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Abstract

Learning is a central task in computer science, and there are various formalisms for capturing
the notion. One important model studied in computational learning theory is the PAC model
of Valiant (CACM 1984). On the other hand, in cryptography the notion of “learning nothing”
is often modelled by the simulation paradigm: in an interactive protocol, a party learns nothing
if it can produce a transcript of the protocol by itself that is indistinguishable from what it gets
by interacting with other parties. The most famous example of this paradigm is zero knowledge
proofs, introduced by Goldwasser, Micali, and Rackoff (SICOMP 1989).

Applebaum et al. (FOCS 2008) observed that a theorem of Ostrovsky and Wigderson
(ISTCS 1993) combined with the transformation of one-way functions to pseudo-random func-
tions (H̊astad et al. SICOMP 1999, Goldreich et al. J. ACM 1986) implies that if there
exist non-trivial languages with zero-knowledge arguments, then no efficient algorithm can PAC
learn polynomial-size circuits. They also prove a weak reverse implication, that if a certain non-
standard learning task is hard, then zero knowledge is non-trivial. This motivates the question
we explore here: can one prove that hardness of PAC learning is equivalent to non-triviality of
zero-knowledge? We show that this statement cannot be proven via the following techniques:

1. Relativizing techniques: there exists an oracle relative to which learning polynomial-size
circuits is hard and yet the class of languages with zero knowledge arguments is trivial.

2. Semi-black-box techniques: if there is a black-box construction of a zero-knowledge ar-
gument for an NP-complete language (possibly with a non-black-box security reduction)
based on hardness of PAC learning, then NP has statistical zero knowledge proofs, namely
NP is contained in SZK.

Under the standard conjecture that NP is not contained in SZK, our results imply that most
standard techniques do not suffice to prove the equivalence between the non-triviality of zero
knowledge and the hardness of PAC learning. Our results hold even when considering non-
uniform hardness of PAC learning with membership queries. In addition, our technique relies
on a new kind of separating oracle that may be of independent interest.

1 Introduction

PAC learning was one of the earliest models studied in computational learning theory [Val84], and
understanding what efficient algorithms can learn in the PAC model remains an important goal.
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A learning algorithm is said to PAC learn a concept class F (e.g. linear functions over F
n
2 , half-

spaces, DNF’s) if given access to many labelled examples (x, y) drawn from a distribution (X, f(X))
where X is an arbitrary input distribution and f ∈ F , the learner outputs with high probability a
hypothesis h (expressed as a circuit) such that PrX [f(X) 6= h(X)] is small. Unfortunately, there are
a variety of seemingly elementary classes of functions for which we still know only sub-exponential
or quasi-polynomial learning algorithms (e.g. DNF [KS01, LMN93]). In fact, it has been shown
that various concept classes are hard to learn based on cryptographic assumptions [GGM86, PW90]
or even based on NP-hardness if we restrict the form of the hypothesis h the learner outputs (e.g.
k-DNF [PV88]; it seems unlikely that we can prove hardness of learning based on NP-hardness
using standard techniques if h is unrestricted, see [ABX08]). Throughout this paper, we say that
PAC learning is hard if size n2 circuits are hard to learn. By a standard padding argument, the
n2 bound can be replaced by any nc for any constant c > 1 without affecting our results. We
consider the problem of learning polynomial-size circuits because circuits are a universal model of
computation.

In cryptography, a different notion of “learning” was developed in the study of zero knowledge
proof systems [GMR85]. In this context, the goal was to construct proof systems where an un-
bounded prover P interacts with an efficient verifier V in order to prove a statement such that the
verifier “learns nothing” except that the statement is true. In this setting, we say that V learns
nothing if it is able to simulate its interaction with the prover by itself, so anything the verifier
could compute after interacting with the prover, it could compute without interaction.

Although these notions superficially seem unrelated besides intuitively capturing some notion of
“learning”, Applebaum, Barak, and the author [ABX08] observed that a theorem of Ostrovsky and
Wigderson (Theorem 2.1) which states that ZK 6= BPP implies the existence of “auxiliary-input
one-way functions” (defined in Section 2), combined with the standard transformation of one-way
functions to pseudorandom functions [HILL89, GGM86] together show that if there are non-trivial
zero knowledge protocols (i.e. ZK 6= BPP) then PAC learning is hard.

Already [ABX08] showed a partial reverse implication, working with the promise problem
Learnability, defined as follows. Consider circuits C : {0, 1}m → {0, 1}n+1, and let X denote
the distribution on the first n bits of C(Um) where Um is uniform on {0, 1}m, and let Y denote the
distribution of the last bit of C(Um). C is a YES instance of Learnability if there exists a function
f computable by a circuit of size n2 such that the distribution (X,Y ) = (X, f(X)). That is, a
YES instance is “learnable” because the problem of PAC learning (X,Y ) has at least one solution.
On the other hand, C is a NO instance if the distribution (X,Y ) is such that for all functions g
computable by circuits of size nlog log n, Pr[Y = g(X)] ≤ 3/4 (the choice of nlog log n and 3/4 can
be replaced by any superpolynomial function and number bounded away from 1). That is, a NO
instance is “unlearnable” because no good hypothesis for labelling (X,Y ) exists.

[ABX08] show that Learnability ∈ ZK, and so if Learnability /∈ BPP then ZK 6= BPP. One
might hope it is also possible to show that hardness of standard PAC learning implies ZK 6= BPP.
To do so, one would have to generalize the techniques above to handle the search problem of finding
the hidden labelling function rather than simply deciding whether it exists, as well as deal with
the fact that in standard PAC learning one does not have access to the circuit generating labelled
examples. In this paper we show that many standard proof techniques do not suffice to prove that
the hardness of PAC learning implies ZK 6= BPP.
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1.1 Our results

Throughout this paper we say learning is hard if every non-uniform algorithm (equivalently family
of circuits) fails to learn the concept class of functions computable by circuits of size n2 under
the uniform input distribution1 on all but finitely many input lengths, given access to an example
oracle and a membership oracle (see Section 2 for formal definitions). This notion is extremely
strong (in particular it implies the standard notions of hardness), and we consider such a notion
in order to obtain stronger results.2 Likewise, there are various notions of zero knowledge (see e.g.
[OV07]), but in order to obtain stronger results, we consider the broad notion of zero knowledge
where the zero-knowledge property is only required against an honest-but-curious verifier and effi-
cient distinguisher, and the soundness property is required only against efficient cheating provers.
Following [OV07], we let HV-CZKA denote the class of languages with such protocols. In par-
ticular, by ruling out even proofs that use hardness of learning to show that this broad notion of
zero knowledge is non-trivial, we also rule out proofs for more restricted notions of zero knowledge
(e.g. with soundness against unbounded cheating provers or small statistical simulator deviation).
In this paper, ZK always refers to HV-CZKA (defined formally in Section 2).

Relativizing proofs: Our first theorem shows that relativizing techniques cannot prove that
if learning is hard, then ZK 6= BPP.

Theorem 1.1. There exists an oracle O for which PAC learning is hard, but ZKO = BPPO.

In fact, we prove the stronger statement that relative to O, learning is hard but there exist no
auxiliary-input one-way functions (AIOWF), which then implies ZKO = BPPO by the theorem
of Ostrovsky and Wigderson (stated in Theorem 2.1). We define AIOWF formally in Section 2,
but in essence AIOWF do not exist if and only if there is an inverter I(f, y) such that for every
efficient function f , given as a circuit, PrI,x[I(f, y) ∈ f−1(y) | y = f(x)] is non-negligible where the
probability is over uniform x and the internal coin tosses of I. Notice the contrast with the usual
notion of one-way functions, where the function f is fixed ahead of time and not given as input.

Unfortunately, in this setting ruling out relativizing proofs is not very convincing because we
have non-relativizing proofs that base ZK 6= BPP on various complexity assumptions. In particular
the celebrated result of Goldreich, Micali, and Wigderson [GMW86], which proves that NP has a
zero knowledge protocol based on the existence of one-way functions, does not relativize because
they work directly with the explicit NP-complete problem Three Coloring (3-COL).

Black-box proofs: [GMW86] does not relativize, but it is black-box: they require only black-
box access to a one-way function to construct a zero-knowledge protocol for 3-COL. Our next result
rules out black-box proofs that zero knowledge is non-trivial based on the hardness of learning. A
fully-black-box proof uses black-box access to a collection of functions F that are hard to learn
(specified by an oracle taking two inputs, one an index specifying some f ∈ F and another the
input to f) in order to construct a zero-knowledge protocol, and also provides an analysis that
uses an adversary for breaking zero knowledge or breaking computational soundness as a black-box
to build a learning algorithm. In a semi-black-box proof, the analysis may use the code of the

1Actually any input distribution with super-polynomial min-entropy also works, but we only consider the uniform
distribution for simplicity.

