b)(as
i , 1)(1, b′) | b, b′ ∈ β, s ∈ {±1}, i ∈ [n]}

of size 2n|β|2. Let Γ1 = C(AnB, γ).

Now define G = C(A,α) and H = C(B, β). Then there exists a labelling of G such that
Γ2 = G©w H = Γ1.

Proof. First we specify the labelling of G. For any vertex x, we label an outgoing edge e ∈ α,
where e = (b · ai) or e = (b · a−1

i ) for some i ∈ [n], to be b ∈ B. Call the neighbor x′ = xe.
We require that e is also labelled b at x′, which is consistent with the above since the inverse
of (b · ai) is (b · a−1

i ) and vice versa. This labelling is easily constructible when constructing
the graph or when computing neighbors. One can check that this satisfies the constraint on the
labelling of G specified in Definition 4.3.1: G has degree 2n|B|, and there are exactly 2n vertices
labelled by each element of |B| at each vertex.

Showing that Γ1 = Γ2 follows straightforwardly from the definitions of the wide zig-zag product
and the semi-direct product. It is clear that Γ1 and Γ2 share the same vertex set, and they both
have degree 2n|β|2. So we need only show that the edges of the two graphs are identical.

An edge in Γ1 leaving the vertex (x, y) given by (1, b)(as
i , 1)(1, b′) ∈ γ goes to the neighbor

(x, y)(1, b)(as
i , 1)(1, b′) = (x(yb · as

i ), ybb′)

We claim that this edge is also in Γ2. Starting from (x, y), taking a “zig” step of b takes us to
(x, yb); in the labelling of G, yb is a label of the edge going to x(yb · as

i ), so we follow this edge
to go from cloud x to cloud x(yb · as

i ), and in this new cloud the edge is labelled yb as well by
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our choice of labelling. So we arrive at (x(yb · as
i ), yb), and taking a final “zag” step of b′ takes

us to (x(yb · as
i ), ybb′).

The reverse direction is shown similarly. ¤

Example 4.3.4. As an example, consider the case where the action of B on A is trivial. Then it
must be the case that any symmetric generating multi-set α ⊂ A is the union of trivial orbits,
i.e. αi = {ai} ∪ {a−1

i }. Using this action, the semi-direct product A n B = A × B the direct
product. However, because γ 6= α×β, this does not follow the case of Proposition 4.1.2. Instead,
we see that

γ = {(as
i , bb

′) | b, b′ ∈ β, s ∈ {±1}, i ∈ [n]}
So G©w H = G⊗H2 = C(A×B, γ).

As this example shows, when n is large this relationship is uninteresting because the degree of
the resulting product graph is large. We are most interested in groups generated by a small
number of orbits, that is, where n is small. This means the degree of the wide zig-zag product
graph is small, and so we get a family of low-degree expanders.

In [4] this relationship is used to show that expansion is not a group property, so the expansion
properties of the Cayley graphs of a particular group depend on which generator multi-set one
picks. They show that it is is possible to create two infinite families of graphs {Gi} and {Hi}
where each Gi and Hi are Cayley graphs of the same group but whose edges are defined using
different generator multi-sets. Remarkably, the expansion of Gi stays good as i → ∞ but the
expansion of Hi deteriorates as i →∞.
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Chapter 5

Eigenvalue Lower Bounds for the
Zig-Zag Product

As the wide zig-zag product/semi-direct product relationship given in Theorem 4.3.3 shows,
the choice of labelling is extremely important in determining the product graph’s structure.
Specifically, given G and H such that G©z H exists (i.e. G and H have the appropriate size
and degree relationships), using different rotation maps for G may result in different (non-
isomorphic) product graphs.1Theorem 3.2.6 gives us an upper bound on the expansion of the
product graph independent of the rotation maps, which is sufficient to guarantee that G©z H is
a good expander when both G and H are good expanders. However, it seems the rotation maps
come more explicitly into the analysis for the problem we discuss in this chapter.

5.1 The Question

We pose the question of whether it is necessary for both the component graphs G and H to be
good expanders in order for G©z H to be a good expander. For the remainder of this chapter,
unless otherwise noted we will let G be a degree D1 graph on N vertices and let H be a degree
D2 graph on D1 vertices. It is easy to establish a lower bound for how well G©z H can expand
based on the expansion of G.

Proposition 5.1.1. For any graphs G, H such that G©z H exists, it is true regardless of the
choice of RotG,RotH that λ2(G©z H) ≥ λ2(G).

Proof. Let M = B′A′B′ be the normalized adjacency matrix of G©z H (see the proof of Theorem
3.2.6 for the terminology), and let v be the eigenvector of G corresponding to λ2(G). Taking
v′ = v ⊗ 1D1/D1, we get

〈Mv′, v′〉 = 〈A′B′v′, B′v′〉 (5.1)
= 〈A′(v ⊗ 1D1), v ⊗ 1D1〉/D2

1 (5.2)
= 〈Av, v〉/D1 (5.3)
= λ2(G)〈v′, v′〉 (5.4)

1It is easy to check that if we fix RotG, then the different zig-zag products of G and H according to different
rotation maps for H are still isomorphic. However, their rotation maps will label the edges differently.
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We implicitly use the collection map C from the analysis of Theorem 3.2.6 to go from (5.2),
which is a dot product of vectors in RND1 , to (5.3), which is a dot product of vectors in RN . So
λ2(G©z H) ≥ λ2(G). ¤

This property makes sense because if G is a bad expander then it is “hard” to get from one
vertex to another. Recalling the cloud intuition from Subsection 3.2.1, this means that it is hard
to get from one cloud to another in G©z H, and so G©z H cannot be a good expander.

Unfortunately, there is no clear lower bound relationship between λ2(G©z H) and λ2(H). In
particular, this task is more difficult because it seems that any analysis of a lower bound must
explicitly take into account the rotation map of G.

As a basis for comparison, we can establish some bounds based not on the expansion of H but
on its degree. Applying the bound on infinite families of graphs from Theorem 2.3.2 says that,
as G©z H gets large, we have

λ2(G©z H) ≥ 2
√

D2
2 − 1

D2
2

We can get a slightly stronger relationship between λ2(G©z H) and D2 when G has diameter at
least 3.

Proposition 5.1.2. Take G,H graphs such that G©z H exists. Suppose that G has vertices i, j
such that the distance between them is at least 3. Then λ2(G©z H) ≥ 1√

D2
.