2Indeed, working with hardness of learning for uniform algorithms and only requiring that infinitely many input
lengths be hard would make our results less convincing, since many existing proofs basing ZK 6= BPP on various
hardness assumptions rely on non-uniform hardness assumptions where all but finitely many input lengths are hard
e.g. [GMW86]
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adversary breaking zero knowledge as well. See the taxonomy of Reingold, Trevisan, and Vadhan
[RTV04] for more details about classifying black-box proofs.

Unlike Theorem 1.1, our second theorem does not unconditionally rule out black-box proofs
because there are zero knowledge protocols whose security is unconditional (e.g. for Graph Iso-
morphism, Quadratic Residuosity). It is conceivable that even 3-COL has such a protocol (i.e.
NP ⊆ SZK, defined as in Section 2), in which case its security proof would use no complexity
assumptions and hence would be trivially black-box. This is considered unlikely, and we prove that
this is the only possibility:

Theorem 1.2. If there exists a semi-black-box proof that constructs a ZK protocol for a language
L assuming PAC learning is hard, then in fact L ∈ SZK.

Under the standard conjecture that NP 6⊆ SZK, Theorem 1.2 says that such proofs for an
NP-complete language L cannot exist.

1.2 Our techniques

Proving Theorem 1.1: the intuitive difference between PAC learning and inverting AIOWF
we exploit is that in PAC learning, the learner knows nothing about how the labelled examples
(X,Y ) are produced, whereas with AIOWF, the inverting algorithm does know a description of the
function f it is trying to invert.

Our oracle will be defined using a distribution over functions R(n) : {0, 1}n × {0, 1}n → {0, 1},
which defines the collection of functions Rz = R(n)(z, ·). For each z ∈ {0, 1}n, with probability
2−n/2 the distribution sets z to be a “hard instance”, i.e. it sets Rz to be a uniformly random
function, and with probability 1− 2−n/2 it sets Rz to be the all zero function Rz ≡ 0.

We show (in Lemma 3.3) that almost surely over the choice of R, the concept class F =
{Rz}z∈{0,1}∗ is hard to learn for non-uniform algorithms with R gates. The intuition is that there

are roughly 2n/2 hard instances z on inputs of length n, and they are chosen at random, so no
polynomial-size circuit can find all of them, and no circuit can learn hard instances it cannot find
because hard instances are random functions. Notice that we must choose many hard instances
because a circuit’s non-uniform advice can be specified after the oracle is chosen, and so the advice
may reveal where some of the hard instances are hidden; by choosing 2n/2 hard instances, no
polynomial amount of advice can specify all of the hard instances, and so for any polynomial-size
circuit some hard instances remain random-looking.

The second condition is to check that AIOWF do not exist. One idea to assure this is to define
another oracle I that inverts circuits with R gates. It is straight-forward to show that no non-
uniform circuit family can learn F even given access to I, but since I can invert all circuits with R
gates, AIOWF do not exist. This type of proof technique is common in the cryptographic literature
(see e.g. [HHRS07, HR04]) and rules out fully black-box reductions building AIOWF from hardness
of learning. However, it does not rule out relativizing reductions, which allow the circuit computing
the AIOWF to also use I gates: it is not at all obvious how or even if I can invert circuits that
contain I gates.3 This distinction is not merely cosmetic: in particular, the Ostrovsky-Wigderson
theorem (Theorem 2.1) is not fully black-box but it is relativizing (see Appendix B for a discussion
of this distinction). Therefore, in order to invoke it we must rule out relativizing reductions and

3Simon [Sim98] proposes a technique to overcome this problem that may be applicable in our setting. However,
we present our result with our PSPACE

R
∗ oracle, which we believe may be of independent interest.
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not just fully black-box reductions. Doing so requires a more general oracle, which we describe
now.

Definition 1.3. A language L is in PSPACER∗ if there exists a pair (M1,M2) where M1 is a
polynomial-time Turing machine and M2 is a polynomial-space oracle Turing machine such that x ∈
L if and only if M1(x) outputs z1, . . . , zm ∈ {0, 1}∗ and M2(x) using only oracle gates Rz1 , . . . ,Rzm

outputs 1.

There is a natural complete language QBFR∗ for this class, described in Section 2. Our separating
oracle O decides QBFR∗ where R is chosen from the same distribution as above. Learning is still
hard relative to O: even with access to O, the learner can only “see” Rz for polynomially many z
because M2 in Definition 1.3 can only call Rz1 , . . . ,Rzm and in particular cannot enumerate over
all exponentially many Rz. Thus O does not help the learner find additional hard instances, and so
the hard instances Rz that remain hidden also remain random-looking and therefore, since nothing
can learn a random function, hard to learn.

On the other hand, we can use O to build an inverter that inverts any AIOWF. Given any f
as a circuit with O gates, we show that it is possible to use O to find “heavy queries”, i.e. z such
that the computation of f(x) queries Rz with probability ≥ 1/poly(n) over the choice of random
x. Notice this means there can be at most poly(n) many heavy z. We show that if f only ever
queried O on either easy or heavy z, then one can efficiently invert f using oracle queries only for
the poly(n) heavy instances. Of course f may actually query O on “bad z” that are hard and yet
not heavy, but we show that on a typical y = f(x) where x is chosen at random, the computation
of f(x) is unlikely to call O on any bad z. Therefore, the inverter that finds the heavy queries
and then inverts pretending that f only calls O on good z succeeds with noticeable probability
over random y = f(x). Finally, applying the Ostrovsky-Wigderson theorem (Theorem 2.1) implies
Theorem 1.1.

Proving Theorem 1.2: here we describe the intuition behind Theorem 1.2 for fully-black-box
reductions. We use the same R as above and let O decide QBFR∗ .

The family F = {Rz}z∈{0,1}∗ is hard to learn for circuits for the same reason as before, so the

hypothetical black-box reduction implies that L ∈ ZKO. On the other hand, we also have as before
that AIOWF do not exist relative to O. Ong and Vadhan [OV07] showed (Theorem 2.3) that if
L ∈ ZK, then either there exists an AIOWF, or L reduces to “Statistical Difference” (SD) which
is a complete problem for the class SZK, and in fact their result relativizes. Since L ∈ ZKO and
AIOWF do not exist relative to O, we deduce from Theorem 2.3 that L reduces to SDO (where
circuits can contain O gates).

Furthermore, because the construction is black-box, the simulator only uses oracle access to
F , which is implementable using only access to R, so the proof of Theorem 2.3 says this means L
reduces to SDR. Finally, we deduce that L ∈ SZK: the zero knowledge property of SZK is sta-
tistical, so intuitively the computational hardness of learning F = {Rz} cannot help; furthermore,
since L ∈ SZKR for random R, the oracle R does not contain information about L itself. To use
this intuition formally, we replace R gates in instances of SDR with a fake oracle that is distributed
identically to R on inputs of length O(log n), and always responds 0 on longer inputs. Notice this
can be done efficiently and so that the size of the resulting SD instance is only polynomially larger
than the starting SDR instance. We show that this can be done in a way such that the resulting
instance of SD is a YES (resp. NO) instance if and only if the starting x ∈ L (resp. x /∈ L), and
therefore this gives a good randomized reduction to SD and puts L ∈ SZK.
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2 Preliminaries

For any distribution X, let x ←R X denote a random variable sampled according to X. If S is a
finite set, x ←R S denotes a random variable sampled uniformly from S. Un denotes the uniform
distribution on {0, 1}n. For any function f and distribution X, we let f(X) denote the distribution
of outputs f(x) given an input x ←R X. The statistical difference ∆(X,Y ) of two distributions
X,Y over a common universe U is defined as ∆(X,Y ) = 1

2

∑

u∈U |Pr[X = u]− Pr[Y = u]|. We
say that X,Y are computationally indistinguishable for non-uniform adversaries if for every family
of polynomial-size circuits {Cn}, |Pr[Cn(X) = 1]− Pr[Cn(Y ) = 1]| ≤ n−ω(1).