Proof. Since i, j have distance at least 3, they have no neighbors in common. Let us define the
distribution x = ei ⊗ 1D1 + ej ⊗ (−1D1) where the ei are the standard basis vectors for RN .
Clearly x ⊥ u, and ‖x‖ =

√
2D1.

Recalling the cloud terminology from Subsection 3.2.1, let us see what happens when we apply
B′A′B′ to x. The first step B′ fixes x since x is uniform on each cloud. The second step A′

sends the weight of each vertex c in the i to some neighboring cloud, and likewise for j. The last
step B′ takes a step within clouds on the resulting distribution.

Since we are concerned with lower-bounding λ2(G©z H), and since there is no “negative in-
terference” between the positive and negative weights because i, j have no common neighbors,
the worst case is when, in the middle step, the weight of each vertex in the i, j’th clouds is
sent to different neighboring clouds. Formally, @k ∈ [N ] such that ∃c, d, e, f ∈ [D2] where
RotG(i, c) = (k, e) and RotG(i, d) = (k, f), and similarly for the j’th cloud. In this case, af-
ter the final step we have a D2 number of weights of value 1

D2
in each of 2D1 clouds, and so

‖B′A′B′x‖ =
√

2D1
D2

.

Therefore, by Lemma 2.1.2 we have λ2(G©z H) ≥ ‖B′A′B′x‖
‖x‖ = 1√

D2
. ¤

Let us return to the problem of relating the expansion of G©z H to the expansion of H. Our
intuition tells us that the expansion of G©z H cannot be much better than that of H2. It
seems from the definition of the zig-zag product that G©z H is related to H2 because the “zig”
and “zag” steps are actually two independent steps in H. Thus, if H is a bad expander then
G©z H cannot be very good because the two steps in H do not do much. However, the middle
permutation induced by G obscures how one might use this intuition in a proof of a lower bound
relationship. Nevertheless, we will present evidence that supports the following conjecture.
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Conjecture 5.1.3. For any graphs G, H such that G©z H exists, it is true regardless of the
choice of RotG,RotH that λ2(G©z H) = Ω(λ2(H)2).

In Section 5.3 we examine some special cases where we can prove the conjecture in the strong
sense λ2(G©z H) ≥ λ2(H)2, and in Section 5.4 we give experimental evidence that this bound is
universal. Before proceeding, we need some vocabulary from combinatorics.

5.2 Combinatorics Terminology

We will employ the following combinatorics terminology in our discussion of rotation maps and
in later sections. The terminology here is entirely standard.

• A permutation σ of a finite set is a bijection from that set to itself. When working with
permutations of N elements, we will usually let [N ] be the set on which the permutations
act.

• The set of all permutations of N elements forms the symmetric group SN with the rule of
composition being the composition of maps.

• A cycle (i1, i2, . . . ik) denotes the permutation taking ij 7→ ij+1 for all 1 ≤ j < k and
taking ik 7→ i1. The cycle fixes all elements in [N ] not appearing in the cycle. For us,
the product of two cycles st will denote the permutation given by first applying t, then
applying s.

• Any permutation σ ∈ SN may be written in cycle notation as the product of disjoint cycles.

• A transposition is a permutation (i1, i2) for i1 6= i2.

• A permutation σ is an involution if it is a product of disjoint transpositions. Equivalently,
σ is an involution if σ2 = 1.

• The matrix of a permutation σ acting on N elements is the matrix P ∈ MN ({0, 1}) with
entries δ(i, σ(i)) (δ being the Kronecker delta).

• Let G = (V, E) be a graph. A permutation σ of V is said to be an automorphism of G if
for all i, j ∈ V , we have that {σ(i), σ(j)} ∈ E with the exact same multiplicity as there
are {i, j} ∈ E.

• The automorphism group of a graph G is the set of all automorphisms of G with the rule
of composition being the composition of maps.

Remark 5.2.1. If P is the matrix of a permutation σ on N elements, then P ’s action by left
multiplication on a matrix with N rows simply interchanges the rows of the matrix according to
σ. P ’s left action on vectors follows similarly.

Remark 5.2.2. If we let P represent the matrix of the permutation σ on N elements and let A
be the normalized adjacency matrix of a graph G on N vertices, then it is easy to check using
the above definition that σ is an automorphism of G if and only if AP = PA.
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5.3 Provable Lower Bounds in Special Cases

The simplest case where we can show a lower bound of λ2(G©z H) in relation to λ2(H) is when
the rotation map of G is an edge-coloring of G.

Proposition 5.3.1. Suppose there exists a rotation map RotG that is an edge-coloring using
D1 colors. That is, for any i ∈ [N ], c ∈ [D1], we have Rot(i, c) = (j, c) for some j ∈ [N ]. Then
the zig-zag product G©z H according to RotG has λ2(G©z H) ≥ λ2(H)2.

Proof. Let v be an eigenvector of H corresponding to λ2(H). We use the notation of the proof of
Theorem 3.2.6 and let B′A′B′ denote the normalized adjacency matrix of G©z H. Then setting
v′ = 1N ⊗ v/N , we can use Lemma 2.1.2 to see that

max
x⊥u

|〈B′A′B′x, x〉|
〈x, x〉 ≥ |〈B′A′B′v′, v′〉|

〈v′, v′〉 =
λ2(H)2|〈A′v′, v′〉|

〈v′, v′〉
Recalling the definition of A′ from the proof of Theorem 3.2.6, we see that it permutes v′ by
sending the v′(i,c) to (A′v′)RotG(i,c). Since RotG(i, c) = (j, c) for any i ∈ [N ], we have that v′ is
identical across clouds so that v′(i,c) = v′(j,c) for all i, j ∈ [N ]. It follows that by transposing the

(i, c)’th and (j, c)’th entries, A′ actually just fixes v′. Therefore λ2(H)2|〈A′v′,v′〉|
〈v′,v′〉 = λ2(H)2. ¤

Unfortunately, as we noted in Section 3.2.1 an edge-coloring with D1 color does not always exist,
and it is hard to compute even if it does, so the above example does not have great generality.

An eminently more interesting example is when the graph has a rotation map with the following
property of being a semi-coloring. We define it using the coloring interpretation of rotation maps
discussed in Remark 3.2.2.

Definition 5.3.2. A rotation map RotG of a graph G is a semi-coloring if the edge colors come
in fixed pairs: for any color c, there is a “partner color” d such that any edge that is colored c at
one end is always colored d at the other end. (We allow the possibility that c = d.) Formally, this
means ∀c ∈ [D1], ∃!d ∈ [D1] such that ∀i ∈ [N ], ∃!j ∈ [N ] such that we have RotG(i, c) = (j, d).

The reason semi-colorings are more interesting than edge-colorings with D1 colors is because
the zig-zag product naturally preserves semi-colorings. Let G be the large graph and H be the
small graph in the zig-zag product Γ = G©z H. It is true that, regardless of RotG, as long as
RotH is a semi-coloring then the rotation map RotΓ is also a semi-coloring. This is because in
the mapping ((i, c), (k, `)) 7→ ((j, d), (m,n)), G only influences the mapping i 7→ j and so the
mapping (k, `) 7→ (m,n) depends solely on H. Thus if k, n and `,m are fixed color pairs in
RotH , then so is (k, `), (m,n) in RotΓ.

It is worth noting that the zig-zag product does not preserve edge colorings with D1 colors. If
RotH has a coloring, then in RotΓ an edge colored (k, `) on one end will be colored (`, k) on the
other.

It is easy to check that in all of the recursive expander constructions given in Subsection 3.2.2, all
the graphs in the families have a semi-coloring as long as the base graph H has one. Furthermore,
all of the suggested base graphs given in [25] (as well as all Cayley graphs, which include the
Ramanujan graphs of [20, 21]) come with natural semi-colorings. Thus, it seems in practice a
proof of a lower bound for this special case would be extremely interesting.

It turns out that finding a lower bound for λ2(G©z H) where RotG is a semi-coloring reduces to
finding a lower bound on the expansion of the semi-square of H, which we define presently.
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Definition 5.3.3. Let G = (V, E) be a graph on N vertices that is regular with degree D, and
let σ be any involution on N elements. Then the semi-square of G with respect to σ is the
degree D2 graph Gb2e on V where an edge {i, j} is in Gb2e as many times as there exist k ∈ V
such that {i, k} ∈ E and {σ(k), j} ∈ E. It follows that if the normalized adjacency matrix G
is A and P is the matrix representation of σ, then the normalized adjacency matrix of Gb2e is
APA.

Of course, the semi-square reduces to the regular square if σ is the identity involution. We can
reduce the semi-coloring lower bound into a semi-squaring lower bound because the semi-coloring
induces an involution on the vertices of H.

Proposition 5.3.4. Take the zig-zag product G©z H according to a rotation map RotG that is
a semi-coloring of G. RotG defines an involution σ on [D1], and λ2(G©z H) ≥ λ2(Hb2e) where
the semi-square Hb2e is taken with respect to σ.

Proof. Let B′A′B′ be the normalized adjacency matrix of G©z H. For any vector y ∈ RD1 , let
y′ = 1N ⊗ y/N , and use Lemma 2.1.2 to get

max
x⊥u

|〈B′A′B′x, x〉|
〈x, x〉 ≥ max

y⊥u

|〈B′A′B′y′, y′〉|
〈y′, y′〉

Recalling the definition of A′ from the proof of Theorem 3.2.6, we see that it permutes B′y′ by
sending (B′y′)(i,c) to (A′B′y′)(j,d) where RotG(i, c) = (j, d). It must be that c, d are paired in
the semi-coloring. For each such pairing, let us define σ(c) = d and σ(d) = c. σ fixes all elements
that are paired to themselves.

Recall that, by our definition of B′ = IN ⊗ B where B is the normalized adjacency matrix of
H, we have that B′y′ = 1N ⊗By/N . Now consider the entries of A′B′y′. For any c ∈ [D1], the
weight of the c’th vertex on any cloud of A′B′y′ depends only on the weight of the σ(c)’th vertex
of some cloud in B′y′. But since B′y′ is identical across clouds, this means A′B′y′ is identical
across all clouds. In particular, because A′ permutes the vertices within a cloud according to σ,
we have A′B′y′ = 1N ⊗PBy/N where P is the D1×D1 permutation matrix of σ. Therefore we
have

max
y⊥u

|〈B′A′B′y′, y′〉|
〈y′, y′〉 = max

y⊥u

|〈1N ⊗ (BPBy)/N, 1N ⊗ y/N〉|
〈y′, y′〉 = max

y⊥u

|〈BPBy, y〉|
〈y, y〉

The last step follows from a simple calculation expanding the dot product. Since BPB is exactly
the normalized adjacency matrix of Hb2e according to σ, Lemma 2.1.2 gives us λ2(G©z H) ≥
λ2(Hb2e). ¤

So finding a lower bound on λ2(G©z H) reduces to finding a lower bound on λ2(Hb2e). This
reduction is useful because as the following lemma shows, we can calculate exactly the expansion
of the semi-square in a special case. Even more general results about the semi-square are
established in Chapter 6.

Lemma 5.3.5. Let G be a graph with A its normalized adjacency matrix. Take the semi-square
Gb2e with respect to an involution σ. Then λ2(Gb2e) ≤ λ2(G)2. Furthermore, if σ gives an
automorphism of G, then λ2(Gb2e) = λ2(G)2.

Proof. Let P be the matrix of the involution σ. To see that λ2(Gb2e) ≤ λ2(G)2, we use Lemma
2.1.2, the fact that P is length-preserving, and the fact that P and A preserve anti-uniformity.
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Since APA is the normalized adjacency matrix of Gb2e, we have for all x ⊥ u that

‖APA‖
‖x‖ ≤ λ2(G)‖PAx‖

‖x‖ ≤ λ2(G)‖Ax‖
‖x‖ ≤ λ2(G)2

The second part of the lemma follows from the fact that, if P gives an automorphism of G, then
PA = AP . Therefore, Lemma 2.1.2 reduces to:

max
x⊥u

‖APAx‖
‖x‖ = max

x⊥u

‖PA2x‖
‖x‖ = max

x⊥u

‖A2x‖
‖x‖ = λ2(G)2

¤

We quickly state a few simple consequences of the above.

Corollary 5.3.6. If G is connected and non-bipartite, then any semi-square Gb2e is connected
and non-bipartite.

Proof. This follows immediately by combining Lemmas 1.3.4, 1.3.6, and 5.3.5. ¤

Corollary 5.3.7. Let G,H, σ be as in Proposition 5.3.4. If σ is an automorphism of H, then
λ2(G©z H) ≥ λ2(H)2.

Proof. This follows immediately from Proposition 5.3.4 and Lemma 5.3.5. ¤

Unfortunately, it is hard to pin down exactly when the expansion of the semi-square of a graph
hits the upper bound. This is especially true if we are considering all semi-squares of H with
no restriction on the involution σ. In order to prove λ2(G©z H) ≥ λ2(H)2 for all semi-colorings
of G, we would like our H to be such that all its possible semi-squares are no better expanders
than H2. We call this property semi-square invariance.