Let QBF denote the language of satisfiable quantified boolean formulas. It is well-known that
QBF is PSPACE-complete (see e.g. [AB09]). For every oracle R = {R(n)}n≥1 where R(n) :
{0, 1}n×{0, 1}n → {0, 1}, let QBFR∗ be the language of satisfiable QBF where the final propositional
formula is allowed Rz = R(n)(z, ·) gates, but only for fixed z (for example, “∃z,Rz(x)” is not a
valid formula for QBFR∗ ). It follows immediately from the proof that QBF is complete for PSPACE

that QBFR∗ is complete for PSPACER∗ (defined previously in Definition 1.3).
PAC Learning: we say that a family of circuits C = {Cn} learns a family of functions F

(called a concept class) using membership queries with advantage ε if for every f ∈ F , f : {0, 1}n →
{0, 1}, and every distribution X over {0, 1}n, given a set S of many labelled examples each drawn
independently from the joint distribution (X, f(X)) and access to an oracle computing f , Cn

produces a hypothesis circuit h that with probability 1−2−n satisfies Pr[h(X) = f(X)] > 1+ε
2 . We

say PAC learning a concept class F is hard if no family of polynomial-size circuits can learn functions
in F on infinitely many input lengths using membership queries with advantage ε = 1/poly(n). In
this paper, we say PAC learning is hard if PAC learning functions computable by circuits of size
n2 on the uniform input distribution is hard. Learning relative to an oracle O means the concept
classes, learning algorithms, and hypothesis are allowed O gates.

Auxiliary-input one-way functions: we say that AIOWF against uniform (resp. non-
uniform) inverters exist if for every uniform (resp. non-uniform) inverter I, there exists an infinite
collection W of functions where for every f ∈ W , f : {0, 1}n → {0, 1}m, f is computable by a
circuit of size s, and it holds that

Pr
x←RUn

[I(f, y) ∈ f−1(y) | y = f(x)] < s−ω(1)

where f−1(y) = {x | f(x) = y}. Note that f is given as input to I as a circuit, and the collection
W may depend on I. The definition relativizes by allowing I and the circuits in W oracle gates.

Zero-knowledge: zero knowledge come in many varieties, depending on requirements such as
round complexity, public vs. private coin, and composability criteria. In this work, we ignore these
issues and work with a very broad definition of zero knowledge, called honest-verifier computational
zero knowledge arguments HV-CZKA in the work of [OV07], which we denote simply by ZK. We
let 〈P, V 〉(x) denote the transcript of an interactive protocol between a prover P and a verifier V
on common input x. We say that L ∈ ZK if there exists an efficient (randomized) verifier strategy
such that the following hold:

• Completeness: ∀x ∈ L, there is a prover strategy such that V accepts the transcript 〈P, V 〉(x)
with probability 1− 2−n.

• Soundness: ∀x /∈ L, for any efficient prover strategy P ∗, V accepts the transcript 〈P ∗, V 〉(x)
with probability at most 2−n.
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• Zero knowledge: there exists an efficient simulator S such that ∀x ∈ L , the distribution
〈P, V 〉(x) is computationally indistinguishable from S(x).

Furthermore we say that L has a honest-verifier statistical zero knowledge proof (i.e. HV-SZKP

in the terminology of [OV07], which we abbreviate as SZK) if the soundness condition holds with
respect to all (possibly inefficient) prover strategies and the zero knowledge condition guarantees not
only computational indistinguishability but also statistical indistinguishability, i.e. ∆(〈P, V 〉(x), S(x)) ≤
n−ω(1). It is known that SZK ⊆ AM ∩ coAM [For87, AH91]. We review some facts about ZK

and SZK.

Theorem 2.1 ([Ost91, OW93]). ZK 6= BPP implies AIOWF against uniform inverters exist.

Theorem 2.2 ([Vad04]). The following promise problem (Statistial Difference, SDα,β) is SZK-
complete for any choice 0 < β < α < 1 satisfying β < α2. An input is a pair of circuits X0, X1

taking n-bit inputs, where we identify each circuit Xi with the distribution it samples, Xi(Un). A
YES instance satisfies ∆(X0, X1) ≥ α, while a NO instance satisfies ∆(X0, X1) ≤ β. We write
simply SD when the particular choice of α, β is unimportant.

Theorem 2.3 ([Vad04, OV07]). If L ∈ ZK, then either there exists an efficient reduction Red

from L to SD, or there exist AIOWF’s against non-uniform inverters.4

Since we will study black-box constructions of zero-knowledge protocols, we will work with
relativized versions of ZK. We say L ∈ ZKO if it satisfies the definition of ZK as defined above
except the prover, verifier, simulator, and distinguisher are all allowed access to the oracle O. Also,
SDO is like SD except circuits are allowed O gates. Examining the proofs of the above Theorem 2.1,
Theorem 2.2, Theorem 2.3, we observe that they all relativize.5

3 Relativizing techniques

Our main result for relativizing techniques is to separate hardness of learning and AIOWF. Recall
the oracle:

Definition 3.1. O is drawn from the following the distribution. First, for each n select a function
R(n) : {0, 1}n × {0, 1}n → {0, 1} by letting each z ∈ {0, 1}n be a hard instance with probability
2−n/2, where we set Rz = R(n)(z, ·) to be a random function, and letting z be an easy instance
with probability 1− 2−n/2, where Rz ≡ 0. Let O decide QBFR∗ , which is PSPACER∗ -complete.

Theorem 3.2. With probability 1 over the choice of oracle O as in Definition 3.1, the concept
class F = {Rz}z∈{0,1}∗ is hard to learn, but no AIOWF against uniform inverters exists.

Proof. The theorem immediately follows from the following two lemmas, proved in the following
subsections.

Lemma 3.3 (Learning is hard relative to O). With probability 1 over the choice of O, F is hard
to learn even when the learner has access to O.

4[OV07] actually proved there exist instance-dependent one-way functions, a stronger notion than AIOWF.
5Readers familiar with [OV07] will note that they also prove a converse to Theorem 2.3 via non-relativizing

techniques. This does not affect us since we only use the direction stated in Theorem 2.3, which is relativizing.
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Lemma 3.4 (AIOWF do not exist relative to O). There is an efficient oracle algorithm I that,
with probability 1 over choice of O as in Definition 3.1, given any function f : {0, 1}n → {0, 1}m
described as a circuit of size s with O gates, satisfies:

Pr
x←R{0,1}n

[IO(fO, y) ∈ (fO)−1(y) | fO(x) = y] > 1/2

Combining the Ostrovsky-Wigerson theorem (Theorem 2.1), which relativizes, with Theorem 3.2
we obtain our main theorem about relativizing proofs Theorem 1.1.6

3.1 Learning is hard relative to O
Proof of Lemma 3.3. To prove this lemma, we show that any oracle circuit CO has probability
2−2Ω(n)

of learning Rz simultaneously on all z of length n. This proof follows from a case analysis:
for a hard instance z, we first show that it is unlikely the hypothesis produced, hO, agrees with Rz

without querying z (because if hO cannot query O on Rz then Rz looks like a random function),
and we then show that it is extremely unlikely that CO can produce a hypothesis hO that queries
z with noticeable probability since the function Rz is random and therefore the labelled examples
that CO sees contain no information about z.

Fix n and any circuit C of size s. We prove the claim:

Claim 3.5. For ε = 2− log2 n.

Pr
O





∧

z∈{0,1}n
CO learns Rz with advantage ε



 ≤ 2−2Ω(n)

This claim implies the lemma, since taking a union bound over all 2O(s log(s)) circuits of size s
for any s = poly(n) shows that the probability of there existing any circuit learning all the Rz is

still 2−2Ω(n)
. By the Borel-Cantelli lemma, this means that with probability 1, no family of circuits

learns F on infinitely many input lengths.
Let p = p(n) = poly(n) be the number of labelled examples that C observes, and for x1, . . . , xp ←R

Un, let Sz = {(x1,Rz(x1)), . . . , (xp,Rz(xp))}. Let CO(Sz) denote the hypothesis that CO outputs
given labelled examples Sz. We say that CO(Sz)(x) queries Rz if either in constructing the hypoth-
esis CO(Sz) or in evaluating the hypothesis CO(Sz) on x the oracle O is queried with a formula
ϕ that contains a Rz gate. We will show that the probability CO(Sz) approximates Rz is small
if CO(Sz)(x) rarely queries Rz because Rz is random. Then we will show that CO(Sz)(x) rarely
queries z because the labelled examples Sz and the membership oracle contain essentially no infor-
mation about z itself.

Define

• Aε
z as the event over the choice of O that CO learns Rz with advantage ε

• Bε4

z as the event over the choice of O that PrSz ,x[CO(Sz)(x) queries Rz)] > ε4

6Actually, this argument already rules out a more general class of proofs, namely so-called ∀∃ semi-black-box
reductions. We omit the details in the proceedings version.
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We develop the LHS of Claim 3.5

Pr
O





∧

z∈{0,1}n
Aε

z



 ≤ Pr
O

[

∧

z hard

Aε
z

]

(3.1)

≤ Pr
O

[

∧

z hard

(Aε
z ∨Bε4

z )

]

(3.2)

≤ Pr
O

[

∃z hard, Aε
z ∧Bε4

z

]

+ Pr
O

[

∧

z hard

Bε4

z

]

(3.3)

This formalizes our above intuition, since the first term is the probability that, for some hard
z ∈ {0, 1}n, CO learns R(z, x) but rarely queries z, and the second term is the probability that
CO(Sz)(x) queries Rz with noticeable probability for every the hard z.