Definition 5.3.8. A graph G is called semi-square invariant if for any involution σ, the semi-
square Gb2e with respect to σ has λ2(Gb2e) = λ2(G)2.

Corollary 5.3.9. Let G,H be as in Proposition 5.3.4 and let RotG be a semi-coloring of G. If
H is semi-square invariant then λ2(G©z H) ≥ λ2(H)2.

Proof. This follows immediately from the Proposition 5.3.4 and the definition of semi-square
invariance. ¤

We will explore the property of semi-square invariance in greater detail in Chapter 6. For
example, in Proposition 6.1.4 we specify a class of semi-square invariant graphs. Thus if H is
one of these graphs and if RotG is a semi-coloring, then we get that λ2(G©z H) ≥ λ2(H)2.

Proving Conjecture 5.1.3 for all zig-zag products using semi-colorings may be done by showing
for any graph H that λ2(Hb2c) = Ω(λ2(H)2) for all possible semi-squares Hb2c. At this time, it
is unclear how one would go about this in full generality.
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5.4 Experimental Lower Bounds

Here we present experimental evidence that the bound λ2(G©z H) = Ω(λ2(H)2) is universal. We
implemented the zig-zag product in Mathematica and computed the eigenvalues of the zig-zag
products of certain graphs. The experiments in this section were run using (pseudo-) random
rotation maps for G, which intuitively seem will give G©z H the best expansion and hence the
lowest λ2(G©z H).

We begin by defining the random regular graphs that we work with.

Definition 5.4.1. A random regular graph RN,D on N vertices with degree D is constructed as
follows. Choose bD/2c random permutations from the symmetric group SN and let P1, . . . PbD/2c
be their permutation matrices. If D is even, then the normalized adjacency matrix of RN,D is

1
D

bD/2c∑

i=1

(Pi + P t
i )

which guarantees it is doubly stochastic and symmetric. If D is odd, the normalized adjacency
matrix of RN,D is

1
D



bD/2c∑

i=1

(Pi + P t
i ) + I




i.e. we add one self-loop to each vertex.

Random regular graphs are used when we wish to find a large graph with good expansion, which
happens with high probability according to Theorem 2.3.1. Our hardware allowed us to work
with graphs on vertices of at most about 4000 vertices, depending slightly on the number of
edges.

Our first series of experiments zig-zags together random graphs and cyclic graphs.

Definition 5.4.2. A cyclic graph CN is a degree 2 graph on N vertices. Let us use ZN to
denote the vertex set, then each vertex i ∈ ZN is connected to i + 1, i− 1 ∈ ZN .

Proposition 5.4.3. Each p ∈ ZN corresponds to an eigenvalue of cos 2πp
N in the spectrum of

CN .

Proof. Note that for the duration of this proof we work in ZN . It is easy to check that the
matrix of CN is A = [aij ], with i, j ∈ ZN , given by

aij =
{

1
2 , i− j = ±1
0, else

We will show that it is similar to the diagonal matrix where the p’th diagonal is 2πp
N . We use

the one-dimensional discrete Fourier transform to do this, whose matrix F = [fij ] is given by
fij = 1√

N
ωij for i, j ∈ ZN , where ω = exp(2π

√−1/N). (Contrast this with the two-dimensional
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Fourier transform used in the proof of Theorem 3.1.1.) This gives us

[FAF∗]ij =
∑

k,`

fikak`fj,`

=
1
2

∑

k

fik(fj,k+1 + fj,k−1)

=
1

2N

∑

k

ωik(ω−jk−j + ω−jk+j)

=
(ω−j + ωj)

2N
·
∑

k

ω(i−j)k

By the orthogonality of the Fourier basis functions, we know that
∑

k ω(i−j)k = 0 if i 6= j and∑
k ω(i−j)k = N if i = j. This means aij = 0 for i 6= j and app = ωp+ω−p

2 = cos 2πp
N . ¤

We only work with odd-size cyclic graphs since even-size ones are bipartite. We choose cyclic
graphs as our first test case because they intuitively seem like they might cause λ2(RN,D1

©z
CD1) ¿ λ2(CD1)

2. This is because though CD1 is a bad expander, the middle step of the zig-zag
product sends vertices in CD1 to non-adjacent vertices, and since the main “cause” of CD1 ’s
bad expansion is because some vertices are far away from each other, we might hope that the
resulting product graph RN,D1

©z CD1 has significantly better expansion than C2
D1

.

We refer to Figures 5.1 and 5.2, which show the results of our series of experiments using
random regular graphs and cyclic graphs. Here we define λ = λ2(RN,D1), µ = λ2(CD1), η =
λ2(RN,D1

©z CD1).

Samples 1-5 were done with random regular graphs R50,11, . . . , R50,51 and with cyclic graphs
C11, . . . , C51 in increments of 10, and samples 6-10 were done with R80,11, . . . , R80,41 and with
cyclic graphs C11, . . . , C41.

We see that although λ2(RN,D1
©z CD1) < λ2(CD1)

2 consistently, the two do not deviate far from
each other. In particular, the behavior of λ2(RN,D1

©z CD1) and λ2(CD1)
2 are highly correlated

with a correlation coefficient of 0.9433, whereas it is clear that λ2(RN,D1
©z CD1) and λ2(RN,D1)

are anti-correlated. This means, most likely, that the behavior of λ2(RN,D1
©z CD1) is tied to

the behavior of λ2(CD1)
2. Furthermore, these numbers are well above the degree-based lower

bounds of Theorem 2.3.2 and Proposition 5.1.2, which give us
√

3
2 ≈ 0.866025 and 1√

2
≈ 0.707107

respectively.

However, one reason why the above evidence may be misleading is because the eigenvalues of
CD1 are very evenly distributed, as according to Proposition 5.4.3.

Intuitively, if there are many eigenspaces with relatively large eigenvalue, it may be that the
middle step of the zig-zag product is ineffectual. Consider v an eigenvector of CD1 with eigenvalue
λ2(CD1). Then if there are many large eigenvalues, it may be that the middle step of the zig-zag
product induced by RN,D1 takes v to some v′ in the eigenspace of λk(CD1), where the difference
|λ2(CD1)−λk(CD1)| may not be much. Thus, if we apply B′A′B′ to v′ = 1N ⊗ v/N , in the first
step B′ shrinks the norm by λ2(CD1), then A′ takes us from the eigenspace of λ2(CD1) to the
eigenspace of λk(CD1), and in the final step B′ shrinks the norm by about λk(CD1), and we get
that ‖B′A′B′v‖ ≈ λ2λk‖v‖ ≈ λ2

2‖v‖, and so the graph RN,D1
©z CD1 exhibits poor expansion.