Bounding the first term of Inequality 3.3. Fix a hard z (of which there are at most 2n).
We want to bound the quantity

Pr
O

[Aε
z ∧Bε4

z ] = ER′ Pr
O

[Aε
z ∧Bε4

z | R′] (3.4)

Here, R′ is a fixing of the entire oracle R except for the function Rz, which remains random,
and O|R′ is the oracle constructed as in Definition 3.1 except with R′ replacing R. We will show

Pr[Aε
z ∧Bε4

z | R′] ≤ 2−2Ω(n)
for any fixing R′.

If CO|R
′

(Sz) never queried Rz, then the number of functions that CO|R
′

could possibly learn is
bounded by the number of possible inputs (i.e. labelled examples) plus membership oracle responses
for each input, which is at most 2p(n)(n+2), which is a negligible fraction of the 22n

possible functions
Rz could be.

Now consider CO|R
′

(Sz) that can query Rz. Fix any Rz such that Aε
z ∧ Bε4

z occurs. Since Aε
z

holds therefore
Pr
Sz

[

Pr
x

[CO|R
′

(Sz)(x) = Rz(x)] >
1+ε
2

]

> 1− 2−n

Since Bε4

z holds, by Markov it holds that

Pr
Sz

[

Pr
x

[CO|R
′

(Sz)(x) queries Rz] ≥ 4ε3
]

< ε/4

This implies that there must exist some fixed S′ such that both events Prx[CO|R
′

(S′)(x) = Rz(x)] >
1+ε
2 and Prx[CO|R

′

(S′)(x) queries Rz] < 4ε3 occur. Thus, the string S′, the answers to all the
membership queries on input S′ (which consists of p(n) bits and are independent of x), and an
explicit labelling of all 4ε32n points x where the CO|R

′

(S′)(x) queries Rz gives us a description of
Rz that is accurate up to relative distance 1−ε

2 ; call this the noisy description of Rz. A Chernoff
bound implies that the number of vectors of length 2n of relative weight less than 1−ε

2 is at most

22n−Ω(ε22n). Therefore, every function Rz that CO|R
′

is able to learn can be specified by first
giving the noisy description of Rz and then giving the low-weight vector that equals the difference
between the noisy description and the true function. This means that CO|R

′

can learn at most
2p(n)(n+2)+4ε3(n+1)2n+2n−Ω(ε22n) different functions out of 22n

functions in total, and therefore

Pr
O

[Aε
z ∧Bε4

z | R′] ≤ 2p(n)(n+2)+4ε3(n+1)2n+2n−Ω(ε22n)−2n

= 2−2Ω(n)
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where in the last line we use that ε = 2− log2 n. Combined with Inequality 3.4 and a union bound
over all hard instances z, this bounds the first term of Inequality 3.3.

Bounding the second term of Inequality 3.3. We will show that if the learner C can query
Rz with noticeable probability given a random S, it can be used to “invert” R in the following
sense: view R as a function {0, 1}n → {0, 1}2n

where each input z is mapped to the truth table
of Rz. We say that a (computationally unbounded) procedure AR inverts R using q queries if for
every non-zero y in the image of R, we have AR(y) = R−1(y) (R is almost surely injective, so we
assume it to be without loss of generality) and A makes at most q queries to R.

To apply this to our setting, we will show that if CO(Sz) is able to query Rz with probability
≥ ε4 over Sz, then it can be used to build an inverter for R making only O(p(n)n/ε4) queries.
Then we show that with high probability this is impossible.

First let us show that the event
∧

z hardB
ε4

z implies one can invert R using O(p(n)n/ε4) queries.
We first describe a randomized procedure A′ for inverting R. A′ is defined using the learning circuit
C as follows: on every non-zero input y ∈ {0, 1}2n

which is the truth table of some function, emulate
C O(n/ε4) times using independent randomness, answering C’s queries to the example oracle and
membership oracle using y as the truth table of the hidden labelling function. To answer queries
ϕ that C makes to O, let Z be the set of z such that Rz appears in ϕ. For each z ∈ Z of length
n, A′ will query R to get the truth table Rz. Furthermore, A′ checks whether Rz = y, and if so
it halts and outputs z. For every z′ ∈ Z where |z′| = n′ 6= n, A′ sets Rz′ using independent coin

tosses to be 02n′

with probability 1 − 2−n′/2 and to be a random function {0, 1}n′ → {0, 1} with
probability 2−n′/2. Then A′ decides the QBFR∗ formula ϕ using these truth tables (A′ can do this
since it is unbounded). All these independent runs together query the oracle at most O(p(n)n/ε4)
times. Because Bε4

z holds for every z, i.e. for each z, when trying to learn Rz the circuit C queries
Rz with probability at least ε4, this means with probability 1− (1− ε4)O(n/ε4) ≥ 1− 2−2n at least
one of the emulations will query z = R−1(y), and so A′ will find z. Now take a union bound over
all possible non-zero inputs y = Rz of which there are at most 2n, still with probability 1 − 2−n

the random bits used are simultaneously good for all y.
This means for any R where

∧

z hardB
ε4

z holds, A′ inverts R with probability 1 − 2−n. This
implies

ER|Vz hard Bε4
z

Pr[A′ inverts R using O(p(n)n/ε4) queries]

≥ 1− 2−n

By averaging, this means there exists a fixing of the random coins of A′ (call A′ with these fixed
coins A) such that for a 1−2−n fraction of the R where

∧

z hardB
ε4

z holds, A inverts R. It therefore
follows that

Pr
O

[

∧

z hard

Bε4

z

]

· (1− 2−n)

≤ Pr
R

[

A inverts R using O(p(n)n/ε4) queries
]

The following lemma concludes the proof of the bound on the second term of Inequality 3.3.

Lemma 3.6. For any AR,
PrR[AR inverts R using O(p(n)n/ε4) queries] ≤ 2−2Ω(n)
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Proof. The proof is a straightforward generalization of Gennaro and Trevisan’s proof [GT00] that
a random permutation is hard to invert for circuits, generalized to the case where the function is
not a permutation but is still injective. The idea is that given A, any function that A can invert
can be “succinctly described”, and therefore there cannot be too many of them.

Fix any oracle procedureAR making at mostO(p(n)n/ε4) toR. LetN = |{x | R(x) ←R U2n}|
denote the number of hard outputs of R; by Chernoff the probability that N /∈ [2n/2−1, 2n/2+1] is

bounded by 2−Ω(2n/2), so in the following we condition on this event not happening:

Pr
R

[A inverts R] ≤ 2−Ω(2n/2) + EN∈[2n/2−1,2n/2+1]

[

Pr
R

[A inverts R | N hard outputs]

]

We will further throw out the oracles R that are not injective (this occurs with probability at most
≤

(

N
2

)

2−2n
). We call R where neither of these conditions hold “good”. Therefore our bound is

now:

Pr
R

[A inverts R] ≤ 2−2Ω(n)
+ EN∈[2n/2−1,2n/2+1]

[

Pr
R good

[A inverts R | N hard outputs]

]

Notice that with this conditioning, R is uniform in the set of good R.
To bound the probability on the RHS, we show that A is only capable of inverting very few

functions. Here, we follow the argument of [GT00] proving that one-way permutations are hard
against circuits.

We give a procedure for describing all possible injective functions R with N hard outputs as
follows: we will keep track of a set Y ⊆ {0, 1}2n

of “easily describable outputs” y for which we
will be able to compute the preimage x = R−1(y) with very little information using A. For the
“hard-to-describe outputs” outside Y we will just explicitly record the function. We show that
this is sufficient for reconstructing any R that A is able to invert. We then prove that the number
of functions describable this way is small compared to all possible functions, which gives us the
desired bound.

For a fixed R, define Y constructively as follows. Initialize Y = ∅ and the set T ⊆ {0, 1}2n
to

be the image of the hard instances of R, namely t ∈ T iff t = R(z) for some hard instance z. Since
we are conditioning on good R, we have that initially |T | = N .

Repeatedly perform the following until T is empty: remove the lexicographically first element
t ∈ T and add it to Y . Execute AR(t) and record the queries x1, . . . , xm (in the order that A
makes them) that A makes to R, where m = O(p(n)n/ε4). If none of the xi satisfy R(xi) = t, then
remove all of the x1, . . . , xm from T . If some xi satisfies R(xi) = y, then remove x1, . . . , xi−1 from
T . Repeat by removing the next lexicographically first element of T , adding it to Y , etc.