It is conceivable then that for different graphs with more extreme distributions of eigenvalues,
it may be that all the other eigenvalues λk ¿ λ2, in which case RN,D1

©z CD1 might be a much
better expander than CD1 .
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Figure 5.1: Zig-zag product of random regular graphs and cyclic graphs
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Figure 5.2: Zoomed view of Figure 5.1
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p

q

Figure 5.3: The Awful Graph Ω10

Because of this possible concern, we introduce the following construction that has an extremely
polarized spectrum. This means that all the eigenvalues of the graph are much less than the
second largest. Experiments with these graphs dispel the above concern and provide further
support for Conjecture 5.1.3.

Definition 5.4.4. An awful graph ΩN on N vertices has degree D = N − 1. We construct it by
starting with the standard complete graph KN−1, which has N − 1 vertices and where each pair
of vertices share a single edge and there are no self-loops. We add a new vertex p and connect it
by a single edge to an arbitrary q ∈ [N − 1]. We add N − 2 self-loops to p and we add a single
self-loop to all i ∈ [N − 1] where i 6= q.

As an example, Figure 5.3 shows the awful graph Ω10. The following proposition shows that
awful graphs have the kind of spectrum we want.

Proposition 5.4.5. Let ΩN be an awful graph. Then, letting D = N − 1 be the degree, it has
spectrum of the form λ1 = 1, λ2 = 1− 1

D , λ3 = − 1
D , λk = 0 for all k ≥ 4.

Proof. We show this by constructing all the eigenvectors. We will use the interpretation of a
step in the graph as vertices sending their weights to their neighbors, as discussed in Remark
1.2.8. Let p, q be as in Definition 5.4.4. λ1 corresponds to uniform.

λ2 = 1− 1
D corresponds to x where

xi =





1− 1
D , i = p
0, i == q

− 1
D , else

Since p has D− 1 self-loops, it receives (1− 1
D )2 from itself and nothing from q. q receives D−1

D2

to q. q also receives − 1
D2 from each of its D − 1 neighbors, so its final weight is 0. All other

i 6= q receive − 1
D2 to themselves because of the self-loop, and they receive −D−2

D2 from all the
other vertices that are neither p nor q. So i’s final weight is − 1

D (1− 1
D ).
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Figure 5.4: Zig-zag product of random regular graphs and awful graphs

λ3 = − 1
D corresponds to y where

yi =
{

1, i = q
− 1

D , else

p receives −D−1
D2 from itself and 1

D from q, so it finishes with weight 1
D2 . q receives − 1

D2 from
each of its D neighbors, so it ends with − 1

D . All other i receive −D−1
D2 from non-p, q vertices

including themselves, and they receive 1
D from q, so they end with 1

D2 .

For λk for k ≥ 4, the eigenvectors are of the form νi,j for i, j /∈ {p, q} where νi,j is 1 on vertex i,
−1 on vertex j, and 0 elsewhere. It is clear that the effects of the weights of i and j cancel out
on all vertices. It is obvious we can take N − 3 independent such vectors. ¤

Figures 5.4 and 5.5 show the awful graph experiments. λ, µ, η are defined as before. For Sam-
ples 1-5, the large base graphs are the random regular graphs R50,10, . . . , R50,50 and the small
graphs are Ω10, . . . Ω50, both in increments of 10. For Samples 6-9, the large base graphs are
R80,10, . . . R80,40 and the small graph are Ω10, . . . , Ω40.

From Figure 5.4 it seems that even though the expansion of RN,D1 improves, the expansion of
RN,D1

©zΩD1 is in fact bounded by ΩD1 . Zooming in, we see in Figure 5.5 that λ2(RN,D1
©zΩD1) ≥

λ2(ΩD1)
2 holds even though all other eigenvalues of ΩD1 approach 0 as D1 increases. The two

quantities are highly correlated, with a correlation coefficient of 0.9062 over all 9 samples. We
also find that λ2(RN,D1

©z ΩD1) and λ2(RN,D1) are anti-correlated, which implies that RN,D1 is
not the cause of RN,D1

©z ΩD1 ’s poor expansion.

Surprisingly, it seems that awful graphs are actually not as bad as cyclic graphs in this setting.
This gives further evidence that Conjecture 5.1.3 holds.
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Figure 5.5: Zoomed view of Figure 5.4

One might also wonder about whether the construction-neutral bounds such as the one in The-
orem 2.3.2 or Proposition 5.1.2 affect the behavior here. However, note that the degree of the
awful graphs is relatively large (e.g. D2 = 29), and so Theorem 2.3.2 and Proposition 5.1.2’s
lower bounds for the expansion of RN,D1

©z ΩD1 (e.g. 2
√

292−1
292 ≈ 0.068925 and 1√

D2
= 0.185695)

are much lower than the computed eigenvalues of RN,D1
©z ΩD1 , and so have little bearing on

our experimental analysis.

Future work might try to prove Conjecture 5.1.3. There are various techniques to try to prove this
bound in general, such as finding induced subgraphs in the zig-zag product or finding equitable
partitions of the graph, which may give a quotient graph that may be analyzed. Unfortunately,
at the time of this writing none of these attempts have been fruitful.

53



Chapter 6

Semi-Squaring

In the process of looking at lower bounds on the second largest eigenvalue of the zig-zag product,
we invented the semi-square operation and noted the interesting fact from Lemma 5.3.5 that
any semi-square Gb2e (Definition 5.3.3) of a graph G has at least as good expansion as G2. It
is therefore an interesting question to see whether for any graph G one can deterministically
compute some semi-square with better expansion than G2. Since taking a walk in the semi-
square graph does not require additional randomness compared to the regular square because
the middle involution is deterministic, this would aid recursive constructions of expanders such
as those using the zig-zag product. In this chapter, we study which graphs are amenable to
improved expansion by semi-squaring. The material here is entirely new.

6.1 Semi-Square Invariance

Recall that, akin to the semi-direct product, the semi-square of a graph is ambiguous unless we
specify the involution σ that is used. Recall from Definition 5.3.8 that a graph G is semi-square
invariant if the semi-square has expansion no better than λ2(G)2 no matter which involution σ
we choose.

It is an interesting question to determine what kinds of graphs are provably semi-square invariant
and what kinds are provably not. Below, we explicitly demonstrate classes that behave in both
ways. We begin by demonstrating in Propositions 6.1.2 and 6.1.4 a class of graphs that are
semi-square invariant, then we demonstrate in Proposition 6.1.6 a class of graphs that are not
semi-square invariant.

Definition 6.1.1. The generalized complete graph Kr,s
N is the graph on N vertices with r > 0

edges between each pair of vertices and s ≥ 0 self-loops on each vertex. A graph is square-
complete if its (regular) square is a generalized complete graph. Clearly, any generalized complete
graph is also square-complete.

Proposition 6.1.2. Let G be a connected graph on N > 2 vertices with spectrum λ1 ≥ |λ2| ≥
. . . ≥ |λN |. The following are equivalent:

1. G’s spectrum has λ1 = 1 and λi = λ2 for all i ≥ 2.

2. G’s automorphism group is the entire symmetric group SN .
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3. G is a generalized complete graph Kr,s
N .

Proof. We show the implications 1 =⇒ 2 =⇒ 3 =⇒ 1 in order.

1 =⇒ 2: Suppose G’s spectrum has λ1 = 1 and λi = λ2 for all i ≥ 2. It is easy to check that
λ2 < 1 strictly, since G is connected and G cannot be bipartite with this spectrum.

We can decompose any vector x into a vector parallel to uniform x‖ and an anti-uniform vector
x⊥. Sp(u)⊥ is invariant under any permutation σ with matrix P , because P is a rigid motion
of RN and thus preserves angles, and hence preserves anti-uniformity. Sp(u)⊥ is exactly the
eigenspace of λ2, so by Sp(u)⊥’s invariance under any P , for any anti-uniform x⊥ we have
APx⊥ = λ2Px⊥. Therefore we have

P−1APx = P−1AP (x‖ + x⊥) = x‖ + λ2x
⊥ = Ax‖ + Ax⊥ = Ax

Since this holds for all x, we have P−1AP = A. Therefore AP = PA and by Remark 5.2.2 σ
gives an automorphism of G. So any permutation of the vertices of G is an automorphism, so
G’s automorphism group is the entire symmetric group SN .

2 =⇒ 3: Suppose G’s automorphism group is the entire symmetric group, but G is not a
generalized complete graph. Note that G’s automorphism group contains all the transpositions.
Clearly the number of self-loops on each vertex must be the same, since otherwise transposing
two vertices with different numbers of self-loops would not be an automorphism. Now suppose
there exist vertices i, j, k, and say n is the number of edges between i and k and say m is the
number of edges between j and k. Suppose m 6= n, and take w.l.o.g. m < n (where m = 0
possibly). Then transposing i and j is clearly not an automorphism since the number of edges
to k changes, a contradiction. Therefore the number of edges between any two vertices must be
the same. Therefore G is a generalized complete graph.

3 =⇒ 1: We can construct an eigenvector νi,j by picking any two vertices i and j and
giving i weight 1 and giving j weight −1. Then, using the intuition from Remark 1.2.8 of each
vertex “sending” its weight to its neighbors, we see that i and j’s weights cancel out on all
their neighbors (i.e. all other vertices), and we can compute that the net contribution to one
another is −r+s

(N−1)r+s . Thus νi,j an eigenvector with eigenvalue −r+s
(N−1)r+s . Since there are N − 1

independent such eigenvectors (for example taking all vectors ν1,j for 1 < j ≤ N), the spectrum
has the desired form. ¤

Corollary 6.1.3. A graph G is square-complete iff its spectrum has the form λ1 = 1 and
λi = ±λ2(G) for all i ≥ 2.

Proof. Since the square of a square-complete graph G is a generalized complete graph, applying
Proposition 6.1.2 means that G’s spectrum has the above form. ¤

The following proposition tells us that any graph that has a high multiplicity of eigenvectors for
the second largest eigenvalue is semi-square invariant. This makes sense, since this means the
eigenspace of ±λ2 has high dimension (i.e. the there are many eigenvectors of λ2 and −λ2), and
so any involution in the middle will likely map a vector in that eigenspace back into another
vector in the same eigenspace. This proposition will immediately imply that square-complete
graphs are semi-square invariant.

Proposition 6.1.4. Let G be a graph on N vertices with second largest eigenvalue λ2. Suppose
that either the multiplicity of λ2 or the multiplicity of −λ2 is equal to k > bN−1

2 c. Then G is
semi-square invariant.
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Proof. Suppose w.l.o.g. that the multiplicity of λ2 is k > bN−1
2 c. Let v1, . . . , vk be the eigen-

vectors corresponding to λ2, and let V = Sp(v1, . . . , vk) of dimension k. PV also has dimension
k since P is a rigid motion. The space of all anti-uniform vectors is invariant under P , so V
and PV must have a non-empty intersection. Let v ∈ V be a vector such that Pv ∈ V , then
Av = λ2v and APv = λ2v. Letting A be the normalized adjacency matrix of G, the eigenvalue
bound of Lemma 2.1.2 gives us

max
x⊥u

‖APAx‖
‖x‖ ≥ ‖APAv‖

‖v‖ = λ2
2

It is an equality because we know from Lemma 5.3.5 that λ2(Gb2e) ≤ λ2
2 always. ¤

Corollary 6.1.5. Any generalized complete graph is semi-square invariant. Any even-sized
square-complete graph is semi-square invariant.

Proof. This corollary is obvious from Proposition 6.1.2, Corollary 6.1.3 and Proposition 6.1.4.
¤

We can easily show that any graph with a distinct second largest eigenvalue is not semi-square
invariant.

Proposition 6.1.6. Let G be a graph on N > 2 vertices, with spectrum 1 = λ1 ≥ |λ2| > |λ3| ≥
. . . ≥ |λN |, i.e. the separation |λ2| > |λ3| is strict. Then G is not semi-square invariant.

We make use of the following simple lemma in the proof of the proposition.

Lemma 6.1.7. Let A be the normalized adjacency matrix of a graph G with second largest
eigenvalue λ2 and let P be the matrix of an arbitrary involution. Then ‖APAx‖ = λ2

2‖x‖ if and
only if x and PAx are eigenvectors of G with eigenvalue ±λ2.

Proof. If x and PAx are eigenvectors with eigenvalue ±λ2, clearly ‖APAx‖ = λ2
2‖x‖.