Clearly we have that |Y | ≥ N/m. We claim that given the set of hard instances Z = R−1(T ) ⊆
{0, 1}n (which is of size N), the set Y , X = R−1(Y ) ⊆ Z (the preimage of Y ), and the explicit
values of R on all inputs x ∈ Z \X, we can completely reconstruct R as follows. For each x /∈ Z,
R(x) = 02n

. For each x ∈ Z \X, output the explicitly recorded value. It only remains to match
the elements of Y with their correct preimage in X. For each y ∈ Y in lexicographic order, run
AR(y). The queries AR(y) makes to R will all either be for x /∈ X in which case we know the
answer explicitly, for x ∈ X such that R(x) is lexicographically smaller than y and so we already
computed the answer previously, or for some x ∈ X we have not seen in a previous computation,
which by construction must mean x = R−1(y). Either way, we obtain the value R−1(y).

11



The number of functions describable in this way is exactly

(

2n

N

)(

N

|Y |

)(

22n

|Y |

)

· (2
2n − |Y |)!

(22n −N)!

where the first factor is the number of ways of choosing N hard instances, the second is the choice of
X, the third is the choice of Y , and the final is the number of ways of explicitly defining the function
on Z \ X assuming the function is injective. Therefore, the probability over R that A inverts R
is exactly the above quantity divided by the total number of good R, namely

(

2n

N

) (22n
)!

(22n−N)!
. So we

can calculate that:

Pr
R injective

[A inverts R everywhere | N hard instances] ≤
(

2n

N

)(

N
|Y |

)(

22n

|Y |
)

· (22n−|Y |)!
(22n−N)!

(

2n

N

) (22n
)!

(22n−N)!

(3.5)

=

(

N
|Y |

)

|Y |! (3.6)

≤
(

N3e

|Y |2
)|Y |

(3.7)

which is 2−2Ω(n)
for N ≤ 2n/2+1 and |Y | > N/m = 2(1−o(1))n/2.

This concludes the proof of Lemma 3.3.

3.2 AIOWF do not exist relative to O
Proof of Lemma 3.4. We would like to use the simple fact that for any O, being able to com-
pute PSPACEO-complete problems implies being able to invert PSPACEO computations (i.e.
polynomial-space computations with O gates, see for example Proposition A.2). This does not
work for PSPACER∗ because we restricted the polynomial-space machine’s access to R: recall that
a PSPACER∗ machine is not allowed to enumerate over Rz over all z.

To overcome this, the inverter I works as follows: it finds all the z such that fO(x) queries Rz

with noticeable probability over choice of random input x; call this set H the “heavy” queries. We
show that by finding H, I knows most of the hard instances z such that fO queries Rz. We will
show that this allows I to decide PSPACER

′

-complete problems, where R′z = Rz for all z ∈ H
and R′z′ ≡ 0 for all z′ /∈ H. Note that, in contrast to PSPACER∗ , a PSPACER

′

is allowed to

enumerate over R′z. Let O′ decide a PSPACER
′

-complete language. We show that with knowledge
of H and access to O the inverter I can efficiently compute O′, and it follows (for example from
Proposition A.2) that this allows I to invert any PSPACER

′

computation.
Since PSPACER

′

is very similar to PSPACER∗ , we could try to use O′ to invert fO, but
the computation of fO(x) may query hard instances outside H, and so fO(x) 6= fO

′

(x) for some
x. However, we argue that, by the definition of heavy and because hard instances are scattered
at random, the probability over a random x that the computation fO(x) queries a hard instance
outside H cannot be too high. Therefore, the distributions (x, fO(x)) and (x, fO

′

(x)) for x←R Un

are statistically close. If I simulates O′ and uses this to invert y by finding some x such that
y = fO

′

(x), then with high probability over random y the x also satisfies fO(x) = y

12



We proceed with the formal argument. We describe and analyze an algorithm I that with
probability 2−s over the choice of oracle, inverts all f computable by a circuit of size s. This proves
the lemma, since by the Borel-Cantelli lemma this means IO inverts all except finitely many circuits
with probability 1 over O.

Let f be any function computable by a circuit C (with O gates) of size s, where f takes inputs
of length n. Let g1, . . . , gs be the oracle gates of C in topologically sorted order.

Set the heaviness threshold to be α = 100s8. In sorted order, I finds all z such that CO(Un)
queries O with a formula containing a Rz gate with probability larger than 1/α using the following
procedure.

First, I initializes the set Z0 = {z | |z| ≤ 8 log s}. Then, to construct Zi, the set of heavy
queries up till the i’th query, using Zi−1, I does the following. Let the circuit Q′i be the sub-circuit
of C that computes queries for gi. We transform Q′i into a related circuit Qi by replacing each
oracle gate gj , j < i that appears in Q′i (these are the only oracle gates that gi depends on since we
work in sorted order) with the following: on input ϕ, replace each Rz gate inside ϕ where z /∈ Zj

by a constant 0 gate, and then call O with this modified formula. This transformation forces all
the hard instances that gj queries to be in Zj .

Note that Qi(x) = ϕ is exactly saying that C(x) queries ϕ at gi, conditioned on each pre-
vious oracle gate gj querying only heavy instances (z ∈ Zj) or easy instances (Rz ≡ 0). Since
Qi only makes oracle queries containing Rz gates for z ∈ Zi−1, this means Qi is computable us-
ing only a PSPACER

′
i−1 oracle, where R′i−1(z, x) = R(z, x) for z ∈ Zi−1 and is zero otherwise.

Since I knows Zi−1, it can simulate a PSPACER
′
i−1 oracle: any L decidable by a PSPACER

′
i−1

machine M can be decided by a PSPACER∗ pair (M1,M2) where M1 outputs Zi−1 and M2 em-
ulates M . A PSPACE oracle is able to compute the probabilities in the output distribution of
any PSPACE computations, and this relativizes (Proposition A.3). Namely, since Qi is com-
putable in PSPACER

′
i−1 and I can simulate a PSPACER

′
i−1 oracle, I can run the algorithm

of Proposition A.3 on input (Qi, D, 1
α), where D is the efficient circuit taking a formula ϕ and

z ∈ {0, 1}∗ and outputting 1 if ϕ contains a Rz gate, and outputs 0 otherwise. This outputs
{z | Pr[Qi(x) = ϕ ∧D(ϕ, z) = 1] > 1/α}, which we add to Zi−1 to obtain Zi.

Proposition A.3 guarantees Zs is the collection of all z such that there exists some Qi querying
z with probability > 1/α over the choice of random input x.

We now show that with high probability over O, if I knows Zs then it knows most of the hard
instances that fO might have queried, and so it can invert fO almost everywhere. Formally, let
B(x) be the bad event that fO(x) queries some hard z outside Zs. We claim:

Pr
R

[

Pr
x←RUn

[B(x)] > 1
s

]

≤ 2−s2
(3.8)

First we use this inequality to prove the lemma: by a union bound over all f computable by size
s circuits, of which there are at most 2O(s log s), this means that for a 1 − 2−s2−O(s log s) ≥ 1 − 2−s

fraction of the R that with probability 1− 1/s over x, fO(x) never queries hard z /∈ Zs. That is,
for such good x and R, fO(x) = fO

′

(x), where O′ decides a PSPACER
′
s-complete problem, and

R′s is defined as before. This implies ∆
(

(x, fO(x)), (x, fO
′

(x))
)

≤ 1/s. Furthermore, a PSPACE

oracle can invert PSPACE computations and this relativizes (Proposition A.2). I knows Zs so
it can use Zs and O to simulate O′, so it can apply the algorithm of Proposition A.2 to compute
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uniformly random preimages of fO
′

with failure probability 2−m, giving us

∆
(

(x, fO
′

(x)), (IO(y), y | y = fO
′

(x))
)

≤ 2−m

Putting these together by the triangle inequality, we have

∆((x, fO(x)), (IO(y), y | y = fO(x))) ≤ 2/s+ 2−m

which proves the lemma modulo Inequality 3.8. In fact, we prove something much better: IO

actually gives an almost uniformly random preimage of y.
It remains to prove Inequality 3.8. Define inductively Bi(x) as the event that fO(x) queries a

hard z /∈ Zi in the i’th query but all prior queries j are either easy or in Zj . Since Zi ⊆ Zi+1, we
have that B(x) ⊆ ⋃s

i=1Bi(x). By averaging:

Pr
R

[

Pr
x

[B(x)] > 1
s

]

≤ Pr
R

[

Pr
x

[

s
⋃

i=1

Bi(x)

]

> 1
s

]

≤ Pr
R

[

∃i, Pr
x

[Bi(x)] >
1
s2

]

≤
s

∑

i=1

Pr
R

[

Pr
x

[Bi(x)] >
1
s2

]

We claim that for each i, PrR[Prx[Bi(x)] > 1/s2] ≤ 2−2s2
, which we prove using a case analysis.

Showing this concludes the proof of the lemma since s2−2s2 ≤ 2−s2
.

The case analysis roughly goes as follows: either the probability that fO makes a light i’th
query (i.e. a query not in Zi) is small, in which case the probability it makes a light and hard
query is also small, or the probability that fO makes a light i’th query is large, in which case the
conditional probability of each individual light query is not too large, and in this case we can show
that it is unlikely over the choice of oracle that many light queries are hard.

Formally, let Lighti(x) be the event that fO’s i’th query is light, i.e. it is not in Zi conditioned
on all queries j < i being either in Zj or easy. (The only difference between Lighti and Bi is that
in Bi we also demand the i’th query be hard.) We have that

Pr
R

[Pr
x

[Bi(x)] > 1/s2]

= Pr
R

[{

Pr
x

[Bi(x)] > 1/s2
}

∧
{

Pr
x

[Lighti(x)] ≥ 1/s2
}]

+ Pr
R

[{

Pr
x

[Bi(x)] > 1/s2
}

∧
{

Pr
x

[Lighti(x)] < 1/s2
}]

Clearly the second term is 0 because Bi(x) ⊆ Lighti(x).
To bound the first term, we inductively fix R up until the i’th query as follows: let R0 be a

fixing of all Rz with z ∈ Z0. Let Zi be the set of heavy i’th queries conditioned on Zi−1,Ri−1 and
the event that fO(x)’s first i− 1 queries are either easy or in Zi−1, and let Ri be a fixing of all Rz
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for z ∈ Zi conditioned on Ri−1. Thus, we can write:

Pr
R

[{

Pr
x

[Bi(x)] > 1/s2
}

∧
{

Pr
x

[Lighti(x)] ≥ 1/s2
}]

= ERi−1 Pr
R

[{

Pr
x

[Bi(x)] > 1/s2
}

∧
{

Pr
x

[Lighti(x)] ≥ 1/s2
}

| Ri−1

]

≤ ERi−1 Pr
R

[{

Pr
x

[Bi(x) | Lighti(x)] > 1/s2
}

|
{

Pr
x

[Lighti(x)] ≥ 1/s2
}

∧Ri−1

]

where in the last line we used the fact that Bi(x) ⊆ Lighti(x). For each such fixing of Ri−1, since
the probability that the i’th query is light is at least 1/s2, the probability that a specific light z is
asked as the i’th query conditioned on Lighti(x) is at most 1/s2 · 1/α = 1/(100s6). Each i’th query
is hard independently with probability at most 1/s4 over the choice of oracle (because Z0 contains
all queries of length up to 8 log s, the oracle is random only on longer inputs). If each light query
were asked with probability exactly 1/(100s6) then we could apply a Chernoff bound, which says
that the probability that more than 1/s2 of the light queries are hard given that each light query
is hard with probability 1/s4 is at most 2−100s6/(4s4)) ≤ 2−2s2

. By a simple generalization of the
Chernoff bound stated in Lemma A.4, we can show that the same bound holds even though we are
guaranteed that each light query is asked with probability at most 1/(100s6), so this concludes the
proof of the lemma.

4 Black-box techniques

We first prove the result for fully-black-box reductions, then explain how to extend the proof to
semi-black-box reductions.

Theorem 1.2 (Restated). If there exists a semi-black-box proof that constructs a ZK protocol for
a language L assuming PAC learning is hard, then in fact L ∈ SZK.

Proof of fully-black-box case. A fully-black-box proof is relativizing, so both the construction
and analysis must hold relative to any oracle. We will use the same oracle from Definition 3.1.

Recall that Lemma 3.3 says with probability 1 over the choice of R, F = {Rz}z∈{0,1}∗ is hard to

learn. By our hypothesis, this implies L ∈ ZKO, and furthermore in the zero-knowledge protocol
for L, the prover, verifier, and simulator all use access only to the hard concept class F , which can
be implemented using just R (and not O) gates.

Next, we claim that the protocol is in fact statistically zero knowledge. Applying the relativized
version of the SZK/AIOWF characterization (Theorem 2.3), we know that if L ∈ ZKO then (a)
there is an efficient reduction Red reducing L to SDO, or (b) there exists AIOWF against non-
uniform inverters relative to O. Case (b) never occurs because Lemma 3.4 tells us that AIOWF do
not exist relative to O, so we must be in case (a).

In fact, the proof of Theorem 2.3 actually proves not only that Red reduces L to SDO but the
circuits that Red produce are defined simply in terms of the (code of the) simulator of the original
ZKO protocol. Because the simulator of the original protocol needed access only to R, we can
conclude that with probability 1 over the choice of R, Red reduces every x ∈ L to a YES instance
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of SDR and every x /∈ L to a NO instance of SDR. (This observation is crucial: proving L reduces
to SDO is meaningless, since O can decide PSPACE-complete languages. In fact, this is why one
cannot use Theorem 2.1 to conclude that the non-existence of AIOWF implies L ∈ BPP; applying
it would only show L ∈ BPPO, which is meaningless for the same reason.)

We can now deduce that with high probability over R, the reduction Red is good for all long
enough instances. Let us say that “Red succeeds on Ln” if for all x of length n, Red(x) maps each
x ∈ L to a YES instance of SDR and each x /∈ L reduction to a NO instance of SDR (i.e. they
satisfy the promise of SDR).

Claim 4.1. If Red reduces L to SDR with probability 1 over R, then PrR[Red succeeds on Ln]→ 1
as n→∞.

To prove the claim, let An be the event that Red succeeds on L≥n, i.e. Red succeeds on all
inputs of length at least n (rather than exactly n). Notice that it suffices to show Pr[An] → 1
as n → ∞. We know by hypothesis that 1 = PrR[Red reduces L to SDR] ≤ PrR[

⋃∞
i=1Ai]. Since

An ⊆ An+1, we have that:

Pr

[ ∞
⋃

i=1

Ai

]

=
∞

∑

i=1

Pr[Ai ∧Ai−1]

But since Pr[An] =
∑n

i=1 Pr[Ai ∧Ai−1], the claim follows.

Lemma 4.2 (Removing the oracle). If for sufficiently large n, PrR[Red succeeds on Ln] > 99/100,
then L ∈ SZK.

Claim 4.1 means that the hypothesis of this lemma is satisfied, and so the lemma implies the
theorem.

4.1 Removing the oracle

Proof of Lemma 4.2. Red efficiently maps each input x to an instance (XR0 , X
R
1 ) of Statistical

Difference withR gates, say with α = 99/100 and β = 1/100. Namely, Red maps L to SDR99/100,1/100.

By padding, we can assume without loss of generality that the input and output length of XRi is
n, and |Xi| ≤ p(n) = poly(n) for i = 0, 1.

By hypothesis, with probability 99/100 over the choice of R, for every x of length n, x ∈ L
reduces to (XR0 , X

R
1 ) such that ∆(XR0 , X

R
1 ) > 99/100 while x /∈ L reduces to (XR0 , X

R
1 ) such that

∆(XR0 , X
R
1 ) < 1/100.

Claim 4.3. There is an efficient deterministic reduction Red′ such that for all x ∈ L, Red′(x) =
(X ′0, X

′
1) satisfies ∆(X ′0, X

′
1) > 24/25 and for all x /∈ L, Red′(x) = (X ′0, X

′
1) satisfies ∆(X ′0, X

′
1) <

1/25.

Since (24/25)2 > 1/25, this is still in SZK and so the claim shows that Red′ puts L ∈ SZK.
To prove the claim, let Red′ work by first running Red to produce (XR0 , X

R
1 ), and then trans-

forming those circuits the following way. Let Q be a circuit that takes some random bits and
generates a “fake” oracle RQ whose distribution on inputs of up to length 2 log 108p(n) is identical
to the real distribution R, and for inputs longer than 2 log 108p always returns 0. It is clear RQ

can be described and evaluated in polynomial time, and there is a circuit Q of size poly(p) that
constructs RQ using m = poly(p) random bits.
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Red′(x) = (X ′0, X
′
1) where X ′0 is the circuit that takes m+ n random bits and uses m bits (call

these m bits ω) for Q to generate a fake random oracle RQ, and uses n bits to sample a random

x←R X
RQ

0 and then outputs (ω, x). X ′1 is the circuit that takes m+ n random bits just as above

except it outputs (ω, x) where x←R X
RQ

1 .
We prove that Red′ satisfies the claim. Let X be either X0 or X1 (the same argument applies

to both). For r ∈ {0, 1}n, let B(r) be the bad event over the choice of R that XR(r) queries a hard
instance z of length > 2 log 108p, and Bi(r) be the event that the i’th oracle query of XR(r) (for
some arbitrary ordering of the queries) is a hard instance z of length > 2 log 108p. It holds that:

Pr
R,r←RUn

[B(r)] = Er Pr
R

[B(r)] ≤ Er

p
∑

i=1

Pr
R

[Bi(r)] ≤ 1/108

since over the randomness of R, the probability that any query of length > 2 log 108p is hard is at
most 1/(108p).