Suppose ‖APAx‖ = λ2
2‖x‖. Recalling the analysis of Lemma 2.1.2, we know that

‖APAx‖ ≤ λ2‖PAx‖ ≤ λ2
2‖x‖

since P is length-preserving. Furthermore, the analysis in the proof of Lemma 2.1.2 tells us that
equality occurs exactly when PAx and x are eigenvectors of A with eigenvalues ±λ2. ¤

Proof of Proposition 6.1.6. Let v ∈ RN be the eigenvector of λ2. We claim that for any anti-
uniform v ⊥ u, there exists an involution σ with matrix P such that Pv /∈ Sp(v). Suppose for
the sake of contradiction that this were not the case, then since any transposition is also an
involution, it would imply that v is an eigenvector of all transpositions. Since the eigenvalues
of a transposition are ±1, this means that any transposition of v is either itself or its negative.
This is impossible when N > 2 for any v ⊥ u where v 6= 0:

Case 1 If the entries of v take on at least three distinct values, say vi, vj , vk, then we may say
w.l.o.g that vi 6= −vj . Letting P be the matrix of the transposition (i, j) would then give
us Pv 6= v and Pv 6= −v, so Pv /∈ Sp(v).
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Case 2 If the entries of v have only two distinct values, say vi 6= vj , then since v ⊥ u and v 6= 0
it must be that vi 6= 0 and vj 6= 0. So let P be the matrix of the transposition (i, j), then
clearly Pv 6= v. Also, Pv 6= −v because P fixes some other non-zero entries (since N > 2).
So Pv /∈ Sp(v).

Let A be the normalized adjacency matrix of G and let P be an involution such that Pv /∈ Sp(v).
Now suppose there exists x ⊥ u such that ‖APAx‖ = λ2

2‖x‖. Lemma 6.1.7 tells us that equality
occurs exactly when both PAx and x are eigenvectors of A corresponding to λ2. Since λ2

occurs with multiplicity 1, it must be that both x and PAx are multiples of v. But this means
Px ∈ Sp(x) =⇒ Pv ∈ Sp(v) which contradicts our choice of P . So what we supposed is
impossible, and ‖APAx‖ < λ2

2‖x‖ strictly. ¤

An interesting line of future work would be to prove (or disprove) this proposition when G has
second largest eigenvalue with multiplicity ≥ 2. It would be most interesting if one could show
some result for any multiplicity ≤ bN−1

2 c. A different question would be to get some kind of
guaranteed bound on the improvement in eigenvalue. For example, is there some γ < 1 such that
for any G with λ2(G) of multiplicity 1, there exists an involution σ such that λ2(Gb2e) < γλ2(G)2?

The next logical step would be to find a deterministic algorithm that can compute a suitable
semi-square for a given graph. We refrain from that task here because it seems that it will
probably be unproductive. It seems that any algorithm that computes a semi-square with
better expansion than λ2(G)2 must take time polynomial in the size of the graph, since the
obvious way to do so would be to compute the eigenvectors of G and then find an involution P
that maps the ±λ2-eigenspace outside itself. This takes time polynomial in N since computing
the eigenvectors takes time polynomial in the size of the normalized adjacency matrix. This
is infeasible because, as we mentioned in Subection 3.2.2, in most cases we work with graphs
with size exponential in the length of their representations, e.g. a rotation map based on some
algebraic or combinatorial construction. Future work might strive to prove that computing a
good semi-square from a short representation is difficult.

6.2 Strong Semi-Square Invariance

This section elaborates on an interesting mathematical feature of semi-squaring. Unfortunately
this property has no computational importance because of inefficiency concerns.

We saw in Proposition 6.1.4 that any graph G with second largest eigenvalue of high multiplicity
is semi-square invariant. However, if G is not square-complete then there always exists a sequence
of involutions such that repeatedly semi-squaring the graph according to this sequence will give
us a graph with better expansion than by repeatedly squaring. We formalize this below.

Definition 6.2.1. The n’th semi-square of a graph G is defined recursively as follows. Fix a
sequence of involutions σ1, . . . σn. The 1’st semi-square is simply Gb2e according to σ1. Then for
all 2 ≤ i ≤ n, the i’th semi-square Gb2

ie is the semi-square of Gb2
i−1e according to σi.

Definition 6.2.2. A graph G is strongly semi-square invariant if for any integer n ≥ 1 and for
any sequence of involutions σ1, . . . , σn, taking the n’th semi-square Gb2

ne with respect to that
sequence gives a graph with no better expansion than the n’th square. That is, λ2(Gb2

ne) =
λ2(G)2

n

for all n ≥ 1.

Theorem 6.2.3. A graph is strongly semi-square invariant graphs iff it is square-complete.

57



The structure of the proof is as follows. That any square-complete graph is strongly semi-square
invariant is easy to show. In the reverse direction, we know that any other kind of graph has an
eigenspace corresponding to the second largest eigenvalue of dimension k < N −1. Lemma 6.2.4
will show that any such eigenspace cannot be invariant for all involutions, and therefore we can
apply a semi-square such that the dimension of the eigenspace of the second largest eigenvalue
in the semi-square graph has dimension ≤ k−1. Repeating this process until the eigenspace has
dimension 1 allows us to apply Proposition 6.1.4.

Lemma 6.2.4. Let V ( RN be a non-zero anti-uniform subspace of RN of dimension k < N−1.
Then there exists an involution σ such that V is not invariant under σ.

Proof. It is sufficient to show that V is not invariant under all the transpositions since the
transpositions are themselves involutions.

Suppose there exists a non-zero anti-uniform subspace V ⊂ RN of dimension k < N − 1 that is
invariant under all transpositions. It is clear that N > 2 in order for there to exist such a V . Let
W = V ⊥ be its orthogonal complement. It is clear that if V is invariant under a transposition σ
whose matrix is P , then so is W . This is because any such P is a rigid motion of RN : if w ⊥ v
then Pw ⊥ Pv.

Let P be the matrix of some transposition (i, j). Since P 2 = I and P is symmetric, it acts on
RN as a reflection across an invariant hyper-plane R of dimension N − 1. The normal vector of
this hyper-plane is exactly the (−1)-eigenvector of P , which is 1 on i, −1 on j, and 0 elsewhere.
Let us call this (−1)-eigenvector νi,j .
Claim. V is invariant under the transposition (i, j) iff either V or W is orthogonal to νi,j .