Now by Markov, we have that

Pr
R

[ Pr
r←RUn

[B(r)] > 1/104] < 1/104

Notice that for good R where B(r) occurs with probability ≤ 1/104, we have that ∆(XR, XRQ) ≤
1/104. Therefore, with probability > 99/100−2/104 we get a good fixing of ω used by Q to generate
RQ, where by good we mean that

x ∈ L⇒ ∆(X
RQ

0 , X
RQ

1 ) > 99/100− 2/104

x /∈ L⇒ ∆(X
RQ

0 , X
RQ

1 ) < 1/100 + 2/104

Therefore, the claim follows by averaging over all ω and using the fact that a 99
100 − 2

104 fraction
of the ω are good, so that

x ∈ L⇒ ∆(X ′0, X
′
1) > ( 99

100 − 2
104 )( 99

100 − 2
104 ) > 24

25

x /∈ L⇒ ∆(X ′0, X
′
1) <

1
100 + 2

104 + 1
100 + 2

104 <
1
25

4.2 Semi-black-box reductions

The proof above fails to rule out semi-black-box reductions because we use Lemma 3.4, which says
any efficiently computable function can be inverted by an adversary with access to O. In contrast,
in a semi-black-box reduction the adversary is allowed access only to the hard concept class, which in
the above proof is F = {Rz}. To rule out semi-black-box reductions we will “embed” PSPACER∗
inside F itself (an idea of Simon [Sim98], see also [RTV04]), but this must be done carefully. We
have to balance two requirements: first, there must still be a way to call PSPACER∗ in order to
invert all AIOWF. On the other hand, the verifier in the zero knowledge protocol must not be able
to call the PSPACER∗ oracle, or else it could decide PSPACE on its own and all of PSPACE

would trivially have a zero knowledge protocol in this relativized world. The key to achieve these
two conflicting goals simultaneously is that Theorem 2.3 allows the inverter for the AIOWF to be
non-uniform, while the verifier in the protocol is uniform.
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Definition 4.4. Let R(n) : {0, 1}n × {0, 1}n → {0, 1} be chosen as follows: for each z ∈ {0, 1}n,
with probability 2−n/2 let Rz be a function drawn from the distribution R described below (hard
instances) and with probability 1− 2−n/2 let Rz ≡ 0 (easy instances).

The distribution R over functions {0, 1}n → {0, 1} is defined as follows: on input x ∈ {0, 1}n,
if the first n−√n bits of x are not identically zero then output a random bit. If the first n−√n
bits of x are all 0 then let ϕ be the remaining

√
n bits of x and interpret ϕ as a QBFR∗ formula,

and output whether ϕ is satisfiable.

First we check that R is well-defined. Namely, what if one queries Rz(0
n−√nϕ) where z is a

hard instance and ϕ is a QBFR∗ formula that calls Rz? This cannot happen: because |z| = n and
|ϕ| = √n, there can be no self-reference, i.e. ϕ can never have Rz gates because it cannot even
describe z. Since ϕ does not call Rz then the oracle is well-defined as all the oracle calls made in
all possible ϕ of length

√
n are independent of Rz’s responses.

Proof of Theorem 1.2, semi-black-box case. We use the oracle R of Definition 4.4 to prove the the-
orem.

Claim 4.5. With probability 1 over R, learning F is hard for circuits relative to R.

As before, it suffices to show that for any efficient circuit C we have PrR
[

CR learns F on length n
]

≤
2−2Ω(n)

. We use the same notation as the proof of Lemma 3.3. Let Aε
z denote the event that CR

learns Rz with advantage ε, and let Bε4

z be the event that PrSz ,x[CR(Sz)(x) queries Rz] > ε4.
Here, “CR(Sz)(x) queries Rz” means either during the construction of the hypothesis CR(Sz)

or while evaluating the hypothesis on x, the oracle is queried on Rz or on Rz′(0
n′−
√

n′

ϕ) where
|z′| = n′ > |z|2 and ϕ is a QBFR∗ formula containing a Rz gate.

We have as before that

Pr
R

[CR learns F on length n] (4.1)

≤ Pr
R

[

∃z hard of length n, Aε
z ∧Bε4

z

]

(4.2)

+ Pr
R

[

∧

zhard

Bε4

z

]

(4.3)

To bound the term in Inequality 4.2, fix a hard instance z and let R′ denote a fixing of the entire

oracle R except for Rz and all Rz′(0
n′−
√

n′

ϕ) where |z′| = n′ > |z|2 and ϕ contains a Rz gate.
With such a fixing, CR

′

can be viewed as a deterministic procedure for learning Rz, which is a
random function, except on inputs of the form x = 0n−√nϕ. But the probability that CR

′

will be
asked to label such a x is 2−n+

√
n, which means such x contribute a negligible to CR

′

’s advantage.
Therefore, we can apply the proof bounding the first term of Inequality 3.3 to bound the first term
by 2−2Ω(n)

.
To bound the term in Inequality 4.3, we can show as in the proof of Lemma 3.3 that any CR

of size p(n) that queries z with greater than ε4 can be transformed into a procedure A that inverts
R (in the sense of Lemma 3.6) making O(p(n)n/ε4) queries. We omit this transformation, which
is identical to the previous one, except to point out that a non-zero y of length 2n in the image
of R contains all the truth tables of Rz′ for |z′| ≤ √n. If CR queries anything depending on
such Rz′ , A can answer consistently with y without making additional queries to R. It suffices
to show that with overwhelming probability, no procedure can invert R with O(p(n)n/ε4) queries,
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i.e. the analogous result of Lemma 3.6, which we omit since it is almost identical to the proof of
Lemma 3.6.

Claim 4.5 and the hypothetical semi-black-box reduction implies that L ∈ ZKR. Second, we
show that AIOWF do not exist relative to R.

Claim 4.6. With probability 1 over R, there exist no AIOWF against non-uniform adversaries
relative to R.

We exhibit a family of polynomial-size oracle circuits {Is} that inverts every function f :
{0, 1}n → {0, 1}m computable by an oracle circuit of size s. Namely, for every such f

Pr
x←RUn

[IRs (f, y) ∈ (fR)−1(y) | y = fR(x)] > 1/2

In fact, the circuits Is do exactly the same thing as the uniform inverter I in the proof of Lemma 3.4
except that in order to get access to a PSPACER∗ oracle, we hardwire into Is a hard instance z′

of length n′ = O(s2). Using z′, C gets access to Rz′ , and it can use Rz′(0
n′−
√

n′

ϕ) to decide QBFR∗
instances ϕ of size up to s. This is sufficient for Is to implement the strategy of I from the proof
of Lemma 3.4 to invert every f computable by an s size circuit, and the claim follows.

Using Theorem 2.3 and the fact that AIOWF against non-uniform inverters do not exist, we
deduce that there is an efficient reduction Red such that with probability 1 over R, Red reduces
L to SDR. As before, we claim that if Red reduces L to SDR with probability 1 over R, then
PrR[Red succeeds on Ln]→ 1 as n→∞. The proof is identical to the proof of Claim 4.1.

Since for large enough n, Red succeeds on Ln with probability 99/100 over the choice of R, and
we can then hardwire R to place L ∈ SZK:

Claim 4.7. If for all large enough n PrR[Red succeeds on Ln] ≥ 99/100, then L ∈ SZK.

The claim is proven by reducing L to SD using the same argument as in the proof of Lemma 4.2.
The only difference is that in order for the circuit Q to sample the fake oracle RQ identically
distributed to R on all inputs up to length 2 log 108p = O(logn) and 0 on longer inputs, Q must be
able to decide QBFR∗ formulas of size up to

√

2 log 108p = O(
√

log n). Q can do this in polynomial

size by brute force, because QBFR∗ can be decided in time 2O(n2
) (using standard results about

QBF, e.g. Proposition A.1) and the inputs here are of size O(
√

logn).

5 Open Questions

Recently, Aaronson and Wigderson [AW08] proposed another barrier to reductions, algebrization.
It is natural to ask whether one can rule out algebrizing techniques for showing that hardness of
PAC learning is equivalent to ZK 6= BPP. More generally, it would be interesting to understand
better the role of algebrizing techniques in cryptography and learning theory.