Suppose both V and W are not orthogonal to νi,j . It follows that neither is contained in R.
Choose v ∈ V and w ∈ W that are not contained in R. Then v − Pv and w − Pw are non-zero
vectors parallel to νi,j . They are non-zero because v, w are not in R, and they are parallel to
νi,j because they are reflected by P :

P (v − Pv) = −(v − Pv) P (w − Pw) = −(w − Pw)

So they are parallel to each other. Thus we have

〈v − Pv, w − Pw〉 6= 0 =⇒ 〈v, w〉 − 2〈v, Pw〉+ 〈Pv, Pw〉 = −2〈v, Pw〉 6= 0

and therefore PW 6= W since we have exhibited Pw ∈ PW that is not orthogonal to V , and so
V and W are not invariant under P .

The reverse direction of the claim is obvious.

We can show that there is no non-zero anti-uniform subspace V of dimension k < N − 1 such
that for any νi,j , either V is orthogonal to νi,j or W = V ⊥ is orthogonal to νi,j . Suppose for
the sake of contradiction that there were such a V . There are two cases.

Case 1 If V were orthogonal to all νi,j , then any non-zero vector in V would have the same
entries on vertices i, j for all i, j, and so it would be uniform. So that subspace is simply the
uniform subspace Sp(u). Its orthogonal complement is the (N−1)-dimension subspace of all
anti-uniform vectors. Neither of these are anti-uniform subspaces of dimension k < N − 1.

Case 2 If V is invariant under all transpositions but is not orthogonal to all νi,j , then we claim
that W = V ⊥ must be orthogonal to all νi,j . It is clear that if V is orthogonal to both νi,j
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and νj,k, this means all non-zero v ∈ V have vi = vj and vj = vk, and therefore it follows
that vi = vk and so V is also orthogonal to νi,k. Because of this “transitivity” property,
we can partition the indices 1 . . . N into index classes C1, C2, . . . Cm, where each Cr ⊂ [N ]
and their disjoint union is [N ]. V is orthogonal to νi,j if and only if i, j belong to the same
index class Cr.

Now if V is not orthogonal to some νi,j , then by the above claim it must be that W = V ⊥

is orthogonal to νi,j . So for any νi,j such that i, j are in different index classes, it must
be that ∀w ∈ W, w 6= 0 that wi = wj . But this immediately implies that wi = wj∀i, j by
transitivity: for any i, j ∈ Cr and k ∈ Cs where r 6= s, we have wi = wk and wj = wk,
hence wi = wj . So W is orthogonal to all νi,j , and we are just back in the first case.

So Sp(u) and Sp(u)⊥ are the unique subspaces invariant under all transpositions, and so there is
no anti-uniform subspace of dimension k < N − 1 that is invariant under all transpositions. ¤

Proof of Theorem 6.2.3. To show that if G is square-complete then it is strongly semi-square
invariant, it suffices to show that if a graph G is square-complete graph, then any semi-square of
G is still square-complete. By Corollary 6.1.3, the spectrum of G has λi = ±λ2 for all i ≥ 2, so
the eigenspace of ±λ2 is the entire space of anti-uniform vectors, and hence is invariant under
any involution. So with A the normalized adjacency matrix of G and P the matrix of any
involution, we have that ‖APAx‖ = λ2

2‖x‖ for any x ⊥ u, and so the spectrum of any Gb2e has
λi = ±λ2

2 for all i ≥ 2. Therefore the second-largest eigenvalue always decreases by a square
each time, and therefore λ2(Gb2

ne) = λ2(G)2
n

for all n ≥ 1.

In the reverse direction, Corollary 6.1.3 tells us that if G is not square-complete then it has
eigenvalues smaller in absolute value than the second largest. Let v1, . . . , vk be the eigenvectors
corresponding to ±λ2 where k < N − 1, and set V = Sp(v1, . . . , vk), a subspace of dimension k.
Claim. There exists an involution σ such that the dimension of the eigenspace of ±λ2

2 for the
semi-square Gb2e with respect to σ is strictly less than k.

From Lemma 6.2.4 we know that for any non-zero anti-uniform subspace with dimension less
than N − 1, there exists an involution σ on which V is not invariant. Let P be the matrix of
such a σ for V , which must exist since the dimension of V is k < N − 1.

For the sake of contradiction, suppose that the eigenspace of ±λ2
2 for the semi-square Gb2e with

respect to our chosen σ has dimension k. Then there exists orthogonal eigenvectors v′1, . . . v
′
k

such that ‖APAv′i‖ = λ2
2‖v′i‖. Lemma 6.1.7 says that the v′i are eigenvectors of A corresponding

to ±λ2, and therefore they are a basis for V . We said V is not an invariant subspace of P , so
it is impossible that all the Pv′i ∈ V . But if for some i we have Pv′i /∈ V , then Pv′i is not an
eigenvector with eigenvalue ±λ2, and therefore ‖APAv′i‖ < λ2

2‖v′i‖ strictly, a contradiction. So
what we supposed is false and the dimension of the eigenspace of ±λ2

2 for the semi-square Gb2e

according to σ has dimension < k.

Thus, we may repeatedly semi-square G, each time choosing an appropriate involution, until we
get that the dimension of the eigenspace of ±λ2n

2 is 1 for some repeated semi-square Gb2
ne, at

which point we can apply Proposition 6.1.6 to show that λ2(Gb2
n+1e) < λ2(G)2

n+1
. ¤
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Chapter 7

Conclusion

In this thesis we have presented the development of expander graphs, a class of regular undirected
multi-graphs that have properties useful in a wide variety of fields within computer science and
discrete mathematics. We have traced their development from their algebraic roots to the current
work on combinatorial constructions. In the process, we have posed several new questions, and
invented and analyzed the semi-square operation, an operation inspired by the analysis of lower
bounds for the zig-zag product.

There are still many questions open for future investigation. Primary among them is whether one
can use the zig-zag product or some similar combinatorial construction to create infinite families
of Ramanujan graphs. Some more specific questions we pose in this thesis include whether one
can show that the expansion of zig-zag product necessarily depends on the expansion of both the
graphs of which it is composed, and specifically whether that dependence satisfies Conjecture
5.1.3. We also pose several questions about the semi-square, such as proving uniform bounds
on the eigenvalue of the semi-square, and determining the complexity of computing the semi-
square of a graph, which we believe to be difficult given a small representation of the graph.
The area of combinatorial expander construction is still in its nascent stages, and we hope in the
future it will blossom into an area with constructions as interesting and efficient as the algebraic
constructions we already know.
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