Our results are silent about whether reductions where the construction is black-box but the
security analysis only holds for adversaries making no oracle calls (so-called mildly black-box re-
ductions, see [RTV04]) can base ZK 6= BPP on hardness of learning. For example, the zero
knowledge argument of Barak [Bar01] is bases NP ⊆ ZK (with nice additional properties) on
standard assumptions, and is only mildly-black-box because the security analysis uses the PCP
theorem. It would be interesting to understand whether such techniques are useful in our setting.
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Our proof of Theorem 1.2 also does not rule out relativizing constructions of zero-knowledge
protocols for NP-complete languages from hardness of learning. This is because we use the fact
that in semi-black-box proofs, there is a single procedure that uses black-box access to R and
produces a zero-knowledge protocol, and this implies we have a single reduction Red reducing L
to SDR. A relativizing proof could conceivably imply a radically different Red for each R, and so
there may not be a single Red reducing L to SDR. It is an interesting open question whether one
can rule out relativizing reductions in this setting as well.
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A Technical lemmas

Proposition A.1. QBFR∗ is PSPACER∗ -complete.
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Proof. QBFR∗ ∈ PSPACER∗ : this immediate because the proof that QBF ∈ PSPACE relativizes.
On input ϕ, M1 takes ϕ and outputs all the z such that ϕ contains a Rz gate to obtain z1, . . . , zm.
M2 then simply decides ϕ using access to the Rzi gates. This runs in space O(n2) and therefore
time 2O(n2), see e.g. the analysis in [AB09].

All L ∈ PSPACER∗ reduce to QBFR∗ : recall the proof that QBF is complete for PSPACE (see
e.g. [AB09]). For a PSPACE machine M with space bound p(n) and an input x, we look at the
configuration graph of M on input x. A state of the configuration graph is describable by a string
of size O(p(n)). Furthermore, there is a O(p(n)) size formula φM,x that describes edges in the
configuration graph: namely, given S, S′ ∈ {0, 1}p(n), φM,x(S, S′) = 1 iff S′ follows from one step of
the computation of M starting with configuration S. The QBF formula is constructed recursively
by contracting paths in the configuration graph: we initialize ψ1 = φ and define

ψi(S, S
′) = ∃S′′,∀T1, T2, (T1 = S ∧ T2 = S′′) ∨ (T1 = S′′ ∧ T2 = S′)⇒ ψi−1(T1, T2)

and the final output formula is ψp(n)(S0, Sa) where S0 is the initial configuration and Sa is an
accepting final configuration. One can check that |ψp(n)(S0, Sa)| = O(p(n)2).

To generalize this reduction to PSPACER∗ , on input x our reduction first uses M1 to obtain
z1, . . . , zm. Now, it produces the formula φM,x, which contains only (say) NAND gates and gates
of the form Rzi . Then, run the same reduction as in the PSPACE case, which gives us the final
formula ψp(n)(S0, Sa) which contains only Rz gates with explicit z (i.e. those obtained from M1).

For any PSPACEO relation R, a PSPACEO oracle can count the number of satisfying pairs
{(x, y) | R(x, y) = 1} by enumerating over all pairs and checking the relation. We use this to show
the following two facts.

Proposition A.2. There is an efficient oracle algorithm A that, for every O, APSPACE
O

takes
input a circuit C : {0, 1}ℓ → {0, 1}m with oracle gates and a string y ∈ {0, 1}m, and outputs a

uniform element of the set {x | CPSPACE
O

(x) = y} with probability at least 1− 2−|y|, and outputs
a special failure symbol ⊥ with the remaining probability.

Proof. The computation of C on inputs of length ℓ can be expressed as a polynomial-size QBFO for-
mula (QBF withO gates), and so we can use a PSPACEO oracle to compute s = |(CPSPACE

O

)−1(y)|.
Now pick a random number i←R [s] and use the PSPACEO oracle to output the i’th lexicograph-
ically ordered string in f−1(y). There is some probability of failure because sampling a number in
[s] may have a probability of failure if s is not a power of 2, but this can be made to be smaller
than 2−|y| by repeating the procedure.

Proposition A.3. There is an efficient oracle algorithm A that, for every O, APSPACE
O

takes
input two oracle circuits C : {0, 1}ℓ → {0, 1}m and circuit D : {0, 1}m×{0, 1}n → {0, 1} computing
a predicate, and a unary string 1p and outputs a set

S =

{

y

∣

∣

∣

∣

Pr
x←RUℓ

[

DPSPACE
O

(CPSPACE
O

(x), y) = 1
]

≥ 1/p

}

Proof. Since PSPACEO is capable of counting PSPACEO relations, A simply iterates over all x ∈
{0, 1}m, y ∈ {0, 1}n and outputs all y such that the number of x such thatDPSPACE

O

(CPSPACE
O

(x), y) =
1 is larger than 2n/p. There can be at most p such y, so the procedure runs in polynomial space.
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The standard Chernoff shows that the empirical average of many samples drawn from a dis-
tribution deviates from the mean of the distribution with exponentially small probability. We use
the fact that this also holds for weighted empirical averages, as long as the weights are relatively
smooth.

Lemma A.4 (Generalized Chernoff bound). Let D be a distribution over a finite universe U
such that maxu∈U Pr[D = u] ≤ 1/k. Let F be a distribution on functions f : U → {0, 1}. Let
µ = ED,F [F (D)] and let µu = EF [F (u)]. Then

Pr
F

[ED[F (D)] > µ+ γ] < e−γ2k/2

Proof. One can plug in the fact that maxu∈U Pr[D = u] ≤ 1/k in a straight-foward way into the
proof of the standard Chernoff bound (see for example the appendix of [AB09]), which considers
the case that D is uniform over a universe of size k. That is, we derive that for any positive constant
t:

Pr
F

[ED[F (D)] > µ+ γ] = Pr
F

[

et(kED[F (D)]−kµ) > etkγ
]

≤ e−tkγ
EF

[

et(kED[F (D)]−kµ)
]

≤ e−tkγ
EF

[

et(kED[F (D)−µD])
]

≤ e−tkγ
EF

[

et(
P

u∈supp(D) F (u)−µu)
]

(using Pr[D = u] ≤ 1/k)

= e−tkγ
∏

u∈supp(D)

EF

[

et(F (u)−µu)
]

≤ e−tkγ+t2k (using |supp(D)| ≥ k plus Taylor expansion)

= e−γ2k/2

where the last line follows from setting t = γ/2.

B Ostrovsky-Wigderson Theorem

The Ostrovsky-Wigderson theorem (Theorem 2.1) is relativizing but not fully black-box. We sketch
the proof in order to point out the precise argument that is non-black-box: supposing that there
exist no AIOWF, we show that ZK = BPP. Fix any L ∈ ZK with simulator S. It suffices to show
that the “simulation-based prover” is efficiently computable: the simulation-based prover is defined
by the conditional distribution of the simulator. Given a prefix of messages m1, . . . ,mi (say mi

is a verifier message), the simulated prover samples a message mi+1 according to the distribution
S(x, Ur) conditioned on the first i messages being m1, . . . ,mi. If one could efficiently compute the
simulated prover distribution (or approximate it) then this would give an algorithm for L: run
the honest verifier and interact it with the simulated prover. By the zero-knowledge property the
verifier will accept x ∈ L, and by soundness the verifier will reject x /∈ L.

We show how to approximate the simulated prover assuming AIOWF do not exist. Let Si(x, ·)
be the function that outputs the first i messages of the simulator. Suppose that the i’th message is
sent by the receiver, then one way to sample the simulated prover’s i+ 1’th message in response to
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a partial transcript τi = (m1, . . . ,mi) is to first invert invert Si(x, ·) on τi to obtain random coins r
such that Si(x, r) = τi, and then compute Si+1(x, r) and output the i+1’th message. Assuming that
AIOWF do not exist, this inversion procedure is efficient. In addition, the fact that the inversion
procedure is efficient is critical because we only have the guarantee that the output of the simulator
is computationally indistinguishable from the honest transcript. A priori, it is conceivable that the
honest transcript and the simulator transcript have disjoint support but remain computationally
indistinguishable, in which case inverting an honest transcript as if it were output by the simulator
is information-theoretically impossible. But the assumption that the protocol is zero knowledge
combined with the assumption that AIOWF do not exist means that this is not the case, since
otherwise the inverter for the AIOWF would give an efficient distinguisher for the simulator. Thus
the proof is not black-box since the proof uses the fact that the inverter is efficient in a critical
way. Note however that it is relativizing: if all the algorithms are given access to an oracle and the
hardness is assumed to be against algorithms with access to the oracle, the same reasoning goes
through.
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